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1 Overview

Here we will describe the basic continuous time survival model implemented
in Mplus and will provide some details on the basic modeling options that are
available. Introduction to continuous time survival modeling can be found in
Singer & Willett (2003), Hougaard (2000) or Klein & Moeschberger (1997).
Survival analysis: techniques for. The survival models implemented in Mplus
includes many extensions of this basic model such as mixture survival models,
survival models with random e®ects (frailty models), multilevel survival mod-
els, time varying covariate models, competing risk models, non-proportional
hazard models etc. Describing the details of these models is beyond the scope
of this document. In most cases however the material presented here applies
to these extensions as well. More details on the models and algorithms im-
plemented in Mplus can be found in Larsen (2004, 2005) and Asparouhov &
Muthen (2006).
Let the variable T0 be a time-to-event variable such as time to death for

example. Let C be the time when the individual leaves the target cohort
due to death or other types of censoring such as lost to follow up etc. The
survival variable T and the censoring indicator ± are de¯ned by

T = minfT0; Cg (1)

± =
½
1 if T0 > C
0 if T0 · C : (2)

Both variables T and ± have to be constructed and used in the survival
analysis in Mplus. The T variable is speci¯ed via the survival= command
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while the ± variable is speci¯ed via the timecensored= command. Details on
the speci¯cation options can be found in Muthen & Muthen (2006). Let X
be an observed predictor of T .

2 The Proportional Hazard Model

The proportional hazard (PH) model speci¯es that the hazard function is
proportional to the baseline hazard function, i.e.,

h(t) = h0(t)Exp(¯X) (3)

where h(t) is the hazard function and h0(t) is the baseline hazard function
at time t. Two proportional hazard models are implemented in Mplus. One
of the models assumes a completely non-parametric shape for the baseline
hazard function. This model is known as the Cox regression model. The
other model is based on a parametric model for the baseline hazard function.
This model is known as the parametric PH model. The general paramet-
ric model for the baseline hazard function in Mplus is a step function with
arbitrary number of steps, however through parameter constraints this para-
metric model can serve as an approximation to any other parametric model,
including models such as Exponential, Weibull and Gompertz models. This
approximation is based on the fact that any continuous function can be
closely approximated by a step function. Note also that because of the pa-
rameter constraints the number of parameters that are freely estimated in
the approximation model will remain the same, see Section 7 for a detailed
example. First we will describe the parametric PH model implementation.

2.1 Parametric PH model

To estimate h0(t) as a step function with L intervals the survival variable is
declared as survival=T (L interval lengths). For example if survival=T(2*1
2), the length of the intervals in the baseline hazard step function are 1, 1, 2
and1 in that order, i.e., the intervals in the de¯nition of the baseline hazard
function are [0; 1); [1; 2); [2; 4); [4;1) over which we assume that the baseline
hazard is constant

h0(t) =

8>>><>>>:
h1 if 0 < t · 1
h2 if 1 < t · 2
h3 if 2 < t · 4
h4 if 4 < t <1

: (4)
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The analysis command option basehazard determines how the parameters
h1, h2, ..., hL are treated. If basehazard=on these parameters are estimated
as regular parameters. Thus standard error will be computed for the baseline
hazard function. Such standard errors can be used to obtain standard errors
for the survival rates for example. They are also included as parameters in
the model and can be held equal across class for example or they can be used
in model constraint to impose certain parametric shape. Starting values can
be given for these parameters and these starting values can be perturbed
just as for other parameters. Acceptable starting values are between 0 and
1, i.e., negative values are not acceptable baseline hazard function values.
The basehazard=on option should be used if relatively few steps are used
(small L) or there are enough restrictions in the model to compensate for
a large number of steps. If L is large however, even with many restrictions
on the hi parameters, it may be di±cult to estimate the model. The more
parameters are in the model the more di±cult the maximization will be,
i.e., the estimation will be very computationally demanding. In addition to
that the asymptotic approximation used with MLE requires larger sample
size for models with larger number of parameters. Both the parameter esti-
mates and the standard errors may have larger biases for models with larger
number of parameters. These undesired e®ects can be avoided by specifying
basehazard=o® and in that case the parameters h1, h2, ..., hL are treated
as nuisance parameters. The pro¯le likelihood is formed by explicitly max-
imizing the full likelihood over these parameters. The pro¯le likelihood is
then treated as regular maximum likelihood, see Murphy and van der Vaart
(2000). Standard errors are not computed for the baseline hazard function,
however the values of the nuisance parameters can be obtained by including
basehazard option in the output command. In mixture models Mplus will
estimate class varying baseline hazard and thus the mean of the survival
variable will be unidenti¯ed. With basehazard=o® the estimation will typi-
cally be less computationally demanding. The default setting for this option
is basehazard=o®.

2.2 Cox Regression Model

There are a number of di®erent methods for estimating this model. The
method that Mplus uses is based on PH parametric model estimation de-
scribed in the previous section. To obtain a fully non-parametric baseline
hazard function we just need to select su±ciently detailed step function es-

3



timation. This can be accomplished for example by settings such as sur-
vival=T(500*0.02) or survival=T(1000*0.01) if the T value ranges between
0 and 10. The exact speci¯cation of the step size typically will have a mini-
mal e®ect on the estimates. The step size however a®ects the log-likelihood
value. It is important that when LRT is conducted between two models the
step function framework is the same. Mplus also implements an automatic
option, survival=T(all), which will construct the step intervals from the data,
by making the steps as detailed as needed. With this option Mplus estimates
a baseline hazard step function which is constant between every two consec-
utive event times. If all event times, including censored observations are
t1 < t2 < :::: < tn then Mplus estimates

h0(t) =

8>>><>>>:
h1 if 0 < t · t1
h2 if t1 < t · t2
:::
hn+1 if tn < t <1

: (5)

Equal event times are treated as one event time. There is a direct re-
lation between the survival=T(all) speci¯cation of Cox regression and the
survival=T(M ¤ h) speci¯cation with M large and h small. If h is smaller
than the distance between any two distinct event times and Mh is greater
than the biggest event time in the data, the parameter estimates and their
standard errors will be the same. When estimating the Cox regression model
the parameters hi should be estimated as nuisance (unrestricted) parameters,
i.e., with the settings basehazard=o®. It is possible to estimate Cox regres-
sion with basehazard=on however this combination should be used with great
care as the number of parameters may be too large.
For a discussion on the di®erent ways to estimate the Cox regression

model and the equivalence of the pro¯le likelihood and the traditional partial
likelihood methods see Clayton (1988).

3 The Cumulative Baseline Hazard Function

Suppose that the baseline hazard function is

h0(t) =

8>>><>>>:
h1 if t0 = 0 < t · t1
h2 if t1 < t · t2
:::
hL+1 if tL < t <1

: (6)
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The cumulative baseline hazard function at time t represents the total hazard
an individual is exposed to up to time t. If tk < t < tk+1 the cumulative
baseline hazard function is

H0(t) =
Z t

0
h0(x)dx =

k¡1X
i=1

hi(ti ¡ ti¡1) + hk(t¡ tk¡1) (7)

4 The Survival Function

The survival function is the probability that the survival variable T is greater
than t

S(t) = P (T > t) = Exp(¡Exp(¯X)H0(t)): (8)

The survival function complements the distribution function

F (t) = P (T · t) = 1¡ S(t): (9)

5 The Likelihood Function

The likelihood function of the survival variable T is

L(T ) = (h0(T )Exp(¯X))
(1¡±)S(T ) (10)

where ± is the censoring variable.

6 Survival Variable in Monte Carlo Simula-

tions

Survival variables can be used with Mplus simulation facilities. The step sizes
m1 ... mL used for the generation process are speci¯ed in generate = T (s m1

... mL). The values of the baseline hazard function are speci¯ed in the Model
Population section. These parameters are referred as T#1; :::; T#L + 1 and
should be speci¯ed in the Model Population section regardless of whether or
not they are available in the Model section. These parameters are available
in the Model section if the option basehazard=ON, however they are always
available and should be speci¯ed in the Model Population section.
The simplest example for a survival variable speci¯cation is generate=T(s).

With this speci¯cation L = 0. The hazard function has a single step, which
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is the in¯nite interval [0;1). In this case only one baseline hazard function
value T#1 has to be speci¯ed in the Model Population section. Thus the
speci¯cation T#1 ¤ ¸ de¯nes a survival variable with constant hazard func-
tion ¸ over the entire [0;1) interval. Suppose that there are no X variables
in the model. In this case equation (3) says that h(t) = h0(t) = ¸. Equation
(7) reduces to H0(t) = t¸. Equations (8) and (9) then give us the distribution
function of T

F (t) = P (T · t) = 1¡ e¡t¸; (11)

i.e., T is exponentially distributed with density function ¸e¡t¸, mean 1=¸
and variance 1=¸2, where 0 < ¸ < 1. This implies that the smaller the ¸,
the longer the survival time. Such considerations can be used for selecting
proper values in the simulation study. For example if a predominant range
of T between 0 and 30 is desired then the hazard should be set to T#1 ¤ 0:1.
Using the distribution function of T in this case we get

P (0 < T < 10) = 1¡ e¡1 ¼ 63%

P (10 < T < 20) = e¡1 ¡ e¡2 ¼ 23%
P (20 < T < 30) = e¡2 ¡ e¡3 ¼ 9%

P (30 < T ) = e¡3 ¼ 5%:

7 Right Censoring of Survival Variables in

Monte Carlo Simulations

The command gentcensoring = T (¸1) speci¯es that the hazard for the cen-
soring process is ¸1, i.e., an exponential variable C with mean 1=¸1 is gen-
erated as well as the uncensored survival variable T0 following the survival
variable speci¯cation. Censoring occurs if C < T0. In that case we set T = C
and the censoring indicator ± to 1, i.e.,

T = minfT0; Cg (12)

± =
½
1 if T0 > C
0 if T0 · C : (13)

Suppose that gentcensoring = T (¸1) and the baseline hazard function is
set to ¸ by setting generate = T (s) and within Model Population T#1 ¤ ¸.

6



Then T0 and C are independent exponentially distributed random variables
with distribution 1¡ e¡¸t and 1¡ e¡¸1t respectively. In this case the variable
T is also exponentially distributed with distribution function 1 ¡ e¡(¸+¸1)t
because

P (T0 > t) = e
¡¸t (14)

P (C > t) = e¡¸1t (15)

P (T > t) = P (T0 > t)P (C > t) = e
¡(¸+¸1)t (16)

If ¸ = ¸1 about 50% of the observations will be censored because T0 and C
would be identically distributed and the two variables are equally likely to
be the smallest.

8 Weibull PH Model Speci¯cation

The Weibull model assumes that the baseline hazard function is

h0(t) = ¸s(¸t)
s¡1; (17)

for some parameters ¸ and s, see Bradburn et alt. (2003). Below we de-
scribe how to set up an approximation for this model via the Mplus step
function baseline model. The precision of the approximation depends on the
number of intervals L used in the baseline step function. The more intervals
are used the better the approximation. Typically however L = 50 will be
su±cient. Suppose that most of the T values range from 0 to 5. We can
split this range into equal intervals of length 0.1 and specify the baseline
step function estimation by turning the option basehazard=ON and by set-
ting survival=T(50*0.1). With this setup however the baseline function will
assume an unrestricted shape. We can add labels for the basehazard param-
eters by adding this line to the model [T#1¡ T#50](p1¡ p50). Using these
labels we specify the Weibull shape by adding the followingModel Constraint
section to the input ¯le:
model constraint:
new (s lambda);
p1=lambda*s*(lambda*0.05)**(s-1);
p2=lambda*s*(lambda*0.15)**(s-1);
...
p50=lambda*s*(lambda*4.95)**(s-1);
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The value for t has been substituted with the midpoint for each of the
time intervals. Take for example the ¯rst interval [0; 0:1]. To make the ap-
proximation as close as possible we use the midpoint of this interval 0.05
and we substitute that for t in equation (17). Better approximation can
be accomplished by specifying smaller intervals for more dense time seg-
ments and larger intervals for time segments with fewer events. For example
survival=T(20*0.05 40*0.1) will lead to better approximation if for many
individuals T < 1. The LRT test can be used to test the model constraint
equations, i.e., to test the assumption of Weibull baseline hazard.
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