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Addressing the Problem of Switched Class
Labels in Latent Variable Mixture Model

Simulation Studies

Stephen J. Tueller, Scott Drotar, and Gitta H. Lubke
University of Notre Dame

The discrimination between alternative models and the detection of latent classes in the context of

latent variable mixture modeling depends on sample size, class separation, and other aspects that

are related to power. Prior to a mixture analysis it is useful to investigate model performance in

a simulation study that reflects the research settings. Multiple data sets are generated under 1 or

more models, and alternative models are fitted to the data. The aggregation of results over multiple

data sets is complicated by the fact that mixture models are only identified up to a permutation of

the class labels. Estimated class labels are arbitrary, with the effect that the estimated parameters

for Class 1 could be incorrectly labeled as Class 2, Class 3, and so forth, relative to their data

generating labels. In a simulation study, the detection of switched labels needs to be automated.

Switched class labels are not necessarily simple to detect. This article describes different possible

scenarios of switched class labels, and develops an algorithm implemented in R that (a) detects

switched labels, and (b) provides information that can be used to either correct class labels or

to discard a particular data set from a simulation if class labels are ambivalent. The algorithm is

useful in Monte Carlo simulations involving latent variable mixture models.

Latent variable mixture modeling has become popular for the analysis of data in a variety of

areas within the behavioral sciences (e.g., B. O. Muthén & Asparouhov, 2006; Neale, Aggen,

Maes, Kubarych, & Schmitt, 2006; Nylund, Bellmore, Nishina, & Graham, 2007; Torppa et al.,

2007). The popularity is due mainly to the fact that latent variable mixture modeling permits

the investigation of differences between groups without having to rely on observed data to

form the groups. The study of latent groups or classes can be carried out longitudinally or
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SWITCHED LABEL DETECTION 111

at single time points, and increasingly complex mixture models have been proposed (e.g.,

Jedidi, Jagpal, & DeSarbo, 1997; B. O. Muthén, 2004; Muthén, Asparouhov, & Rebollo, 2006;

Vermunt, 2003). A typical empirical mixture analysis consists of fitting and comparing several

alternative models with different within-class structures, increasing numbers of classes, or both.

It has been shown that the detection of classes, and, more generally, the discrimination between

alternative models, is a matter of power. Just as in comparisons of observed groups, sample size

and the size of the mean differences between classes have an impact on the detection of the

differences, and hence on which model is selected as the best fitting model (Lubke & Neale,

2006, 2008). Simulation studies can be conducted to assess model performance and selection

in preparation for or in conjunction with empirical latent variable mixture modeling analyses.

Aggregating parameter estimates across the multiple simulated data sets is complicated by

the fact that class labels are arbitrary in mixture models. Mixture models are only identified up

to permutations of the class labels (McLachlan & Peel, 2000; Titterington, Smith, & Makov,

1985). For example, the data generating values for the factor variances in Classes 1 and 2

might be 2 and 4. The estimates from fitting a latent variable mixture model (LVMM) to a

given data set may be 3.9 for Class 1 and 2.1 for Class 2. Here the labels are clearly switched.

Because class labels are potentially switched across data sets, aggregating parameter estimates

over potentially mislabeled classes is undesirable. This is not a problem for fit indexes, because

these are unaffected by switched labels.

Switching can be prevented to some extent by providing true parameter values as starting

values. However, to realistically mimic an empirical study, random starting values should be

provided rather than the true parameter values that were used to generate the data. Realistically

mimicking empirical studies also precludes imposing model constraints beyond those needed

for model identification to potentially prevent switching (e.g., Diebolt & Robert, 1994). In

addition, not all choices of constraints are guaranteed to eliminate switching, and different

choices might yield different permutations of the class labels. Because the use of this type of

constraint is confined to parameters that are ordered across classes, their use is restricted to a

subset of simulation conditions. In addition, these constraints are typically expressed as linear

or nonlinear inequality constraints, which might be problematic to implement using existing

model fitting software.

An alternative to the prevention of label switching is to inspect parameter estimates after

estimation has completed. Continuing the preceding example, if the data generating values for

the factor variances in Classes 1 and 2 were 2 and 4, but estimates for a given data set are

3.9 and 2.1, we would conclude that the class labels are switched. However, as the number

of Monte Carlo replications in a simulation study is usually large, it is not feasible to check

every data set by hand. In addition, parameter inspection methods are not guaranteed to lead to

unique switched label detection. As a hypothetical example using a structural equation mixture

model (SEMM) with two factors and four classes, inspecting the factor variances might suggest

new labels of 3, 2, 1, 4, whereas inspecting the regression parameters between the two factors

might suggest new labels of 2, 3, 1, 4.

In summary, the problem of switched class labels needs to be addressed without relying on

starting values, model constraints, or the inspection of parameter estimates. This work describes

an algorithm that automatically detects switched class labels and provides information that can

be used to correctly relabel class parameters relative to the data generating labels in a simulation

study.
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112 TUELLER, DROTAR, LUBKE

The article is organized as follows. First, we describe the general LVMM, including con-

straints needed for LVMM identification. Second, the problem of switched class labels is

described in detail. Third, an approach to post-hoc detection of switched class labels is

presented (rather than a priori prevention). This approach is based on information in the

class assignment matrix and is formalized in a switched label detection algorithm. Fourth, an

implementation of the switched label detection algorithm in R is described and illustrated using

output produced by Mplus (L. K. Muthén & Muthén, 2007), the most widely used software for

fitting LVMMs to data. Finally, methods for automating the correction of switched parameter

labels are described.

THE LATENT VARIABLE MIXTURE MODEL

The distribution of the observed data in a mixture model is assumed to be a mixture distribution.

Mixture distributions are a weighted sum of two or more component distributions, and the

weights correspond to the relative size of a component. Details of general finite mixture models

can be found in Everitt and Hand (1981), Titterington et al. (1985), or McLachlan and Peel

(2000).

The LVMM is a special case of the general finite mixture model, and assumes multivariate

normal component distributions. LVMMs for K classes are fitted using a mixture distribution

with K components. The LVMM is given by

f .y/ D

K
X

kD1

 k¥k.yI �k ; †k/ (1)

where y is a vector of p observed continuous variables, K is the number of classes,  k are the

class proportions,
PK

kD1  k D 1, and ¥k are multivariate normal probability density functions

with class-specific mean vectors �k and class-specific covariance matrices †k .

LVMM submodels are specified by imposing a particular structure on the mean vectors and

covariance matrices of the K component distributions. Imposing a common factor model (CFA;

e.g., Jöreskog, 1966) leads to the factor mixture model (FMM; Arminger, Stein, & Wittenberg,

1999; B. O. Muthén & Shedden, 1999; Yung, 1997). Imposing an item-response model (IRT;

e.g., Lord, 1953) leads to the mixture IRT model (e.g., B. O. Muthén & Asparouhov, 2006;

Rost, 1988). Imposing latent growth curve models (LGC; e.g., Meredith & Tisak, 1990) leads

to the growth mixture model (GMM; e.g., B. O. Muthén & Shedden, 1999). Imposing a

structural equation model (SEM; e.g., Bollen, 1989) on each component leads to the SEMM

(Dolan & van der Maas, 1998; Jedidi et al., 1997). In this work, the FMM will be used

as an illustration. The FMM was selected because of its relationship to the other LVMMs

mentioned herein: The two-parameter IRT model is equivalent to the CFA model with binary

indicators, where parameters in one model are transformations of parameters in the other

(B. O. Muthén & Asparouhov, 2006). The LGC model is a special case of the CFA where

parameters are fixed to estimate a desired growth trajectory (Meredith & Tisak, 1990). The

SEM generalizes the multidimensional CFA to incorporate relationships among latent factors

(Bollen, 1989).
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SWITCHED LABEL DETECTION 113

The K multivariate normal components of a K-class FMM are structured as

�k D �k C ƒk’k (2)

†k D ƒk‰kƒ0

k C ‚k ; (3)

where �k is a p � 1 vector of equation intercepts in class k, p is the number of observed

variables, ƒk is a p � mk matrix of factor loadings in class k, mk is the number of factors

in class k, ’k is an mk � 1 vector of factor means in class k, ‰k is the mk � mk covariance

matrix for the factors in class k, and ‚k is a p � p covariance matrix of the measurement

errors with error variances on the diagonal. The model-implied within-class mean vector and

covariance matrix given in Equations 2 and 3 permit specification of factor means, factor

variances, factor covariances, factor loadings, intercepts, and error variances. However, not

all of these parameters are identified, hence estimating the FMM is subject to identifiability

constraints.

LVMM Identification

For an LVMM to be identified, the within-class models need to be identified. The required

identifiability constraints are the same as those in multiple-group latent variable models. For

instance, the scale of the latent factors needs to be fixed, either by linking the scale to an

observed item (e.g., fix the corresponding loading), or by fixing the factor variance. Because

multiple latent groups are investigated, also the mean of the factor needs to be fixed in

one group, thereby permitting the estimation of factor mean differences in the other groups

(Jöreskog, 1971; B. O. Muthén & Asparouhov, 2002; Sörbom, 1974). Typically, the factor

mean(s) in one class are set to zero, making this class the reference class. As explained in the

introduction, model constraints, including required identifiability constraints, do not guarantee

the prevention of switched class labels. The label switching problem is described in detail next.

THE CLASS LABEL SWITCHING PROBLEM

Even if minimum identifiability constraints are satisfied for an LVMM, the model is only

identified up to a permutation of the class labels. Conceptually, this means that the labels

of the estimated parameters might not match the data generating labels for simulated data.

This is called the label switching problem in mixture model literature. There are KŠ possible

permutations of the K class labels, where Š is the factorial operator. For example, a three-

class LVMM can have the classes labeled as f1; 2; 3g, f1; 3; 2g, f2; 3; 1g, f2; 1; 3g, f3; 2; 1g, or

f3; 1; 2g without changing the model fit.

The consequences of switched labels are illustrated on four data sets in which a one-factor,

two-class mixture model is fit to the data. If switched labels are ignored, estimates of the factor

variance in Class 1 (‰1) and the factor variance in Class 2 (‰2) might look like those in the

left side of Table 1. Incorrect summary statistics are shown in the lower left margin of Table 1.

The parameter labels for factor variances can be corrected, as is illustrated on the right side of

Table 1. Correct summary statistics can then be computed, as shown in the lower right margin
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114 TUELLER, DROTAR, LUBKE

TABLE 1

Example Simulation Results with Switched and Corrected Labels

Switched ‰1 (1) ‰2 (3) Corrected ‰1 (1) ‰2 (3)

data1 3.1 0.9 0.9 3.1

data2 1.1 3.2 1.1 3.2
data3 2.8 1.2 1.2 2.8
data4 2.9 0.8 0.8 2.9

M 2.475 1.525 1.0 3.0

Note. ‰1 and ‰2 are the factor variances in Classes 1 and 2, respectively,
with population values in parentheses.

of Table 1. Although visual inspection works in this small example, it will not work in general,

as described in the introduction. In the next section we show how the information in the class

assignment matrix can be used to detect switched labels and to provide information that can

be used to correct switched class labels.

CLASS ASSIGNMENT APPROACH TO DETECTING SWITCHED LABELS

This section introduces an algorithm that can (a) detect switched class labels, and (b) provide

information that can be used to correct parameter labels. In later sections, this algorithm is

implemented in the LBLinfo.r script for the freely available software R (R Development Core

Team, 2008). The script can be used with LVMM output from any software program that can

save assigned class membership to a file. Because Mplus (L. K. Muthén & Muthén, 2007) is the

most widely used software for fitting LVMMs to data, use of the R script will be documented

herein using Mplus output.

In the sections that follow, the switched label detection algorithm is developed and illustrated.

First, we describe the class assignment matrix. Second, the algorithm to detect switched labels

is developed. The algorithm uses the class assignment matrix as input, and returns correct

class labels as output. Third, conditions under which the algorithm will work are described,

limitations of the algorithm are noted, and criteria for ensuring these conditions are met are

described. To prevent the spurious detection of switched labels, the LBLinfo.r script includes

several checks to evaluate whether these criteria are met. Fourth, we illustrate how to use the

algorithm as implemented in the LBLinfo.r script.

The Class Assignment Matrix

When fitting an LVMM to data, each participant can be assigned to the latent class to which he

or she most likely belongs. In simulation studies, true class membership is known and can be

compared to assigned class membership. For each data set, a simple way to summarize assigned

and true class membership is using the class assignment matrix. Consider the simple example

given in Table 2. Here, a data set with 10 participants is generated where the data generating

label of six participants is Class 1 and for the other four participants the label is Class 2. After

a hypothetical LVMM is fit to these data, four of the Class 1 participants are correctly assigned
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SWITCHED LABEL DETECTION 115

TABLE 2

Example True Class Labels, Assigned Class Labels, and Corresponding Class

Assignment Matrix

True 1 2 1 1 2 1 1 2 2 1
Assigned 1 2 2 1 1 2 1 2 2 1

True 1 True 2

Assign 1 4 1

Assign 2 2 3

Note. The upper table represents raw data, and the lower table is the class assignment

matrix obtained by cross-tabulating the two rows of the upper table. In R, the table() function
can be used to obtain the lower table from the upper table.

to Class 1, and three of the Class 2 participants are correctly assigned to Class 2 as can be

seen on the diagonal of the class assignment matrix in the lower portion of Table 2.

In general, a class assignment matrix M is a K � K cross-tabulation matrix. Herein we

adopt the convention that true class labels are in the columns and that assigned class labels are

in the rows, as illustrated in Table 2. Note that because column labels are the data generating

class labels, column labels are fixed, and only row labels are subject to potential switching.

This is illustrated in Table 3. It is quite easy to see in Table 3 that merely changing Assign 1

to Assign 2 and vice versa corrects the class assignment matrix. It is this simple idea that is

the core of the switched class label detection algorithm.

A CLASS ASSIGNMENT BASED ALGORITHM TO

DETECT SWITCHED LABELS

If the labels of the class assignment matrix are correct as in the lower part of Table 2, the

largest values will be on the diagonal of the class assignment matrix and smaller values are on

the off-diagonals. Stated formally, there must be only one column maximum in each row (i.e.,

no ties for maximum in each row). In Table 3, the column maximum in row 1 is in column 2.

The switched label detection algorithm simply moves row 1 to row 2. The column maximum

in row 2 is in column 1, and the algorithm moves row 2 to row 1. The resulting locations of the

TABLE 3

Table 2 Repeated with Switched Labels

True 1 2 1 1 2 1 1 2 2 1
Assigned 2 1 1 2 2 1 2 1 1 2

True 1 True 2

Assign 1 2 3
Assign 2 4 1

Note. The assigned row of the upper part has switched labels. Compare to the assigned

row in the upper part of Table 2.
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116 TUELLER, DROTAR, LUBKE

rows (2,1) are the corrected class labels. This approach is called the column maxima switched

label detection algorithm, which is given as

1. { loop

2. l D row number of the kth column maximum

3. place l in the kth position of the new label vector

4. copy the l th row of Massign to the kth row of Mcorrected

5. } k D 1 : : : K

6. return Mcorrected and the new label vector

where Massign is the class assignment matrix such as the one given in the lower part of Table 3,

K D the dimension of Massign, and Mcorrected is an empty K � K matrix.

In general, this switched label detection algorithm will work when class assignment accuracy

is moderately greater than chance, as detailed in the next section. In the sections that follow

we review several other criteria the class assignment matrix must meet for the switched label

detection algorithm to work.

Class Assignment Accuracy

The first and most obvious criteria that must be met by the class assignment matrix is that

class assignment must be sufficiently accurate such that each column contains only one row

maximum. An example of a class assignment matrix with very high class assignment is given

in the first row of Table 4.1 The class assignment matrix is presented on the left, the corrected

matrix is presented in the center with conditional proportion correct assignment for each class

in the lower margin, and the new class labels are given on the right. In this ideal example,

participants who have been given the label Class 2 (i.e., those in the second row of the

assignment matrix) should have a corrected label of Class 3. Similarly, participants labeled as

Class 3 should be relabeled as Class 2.

The first three rows in Table 4 show decreasing levels of conditional proportion correct

class assignment. Conditional proportion correct assignment is the proportion of participants

correctly assigned within each class, and we use this measure to formalize class assignment

that is reasonably high, as alluded to in the previous section. A conditional proportion correct

assignment is computed by dividing the number of participants correctly assigned to their true

class nkCA
by the total number of participants in that class nk , or

nkCA

nk
. In a class assignment

matrix with correct label, this ratio will be the diagonal element of a given column divided by

the total number of participants in that column. For example, 96/100 D .96 for the first class

in the ideal example in Table 4.

In the ideal assignment example of Table 4 the proportion correct assignment within each

class is .96, .91, and .89 for Classes 1, 2, and 3. Perfect class assignment, although unrealistic,

would result in proportions correct assignment of 1 in each class. At the other extreme,

random class assignment would result in proportions correct assignment of 1
K

in each class,

or .333 in this three-class example. At a minimum, conditional proportions correct assignment

1Note that the class sizes in Table 4 are equal. This is generally not the case in practice, but is used here for

illustrative purposes.
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SWITCHED LABEL DETECTION 117

TABLE 4

Example Switched and Unswitched Class Assignment Matrices

Assignment Matrix Corrected Matrix New Labels

1. Ideal assignment 96 2 6 96 6 2

3 7 89 1 91 5 (1, 3, 2)
1 91 5 3 7 89

.96 .91 .89

2. Poor assignment 43 26 33 43 26 33

36 32 34 21 42 33 (1, 3, 2)
21 42 33 36 32 34

.43 .42 .34

3. Spurious correction 34 33 36 36 31 35
36 31 35 30 36 34 (3, 1, 2)

30 36 34 34 33 36

.36 .36 .36

4. Collapsed classes 3 3 4 Cannot be
92 96 3 corrected (N/A, N/A, N/A)

5 1 93

N/A N/A N/A

5. Row detection 80 1 8 80 1 8

9 60 80 11 39 12 (1, 3, 2)
11 39 12 9 60 80

.80 .39 .80

Note. Example switched class assignment matrices. If switched labels can detected, the corresponding corrected
class assignment matrix is given. Conditional proportion correct class assignment is given in the lower margin of
corrected matrices. The new class labels are read as follows for the ideal assignment example: Class 1 parameters

need the corrected label Class 1, Class 2 parameters need the corrected label Class 3, and Class 3 parameters need
the corrected label Class 2.

must exceed 1
K

in K � 1 classes2 for the switched label detection algorithm to work. The

minimum conditional proportion of correctly assigned participants allowed by the algorithm is

incorporated in the class assignment criterion:

CAcr i t D
CAnum

K
; (4)

where CAnum is some number less than K and greater than 1. The value 1 � CAnum is the

proportion of participants greater than chance assignment desired by the user. For example,

requiring 10% more participants to be correctly assigned than expected by chance requires a

value of CAnum D 1:1 while requiring 100% more participants to be correctly assigned than

2Note here that correctly labeling K � 1 classes will, by default, correctly label the kth class. Thus, the switched

label detection algorithm requires that proportions correct assignment be greater than CAcrit in K � 1 rather than in

K classes.
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118 TUELLER, DROTAR, LUBKE

expected by chance requires a value of CAnum D 2. For the three-class examples in Table 4,

the corresponding values of the class assignment criterion would be CAcr i t D 1:1
3

D :367 and

CAcr i t D 2
3

D :667.

To illustrate how selecting CAnum can address the problem of spuriously detecting switched

labels, refer to Example 3 in Table 4. Here the proportions correct assignment are all .36. Using

a value of 1:2
K

D :4 prevents the spurious detection of switched labels. Using CAcr i t D 1:1
3

D

0:367 or assignment 10% greater than chance also prevents spurious detection of switched

labels. However, if CAcr i t D 1:05
3

D 0:35, requiring assignment to be only 5% greater than

chance, switched labels would be detected by the algorithm. However, it is clear that assignment

accuracy only 5% greater than chance does not engender a great deal of confidence in correcting

class labels using class assignment information. More detail on selecting a value for CAnum is

presented following the discussion on collapsing.

Collapsing

Example 4 in Table 4 shows a special case of poor assignment called collapsing. Collapsing is

said to have happened when most of the participants in a class have been incorrectly assigned

to one or more other classes. In other words, when collapsing has occurred there will be far

fewer participants than expected in one class. In Example 4, most participants truly in Class

1 have been collapsed into Class 2 if no switching has occurred. If switching has occurred,

Class 2 has been collapsed into Class 1, as shown here:

Mcol lapsed D

2

4

92 96 6

3 3 4

5 1 93

3

5 :

There is no clear way to determine from the matrix alone whether label switching has occurred.

In general, the rows of the class assignment matrix cannot be confidently corrected if it is

(nearly) collapsed. However, the switched label detection algorithm presented thus far will still

allow the matrix in Example 4 to be relabeled because assignment is still very good in K � 1

classes.

One way to address collapsing would be to require that all K classes have good class

assignment, although this would reduce the number of situations in which the switched label

detection algorithm would work. Instead, the switched label detection algorithm incorporates a

collapsing criterion. The collapsing criterion is expressed as the proportion of participants the

user will allow to be assigned into a single incorrect class. To illustrate, the assignment matrix

in Example 4 is transformed by dividing each cell by its column total:

Mcol lapsed =nk D

2

4

:03 :03 :04

:92 :96 :06

:05 :01 :93

3

5 :

Collapsing is detected when two entries in one row exceed the collapsing criterion. In

Example 4, any collapsing criterion less than .92 will determine this matrix is collapsed. For

example, if the criterion is set at .91, the user is allowing 91% of the participants in any class
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SWITCHED LABEL DETECTION 119

to be incorrectly assigned into a single class. On the other hand, a more conservative value of

.5 might be selected, allowing only 50% of the participants in any one class to be incorrectly

assigned into a single class. The collapsing criterion is expressed as

CLPScr i t D 1 �
CLPSnum

K
; (5)

where CLPSnum is some value less than K and greater than 1, serving a function analogous to

CAnum in the correct assignment criterion. The default value CLPSnum in the switched label

detection algorithm is 1.2, meaning that the number of participants who can be incorrectly

assigned to a single class cannot exceed 20% greater than chance. For K D 3, 1 � 1:2
3

D :6,

meaning that no more than 60% of participants can be incorrectly assigned to a single class. In

practice, this default may be too conservative and smaller values of CLPSnum may be selected.

Using CLPSnum D 1:01 allows the greatest number of participants to be incorrectly assigned

into a single incorrect class. Using CLPSnum D K requires that no participants in any one class

be assigned into a single incorrect class (i.e., perfect class assignment). The LBLinfo.r script

presented later allows the user to select a value CLPSnum. Selecting a value for CLPSnum is

described in the next section.

Selecting CAcrit and CLPSnum

The purpose of the CAcr i t and CLPSnum criteria is to detect class assignment matrices that

do not contain sufficient information for the switched label detection algorithm to provide

trustworthy results. When class assignment is poor, or when assignment leads to collapsing,

spurious relabeling can occur if the switched label detection algorithm is applied without

checking for minimum levels of assignment accuracy and for collapsing.

In the simulation experience of the authors, data conditions often have estimation problems

when conditional correct assignment is only 10% greater than chance. Estimation problems

include model nonconvergence, infeasible parameter estimates that lead to nonpositive definite

latent variable or residual variance matrices, nonpositive definite information matrices, or

collapsing. Models with such problems should always be excluded from simulation summaries.

If a condition has a substantial number of data sets with estimation problems, it must be

concluded that such a data condition is not suitable for a given LVMM.

In the R implementation of the switched label detection algorithm presented here, the default

values are CAcr i t D 1:2 and CLPSnum D 1:2. A value of CAcr i t D 1:2 indicates that correct

assignment must be at least 20% greater than chance. For 2, 3, 4, and 5 classes, 20% greater

than chance is .6, .4, .3, and .24. A value of CLPSnum D 1:2 indicates that the number of

participants incorrectly assigned to a single class can be no more than 20% greater than chance.

The 20% above chance assignment criterion for CAcr i t and CLPSnum was tested using simu-

lated class assignment matrices. True and assigned class membership data were simulated from

population proportion class assignment matrices that correspond to the following simulation

conditions (the population proportion class assignment matrices are given in Appendix A): Four

classes were used in each condition. Good, moderate, and poor assignment accuracies were

examined. These three conditions were crossed with balanced class sizes and no collapsing,

imbalanced class sizes and no collapsing, balanced class sizes and collapsing, and imbalanced
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120 TUELLER, DROTAR, LUBKE

TABLE 5

Proportions of Data Sets in Which Switched Labels Could Not Be Corrected

Bal/Not CLPS Imbal/Not CLPS Bal/CLPS Imbal/CLPS

Big sample N D 400 N D 260 N D 400 N D 260
Good 0.00 0.00 0.50 0.51
Moderate 0.01 0.04 0.50 0.51
Poor 0.75 0.78 0.78 0.80

Small sample N D 200 N D 150 N D 200 N D 150
Good 0.00 0.00 0.50 0.52

Moderate 0.09 0.16 0.53 0.55
Poor 0.78 0.79 0.81 0.80

Note. Simulation results testing CAnum and CLPSnum input values of 1.2, 1.15, and 1.1
for the switched label detection algorithm. Results in the table are for CAnum D CLPSnum D

1:2. Proportions are averaged over all possible class label permutations. Results for CAnum D

CLPSnum D 1:15 and CAnum D CLPSnum D 1:10 are essentially the same, indicating stability
in detecting switched labels that could be corrected.

class sizes and collapsing conditions. Moderate and large sample sizes were used. In the

balanced class size conditions, class sizes were (50, 50, 50, 50) and (100, 100, 100, 100). For

the imbalanced class size conditions, class sizes were (50, 20, 50, 30) and (100, 20, 100, 40).

Within each condition, data were simulated for all 4Š D 24 possible class label permutations.

In total, there were 2 (sample sizes) � 3 (accuracies) � 2 (balanced or imbalanced class sizes)

� 2 (not collapsed or collapsed) � D 24 conditions, with each condition being crossed with

all 24 possible class label permutations. A total of 500 data sets were simulated for each data

condition and label permutation combination.

In every condition, the 20% above chance assignment criterion protected against the spurious

detection of switched labels. To summarize the results, the portion of data sets for which

labels could not be corrected were computed. Within each condition, these proportions were

averaged across permutations, and are presented for CAnum D CLPSnum D 1:2 in Table 5.

Larger proportions indicate conditions where observed class assignment matrices frequently

contain insufficient information to inform class label correction.

To check the sensitivity of the criterion, CAnum D CLPSnum D 1:15 and CAnum D

CLPSnum D 1:10 were also examined. The results were essentially the same as for CAnum D

CLPSnum D 1:2. However, had the proportions in Table 5 dramatically increased from CAnum D

CLPSnum D 1:15 to CAnum D CLPSnum D 1:10, this would indicate the lower criteria were

too liberal. Similar sensitivity analyses are recommended in practice.

Column and Row Maxima

In the fifth example of Table 4, which is labeled Row Detection, the column maximum is in

the second row for both Class 2 (60) and Class 3 (80). In this case, switched label detection

might still be possible if there is only one row maximum in each column. This is the case

for Example 5 in Table 4 where the row maxima for Classes 1, 2, and 3 are in columns 1

(80), 3 (80), and 2 (39). A modified switched label detection algorithm, called the row maxima

switched label detection algorithm, is given here:
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SWITCHED LABEL DETECTION 121

1. { loop

2. l = column number of the kth row maximum

3. place l in the kth position of the new label vector

4. copy the l th row of Massign to the kth row of Mcorrected

5. } k D 1 : : : K

6. return Mcorrected and the new label vector.

Notice that in this example, the class assignment matrix can still be unswitched even though

one column has poor class assignment (.39) relative to the other two. As noted earlier, the

switched label detection algorithm will work if only K � 1 classes have reasonably high class

assignment, and one class has poor assignment.

STRENGTHS AND LIMITATIONS OF THE SWITCHED LABEL

DETECTION ALGORITHM

Several limitations of the switched label detection algorithm are mentioned in the preceding

sections. The algorithm is designed for data sets to which models with the correct number of

classes are fitted to the data. In addition, reliable use of the algorithm requires that class

assignment accuracy be reasonably high. These limitations might preclude the use of the

switched label detection algorithm in some situations in which investigators might be interested.

However, the switched label detection algorithm does not carry with it the limitations of

arbitrary identifiability constraints. It also provides an advantage over inspection of parameter

estimates. Although such a practice is highly encouraged and could easily be automated, the

switched label detection algorithm can deal with situations in which parameter inspection

might fail. For example, one set of parameters might suggest one set of new labels whereas a

second set of parameters might suggest a different set of new labels. In this case, the switched

label detection algorithm presented herein might still be able to reliably detect switched

labels. Finally, the conditional proportions correct assignment required by the switched label

detection algorithm are not overly restrictive. The default criterion of 1:2
K

is associated with

class assignment accuracy that would be considered relatively poor. Conditions with lower

levels of correct assignment are likely to result in other problems such as nonconvergence or

estimation errors like nonpositive definite latent variable matrices.

In the previous sections, the class assignment matrix is defined as a K � K square matrix.

Although not necessarily immediately obvious, there are at least two situations where the

assignment matrix might not be square. The first is when no participants are assigned to a

given class, and the resulting assignment matrix will have a row of zeros. This can be seen

as an extreme case of collapsing. The switched label detection algorithm implemented in the

LBLinfo.r script will automatically exclude such matrices. The second situation is when a

model is fit with greater or fewer classes than the number of classes in the simulated data. In

this situation, the class assignment matrix is called a transition matrix. The transition matrix

can be used to examine how K � C class models combine participants into fewer classes or

how K C C class models redistribute participants into C extra classes. When models with the

incorrect number of classes are fit, correct class assignment is ill defined, and the approach

taken herein to detecting switched labels will not apply.
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122 TUELLER, DROTAR, LUBKE

AN R IMPLEMENTATION OF THE SWITCHED LABEL

DETECTION ALGORITHM

The previous sections describe the theoretical development and implementation decisions

associated with using the switched label detection algorithm. In this section we describe how

to use the switched label detection algorithm as implemented in the LBLinfo.r script that

can be downloaded from https://sourceforge.net/projects/lblinfo/. First, the free software R (R

Development Core Team, 2008) is described. Second, the use of the LBLinfo.r script is

illustrated with a single data set. Third, we show how the LBLinfo.r script can be used to

automate obtaining the new label vector for multiple data sets, such as would be done in a

simulation study. Fourth, we illustrate how the new label information can be used to correct

parameter labels prior to summarizing across data sets, as was illustrated in Table 1. In the

next section, an R script to automate label correction called LBLcorrect.r is introduced.

The R Language and Environment

R is a free, open source program for statistics and graphics (http://www.r-project.org/). Basic

internet searches will find several Web sites providing R tutorials. First, R must be installed

and the LBLinfo.r script must be downloaded and saved to a directory. After opening R the

LBLinfo.r script must be sourced using source(’c:/my directory/LBLinfo.r’) where c

in c:/ should be changed to the appropriate drive letter, my directory should be changed to

the full path of the directory in which the LBLinfo.r script is saved, and LBLinfo.r is the file

name of the LBLinfo.r script. To do this, paste source(’c:/my directory/LBLinfo.r’)

after the > in the R console. Note that R uses the forward slash (/) rather than the backslash

(n) typically used in PC software. Sourcing an R script makes the functions in the script and

the assignment matrices from Table 4 (named eg1, : : : , eg6) available in the current R session.

To display the assignment matrix from the first example, type eg1 after the > in the R console.

After sourcing the LBLinfo.r script, set the working directory to the folder containing Mplus

simulation output using the File > Change dir . . . menu option.

Using the LBLinfo.r script with One Data Set

In this section, we illustrate the use of and output obtained from the LBLinfo.r script using

the first example in Table 4. Assuming R is open and the script has been sourced as described

in the previous section, run the LBLinfo() function by typing

LBLinfo(Mraw=eg1,CAnum=1.2,CLPSnum=1.2,K=3)

in the R console. The function’s name is LBLinfo() and everything in the parentheses are

inputs to the function. First, Mraw is the K � K class assignment matrix such as those in

the left column of Table 4. The matrix eg1 is loaded into the working environment of R

when LBLinfo.r is sourced. Instructions for inputting raw columns of true and assigned class

membership are given in the next section. Second, CAnum is CAnum from Equation 4. Third,

CLPSnum is CLPSnum from Equation 5. Finally, K is the number of classes.
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SWITCHED LABEL DETECTION 123

The resulting output is printed to the R console. First, CAnum, CLPSnum, and K are printed

along with CAcrit (computed using Equation 4) and CLPScrit (computed using Equation 5).

Second, information on whether the input assignment matrix was square, whether any row or

columns summed to zero, and whether the collapsing criterion CLPScrit was met. Then the

input assignment matrix and the assignment matrix with corrected rows are printed if label

correction is possible. Otherwise a matrix of NAs is produced. Next, a true/false indicator of

whether the labels were correctable (corrigible) is printed. If corrigible=TRUE, all the

criteria previously discussed have been met, and the labels of the parameter estimates from

the data set can be corrected. Methods for correcting the labels of the parameter estimates

are described later. If corrigible=FALSE, then the labels could not be corrected. Parameter

estimates from the data set should be excluded from summaries across multiple data sets. Next,

the new class labels and the conditional proportions correct assignment are printed. Finally,

there is a true/false indicator of whether the labels were corrected, an indicator of whether the

class assignment criteria was met in K � 1 classes, and a statement of whether the column

or row maximum algorithm was used. Next we show how this script is used for multiple

data sets.

Using the LBLinfo.r with Multiple Data Sets

In this section, we illustrate how to use the LBLinfo.r script with five simulated data sets

using output from Mplus. The example data sets and associated Mplus input and output can

be downloaded from https://sourceforge.net/projects/lblinfo/. The data sets were

generated according to a single factor, four-class finite mixture model. The factor variances

were .5, 1, .75, and 1.25. The factor means were 4, �4, 8, and 0. The factor loadings were 1 for

the first item and .8 for the remaining items, and residual variances were all .3. Measurement

parameters were class invariant. The sample size was 942, with class proportions of .31, .331,

.175, and .187 leading to expected sample sizes of 289, 312, 165, and 176. The data generating

FMM was fit to these five data sets. To identify the model, the first factor loading in each class

was fixed to 1 and the factor mean in the last class (Class 4) was fixed to 0. Intercepts and

factor loadings were class invariant, and residual variances, factor variances, and factor means

were specified to be class specific.

Preparatory steps and description of Mplus outputs. First, a simulation study must be

completed from which true and assigned class membership is saved. The generated data file

must include true class membership, and this variable must be saved to an output file. This can

be done using IDVAR IS tc; or AUXILIARY IS tc; in the VARIABLE: command of an Mplus

input file where tc is the name of the true class membership variable. The true and assigned

class membership variables are saved using the SAVEDATA: command in Mplus:

SAVEDATA: Results are fmm_dat1.par;

FILE IS fmm_dat1.pro;

SAVE IS CPROBABILITIES;

where the *.par file contains the parameter estimates (see RESULTS SAVING INFORMATION

at the end of the Mplus output file for the order in which parameters and fit indexes are
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124 TUELLER, DROTAR, LUBKE

saved). The *.pro file contains variables used in the analysis, ID and/or auxiliary variables,

and posterior probabilities and assigned class membership. See SAVEDATA INFORMATION at

the end of the Mplus output file for the order of the variables; this can be used to determine

assignCol and trueCol inputs for the LBLinfo.r script, as described later. The line SAVE IS

CPROBABILITIES; tells Mplus to save the class probabilities and assigned class membership

variables to the *.pro file. Note that *.par and *.pro are arbitrary file extensions, and any

file extension can be used.

After the simulation study has been completed, there should be one *.pro and *.par file for

each data set/input file combination.3 Though Mplus (L. K. Muthén & Muthén, 2007) can run

simulation studies internally using the Monte Carlo command, it cannot save the *.par and

*.pro files. To avoid creating an input file for each data set and running each input manually,

the Mplus RUNALL utility can be used. The utility and instructions for its use are available at

http://www.statmodel.com/runutil.shtml.

Next, the user will need to read the names of all of the *.pro files into R. One easy way

to do this is to type the following in R:

prodir <- "c:\my directory\"

myfilenames <- list.files(prodir,glob2rx("*.pro"),full=FALSE)

where c:nmy directory gives the full path of the directory containing the *.pro files. If an

extension other than *.pro is used, this change must be reflected in the glob2rx function.

The LBLinfo.r function with multiple data sets. Next, the LBLinfo.r function can be

run for several data sets using:

LBLinfo(filenames=myfilenames,assignCol=10,trueCol=5,CLPSnum=1.2,CAnum=1.2,

K=4,fileprefix="mysim")

where myfilenames is as described previously. The assigned column number assignCol and

true column number trueCol can be obtained by examining the Mplus output file as described

earlier. The files used in this example happen to have assigned and true class variables in

columns 10 and 5, respectively. These files can be downloaded from https://sourceforge.net/

projects/lblinfo/. The next three inputs CLPSnum, CAnum, and K were described in the previous

section. When LBLinfo() is used with filenames instead of Mraw, results are saved to output

files instead of being printed to the console. The fileprefix input gives a unique name for

these output files. For example, if doing a sensitivity analysis with multiple values for CLPSnum

and CAnum, users might specify fileprefix=mysim_CA1.2, fileprefix=mysim_CA1.15,

and fileprefix=mysim_CA1.1, similar to the results summarized in Table 5.

3Note that if a model does not converge or has other fatal problems with estimation, *.pro and *.par files will

not be produced by Mplus. Also note that Mplus will still produce *.pro and *.par files when latent variable matrices

are not positive definite, when residual variance matrices are not positive definite, and when the first-order derivative

matrix is not positive definite. These results are not trustworthy and should be excluded when taking summaries in a

simulation study. This information is printed in the primary Mplus output file *.out.
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SWITCHED LABEL DETECTION 125

FIGURE 1 Sample contents of output files produced by the LBLinfo.r script for the five simulated example

data sets.

LBLinfo() output files. Four output files are produced by the LBLinfo() function. First,

the mysim_RelabelSummary.txt file summarizes the results of the switched label detection

function across all data sets in filenames. This includes a printout of the inputs to the

LBLinfo() function, counts of the number of data sets with correct labels, those with incorrect

labels, those with incorrect labels that can be corrected (corrigible), and those with labels

that could not be corrected (incorrigible). Then counts of data sets that met collapsing and

correct assignment criteria are given, followed by a summary of conditional proportion correct

assignments (as shown in the top part of Figure 1), and instructions on how to use the other

output files. The second output file is mysim_ConditionalAssignment.txt, which has the

conditional proportion correct assignments for each class for each data set (shown in the second

part of Figure 1).

The third output file is mysim_RelabelValidation.txt, which shows for each data set

whether the assignment matrix was square, whether row and column sums were all greater than

zero, whether the collapsing criterion was met, whether the assignment criterion was met in
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126 TUELLER, DROTAR, LUBKE

TABLE 6

Incorrect and Corrected Factor Variances

Original Labels Corrected Labels

Data Set Class 1 Class 2 Class 3 Class 4 Class 1 Class 2 Class 3 Class 4

fmm_dat1 0.86 0.24 0.43 1.31 0.24 0.86 0.43 1.31

fmm_dat2 0.86 0.20 0.45 1.59 0.20 0.86 0.45 1.59
fmm_dat3 0.24 0.49 0.90 1.20 0.24 0.90 0.49 1.20
fmm_dat4 0.98 0.24 0.66 4.07 0.24 0.98 0.66 4.07

fmm_dat5 1.07 0.26 0.49 1.30 0.26 1.07 0.49 1.30
M 0.80 0.29 0.59 1.90 0.24 0.93 0.50 1.90

Note. Incorrect and corrected factor variances for the five simulated data sets used to illustrated the R scripts
LBLinfo.r and LBLcorrect.r.

K � 1 classes, and which switched label detection algorithm was used, column or row (shown in

the third part of Figure 1). The fourth output file is mysim_NewClassLabels.txt, which con-

tains a binary indicator (1 D yes, 0 D no) whether labels could be corrected in the first column,

the name of the file that contains the true and assigned class membership data, and the new class

labels in the remaining columns (shown in the last part of Figure 1). These can be read into R as

a data array for further use by typing newLabels<-read.table(’mysim_NewClassLabels.

txt’) into R.

Correcting the Parameter Labels

In this section we illustrate how to use the new class labels shown in the bottom portion

of Figure 1 to manually correct the labels of the parameter estimates. Issues associated with

computer automation for correcting parameter labels are discussed in the next section. As

described earlier, the population factor variances of the example data were .5, 1, .75, and 1.25.

The estimated factor variances for the first data set were .86, .24, .43, and 1.31. The new class

labels shown in the bottom part of Figure 1 are 2 1 3 4. The new labels are read as follows:

The parameter estimate for Class 1 (.861) should be given the new label Class 2. The parameter

estimate for Class 2 (.244) should be given the new class label Class 1. The parameter estimate

for Classes 3 and 4 are unchanged. After correcting the parameter estimate labels, the estimated

factor variances are .24, .86, .43, and 1.31 for Classes 1 to 4, respectively. These results for

the example data are summarized in Table 6.

ISSUES IN AUTOMATING PARAMETER LABEL CORRECTION

In practice, it is infeasible to manually correct the parameter labels using the new labels from the

switched label correction algorithm. This section describes several issues that must be addressed

when automating parameter label correction and presents an R script called LBLcorrect.r,

which automates parameter label correction in some general LVMM conditions. Advice is given

for automating parameter label correction under conditions more general than those automated

by the LBLcorrect.r script.
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SWITCHED LABEL DETECTION 127

Parameter Constraints

The first thing that must be considered when correcting labels is whether a set of parameters

is unconstrained or constrained. In the example data used in the previous section, the factor

variances were unconstrained. That is, the factor variance is estimated in each class, and no

constraints are placed on their estimation. When a set of parameters is unconstrained within

class and are estimated in all K classes, automating parameter label correction is straightforward

using computer if statements. For example, if the assigned label is 1 and the new label is 2,

then move the estimate labeled 1 to the location for Class 2, and so on as described in the

previous section. This is how the LBLcorrect.r script works for unconstrained parameters.

Simple if/then moving of parameter estimates from their assigned label to their corrected

label also works for constrained parameter sets that meet two conditions. First, the constraint

must be on the parameter in last class.4 The two most common parameters of this type are

the factor means and the class proportions.5 Second, the last class must be correctly labeled.

Notice in the bottom panel of Figure 1 that the last class, Class 4, is always correctly labeled.

In the authors’ experience, the last class is often correctly labeled for widely used LVMMs

with three or more classes, although this is not guaranteed to hold in general. For models with

two classes, incorrectly labeling the last class (Class 2) leads to the factor mean and logit class

proportion in Class 1 being �1 times their correctly labeled estimate. This is easily fixed by

again multiplying by �1.

For situations where the last class is not correctly labeled, or for other types of parameter

constraints not discussed herein, parameter label correction and automation must be worked

out on a case-by-case basis. To aid researchers who might find themselves in the situation

where the factor mean of the last class is not correctly labeled, the label correction rules for

the factor means in a three-class, one-factor model are given in Appendix B.

The LBLcorrect.r Script

The LBLcorrect.r function implements the simple if/then moving of parameter estimates

from their assigned label to their corrected label described in the previous section. This is done

using the information in the *_NewClassLabels.txt output file produced by the LBLinfo.r

script. Using the example data described previously, we can implement the script using the

following commands in R:

source("c:/my directory/LBLcorrect.r")

whichClass_v <- c(NA,NA,NA,

1,1,1,1,1,1,

2,2,2,2,2,2,

3,3,3,3,3,3,

4,4,4,4,4,

1,2,3)

4Fixing the parameter in a class other than the last class also works, but note that this is the default in Mplus and

a requirement of LBLcorrect script developed herein.
5One of the class proportions ( 1; : : : ;  K ) is redundant because  K D 1 �

P

K�1

kD1  k . In Mplus, the logit class

proportions (log. k= K /) are estimated with the last class (K) as the reference class. These are called ALPHA(C) in

TECHNICAL 1 in Mplus.
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whichType_v <- c(NA,NA,NA,

1,2,3,4,5,6,

1,2,3,4,5,6,

1,2,3,4,5,6,

1,2,3,4,6,

7,7,7)

NfitInd <- 7

K=4

parnames <- list.files(getwd(),glob2rx("*.par"),full=F)

newLabelName <- "mysim_NewClassLabels.txt"

LBLcorrect(whichClass_v,whichType_v,NfitInd,parnames,

newLabelName,K,fileprefix="mysim")

The whichClass_v and whichType_v inputs combine to give a cross-classification of

class label and parameter type for each parameter. The input whichClass_v designates the

data generating label of each parameter in the order specified in TECHNICAL 1 Mplus output.

Any labels that are class invariant are specified as NA. In our example, the first three parameters

are the factor loadings and are class invariant (i.e., they are measurement invariant). The six

1s in the second row of the example whichClass_v indicate that the next six parameters had

the label Class 1 when the data were generated, and so forth for Classes 2, 3, and 4. The last

row indicates that the last three parameters had the labels of Class 1, 2, and 3 when the data

were generated.

The input whichType_v specifies a unique number for each type of parameter. As with

whichClass_v, class-invariant parameters are specified as NA as is seen for the factor loadings

in the first row for whichType_v. The second row corresponds to Class 1 and has the numbers

1 through 6. One, two, three, and four correspond to the class-specific error variances for Items

1 through 4, five corresponds to the factor mean in Class 1, and six corresponds to the factor

variance in Class 1. The third row corresponds to Class 2 and also has the numbers 1 through

6, again corresponding to the four error variances, factor mean, and factor variance in Class 2.

Notice that in the fifth row, the number five is missing, because the factor mean is constrained

to zero in Class 4. The three 7s in the last row are for logit class proportions (see footnote 5).

The input NfitInd is the number of fit indexes, which can be counted by examining the

“Order of data” subsection in the “RESULTS SAVING INFORMATION” information of an

Mplus output file. As in the LBLinfo() function, K is the number of classes, and parnames is

the list of *.par files produced by Mplus that contain parameter estimates, standard errors, and

fit indexes. The input newLabelName is name of the *_NewClassLabels.txt file produced

by the LBLinfo.r script. The output files produced by the LBLcorrect.r script are described

in the script, and the outputs from the current example are included on the Web site.

Recall that when fitting LVMMs with continuous within-class factors, the factor mean(s) in

the Kth class are fixed to zero as default in Mplus. When K D 2, the factor mean(s) in Class

1 cannot be misestimated as the fixed value of zero in Class 2. When labels are switched, the

factor mean(s) will take on a negative value. To fix this, the LBLcorrect.r script must be

given the parameter number(s) of the factor mean(s) in the input value for whichIsFmean. For

example, if the are three factors and two classes, and the parameter numbers in TECHNICAL

1 for the factor means are 10, 14, and 21, specify whichIsFmean=c(10,14,21). Additional

details about the LBLcorrect.r script are given in the preamble to the script.
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Computational Time

The LBLinfo.r and LBLcorrect.r scripts require the reading and writing of several files. As

the number of files increases toward 1,000 or greater, the computational time can approach or

exceed 60 seconds.

CONCLUSIONS

Mixture models are only identified up to permutation of class labels, resulting in the problem

of switched class labels. In a simulation study, fitting a model to multiple data sets will result

in arbitrary class labels, which complicates the computation of average parameter estimates

and their standard errors. This article describes a switched class label detection algorithm

that can provide the information needed to correct switched labels. Choices concerning a

correct assignment criterion and a collapsing criterion for the algorithm were illustrated. The

algorithm is implemented in the R script LBLinfo.r, which detects switched labels and reports

corrected labels. This information can then be used to correct switched label parameters. The

LBLcorrect.r script can use the output of the LBLinfo.r to automate parameter label

correction and provide summaries for many common LVMMs. Conditions required by the

switched label detection algorithm and the LBLcorrect.r script were noted and discussed.
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APPENDIX A

POPULATION PROPORTION ASSIGNMENT MATRICES USED TO TEST THE
SWITCHED LABEL DETECTION ALGORITHM

Assignment Accuracy Noncollapsed Collapsed

Good .16 .04 .01 .01 .16 .04 .01 .01

.05 .16 .04 .03 .05 .16 .04 .03

.03 .04 .16 .05 .03 .04 .16 .16

.01 .01 .04 .16 .01 .01 .04 .05
Moderate .12 .06 .01 .01 .12 .06 .01 .01

.07 .12 .06 .05 .07 .12 .06 .05

.05 .06 .12 .07 .05 .06 .12 .12

.01 .01 .06 .12 .01 .01 .06 .07
Poor .08 .07 .04 .03 .08 .07 .04 .03

.07 .08 .07 .06 .07 .08 .07 .06

.06 .07 .08 .07 .06 .07 .08 .08

.03 .04 .07 .08 .03 .04 .07 .07
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APPENDIX B

THREE-CLASS MANUAL LABEL CORRECTION FOR FACTOR MEANS

Constrained parameters in the LVMM require careful attention when correcting labels. In this

section, manual label correction is illustrated for the factor means in a three-class, one-factor

model. The population values for the three factor means are 2, 1, and 0. When fitting the data

generating model to the data, the factor mean in Class 3 is fixed to 0. In the following table,

new class labels are presented for all possible switched label patterns. In the middle of the

table, the hypothetical estimate values for Classes 1, 2, and 3 are given for each switched label

pattern. On the right side of the table the label correction rule is given.

New Labels Estimated Values Label Correction Rule

1 2 3 2 1 0 Labels are correct

1 3 2 1 �1 0 Add 1: {1,�1,0} C 1 D {2,0,1}

2 1 3 1 2 0 Interchange the class labeled 2

with the class labeled 3a

2 3 1 �1 �2 0 Add 2: {�1,�2,0} C 2 D {1,0,2}

3 1 2 �1 1 0 Add 1: {�1,1,0} C 1 D {0,2,1}

3 2 1 �2 �1 0 Add 2: {�2,�1,0} C 2 D {0,1,2}

aThe LBLcorrect.r script will correctly handle cases where the last class is correctly labeled.

Reading the table is illustrated using information from the second line of the table. The new

class labels are 1, 3, and 2. The estimated Class 1 value has the correct label, but the estimate

is incorrect. Estimated Class 2 should be relabeled as Class 3, and the estimated Class 3 should

be relabeled as Class 2. The estimated factor means are 1, �1, and 0. To correct the factor

means, add one to each estimated factor mean. This gives estimated factor means of 2, 0, and

1. Now factor means can be sorted according to the new labels, leading to the correct factor

means of 2, 1, and 0.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
a
l
i
f
o
r
n
i
a
,
 
L
o
s
 
A
n
g
e
l
e
s
]
 
A
t
:
 
2
0
:
5
8
 
9
 
F
e
b
r
u
a
r
y
 
2
0
1
1


