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Abstract

We describe a general multivariate, multilevel framework
for continuous time survival analysis that includes joint
modeling of survival time variables and continuous and
categorical observed and latent variables. The proposed
framework is implemented in the Mplus software pack-
age. The survival time variables are modeled with non-
parametric or parametric proportional hazard distribu-
tions and include right censoring. The proposed model-
ing framework includes finite mixtures of Cox regression
models with and without class-specific baseline hazards,
multilevel Cox regression models, and multilevel frailty
models. We illustrate the framework with several sim-
ulation studies. Comparison is made with discrete time
survival models. We also investigate the effect of ties
on the proposed estimation method. Simulation studies
are conducted to compare the methods implemented in
Mplus with those implemented in SAS.

Keywords: Multilevel Survival Analysis, Latent Vari-
ables.

1 Overview

In this article we describe the two-level continuous time
survival model implemented in Mplus. The model in-
cludes mixture survival models, survival models with ran-
dom effects (also known as frailty models), time varying
covariate models and non-proportional hazard models.
Introduction to continuous time survival modeling can
be found in Singer & Willett (2003), Hougaard (2000) or
Klein & Moeschberger (1997). The model described here
is a direct extension of the models described in Larsen
(2004, 2005). In Section 2 we describe the proportional
hazard model which serves as the basis for modeling time-
to-event variables. In Section 3 we describe the general
multilevel latent variable mixture model that allows the
joint modeling of time-to-event data and other observed
and latent variables. We also illustrate the framework
with some simple simulation studies. In Section 4 we dis-
cuss some aspects of mixture survival models. In Section
5 we compare continuous time and discrete time survival
models. In Section 6 we investigate the effect of ties on
the proposed estimation method.

2 The Proportional Hazard Model

Let the variable T0 be a time-to-event variable such as
time to death for example. Let I be the time when the
individual leaves the target cohort due to death or other
types of censoring such as lost to follow up. The survival
variable T and the censoring indicator δ are defined by

T = min{T0, I} (1)

δ =
{

1 if T0 > I
0 if T0 ≤ I

. (2)

Let X be an observed vector of predictor variables. The
proportional hazard (PH) model specifies that the hazard
function is proportional to the baseline hazard function,
i.e.,

h(t) = λ(t)Exp(βX) (3)

where h(t) is the hazard function and λ(t) is the baseline
hazard function at time t.

Two proportional hazard models are described in this
article. The first model assumes a completely non-
parametric shape for the baseline hazard function λ(t).
This model is known as the Cox regression model. The
second model is based on a parametric model for the
baseline hazard function λ(t). This model is known as
the parametric PH model. The parametric model for the
baseline hazard function we describe here is a step func-
tion with arbitrary number of steps, however through
additional parameter constraints this parametric model
can serve as an approximation to any other parametric
model, including models such as Exponential, Weibull
and Gompertz models. This approximation is based on
the fact that any continuous function can be closely ap-
proximated by a step function. First we describe the
parametric PH model.

2.1 Parametric PH model

For this model the baseline hazard is estimated as a step
function. The step function is constant within each of the
defined intervals. If all possible values for T are positive,
we split the interval [0,∞) into Q non-overlapping inter-
vals l1 = [0, t1), l1 = [t1, t2), ..., lQ = [tQ−1,∞), where
t1, t2, ..., tQ−1 are the points of change for the baseline
hazard function. These points are fixed constants that
are specified prior to the model estimation. Later we dis-
cuss strategies for selecting these points in practical ap-
plications. The baseline hazard function is now defined
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by

λ(t) =


h1 if 0 < t ≤ t1
h2 if t1 < t ≤ t2
...
hQ if tQ−1 < t < ∞

(4)

where h1,...,hQ are parameters to be estimated together
with the β parameters in equation (3).

There are two ways to approach the estimation of the
baseline parameters hi. The first approach is to treat
these parameters as regular parameters. Standard errors
can then be computed and, using the delta method, stan-
dard errors for the survival rates can also be derived. This
approach also allows us to constrain the baseline parame-
ters during the optimization to follow certain parametric
shapes or to mandate baseline hazard function to be class
invariant in finite mixture models. The approach however
should only be used for baseline hazards with relatively
few steps, because large number of baseline parameters
will be computationally very demanding.

The second estimation approach treats the baseline pa-
rameters hi as nuisance parameters. The profile likeli-
hood is formed by explicitly maximizing the full likeli-
hood over the baseline parameters. The profile likelihood
is then treated as regular maximum likelihood (see Mur-
phy and van der Vaart, 2000). Standard errors are not
computed for the baseline parameter; however, this ap-
proach is computationally feasible even with large num-
ber of baseline parameters.

2.2 Cox Regression Model

This model assumes a non-parametric baseline hazard
function. One way for estimating such a model is to es-
timate a PH parametric model with a step function that
is constant between every two consecutive event times
thus estimating the most detailed hazard function pos-
sible. If all event times, including censored observations
are t1 < t2 < .... < tn then we estimate the baseline step
function as in equation (4) with Q = n + 1 parameters.
This estimation approach was first developed in Breslow
(1974) and is now referred to as the Breslow likelihood
approach or the profile likelihood approach. When esti-
mating the Cox regression model the parameters hi are
estimated as nuisance (unrestricted) parameters. Equal
event times are treated as one event time.

An alternative estimation approach known as the par-
tial likelihood approach was first developed by Cox
(1972). This estimation method eliminates the estima-
tion of the baseline hazard function completely and max-
imizes only a part of the complete log-likelihood that con-
tains the regression coefficients β. It has been shown how-
ever that the partial likelihood estimation and the profile
likelihood estimation are equivalent, see Johansen (1983)
and Clayton (1988). In the presence of ties for the T
variable there are a number of different variations of the
partial likelihood approach, see Section 6 below.

2.3 The Likelihood Function

The likelihood function described in this section applies
to both the Cox regression model and the parametric PH
model. Given the baseline hazard function in (4), the
cumulative baseline hazard function H0(t) at time t rep-
resents the total hazard an individual is exposed to up to
time t. If tk < t < tk+1 then

H0(t) =
∫ t

0

λ(x)dx =
k−1∑
i=1

hi(ti−ti−1)+hk(t−tk−1) (5)

The survival function is the probability that the survival
variable T is greater than t; that is,

S(t) = P (T > t) = Exp(−Exp(βX)H0(t)). (6)

The likelihood function of the survival variable T is

L(T ) = (λ(T )Exp(βX))(1−δ)S(T ) (7)

where δ is the censoring indicator.

2.4 Weibull PH Model Specification

In this section we will illustrate how continuous baseline
hazard function models can be approximated by the base-
line hazard step function model described above. Con-
sider for example the Weibull model which assumes that
the baseline hazard function is

λ(t) = αs(αt)s−1, (8)

for some parameters α and s (see Bradburn et al., 2003).
The precision of the approximation depends on the num-
ber of intervals Q used in the baseline step function. The
more intervals are used the better the approximation. In
practical applications Q = 50 or Q = 100 will be suf-
ficient. Denote the largest event time T by M . Let
h = M/Q. Consider the parametric PH model with base-
line hazard step function based on equal size intervals of
length h. We estimate the parametric PH model with the
constraint maximum likelihood where the hazard param-
eters hi are constraint by

hi = αs(αh(i− 0.5))s−1. (9)

The value for t has been substituted with the midpoint
for each of the time intervals. The LRT test can be used
to test the model constraint equations (9), i.e., to test the
assumption of Weibull baseline hazard.

3 The General Latent Variable Model

Let Trij be the r−th observed time-to-event variable for
individual i in cluster j. Let ypij be the p−th observed
dependent variable for individual i in cluster j. We only
consider two types of variables, categorical and normally
distributed continuous variables. However it is possible
to incorporate other types of distributions and link func-
tion in this model as in the generalized linear models of
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McCullagh and Nelder (1989). Suppose that Cij is a la-
tent categorical variable for individual i in cluster j which
takes values 1, ..., L.

To construct the structural model for the dependent
variables ypij we proceed as in Muthen (1984). If ypij is
an ordered categorical variable, we define an underlying
normally distributed latent variable y∗pij such that for a
set of threshold parameters τck

[ypij = k|Cij = c] ⇔ τck < y∗pij < τck+1. (10)

A linear regression for y∗pij is thus equivalent to a Probit
regression for ypij . Alternatively, y∗pij can have a logistic
distribution. Linear regression for y∗pij will then translate
to a logistic regression for ypij . For continuous variables
we define y∗pij = ypij .

Let y∗ij be the vector of all dependent variables and let
xij be a vector of all covariates. The structural part of
the model is defined by

[y∗ij |Cij = c] = νcj + Λcjηij + εij (11)

[ηij |Cij = c] = µcj + Bcjηij + Γcjxij + ξij (12)

P (Cij = c) =
exp(αcj + βcjxij)∑
c exp(αcj + βcjxij)

. (13)

where ηij are normally distributed latent variables, εij

and ξij are zero mean normally distributed residuals. The
model for the time-to-event variables Trij is described by
the following model for the hazard functions

[hrij(t)|Cij = c] = λrc(t)Exp(ιrcj + γrcjxij + κrcjηij).
(14)

The likelihood for Trij is computed as in Section 2.3.
Some parameters in the above model have to be restricted
for identification purpose. For example, in equation (14)
the intercept parameter ιrcj can be identified only when
the baseline hazard function is class invariant. Then ιrcj

can be identified in all but one class. If the baseline haz-
ard function is class specific then ιrcj is not identified in
any of the classes and it is fixed to 0. When ιrcj is a
cluster random effect then its mean is fixed to 0. In ad-
dition, for categorical variables ypij , the variance of εpij

is not identified and is typically fixed to 1. Also in the
multinomial logit regression (13) we have αLj = βLj = 0.

The multilevel part of the model is introduced as fol-
lows. Each of the intercepts, slopes or loading parameters
in equations (11-14) can be either a fixed coefficient or a
cluster random effect, i.e., a normally distributed cluster
specific coefficient. Let ηj be a vector of all such random
effects and let xj be a vector of cluster level covariates.
The between level model is then described by the follow-
ing equation

ηj = µ + Bηj + Γxj + ξj . (15)

where ξj is a normally distributed residual. The above
five equations comprise the definition of the basic multi-
level survival mixture model.

One example of the above framework is illustrated in
Larsen (2005) where the predictor in the Cox regression
is a latent factor measured by several binary indicators.
In the next three sections we illustrate this framework
with several examples.

3.1 Frailty Models

Frailty models are models that introduce association be-
tween two or more time-to-event variables or between
one time-to-event variable and other types of dependent
variables. For example in cancer studies the time from
remission to relapse T1 can be correlated with the time
from relapse to death T2. In modeling the mortality rates
of married couples association between the two survival
variables can be caused by some shared values that are
not explicitly known and included in the model. Clayton
(1988) describes one possibility for modeling the associ-
ation between two survival variables. Let the survival
times for individual i be T1i and T2i and the correspond-
ing hazard functions be h1i(t) and h2i(t). The model in
Clayton (1988) is described by

h1i(t) = ξiλ1(t) (16)

h2i(t) = ξiλ2(t) (17)

where λ1(t) and λ2(t) are non-parametric functions and
ξi are independent gamma variables with mean 1 and
variance γ. This model has only one parameter, namely
the γ parameter. The larger this parameter is the stringer
the association between the two survival times. If γ = 0
the two survival times are independent.

The latent variable framework described in the previ-
ous section can also model the association between two
survival variables. Let ηi be a normally distributed ran-
dom variables with mean 0 and variance σ. The Cox
regression of T1 and T2 on ηi with fixed slope 1 gives us
the following expressions for the hazard functions

h1i(t) = Exp(ηi)λ1(t) (18)

h2i(t) = Exp(ηi)λ2(t). (19)

The difference between this model and the Clayton model
(16-17) is only in the prior distribution for the coefficient
of proportionality. In model (18-19) the coefficient is dis-
tributed as an exponential of normal while in (16-17) it
is gamma distributed. This difference in the priors will
typically have a marginal effect on the estimation of the
association between the two survival variables. For the
leukemia cancer data presented in Clayton (1988), the
γ̂ parameter in model (16-17) is 0, while the σ̂ parame-
ter in model (18-19) is 0.00004, which is not significant
with a p-value of 0.45. Therefore both models lead to the
same conclusion: there is no association between the two
survival variables for this leukemia cancer data.

To evaluate the performance of the proposed estima-
tion method for this frailty model we conduct a simple
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Table 1: Estimates for the Variance σ = 0.3 in the Frailty
Model Using Parametric and Non-parametric Approach.

n 100 500 1000
Non-Parametric Bias -0.07 -0.03 -0.01

Parametric Bias -0.01 -0.01 -0.01
Non-Parametric MSE 0.032 0.007 0.004

Parametric MSE 0.022 0.005 0.003
Non-Parametric Coverage 0.76 0.91 0.91

Parametric Coverage 0.88 0.96 0.90

simulation study. We generate data according to model
(18-19) using the following baseline hazard functions

λ1(t) =


0.1 if t < 5
0.2 if 5 ≤ t < 10
0.5 if 10 ≤ t < 15
15 if 15 ≤ t

(20)

and λ2(t) = λ1(t) + 0.2. The parameter σ is chosen to
be 0.3. We generate 100 samples of size n = 100, 500
and 1000. We analyze the data with the non-parametric
approach as well as a parametric approach based on the
assumption that the baseline hazard function is constant
over the intervals [0,5), [5,10), [10,15) and [15,∞). Ta-
ble 1 shows the bias and the mean squared error of the
parameter estimates as well as the confidence interval
coverage probability, i.e., the probability that the 95%
confidence interval contains the true value. It is clear
from these results that parametric method outperforms
the non-parametric on all three criteria for small sam-
ple size. For large sample size the difference between the
methods is negligible and both methods perform well.

This example emphasizes the advantages of the para-
metric approach. We see substantial efficiency gains even
in simple examples. Therefore it is important to develop
tools for constructing appropriate parametric models and
for testing the parametric models against the unrestricted
non-parametric model. Graphical methods can be used
to determine the shape of the hazard function. For ex-
ample, estimating a model with a stepwise hazard can
indicate a particular shape. Figure 1 shows the estimate
of the baseline hazard function λ1(t) for a sample with
1000 observations based on a model assuming constant
hazard over consecutive intervals of length 1. In addi-
tion the Hausman (1978) test of misspecification can be
used to formally test the parametric model against the
non-parametric model. Let θ̂p and θ̂n be the parame-
ter estimates obtained from the parametric and the non-
parametric models. Let V̂p and V̂n be estimates for the
variance of these parameter estimates. Under the null
hypothesis that the parametric test is correct the test
statistic

(θ̂n − θ̂p)′(Vn − Vp)−1(θ̂n − θ̂p)

has a chi-square distribution with degrees of freedom
equal to the number of parameters in the model.

Figure 1: Estimated Baseline Hazard in Frailty Model
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Table 2: Estimates for the With and Between Variance
for Two-level Frailty Model.

n 100 500 1000
Bias for σw -0.05 -0.01 -0.01
Bias for σb -0.04 -0.02 0.00

Coverage for σw 0.77 0.89 0.89
Coverage for σb 0.75 0.86 0.87

3.2 Two-level Frailty Models

The two-level frailty models allow for association between
survival times not only on the individual level but also on
the cluster level. Suppose as in the previous section that
T1 and T2 are the time from remission to relapse and the
time from relapse to death in cancer patient. Suppose
that the patients are grouped by facility of treatment.
Denote the survival times for patients i in hospital j are
T1ij and T2ij and the corresponding hazard functions by
h1ij and h2ij . The two-level frailty model is described by

h1ij(t) = Exp(ηwij + ηbj)λ1(t) (21)

h2ij(t) = Exp(ηwij + ηbj)λ2(t). (22)

where ηwij and ηbj are individual and cluster level nor-
mally distributed random effects with zero mean and vari-
ance σw and σb. We conduct a simulation study for this
model using the same baseline hazard functions as in the
previous section and σw = 0.3 and σb = 0.2. We use 100
replications and sample sizes n = 100, 500 and 1000. All
clusters are of size 10. The bias and the coverage proba-
bility are presented in Table 2. Small parameter under-
estimation occurs for small sample size, however, when
the sample size increases the bias is eliminated and the
coverage probabilities approach the nominal 95% level.
For this model as well improvements in the estimates can
be obtained by the parametric approach.

3.3 Time Varying Covariates and Latent Vari-
ables

Time varying covariates and latent variables can be in-
corporated in the above framework. Suppose that a co-
variate xij changes over time. Denote the covariate at
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time t by xijt. Similarly, suppose that a latent variable
ηij changes over time. Denote ηij at time t by ηijt. The
proportional hazard model is now given by

[hij(t)|Cij = c] = λc(t)Exp(ιrcj + γrcjxijt + κrcjηijt)
(23)

This model generalizes the Xu-Zeger (2001) model to
multilevel and mixture settings. Suppose that the covari-
ates and the latent variables change at times d1,...,dK .
The likelihood of the survival variable T is then equiv-
alent to the likelihood of K survival variables T1,...,TK

defined as follows

Tk =

{ dk − dk−1 if dk < T
missing if T < dk−1

T − dk−1 otherwise
(24)

δk =

{ 1 if dk < T
missing if T < dk−1

δ otherwise
(25)

where δk is the censoring indicator of Tk. The propor-
tional hazard model for Tk is

[hijk(t)|Cij = c] = λck(t)Exp(ιcj + γcjxijk + κcjηijk)
(26)

Thus the model for the survival variable T with time
varying covariates is equivalent to a multivariate model
for T1,...,TK without time varying covariates.

We illustrate the above idea with an example following
the discussion in Xu-Zeger (2001). Let Yit be an observed
dependent variable for individual i at time t = 0, ..., 5.
Suppose that Yit follows a linear growth model

Yit = ηit + εit (27)

ηit = µi + βit (28)

where µi and βi are normally distributed random effects.
For t in the interval [k,k+1) the hazard function for Ti is
given by

hi(t) = λ(t)Exp(γηik). (29)

This model that can be very useful in practice. For ex-
ample Yit can represent a biological marker that predicts
the survival variable Ti. The model estimates a linear
trend for Yit and allows for a measurement error.

In the model described by Xu-Zeger (2001) the pre-
dictor varies continuously over time, while the predic-
tor in model (29) changes stepwise. Xu-Zeger (2001) es-
timate the model using an advance MCMC algorithm,
while model (29) can be estimated simply by the ML al-
gorithm. If the step size in the changes is chosen to be
sufficiently small the difference between the two models
will be negligible.

To evaluate the performance of the proposed estima-
tion method we conduct a simulation study. We generate
and analyze the data with model (27-29). There are 12
parameters in the model. The parameter γ, the means
α1 and α2 of the random effects µi and βi, the variances
σ1 and σ2 of these random effects and their covariance ρ,
and the six Yi residual variance parameters θi. The data

Table 3: Average Parameter Estimates and Coverage
Probability for Survival Analysis with Time Varying La-
tent Variable

Para- True
meter Value n=100 n=200 n=500

γ 0.3 0.31(0.95) 0.30(0.95) 0.30(0.94)
α1 0.2 0.20(0.93) 0.18(0.95) 0.19(0.97)
α2 0.1 0.10(0.96) 0.10(0.96) 0.10(0.96)
σ1 1.0 0.96(0.90) 0.99(0.94) 0.98(0.94)
σ2 0.2 0.19(0.92) 0.20(0.89) 0.20(0.93)
ρ 0.1 0.11(0.96) 0.10(0.94) 0.10(0.92)
θ0 1.0 1.01(0.96) 0.99(0.93) 1.00(0.96)

is generated with the following parameter values γ = 0.3,
α1 = 0.2, α2 = 0.1, σ1 = 1, σ2 = 0.2, ρ = 0.1 and θi = 1.
The data is right censored at 5. The measurements Yi are
available only if T > i. The baseline hazard function used
in the generation process is λ(t) = 0.1i for t in the inter-
val [i−1, i). We generate 100 samples of size n = 100, 200
and 500. Using formulas (24) and (25) we transform the
data into the multivariate format. A sample record looks
like this

1, 1, 1, 0.12, ∗,−0.34, 0.41,−0.57,−1.32, ∗, ∗, 1, 1, 1, 0, ∗

where the data is in this order
T1, ..., T5, Y0, ..., Y5, δ1, ..., δ5. The data is interpreted as
follows. Since T1 = 1 and δ1 = 1 the individual survived
during the interval [0, 1]. The same occurs in intervals
[1,2] and [2,3]. During the interval [3,4] the individual
dies at time T = 3.122, since T4 = 0.122. Both T5 and
δ5 are unobserved since death has occurred already.
The biological marker variables Yi are observed at times
0,...,3 and are missing for times 4 and 5 since death has
occurred already.

Table 3 contains the average parameter estimates and
the coverage probabilities for most parameters. During
the data analysis 5 replications encountered convergence
problems, 4 of these occurred for sample size 100 and
1 for sample size 200. The results indicate that the es-
timator performs very well. The bias in the parameter
estimates is small and the coverage probabilities close to
the nominal 95% value.

4 Aspects of Mixture Survival Modeling

Survival models with normally distributed latent vari-
ables have been utilized much more than survival models
with categorical latent variables. Larsen (2004) describes
one application of mixture survival models however many
aspects of these models have not been explored yet. In
this section we discuss some of the challenges and unique
modeling capabilities presented by the mixture survival
models. The approach implemented in Mplus differs from
Larsen’s (2004) approach in one important aspect. In
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Larsen (2004) the baseline hazard function varies across
classes only by a single multiplicative factor. Consider a
two class model where the baseline hazard function in the
two classes are λ1(t) and λ2(t). In Larsen (2004) λ1(t) is
estimated as a non-parametric step function while λ2(t)
is constrained by the following equation

λ2(t) = αλ1(t) (30)

where α is parameter that is estimated. In contrast Mplus
will estimates both λ1(t) and λ2(t) as unconstrained non-
parametric step functions. The advantage of Larsen’s
approach is that the class effect on the baseline can be
explicitly estimated, while in the Mplus approach the ef-
fect of the class variable is not obtained directly, simply
because the two baseline function are completely uncon-
strained and no parameter summarizes the difference be-
tween the two baseline hazards. Essentially when using
the Mplus approach we know that the baselines are dif-
ferent across class but we do not know how. Using a
parametric approach can resolve this problem.

The advantage of the Mplus approach is that it does
not depend on the proportionality assumption (30). In
the following simulation study we explore the conse-
quences of incorrectly assuming (30). We use a Cox re-
gression model for a survival variable on a single predic-
tor X with standard normal distribution and with slope
β = 1. We generate the data according to a two class
model where the baseline hazard in the first class λ1(t) is
as in (20) while in the second class λ2(t) = 0.1. The Cox
regression slope β is 1 in both classes. For simplicity, to
avoid the complexities of the class measurement model we
identify exactly the class variable by a single binary indi-
cator U , P (U = 1|C = 1) = 1 and P (U = 2|C = 2) = 1.
Thus the C variable is essentially observed by its per-
fect binary indicator U . We generate 100 samples of size
5000. The large sample size eliminates any possible finite
sample size effects. When we analyze this data with the
Mplus approach the average parameter estimate for β is
1.0023 and the MSE for this parameter is 0.0004. When
we analyze the data with Larsen’s approach, based on the
incorrect proportionality assumption, the average param-
eter estimates for β is 0.9074 and the MSE is 0.0089. We
conclude that incorrectly assuming the proportionality
property can result in biased estimates and larger MSE.

In the next simulation we explore whether for situa-
tions when the proportionality property holds Larsen’s
method can lead to a reduction in MSE. Using λ1(t) again
as in (20) and λ2(t) = 2λ1(t) with sample size n = 100 we
obtained MSE for β̂ of 0.0276 for Larsen’s method and
0.0177 for Mplus method. Thus surprisingly, in this ex-
ample the less restricted Mplus method gives more accu-
rate estimates even when the proportionality assumption
holds.

Survival mixture models can be viewed as the joint
models for survival variables and latent class variables.
The models can be used to explore population hetero-
geneity while modeling the survival variables. The latent

class variable can be viewed as a predictor for the survival
variables but also the survival variables can be viewed as
class indicators. The model within each class is based
on the PH property (3), however the property will not
hold in general for the total population combining all the
classes. Thus, mixture survival models can also be used
to model survival data that does not satisfy the PH prop-
erty.

5 Comparison Between Continuous and
Discrete Time Survival Analysis

Suppose that the survival variable T takes only a finite
number of values. Then an alternative modeling ap-
proach known as discrete time survival analysis can be
used, see for example Muthen and Masyn (2005). The
model consists of a number of logistic regressions fitting
the incremental probability of survival

P (T > k + 1|T > k) =
Exp(τk − βX)

1 + Exp(τk − βX)
.

The discrete time survival approach can also be used
when the variable T is continuously distributed simply
by categorizing the T variable into a finite number of
values. Let T ∗ = [T/h]h, where h is a small number
and [x] denotes the nearest integer to x. T ∗ is a discrete
approximation of T . There are three possible modeling
approaches, modeling T with continuous time survival
model, modeling T ∗ with continuous time survival model
and modeling T ∗ with discrete time survival model. Here
we will show that all three models lead to similar param-
eter estimates for sufficiently small h. As h converges to
0, the differences between T and T ∗ becomes negligible
and thus the Cox regression for T and T ∗ yields similar
results. Next we show that the Cox regression for T ∗

yields similar results as the discrete time survival model
for T ∗. For the Cox regression model we have

P (T > k + 1|T > k) = Exp(−Exp(βX)c1)

where c1 is independent of X and converges to 0 as h
converges to 0. Using first order Taylor expansion we get
that

P (T = k + 1|T > k) = 1− Exp(−Exp(βX)c1) ≈

Exp(βX)c1.

The same holds for the discrete time survival model

P (T = k+1|T > k) =
Exp(βX − τk)

1 + Exp(βX − τk)
≈ Exp(βX−τk)

since τk converges to infinity as h converges to 0. The in-
cremental survival probabilities in both model depend on
X approximately via the same functional form and thus
the parameter estimates will be approximately the same.
Thus the discrete time survival can be used as an approx-
imation to the the Cox regression model as long as the
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Table 4: MSE of β for continuous data with ties.

Breslow Breslow Efron Exact Discrete
n Mplus SAS SAS SAS SAS

100 0.026 0.025 0.026 0.026 0.027
1000 0.002 0.002 0.002 0.002 0.002

categorization of the T variable is sufficiently detailed.
Note however that if the categorization is very detailed
the discrete time survival method estimates many logis-
tic regression equations and thus the estimation becomes
numerically very inefficient.

6 Comparing Mplus and SAS Estimation for
Survival Data with Ties

In this section we evaluate the performance of the meth-
ods implemented in Mplus with those implemented in
SAS for survival analysis of data with ties. Four partial
likelihood estimation methods are implemented in the
SAS PHREG procedure. These methods are known as
the Breslow (1974) likelihood, the Efron (1977) likelihood
the exact likelihood (Kalbfleisch and Prentice, 1980), and
the discrete likelihood (Cox and Oakes, 1984). Two meth-
ods are available in Mplus, the Breslow profile likelihood
approach and the discrete time survival analysis. Since
the Breslow profile likelihood approach implemented in
Mplus and the Breslow partial likelihood implemented in
SAS are both based on the step baseline hazard function
we expect to get the same results with these methods for
data with and without ties.

To conduct our simulation study we first generate sam-
ples drawn from a Cox regression model for a variable T
and a single covariate X. The covariate X has a standard
normal distribution and slope β = 1. The baseline hazard
function is as in (20). We introduce right censoring in the
data by generating an independent exponential variable
C with mean 10. If C < T then censoring occurs at time
C. We generate 100 samples of size n = 100 and 1000.
We introduce ties in the data by two methods. The first
method preserves the continuity of the data while the
second discretizes the data.

6.1 Continuous Data with Ties

To introduce ties in the data while preserving the continu-
ity of the data we create new samples that consist of two
identical copies of the samples generated above. Thus
each observation is tied to another observation in the
sample. This simulation study is intended to mimic prac-
tical situations where the data is continuous but there are
incidental ties, i.e., the variable T takes many different
values but they are not necessarily unique. Table 4 shows
the MSE for β̂ for five estimation methods. Mplus dis-
crete method is not available for continuous data. All five
methods perform equally well in this situation.

6.2 Discrete Data

In this section we introduce ties in the data by catego-
rizing the T values into intervals of length h. We use 3
values for h = 2, 1, and 0.5. Because T is always less than
16, the maximum number of values that T can attain is
thus L = 8, 16, and 32 respectively. There are many ties
in this data.

The results are presented in Tables 5 and 6. The
Mplus Breslow method gives the same results as the SAS
Breslow method. The parameter estimates for these two
methods are identical for all replications. The Mplus
discrete method generally differs from the SAS discrete
method, however, for large sample size (n=1000) the es-
timates obtained by the two methods are identical. The
Efron and the Exact methods outperform the other meth-
ods especially for the coarse categorizations h = 2 and
h = 1. With n = 100 and h = 0.5 the performance of
the Breslow method is the same as the Efron and the
Exact methods. For n = 1000 and h = 0.5 the Bres-
low method is slightly worse. This is because the ties
influence is stronger as now 1000 points are tied on the
same 32 values. The Breslow and Efron methods tend
to underestimate the slope while the discrete methods
tend to overestimate the slope. The Exact method has
a very small bias in general. The bias decreases as the
sample size increases for all methods except the Breslow
methods. This leads us to the conclusion that the MSE
decreases to 0 as the sample size increases for all methods
except the Breslow methods. The Breslow methods ac-
tually shows smaller variation in the estimates than the
Efron and the Exact methods. Thus the larger MSE for
the Breslow methods is due to the larger bias.

The methods implemented in SAS are available only for
the Cox regression model while the methods implemented
in Mplus are available for the general latent variable mod-
els. Thus it is important to compare the performance
of the two Mplus methods as they are the only possi-
ble alternatives for these models. The results in Table
5 indicate that for large sample size (n=1000) and small
number of categories (L=8) the discrete method outper-
forms the Breslow method. This result is reversed for
small sample size n = 100. This is due again to the fact
that the ties for the n = 1000 sample are more influen-
tial. We conclude that when the data is truly categorical
and the number of categories is less than 20 the discrete
method should be preferred, especially for large sample
sizes. In this case the discrete survival model is a better
alternative even if the model we want to estimate is the
Cox regression model. When there are more than 20 cat-
egories or the sample size is small the Breslow method
performs well when compared to the other methods.

7 Conclusion

The continuous time survival modeling framework de-
scribed here includes many new models that combine sur-
vival modeling with latent variable modeling. The model
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Table 5: MSE of β for discrete data.

Breslow Discrete Breslow Efron Exact Discrete
n h L Mplus Mplus SAS SAS SAS SAS

100 2 8 0.068 0.071 0.067 0.024 0.023 0.057
100 1 16 0.035 0.052 0.035 0.021 0.024 0.041
100 0.5 32 0.024 0.040 0.024 0.022 0.024 0.031
1000 2 8 0.058 0.033 0.058 0.009 0.004 0.031
1000 1 16 0.021 0.016 0.021 0.003 0.003 0.015
1000 0.5 32 0.008 0.007 0.008 0.003 0.002 0.007

Table 6: Bias of β for discrete data.

Breslow Discrete Breslow Efron Exact Discrete
n h L Mplus Mplus SAS SAS SAS SAS

100 2 8 -0.24 0.19 -0.24 -0.09 -0.02 0.15
100 1 16 -0.14 0.14 -0.14 -0.04 0.00 0.10
100 0.5 32 -0.08 0.10 -0.08 -0.02 0.00 0.05
1000 2 8 -0.24 0.17 -0.24 -0.08 -0.03 0.16
1000 1 16 -0.14 0.11 -0.14 -0.03 -0.01 0.11
1000 0.5 32 -0.08 0.07 -0.08 -0.01 0.00 0.06

estimation is the standard maximum likelihood estima-
tion, which is computationally feasible even for advanced
models. The framework is implemented in Mplus and can
be utilized in many practical applications.
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