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Exploratory factor analysis (EFA) is a commonly used statistical technique for

examining the relationships between variables (e.g., items) and the factors (e.g.,

latent traits) they depict. There are several decisions that must be made when using

EFA, with one of the more important being choice of the rotation criterion. This se-

lection can be arduous given the numerous rotation criteria available and the lack of

research/literature that compares their function and utility. Historically, researchers

have chosen rotation criteria based on whether or not factors are correlated and

have failed to consider other important aspects of their data. This study reviews

several rotation criteria, demonstrates how they may perform with different factor

pattern structures, and highlights for researchers subtle but important differences

between each rotation criterion. The choice of rotation criterion is critical to ensure

researchers make informed decisions as to when different rotation criteria may

or may not be appropriate. The results suggest that depending on the rotation

criterion selected and the complexity of the factor pattern matrix, the interpretation

of the interfactor correlations and factor pattern loadings can vary substantially.

Implications and future directions are discussed.

Since Spearman (1904) first proposed the idea of a single common factor to

explain “general intelligence,” both exploratory factor analysis (EFA) and con-

firmatory factor analysis (CFA) have become widely used statistical procedures
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74 SASS AND SCHMITT

during instrument development (see Gorsuch, 1983). Even though EFA and

CFA are both based on the common factor model and share the same goal of

explaining the manifest variable’s covariances or correlations, the appropriate use

of EFA remains controversial (Steiger, 1979, 1994) because it is driven by data,

not theory. Despite the dilemma of whether EFA or CFA is more appropriate

for examining relationships among indicators, EFA remains popular among

researchers. In fact, this procedure has experienced a revival resulting from

new EFA applications (e.g., Asparouhov & Muthén, 2009) and the realization

that CFA can be restrictive and is often itself used in an exploratory fashion

(Asparouhov & Muthén, 2009; Browne, 2001; Gorsuch, 1983; MacCallum,

Roznowski, & Necowitz, 1992). For instance, CFA users frequently make the

rather limited assumption that each variable is a pure measure (i.e., all cross-

loadings are zero) of each factor. Consequently, they proceed to use modification

indices in an exploratory fashion to improve model fit, which can result in a

model fitting by chance (MacCallum et al., 1992). In any event, both EFA and

CFA can be difficult statistical methods to employ correctly given the subjective

decisions that must be made (see Henson & Roberts, 2006).

Fortunately, there have been several studies to help guide researchers through

the factor analysis decision-making process. Such choices include selecting

(a) an appropriate sample size (e.g., Hogarty, Hines, Kromrey, Ferron, &

Mumford, 2005; MacCallum, Widaman, Zhang, & Hong, 1999), (b) the best

model fitting/estimation procedure (e.g., principal factors, maximum likelihood,

etc.; Flora & Curran, 2004), (c) a method to determine the number of factors

(e.g., Kaiser criterion, parallel analysis, etc.; Hayton, Allen, & Scarpello, 2004),

(d) the proper correlation matrix (e.g., Pearson, polychoric, tetrachoric, etc.;

Jöreskog & Moustaki, 2001), and (e) a rotation criterion (Varimax, Promax,

etc.; Browne, 2001). To supplement these papers, several comprehensive review

articles have also been written to guide researchers using EFA (e.g., Fabrigar,

Wegener, MacCallum, & Strahan, 1999; Henson & Roberts, 2006).

Despite the attention each of these areas has received, a paucity of literature

has (a) investigated how rotation criteria differ under diverse factor pattern

matrices, (b) discussed the implications for choosing different rotation criteria in

relation to factor structure interpretation, and (c) provided guidance for selecting

an appropriate rotation criterion depending on the perceived variable or factor

pattern matrix complexity. With the exception of Browne’s (2001) comprehen-

sive paper, few recent articles have outlined, compared, and evaluated different

rotation criteria. In our review of the literature, and in the opinion of other

authors (Browne, 2001; Fabrigar et al., 1999; Finch, 2006; Henson & Roberts,

2006; Thompson & Daniel, 1996), rotation criteria are largely selected based

on whether or not the hypothesized factors are orthogonal or oblique, with

little consideration given to potential factor structure complexity. Despite the

importance of selecting a rotation criterion based on interfactor correlations, it
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A COMPARATIVE INVESTIGATION OF ROTATION CRITERIA 75

is perhaps as important to consider the influence different rotation criteria will

have on the resultant factor pattern matrix.

Although researchers often select either an orthogonal or an oblique rotation

criterion based on hypothesized interfactor correlations, many are unacquainted

with how common rotation criteria differ. For example, if an oblique rotation

criterion were selected based on either prior research or theory, many researchers

would give little justification for its selection (Henson & Roberts, 2006; e.g.,

Promax, Quartimin, Equamax, etc.) or how the selected rotation criterion in-

fluences factor structure interpretation (see de Vet, Adèr, Terwee, & Pouwer,

2005). Instead, researchers often select a rotation criteria based on what is

most frequently cited in the literature, which is often an orthogonal Varimax

criterion (Fabrigar et al., 1999; Ford, MacCallum, & Tait, 1986; Henson &

Roberts, 2006; Russell, 2002). For example, when using EFA and CFA for

cross validation studies researchers regularly assume factor structure differences

are due to sampling error or sample characteristics (Hurley et al., 1997), with

less attention given to the estimation methods, correlation matrix employed,

and/or the rotation criteria. It is important that researchers are cognizant that

the rotation criterion selected could have a significant impact on the interfactor

correlations and the cross-loading magnitudes.

FACTOR STRUCTURE TERMINOLOGY

This study defines variable complexity as the number of nonzero elements

in a factor pattern matrix row (see Browne, 2001; Jennrich, 2007). A factor

pattern matrix where all variable complexities are one results in perfect simple

structure, which means that each variable loads on only one factor and no cross-

loadings exist. When the cross-loading magnitudes are small (i.e., < j:30j), this

is considered approximate simple structure. As the cross-loading magnitudes

increase (i.e., � j:30j), the factor structure is referred to as complex structure.

Despite the delineation of aforementioned different factor pattern matrices,

the criterion generally accepted to provide a meaningful rotated factor solution

is the principle of simple structure (Thurstone, 1947). Simple structure seeks a

parsimonious solution in the primary factor pattern matrix by placing a general

set of restrictions on the factor analysis model. Although these constraints placed

on the factor analysis model do not affect the model fit to the observed data,

they do have significant implications for the interpretation of the rotated factor

pattern matrix (Yates, 1987). Thus, the simple structure criterion solves the inde-

terminacy problem in EFA by placing a set of restrictions on the factor analysis

model while also producing meaningful solutions (Gorsuch, 1983, p. 177).

The idea of simple structure was originally proposed by Thurstone (1947,

p. 335), who provided five general conditions for its evaluation:
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76 SASS AND SCHMITT

1. Each variable (e.g., row) should have at least one zero.

2. Each factor (e.g., column) should have the same number of zeros as there

are factors.

3. Every pair of factors should have several variables whose factor pattern

loadings are zero for one factor but not the other.

4. Whenever more than about four factors are extracted, every pair of factors

should have a large portion of variables with zero weights in both factors.

5. Every pair of factors should have few variables with nonzero pattern

loadings in both factors.

It was the first condition that Thurstone (1947) intended to encompass his

definition of simple structure, a definition that allowed for more complex factor

pattern matrices (Browne, 2001; Jennrich, 2007; McDonald, 2005; Yates, 1987).

Thurstone did not envision conditions two through five as defining simple

structure, but only as checks of uniqueness and stability of the factor pattern

loading configurations (Browne, 2001; Yates, 1987). However, many early factor

analysts developed simple structure rotation criteria, such as Kaiser’s (1958)

Varimax criterion, with the intention of seeking perfect cluster configurations or

ones that were easily interpretable. The difficulty with such an interpretation is

that many measures/instruments have complex factor loading patterns.

The concept of complexity (Browne, 2001; Yates, 1987) is central to EFA

because it encompasses Thurstone’s (1947) notion of simple structure in that

factor rotation criteria should allow factorially complex solutions and not just

perfect independent cluster solutions (i.e., perfect simple structure). Further,

allowing for solutions that are more complex provides a more realistic depiction

of the domains of interest. As Yates pointed out, many popular and commonly

used rotation criteria (e.g., Varimax) adhere to the somewhat misguided no-

tion that simple structure criterion should seek perfect independent clusters

that are easily interpreted, which consequently may not represent the factor

of interest.

Unfortunately, researchers are often enamored with simple structure because

of its clean and easy-to-interpret solutions, and frequently fail to realize that

important insight gained from more complex and realistic factor structures

(Browne, 2001). For example, take a two-factor test measuring math and read-

ing. Using a rotation criterion that seeks perfect simple structure, or minimum

row complexity, may give a factor structure with smaller cross-loadings and a

larger interfactor correlation, whereas a rotation criterion that allows greater row

complexity will provide evidence of items that measure both reading and math

and reduce the interfactor correlation. Consequently, the detection and removal

of items that assess reading and math will not only purify the factors but will also

reduce the interfactor correlation and increase discriminate validity. Employing

a rotation criterion that reveals the complexity of the factor structure can have
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A COMPARATIVE INVESTIGATION OF ROTATION CRITERIA 77

considerable benefits during instrument construction. Because the relationships

between variables and factors are often complex, it is imperative that rotation

criteria extract pattern matrices that accurately depict these complexities.

INTERFACTOR CORRELATIONS

Fabrigar et al. (1999) emphasized that many factors are correlated, and therefore

oblique rotations more accurately and realistically depict the “true factor struc-

ture.” Harman (1976) further stated that if factors are orthogonal, a successful

oblique rotation would accurately estimate interfactor correlations near zero and

arrive at solutions close to those produced by an orthogonal rotation. Ideally,

oblique rotation criteria will provide valid solutions for factors’ structures that

have either correlated or uncorrelated factors and therefore provide a more

flexible analytic approach. Although often forgotten, Gorsuch (1983, p. 71) rec-

ommended factor analysis not be employed with interfactor correlations greater

than .50. This consideration is significant given that subscales are often highly

correlated within a measure.

Analytic Rotation Criteria

Analytic rotation criteria are based on clearly defined rules that generally require

little to no input from the researcher. This study reviews seven analytic rota-

tion criteria (Crawford-Ferguson, Quartimin, CF-Varimax, CF-Equamax, CF-

Parsimax, CF-Facparsim, & Geomin) available in Mplus Version 5.2 (Muthén

& Muthén, 1998–2007). Mplus was selected given its inclusion of numerous

rotation criteria and its ability to specify various correlation matrices and esti-

mation methods.

For the following rotation criteria, ƒ is defined as a factor pattern loading

matrix with p rows (i.e., variables) and m columns (i.e., factors), and f .ƒ/

is a continuous function of factor pattern loadings that measures the factor

pattern loading complexity in ƒ (i.e., complexity function). The goal for analytic

rotation criteria is to minimize the complexity function f .ƒ/ so that the rotated

factor pattern matrix ƒ has a pattern of simple or interpretable pattern loadings

(see Browne, 2001, for more detailed factor analysis notation). To supplement

the description of each rotation, Table 1 provides a summary of each rotation

criteria discussed.

Most of the rotation criteria considered here fit into the Crawford-Ferguson

(CF) family (Crawford & Ferguson, 1970). CF rotation criteria use a weighted

sum of the row (variable) and column (factor) complexity measures and reflects

Thurstone’s (1947) conditions two through five (Browne, 2001). The CF family
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78 SASS AND SCHMITT

TABLE 1

A Description of Rotation Criteria

Name

Principle for

Guiding Rotation

Relationship

to Crawfer Comment

Crawfer Minimizes variable and factor

complexity based on k

Not applicable Smaller k minimizes variable

complexity and larger k

minimizes factor complexity.
Quartimin Minimizes variable complexity k D 0 Developed to variable

complexity; works well with

distinct clusters (i.e., no
cross-loadings).

CF-Varimax Minimizes variable and factor
complexity based on p

variables

k D
1

p
Developed to spread variances

across factors; larger p

minimizes variable complexity
and smaller p minimizes
factor complexity.

CF-Equamax Minimizes variable and factor
complexity based on p

variables and m factors

k D
m

2p
Like CF-Varimax, developed to

spread variances more equally
across factors.

CF-Parsimax Minimizes variable and factor
complexity based on p

variables and m factors

k D
m � 1

p C m � 2
Developed to equally minimize

variable and factor complexity.

CF-Facparsim Minimizes factor complexity k D 1 Developed to minimize factor

complexity.
Geomin Minimizes variable complexity Not applicable Developed to minimize variable

complexity to more adequately

represent Thurstone’s (1947)
conceptualization of simple
structure, which allows for
greater variable complexity

than Quartimin; 2 reduces
indeterminacy; will often
produce results similar to
Quartimin.

follows the following form:

f .ƒ/ D .1 � k/

p
X

iD1

m
X

j D1

m
X

l¤j;lD1
„ ƒ‚ …

Row complexity

œ2
ijœ

2
il C k

m
X

j D1

p
X

iD1

p
X

l¤i;lD1

œ2
ijœ

2
lj

„ ƒ‚ …

Column complexity

: (1)

The CF criterion, also referred to as the Crawfer rotation criterion, is indexed

by a single parameter, k.0 � k � 1/. Larger values of k place more weight

on column complexity, whereas smaller k values put greater emphasis on row

complexity. The Crawfer rotation has appeal because the user can specify a

complexity function (i.e., rotation criterion) by changing the value of k. A value

of k D 1 (i.e., CF-Facparsim) puts all the weight on column/factor complexity.
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A COMPARATIVE INVESTIGATION OF ROTATION CRITERIA 79

Thus, the row complexity term is dropped from the equation and only column

complexity is minimized, allowing for greater cross-loadings. This is reflective

of Thurstone’s (1947) second condition, which states there must be at least the

same number of zeros in each column as there are factors. Rotation criteria

attempting to minimize only column complexity may be less likely to produce

a simple structure when compared with rotations that minimize row complexity.

Setting k D 0 (i.e., Quartimin) places more weight on row/variable complex-

ity and seeks to obtain a perfect cluster configuration (Carroll, 1953). Essentially,

k D 0 seeks a solution closer to perfect simple structure as the number of

zeros for each row/variable is maximized. This criterion works well when

distinct clusters exist, but it may overemphasize the reduction of row complexity

resulting in unrealistically high interfactor correlations (Carroll, 1953; Gorsuch,

1983; Yates, 1987). It is important to remember that Thurstone (1947) did not

intend for rotation criteria to obtain factor pattern matrices with only zero or

near zero cross-loadings, but instead interpretable solutions that best represent

the hypothesized factor pattern matrix.

In addition to the Crawfer rotation described earlier, several other rota-

tions (Quartimin, CF-Varimax, CF-Equamax, CF-Parsimax, CF-Facparsim, &

Geomin) are worth noting because they could produce different factor pattern

matrices depending on the values of p and m. This difference is based on a slight

variation in k when changing the number of variables and factors.

Direct Quartimin (k D 0). The rotation criterion is

f .ƒ/ D

p
X

iD1

m
X

j D1

m
X

l¤j

œ2
ijœ

2
il: (2)

The Direct Quartimin criterion, referred to as Quartimin within Mplus, measures

row (i.e., variable) complexity and encompasses Thurstone’s (1947) third, fourth,

and fifth conditions (Browne, 2001). If distinct clusters of variables exist within

the data (i.e., each row in the pattern loading matrix, ƒ, has only a single

nonzero loading), then generally no other rotation criterion will perform better

(Asparouhov & Muthén, 2009; Yates, 1987). Direct Quartimin was developed

with the idea that rotating to perfect simple structure is done solely to ensure

that clusters of variables are independent and easily interpretable. However,

many variables are not perfect measures of each factor, and therefore can result

in greater factorial complexity (e.g., cross-loadings). From an interpretability

standpoint, variables may appear correlated with only one factor, even though

these variables in theory are correlated with other factors. It should be noted

that the Direct Quartimin criterion is equal to the CF-Quartimax criterion when

rotated obliquely.
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80 SASS AND SCHMITT

CF-Varimax (k D 1/p). The rotation criterion is

f .ƒ/ D

�

1 �
1

p

� p
X

iD1

m
X

j D1

m
X

l¤j

œ2
ijœ

2
il C

1

p

m
X

iD1

p
X

iD1

p
X

l¤i

œ2
ijœ

2
lj: (3)

Varimax (Kaiser, 1958) is essentially a variation on the Direct Quartimin criterion

and works to spread the variance across factors to prevent the occurrence of a

single factor (Yates, 1987). As can be seen in Equation 3, when the number

of variables of (p) increases, the value of k .k D 1=p/ gets smaller, placing

more emphasis on row/variable complexity than column/factor complexity. It

is worth noting that CF-Varimax and Varimax will produce identical solutions

with orthogonal factors. However, oblique Varimax can result in factor collapse,

meaning that correlations between factors have a tendency to approach one. This

does not occur for the CF-Varimax rotation criterion or any other member of the

CF family (Browne, 2001; Crawford, 1975). For the aforementioned reasons, it

will be interesting to investigate how CF-Varimax performs with complex data

structures and highly correlated factors.

CF-Equamax (k D m/2p). The rotation criterion is

f .ƒ/ D

�

1 �
m

2p

� p
X

iD1

m
X

j D1

m
X

l¤j

œ2
ijœ

2
il C

m

2p

m
X

iD1

p
X

iD1

p
X

l¤i

œ2
ijœ

2
lj: (4)

Similar to Equamax, CF-Equamax combines Quartimax and Varimax criteria

by simplifying both the variables and factors in the factor pattern matrix and

spreading variances more equally across the factors (Gorsuch, 1983). Unlike

CF-Varimax, CF-Equamax computes k .k D m=2p/ based on the number of

variables and factors. Thus, this ratio needs to be considered when understanding

whether CF-Equamax is aimed more at variable or factor complexity. Similar

to the other CF procedures, researchers need to be mindful that the function

(meaning seeking more variable or factor complexity) of each rotation criterion

can change based on p and m.

CF-Parsimax (k D m � 1/p C m � 2). The rotation criterion is

f .ƒ/ D

�

1 �
m � 1

p C m � 2

� p
X

iD1

m
X

j D1

m
X

l¤j

œ2
ijœ

2
il C

m � 1

p C m � 2

m
X

iD1

p
X

iD1

p
X

l¤i

œ2
ijœ

2
lj:

(5)

The CF-Parsimax criterion was proposed by Crawford and Ferguson (1970) so

that equal weight was given to both variable and factor complexity. Crawford
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A COMPARATIVE INVESTIGATION OF ROTATION CRITERIA 81

and Ferguson found the Parsimax criterion to be as good as Equamax but found

it sensitive to the number of factors. They also suggested using it when the

number of factors is reasonably known.

CF-Facparsim (k D 1). The rotation criterion is

f .ƒ/ D

m
X

j D1

p
X

iD1

p
X

l¤i

œ2
ijœ

2
lj: (6)

As opposed to the Direct Quartimin criterion, which attempts to minimize

variable complexity, CF-Facparsim seeks to minimize only factor complexity.

Because CF-Facparsim consists only of the factor complexity expression from

Equation 1, Browne (2001) argued it was more of theoretical interest. Crawford

and Ferguson (1970) also pointed out that, like CF-Equamax, CF-Facparsim

spreads variances equally across all rotated factors and should only be used when

researchers have a strong hypothesis for the number of factors. Nevertheless,

this rotation will be considered given that it encompasses the main goal of EFA,

which as Gorsuch (1983) stated, “is to simplify a factor rather than a particular

variable because the interest invariably lies in learning more about the factors

rather than the variables” (p. 184).

Yates’s Geomin. The Geomin criterion was developed as a compromise

between Thurstone’s (1947) condition one and conditions four and five. Recall

that the first condition allows for a more complex factor pattern matrix as

variables can load on multiple factors, which was Thurstone’s intended defi-

nition for simple structure. Conditions four and five demand that variables load

primarily on a single factor, provided an interpretable solution exists. Yates

(1987) thought it was important to follow Thurstone’s desire to accurately

depict complex factor loading matrices yet also provide interpretable solutions.

Consequently, Yates developed the Geomin rotation criterion with the idea

that a good rotation criterion would allow for complex factors and provide an

interpretable pattern matrix. The complexity function used within Mplus is a

slight modification of Yates’s equation as a small positive value (2) was added

to alleviate indeterminacy. This equation, which includes 2, was proposed by

Browne (2001):

f .ƒ/ D

p
X

iD1

2

4

m
Y

j D1

.œ2
ijC 2/

3

5

1

m

: (7)

This small change reduces indeterminacy and, for the most part, does not affect

f .ƒ/ if 2 values remain small. For example, if 2 is zero or very small (e.g.,
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82 SASS AND SCHMITT

10�6) and one pattern loading for each variable is zero, then the Geomin criterion

function is minimized and it does not help in the identification of the remaining

factor pattern loadings. Browne (2001) noted that 2 D :01 works well for three

or four factors but may need to be increased for more than four factors. The

Geomin rotation criterion can be used for orthogonal rotations, but Yates (1987)

did not intend it for such data structures. The Geomin and Quartimin criteria

should produce comparable solutions, especially under pattern loading structures

with a negligible number of small cross-loadings.

Although Browne’s (2001) article was instrumental in proposing how different

rotation criteria can influence factor pattern matrices, few empirical studies

exist that comprehensively evaluate the various rotation criteria. This study

investigated and compared how different rotation criteria can produce conflicting

factor pattern matrices and interfactor correlations. As a result, researchers can

start to recognize, or at least be cognizant of, how their choice of a rotation

criterion impacts factor structure interpretation. Moreover, this article seeks to

help researchers better understand the various oblique rotation criteria along with

the factor pattern loading structures they can expect to obtain under the studied

conditions.

METHODS

Experimental Conditions

For this study, 128 experimental conditions were conducted to explore four

factor structures (perfect simple structure, approximate simple structure, complex

structure, and general structure), eight population interfactor correlations (¡ D
:00, .10, .20, .30, 40, .50, .60, and .70), and four rotation criteria (Quartimin,

k D 0; CF-Equamax, k � :03; CF-Facparsim, k D 1; and Geomin). Each

experimental condition was replicated .R/ 1,000 times to evaluate factor pattern

loading bias and stability. In addition to the Monte Carlo simulation, rotated

population results were provided to eliminate sampling error.

Sample Size

Previous literature reviews have indicated that most published research using

EFA utilize sample sizes of roughly 300 (Fabrigar et al., 1999; Ford et al.,

1986; Russell, 2002), with n D 300 also considered a “good” sample size

according to Comrey and Lee (1992, pp. 216–217). Following standard practice,

our Monte Carlo simulation study generated sample sizes of n D 300 to estimate

the factor pattern loading matrices under the assumption that the correct model

was specified. Past research (Hogarty et al., 2005; MacCallum et al., 1999) has
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thoroughly evaluated the minimum sample size requirement for stable factor

pattern loading estimates, therefore, different sample sizes were not considered.

Instead, this study focused solely on how the rotation criterion, factor structure,

and interfactor correlation influenced parameter recovery.

Data Generation

Data were generated in Mplus Version 5.2 using the true factor pattern loadings

(œx & œy ; see Table 2), interfactor correlation coefficients (i.e., ¡), and the

variable/item residuals .©i /. The variable/item residuals .©i / were calculated

using the following equation: ©i D 1 � .œ2
i1 C œ2

i2 C 2.œ2
i1/.œ

2
i2/.¡//, where œ2

i1

and œ2
i2 correspond to the factor pattern loadings for variable/item i on factors 1

and 2, respectively, and ¡ is the interfactor correlation (see Gorsuch, 1983, pp.

29–30). Each of the variables/items were modeled as continuous, independent

and identically distributed, linearly related to the factor, and with a standard

normal distribution. Also note that the same data were analyzed across rotation

criteria to ensure comparability.

Although tests/measures commonly possess either dichotomous or ordinal

responses, data were not categorized to ensure that any estimation error was a

direct result of the experimental conditions and not variable/item categorization.

Moreover, the correlation matrix employed for ordinal data (i.e., polychoric

correlation matrix) and the estimation method (i.e., weighted least squared

mean and variance) would make it difficult to ascertain whether estimation bias

resulted from the categorization process, correlation matrix employed, and/or

estimation method.

The correlation matrices from the simulated data were analyzed using maxi-

mum likelihood estimation within Mplus (Muthén & Muthén, 1998–2007) along

with four oblique rotation criteria to estimate the four factor structures (see

Table 2). To solve the “alignment problem” for simulation studies, Mplus uses

starting values provided by the user to ensure that factor order is consistent

across replications (Asparouhov & Muthén, 2009).

Factor Structures

For the perfect simple structure (or perfect cluster configuration) condition,

the first 15 variables/items (i1–i15) measured only Factor 1, whereas the last

15 variables/items (i16–i30) measured only Factor 2. For this factor structure,

all factor pattern loadings were Large in magnitude on the dominate factors

and ranged from .40 to .82 in increments of .03. Notice, there were no cross-

loadings. The approximate simple structure test was identical to the perfect

simple structure test, with the exception that the cross-loadings were not zero

(i.e., small cross-loadings existed). The Small cross-loadings ranged from .02
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TABLE 2

Simulated Factor Pattern Loadings for Each Factor Structure Condition

Perfect

Simple Structure

Approximate

Simple Structure

Complex

Structure

General

Structure

Item œi1 œi2 œi1 œi2 œi1 œi2 œi1 œi2

1 .76 0 .76 .22 .76 .15 .76 .22

2 .70 0 .70 .26 .70 .26 .70 .26

3 .58 0 .58 .20 .58 .40 .58 .20

4 .82 0 .82 .08 .82 .20 .82 .12

5 .46 0 .46 .24 .46 .42 .46 .08

6 .49 0 .49 .12 .49 .24 .49 .24

7 .79 0 .79 .10 .79 .22 .79 .10

8 .52 0 .52 .04 .52 .46 .52 .04

9 .43 0 .43 .28 .43 .48 .43 .28

10 .73 0 .73 .14 .73 .28 .73 .14

11 .64 0 .64 .16 .64 .38 .64 .16

12 .61 0 .61 .06 .61 .34 .61 .06

13 .40 0 .40 .18 .40 .44 .40 .18

14 .67 0 .67 .02 .67 .32 .67 .02

15 .55 0 .55 .03 .55 .30 .55 .03

16 0 .43 .18 .43 .24 .43 .43 .18

17 0 .82 .03 .82 .20 .82 .82 .03

18 0 .67 .14 .67 .30 .67 .67 .14

19 0 .70 .16 .70 .22 .70 .70 .16

20 0 .73 .06 .73 .32 .73 .73 .06

21 0 .40 .22 .40 .38 .40 .40 .22

22 0 .49 .24 .49 .42 .49 .49 .24

23 0 .58 .10 .58 .48 .58 .58 .10

24 0 .55 .12 .55 .46 .55 .55 .12

25 0 .64 .28 .64 .34 .64 .64 .28

26 0 .61 .26 .61 .40 .61 .61 .24

27 0 .76 .04 .76 .28 .76 .76 .04

28 0 .52 .08 .52 .36 .52 .52 .08

29 0 .79 .02 .79 .26 .79 .79 .02

30 0 .46 .20 .46 .44 .46 .46 .20

Note. Factor pattern loadings in bold represent the Large factor pattern loadings, whereas the

other factor pattern loadings represent the Zero, Small, and Medium factor pattern loadings.

to .28 in increments of .02. The complex structure test was also similar to the

perfect simple structure test with the exception that moderate cross-loadings

were used ranging from .20 to .48 in increments of .02. The general factor,

which conceptually only has one factor with small factor pattern loadings on

a second factor, was created to represent a factor structure commonly encoun-

tered in practice. For example, a researcher using a relatively new measure
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might expect a single-factor solution but still test whether a second factor

is present.

Correlation Between Factors and Rotation Criteria

To assess the impact of the interfactor correlation, eight interfactor population

correlations .¡/ were employed: .00, .10, .20, .30, .40, .50, .60, and .70. The

interfactor correlation should be considered when selecting a rotation criterion

given that the traditional factor model assumes orthogonal factors, whereas the

oblique rotation relaxes this assumption. Gorsuch (1983) indicated researchers

can relax this assumption of orthogonal factors using oblique rotations assuming

these correlations are relatively small. However, this statement’s validity has not

been explored and may vary depending on the rotation criterion employed.

Because most factors within the social sciences are correlated and orthogonal

and oblique solutions will produce nearly identical results for uncorrelated

factors (Harman, 1976), only oblique rotations were employed for this study. A

large range of ¡s were selected as it is unknown at what correlation magnitude

each rotation performs well, as each rotation criterion has a different intended

function (see introduction).

Rotation Criteria

As indicated in the Mplus manual, users may select from numerous oblique

and orthogonal rotation criteria. Of these rotations, only the oblique criteria

of Quartimin, CF-Equamax, CF-Facparsim, and Geomin were evaluated within

this study for several reasons. First, only oblique rotations were explored as

orthogonal rotations (e.g., Varimax, orthogonal CF- Equamax, etc.) are not

theoretically appropriate with correlated factors (Fabrigar et al., 1999; Harman,

1976). Second, the Direct Quartimin is mathematically equivalent to the default

CF-Quartimax, Crawfer, and Oblimin rotations (see Muthén & Muthén, 1998–

2007, p. 487), as all values of k are set at zero, and therefore were not studied.

Also, k was not varied as an infinite number of values could be specified. How-

ever, a researcher could change the default value of k to determine its influence

on the factor pattern matrix or evaluate each rotation’s equation. Third, given

that p D 30 and m D 2 for this study, the CF-Equamax .k D m=2p � :03/, CF-

Varimax .k D 1=p � :03/, and CF-Parsimax .k D .m� 1/=.p C m� 2/ � :03/

rotations will always yield identical results given that the k values were equal.

Fourth, rotation criteria that performed poorly with oblique factor structures

(i.e., McCammon’s (1966) Minimum Entropy) and general factor structures (i.e.,

McKeon’s (1968) Infomax) were not considered. Also not evaluated were those

rotation criteria similar to CFA that require researchers to specify factor pattern

matrix elements, such as the Target rotation criteria (i.e., Browne, 2001). Finally,
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following the procedures of Browne (2001) and Asparouhov and Muthén (in

press), only single-stage rotation criteria were evaluated and therefore the two-

stage Promax rotation was not of interest.

Given that many of the rotations allow the users to specify k, a brief demon-

stration was also provided (see Crawfer demonstration) to illustrate the effect of

varying k on the estimated factor pattern loadings and interfactor correlation. As

seen from the aforementioned rotation criteria’s description, users can determine

the degree to which each rotation seeks to minimize either row or column

complexity. Evaluating the Crawfer rotation equation, it is apparent that as k

increases the amount of row complexity will increase, although this increase

may not be linear.

Dependent Variables

For each simulation condition, the average Oœimr, œimr D 1
R

PR
rD1

Oœimr,

bias, œbias D Oœimr � œim, and sampling error of Oœim, SEempim
D

q
PR

rD1.
Oœimr � œimr/2=.R � 1/, results were obtained across the R replications.

The factor pattern loading bias and sampling error results were reported in the

following order: perfect simple structure, approximate simple structure, complex

structure, and a general factor. For each factor structure the Large, Medium,

Small, and Zero factor pattern loadings were evaluated independently. Separate

analyses for each factor pattern loading magnitude ensured that the effects from

one factor magnitude did not confound the interpretation of the other factor

magnitudes. Finally, population rotation bias .œPRB/ is defined as the differences

between the rotated population data and the true population values for each of

the four factor structures.1 It is also worth noting that the same true population

values were used for each rotation evaluated.

To ease the description of the results, bias was categorized into three groups:

small .jœbiasj � :05/, medium .:05 < jœbiasj < :15/, and large .jœbiasj � :15/.

These same guidelines were applied to ¡. To conserve space, the average bias and

sampling error results were reported for each condition, with the individual factor

pattern loadings bias and sampling error results available from the corresponding

author. Instead, to assess the individual impact on the individual factor pattern

loadings, a demonstration using the Crawfer rotation was presented that also

showed the impact of varying k.

1Because EFA indeterminacy results in an infinite number of population factor pattern loading

matrices and population factor correlation matrices, “bias” and “error” are not true indicators of

deviance from truth. Bias and error could be more accurately described as “population differences.”

Due to convention, and because the results do reflect differences between some known population

(generated matrix), we continue to use the terms “bias” and “error” throughout this article.
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RESULTS

Perfect Simple Structure

Results in Table 3 revealed mixed findings depending on the rotation criterion

employed and ¡ values. The sampling error was consistently small across rotation

criteria and conditions. In addition, the differences between the population

rotation bias .œPRB/ and average estimated bias .œbias/ was largely negligible,

which suggests that any differences in results are due to the experimental

conditions. In light of this, population rotation bias and average estimated bias

are discussed together as bias.

The Zero factor pattern loading condition often displayed slightly greater bias

than the Large factor pattern loading condition, and differences were more pro-

nounced based on the intended rotation criterion. Across ¡ values for both Zero

and Large factor pattern loading conditions, Geomin and Quartimin bias was

always near zero .� j:05j/. Conversely, both CF-Equamax and CF-Facparsim

tended to slightly underestimate the Large factor pattern loadings while overes-

timating the Zero factor pattern loadings. Notice the amount of bias increased

with the interfactor correlation (see Table 3).

In terms of the estimated interfactor correlations, the Geomin and Quartimin

displayed unbiased results, whereas the CF-Equamax and CF-Facparsim tended

to underestimate the interfactor correlation as ¡ increased. CF-Facparsim con-

sistently underestimated ¡ the most, followed by CF-Equamax rotation.

Approximate Simple Structure

Similar to the perfect simple structure findings, the sampling error was gener-

ally small and consistent across rotation criteria and conditions with negligible

differences between œPRB and œbias (Table 4). The one exception was Quartimin

at ¡ D :70, which had greater sampling error and œPRB. Thus, as before, œPRB

and œbias are discussed together as bias. The results for the average estimated

factor pattern loading conditions revealed small bias for the Large factor pattern

loadings across rotation criteria, whereas bias was small .jœbiasj � :05/ to

medium .:05 < jœbiasj < :15/ for the Small factor pattern loadings.

Unlike the perfect simple structure results, where bias was least pronounced

for Geomin and Quartimin, the opposite was true for the approximate simple

structure condition. Bias was most pronounced under the Small factor pattern

condition for the Geomin and Quartimin rotations, which consistently underesti-

mated the “true” factor pattern loadings. Consequently, these two rotations gave

a closer impression of perfect simple structure as the average bias was nearly

equal to the average Small true pattern loadings (i.e., œim D :14/. Conversely, CF-

Equamax and CF-Facparsim tended to have minimal factor pattern loading bias,
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which is expected given that they both allow variances to be spread more equally

across factors. In other words, they allow for a more complex factor structure

and do not seek to impose a perfect simple structure.

The factor pattern loading results linked directly to the interfactor correlations.

For every value of ¡, estimation bias was larger for the Geomin and Quartimin

rotations. In fact, bias was as large as .31 for Quartimin when ¡ D 0. Conversely,

CF-Equamax and CF-Facparsim tended to produce less biased estimates of ¡,

although these values were still medium to large in many cases. Again, notice

the direct relationship between interfactor correlation and factor pattern loading

bias.

These results are interesting from an applied standpoint because researchers

may feel confident that large factor pattern loadings on the proper factor are

relatively unbiased regardless of the rotation criterion. However, the cross-

loading interpretations are dependent upon the selected rotation criterion. The

Geomin and Quartimin rotations will provide cross-loadings closer to zero to

depict perfect simple structure at the cost of increasing interfactor correlations.

Conversely, the CF-Equamax and CF-Facparsim rotations will better estimate

an approximate simple structure solution with less interfactor correlation bias.

It is clear that researchers must decide between minimizing the cross-loadings

and reducing the interfactor correlations. From a statistical and measurement

perspective, researchers often seek both properties and thus need to carefully

consider their choice of rotation criterion.

Complex Structure

The complex structure results (see Table 5) partially mirror the approximate

simple structure results, with the Moderate factor pattern loading condition

having greater bias than the Large factor pattern loading condition. The one

exception was Quartimin when ¡ � :40, where the Large factor pattern loadings

had greater bias. Focusing on the Large factor pattern loading conditions, CF-

Equamax and CF-Facparsim consistently had small factor pattern bias (i.e., œPRB

and œbias). For Geomin and Quartimin, bias increased drastically at ¡ D :60 and

¡ D :40, respectively, whereas sampling error was considerably larger between

¡ D :50 and ¡ D :60 for Geomin and ¡ D :30 and ¡ D :50 for Quartimin.

The increased sampling error for these rotations was a direct result of factor

collapse as samples commonly displayed a single-factor solution. However,

sampling error for CF-Equamax and CF-Facparsim was generally small across

the interfactor correlation conditions.

The Moderate factor pattern loading conditions produced different results de-

pending on the interaction between the rotation criterion and ¡. Bias was always

medium to large for the Moderate factor loading condition as each rotation crite-

rion sought to decrease factor and/or variable complexity. Contrasting results oc-
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curred between rotation criteria because CF-Equamax and CF-Facparsim sought

to reduce factor complexity, whereas Geomin and Quartimin attempted to reduce

row complexity.

The Geomin and Quartimin rotation criteria with larger interfactor correla-

tions often resulted in larger sampling error. This was true of both the Large and

Moderate factor pattern loading conditions due to factor collapse in some sam-

ples. Stated differently, factor collapse produced larger sampling error because

all large factor pattern loadings (i.e., Oœi1 > :70) loaded on Factor 1 and all small

factor pattern loadings (i.e., Oœi1 < :30/ loaded on Factor 2 for some samples.

However, the increase in sampling error was only temporary for the Quartimin

criterion as eventually only single-factor solutions emerged at ¡ D 60.

Ignoring the aforementioned conditions that frequently exhibited factor col-

lapse, the interfactor correlations were always very biased due to reduced cross-

loading magnitudes. This finding is critical to remember as variables that mea-

sure more than one factor will always increase the interfactor correlation in order

to minimize the cross-loadings.

In summary, only the Large factor pattern loading estimates can be interpreted

with any degree of confidence for the CF-Equamax, CF-Facparsim, and Geomin

rotation criteria. Conversely, the Quartimin rotation criterion only creates the

two-factor solution with very small interfactor correlations as factor collapse of-

ten occurred at ¡ � :40. As data are rotated to minimize row or column complex-

ity, the cross-loadings are decreased resulting in larger interfactor correlations.

The complex factor structure presented an interesting scenario for researchers

as results can vary significantly depending on the rotation criterion utilized.

General Structure

The general factor structure produced significantly different results depending on

the rotation criterion utilized (see Table 6). The CF-Equamax and CF-Facparsim

rotations, on average, always underestimated the Large factor pattern loadings

(i.e., Factor 1) and overestimated the Small factor pattern loadings (i.e., Factor

2). Under these conditions, the average bias results were very misleading as these

rotations attempted to minimize factor complexity. Consequently, these rotations

produced very large and small estimated factor pattern loadings within Factors

1 and 2. Conversely, the Geomin and Quartimin rotations estimated the Large

factor pattern loadings (Factor 1) well, although estimation error was slightly

larger for Factor 2. This is because Geomin and Quartimin rotations attempt

to minimize row complexity; thus the average estimated factor pattern loadings

were close to zero (i.e., œim C Oœim D 0) on Factor 2. Unlike the CF-Equamax and

CF-Facparsim rotations, these rotations give the impression of a single factor

with near perfect simple structure.
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Finally, ¡ values were always very biased, which again resulted from the in-

tended rotation function. For this test condition, CF-Equamax and CF-Facparsim

always overestimated ¡, whereas Geomin and Quartimin underestimated ¡. As

seen in Table 6, one limitation of this condition was the number of samples that

converged, with the rotated population rotation values also failing to converge

when ¡ D :70.

Crawfer Demonstration

For the Crawfer demonstration, rotated population results with approximate

simple structure, complex structure, and a general factor when ¡ D :40 were

used to illustrate the impact of different values of k within the Crawfer rotation

criterion. Perfect simple structure was not evaluated given that this condition

would perform well regardless of rotation. Notice that the factor structures were

identical to the larger simulation study to increase comparability.

Recall, the other rotation criteria compared in this study compute k based

on the number of variables and factors. The Crawfer rotation criterion allows

researchers to select values of k to specify whether row or column complexity is

more desirable. This demonstration provides and discusses each individual factor

pattern loading rather than discussing the group means. This was done to provide

a more concrete example for readers and to focus on the complete factor pattern

loading matrix. Within this example, Crawfer values for k were set at 0 (notice,

this is equal to the Quartimin rotation) to increase row complexity and .10 to

increase factor complexity. Values of k greater than .10 did not significantly alter

the results.

Approximate Simple Structure

The approximate simple structure results in Table 7 show that the true factor

pattern loadings (see Table 2) were more accurately estimated as k increased.

When k D 0, the average Small factor pattern loadings were close to zero

.M D :05/ and all of the individual factor pattern loadings were underestimated

and in many cases negative. Perhaps more important, the interfactor correlation

was overestimated .r D :63/ at the expense of reducing the cross-loadings.

Based on these results, a researcher would likely conclude that most of the

variables were relatively perfect measures of Factors 1 or 2 and the interfactor

correlation was relatively high.

With a small change in k .k D :10/, a researcher would likely still conclude

that each variable reasonably represents each factor. However, concern may be

warranted given that several of the estimated factor pattern loadings started

to approach the common minimum threshold of .30, which suggests that the

variable is partially measuring both factors. This change in rotation criterion
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A COMPARATIVE INVESTIGATION OF ROTATION CRITERIA 95

TABLE 7

Crawfer Population Rotated Results

Approximate

Simple Structure Complex Structure General Factor

Crawfer

k D .00

Crawfer

k D .10

Crawfer

k D .00

Crawfer

k D .10

Crawfer

k D .00

Crawfer

k D .10

Item Oœi1
Oœi2

Oœi1
Oœi2

Oœi1
Oœi2

Oœi1
Oœi2

Oœi1
Oœi2

Oœi1
Oœi2

1 .81 .09 .77 .19 .95 �.15 .79 .22 .87 .04 .52 .38

2 .74 .14 .71 .23 .96 �.09 .70 .33 .83 .09 .58 .29

3 .62 .10 .59 .18 .66 �.14 .62 .08 .68 .06 .46 .26

4 .88 .10 .83 .21 1.03 �.15 .85 .25 .94 .05 .57 .41

5 .50 �.01 .47 .06 .74 �.01 .43 .37 .50 �.02 .22 .29

6 .53 .03 .49 .10 .62 �.09 .51 .15 .55 .01 .30 .28

7 .86 �.05 .80 .07 .86 �.21 .86 .05 .83 �.06 .31 .55

8 .57 �.06 .53 .02 .68 �.09 .53 .19 .53 �.06 .16 .39

9 .44 .22 .43 .27 .68 �.01 .40 .33 .58 .15 .57 .04

10 .79 .01 .74 .11 1.00 �.10 .73 .35 .80 �.02 .37 .46

11 .69 .05 .65 .14 .94 �.05 .62 .39 .72 .01 .40 .35

12 .67 �.06 .62 .04 .80 �.10 .62 .24 .63 �.06 .21 .45

13 .42 .11 .40 .17 .60 �.02 .38 .27 .50 .07 .39 .13

14 .74 �.11 .68 �.01 .79 �.15 .71 .13 .67 �.11 .15 .54

15 .61 �.08 .56 .01 .72 �.09 .56 .21 .56 �.08 .14 .44

16 .14 .43 .17 .43 .55 .08 .17 .44 .52 .07 .39 .15

17 �.08 .88 .01 .83 .95 .20 .19 .86 .82 �.13 .20 .66

18 .06 .70 .13 .67 .80 .16 .18 .70 .74 .00 .37 .40

19 .08 .73 .15 .70 .75 .20 .08 .75 .78 .00 .41 .40

20 �.04 .78 .05 .73 .86 .17 .19 .76 .75 �.09 .23 .55

21 .19 .39 .22 .40 .65 .02 .34 .37 .52 .11 .46 .08

22 .20 .48 .23 .48 .64 .09 .20 .50 .62 .11 .51 .13

23 .03 .61 .09 .58 .88 .05 .41 .55 .63 �.03 .28 .38

24 .06 .57 .11 .55 .84 .04 .40 .52 .61 .00 .31 .32

25 .22 .64 .27 .63 .69 .19 .07 .69 .79 .11 .61 .21

26 �.04 .65 .03 .61 .84 .09 .31 .60 .62 �.08 .18 .47

27 .18 .77 .25 .76 .97 .15 .30 .77 .89 .07 .59 .34

28 .01 .55 .07 .52 .73 .07 .29 .51 .56 �.03 .23 .35

29 �.09 .85 .00 .80 .86 .22 .10 .85 .79 �.13 .17 .65

30 .16 .46 .19 .46 .75 .01 .40 .42 .56 .08 .43 .16

L .65 (.61) .61 (.61) .46 (.61) .62 (.61) .68 (.61) .36 (.61)

S/M .05 (.14) .13 (.14) .34 (.34) .24 (.34) .00 (.14) .35 (.14)

r .63 (.40) .45 (.40) .05 (.40) .70 (.40) .00 (.40) .84 (.40)

Note. The true/simulated factor pattern loadings are in Table 2. Estimated factor pattern loadings

in bold represent the Large factor pattern loadings. L represents the average Large estimated factor

pattern loadings, S/M signifies the average Small or Moderate estimated factor pattern loadings,

respectively, and r is the estimated interfactor correlation. Values in parentheses represent the average

true or simulated values. Values of k were varied when ¡ D :40 using the Crawfer rotation.
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96 SASS AND SCHMITT

also produced smaller interfactor correlations .r D :45/. Based on these results,

researchers would likely conclude that several variables/items assess both fac-

tors with moderately large interfactor correlations, which slightly contrasts the

conclusion when k D 0.

Complex Structure

As might be expected, the complex structure provided a more interesting ex-

ample of the significance of selecting k and its influence on either the row or

the column complexity function. Based solely on the factor pattern matrix, a

researcher would likely conclude that a single factor exists when k D 0 as the

cross-loadings were always less than .30 and in many cases close to zero. Based

on this conclusion, the interfactor correlation .r D :05/ would likely be of little

interest. These results further explain the Quartimin finding in Table 5 when

¡ D :40, where the average estimated factor pattern loadings were moderate in

size for both the Large and Moderate condition because only a single factor

emerged.

Similar to the approximate simple structure example, a small change in k

produced a very different result. When k D :10, a researcher would likely

conclude a two-factor solution based exclusively on the estimated factor pattern

loadings. In addition, slight concerns may arise given that several items are

measuring both factors and the interfactor correlation .r D :70/ was high.

Despite the high interfactor correlation concern, using a complexity function not

focused on row complexity may help researchers purify a factor by removing

those variables that cross-load. This may ultimately portray the factor structure

in a different light. It is also important to remember that removing variables

with larger cross-loadings should reduce the interfactor correlation. Overall, this

complex structure provides an interesting example of how varying k influences

the factor pattern matrix, thus leaving the researchers perplexed about how to

interpret the factor solution.

General Factor Structure

Paralleling the other factor pattern structures, the interpretation of the general

factor structure varied significantly depending on k. When k D 0, which equals

the Quartimin rotation results when ¡ D :40 in Table 6, the results in Table 7

suggest a single-factor solution with no interfactor correlation .r D :00/ and very

small cross-loadings. A slight change in k to .10 now presents the perception that

each variable measures both factors. As indicated earlier, factor pattern loadings

within each factor are being minimized and maximized to reduce the factor

complexity. From the results when k D :10, a researcher might be perplexed

about how to interpret the factor structure matrix given the large number of
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cross-loadings and the large interfactor correlation .r D :84/. These results

demonstrate how a slight change in k can significantly impact the factor pattern

structure interpretation, not to mention the interfactor correlations.

Taken collectively, the complex and general factor results display the impor-

tance of considering both the model fit (i.e., methods to ascertain the number of

factors) and the rotation criterion when conducting an EFA as both are significant

when interpreting the factor structure. Moreover, in both examples the interfactor

correlation changed drastically as a result of k.

DISCUSSION

This study reviewed several rotation criteria and their capability to reproduce

different factor pattern matrices. As Browne (2001) stated, there may be different

circumstances when hypothesized factor structures call for a particular rotation

criterion. The goal of the current study was to compare several rotation criteria in

such situations, and begin to provide guidelines or insight for researchers using

EFA. When selecting a rotation criterion for data lacking perfect simple structure,

researchers must select between (a) estimating factor solutions with smaller

cross-loadings and potentially larger interfactor correlations or (b) identifying

more independent factors (i.e., smaller interfactor correlations) and slightly

larger cross-loadings. We speculate that researchers will choose smaller cross-

loadings and higher interfactor correlations with the notion that if the interfactor

correlations are too large, either a factor would be dropped or, possibly, a second-

order factor would be created. Nevertheless, the central emphasis on selecting the

“most appropriate” rotation criterion should depend on the research question and

the hypothesized factor structure. If researchers seek to uncover and eliminate

variables that measure multiple factors, they may benefit from increasing the

value of k or selecting a rotation criterion that does not seek to minimize row

complexity, such as CF-Facparsim. Moreover, it is important for researchers to

remember that removing variables with large cross-loadings ultimately should

reduce the interfactor correlations, thus producing a solution with smaller cross-

loadings and a smaller interfactor correlation.

Historically, researchers have selected a rotation criterion based on either its

popularity or simply whether or not the factors are hypothesized to be correlated.

As factor loading patterns can differ significantly based on the rotation criterion

choice, this article argues that more attention is needed when selecting a rotation

criterion rather than simply considering the orthogonality and obliqueness of

the factors. Along with providing more justification for the rotation criterion

selected, reporting multiple factor pattern matrices from different rotation criteria

may also be necessary. This allows the readers to draw their own conclusions

based on the competing factor structures.
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It is instructive to consider the principles that guide different rotation criteria

(see Table 1) when discussing the results. As anticipated, the rotation criteria in-

vestigated performed reasonably well for perfect simple structure. Each rotation

was successful at maximizing or minimizing the pattern loadings factor in either

the row or column depending on the intended rotation function. However, given

that Geomin and Quartimin both place more weight on minimizing variable

complexity, it is not surprising that they slightly outperformed CF-Equamax and

CF-Facparsim, which seek to reduce factor complexity.

With more complex data structures, CF-Equamax and CF-Facparsim dis-

played less bias as more emphasis was placed on factor complexity as opposed to

row complexity. Notice that CF-Facparsim performed slightly “better” than CF-

Equamax, as CF-Equamax attempted to minimize the function by weighting both

variable and factor complexity, whereas CF-Facparsim only minimizes factor

complexity (see Table 1).

Though it is difficult to argue that any rotation is wrong statistically or

mathematically, from a conceptual standpoint rotations that place less weight

on row complexity offer more valuable information related to cross-loadings.

Perhaps more important, CF-Equamax and CF-Facparsim did not experience

factor collapse with larger cross-loadings and interfactor correlations as Quar-

timin and Geomin yielded unstable solutions under certain conditions. Notice

that the Quartimin criterion experienced greater factor collapse than Geomin

because it required a greater number of zero loadings (see Browne, 2001). Fur-

thermore, these conclusions support past research indicating Quartimin (referred

to as Quartimax in Crawford & Ferguson, 1970) tends to produce a general

factor and Geomin functions poorly with more complex factor patterns loading

matrices (Asparouhov & Muthén, 2009). On a positive note, these rotations

tended to produce solutions that were easier to interpret for less complicated

factor structures, as they focused on row complexity and reducing cross-loading

magnitudes. Browne (2001) and Crawford (1975) noted that factor collapse is

less probable under the CF criterion, which was also supported in this study.

In any case, it is critical to consider how the rotation criterion influences

the factor pattern loadings. For example, as indicated previously, CF-Equamax,

CF-Varimax, and CF-Parsimax would produce identical solutions as the value

of k was equal. However, if the number of factors increased to three, but the

number of variables remained at 30, CF-Varimax .k � :03/ would place greater

emphasis on row complexity than CF-Equamax .k D :05/ and CF-Parsimax

.k � :07/. As seen in Table 1, researchers can easily calculate the value of k

based on the number of factors and variables to determine the degree of variable

and factor complexity.

It is both fortunate and unfortunate that there are numerous rotation criteria

available to researchers. It is fortunate because researchers have access to multi-

ple rotation criteria to facilitate the exploration of a variety of research questions
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by helping to understand one’s data. It is unfortunate because it can be arduous

to select an appropriate rotation criterion or decide which rotation is “best” if

conflicting solutions exist. For instance, looking at the Crawfer example with

complex structure or a general factor, the researcher must decide whether to

use k D 0 or k D :10 as they provide contradictory conclusions. Therefore,

researchers can and should use other information available to them, such as

model fit statistics and prior factor analytic research studies.

In reality, the selection of “best” rotation criterion must be made by the re-

searcher. In many circumstances, different rotation criteria yield nearly identical

rotated pattern loading matrices. When this does not happen, the researcher must

make the difficult decision of choosing a rotation criterion that focuses more on

row or column complexity or balances each with the understanding that this

may have a significant impact on the cross-loading magnitudes and interfactor

correlations.

Despite the emphasis on “estimation error or bias” as an assessment of

rotation performance within this article, it is important to be cognizant of the

limitations of EFA in rotating to a “correct” solution. As suggested by Thurstone

(1947), the unrotated factor solution is rotated to acquire a factor pattern matrix

that is easier to interpret, which consequently is often closer to perfect simple

structure or approximate simple structure. Recall there is no single “correct”

rotation solution due to the indeterminacy problem, as the model fit does not

change based on the rotation selected (Mulaik, 2005). Instead, the rotation

criterion simply redistributes the variance of each variable across the rotated

factors to provide a more easily interpretable solution. Therefore, for a lack of

better words, “estimation error” or “bias” was used throughout this article to

assess an approximation of closeness to truth. It is vital to recognize that the

term “bias” simply implies that the estimated values (i.e., factor pattern loadings

and interfactor correlations) differed from the simulated values and not that these

values are necessarily incorrect. As Asparouhov and Muthén (2009) point out,

one must make the assumption that the rotated factor pattern loading matrix is

the true rotated matrix so the simulation study is interpretable. Now of course, a

researcher could choose another rotated factor pattern loading matrix as being the

optimal rotated matrix; thus this alternative matrix would have to be considered.

For a better understanding of the connection between indeterminacy and these

results, the interested reader is referred to Mulaik (2005) and Asparouhov and

Muthén (2009).

The purpose of this article is not to provide a definitive answer to which

rotation criterion is “best,” but to raise awareness of the fact that many different

rotation criteria exist and that they may produce conflicting pattern loading

matrices under certain conditions. Ultimately it is up to the researcher to fine-

tune the rotation criterion (e.g., adjusting 2 in Geomin or k in the Crawfer) in

an effort to make the “best” choice in rotation criterion.
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EFA for Instrument Development and Validation

The factor pattern loadings within EFA provide essential information for re-

searchers, especially with regard to test construction and validation. Even when

researchers create items grounded in theory, EFA can be an important step in the

initial instrument validation process. As this study demonstrated, the rotation cri-

terion selected is central when conducting an EFA as it provides vital information

connected to the factor structure complexity and the interfactor correlations. This

has significant consequences for construct validity, dimensionality, and those

items the researcher designates to measure each construct. For example, it is

possible that some items correlate with multiple factors, which suggests these

items should be revised or removed. However, if the rotated solution provides

a factor pattern matrix with very small cross-loadings and a higher interfactor

correlation, this information may be lost. Moreover, the researcher may conclude

that the constructs have poor discriminate validity as items that measure multiple

factors tend to increase the interfactor correlation. From a statistical standpoint,

this solution is not incorrect. From a measurement perspective, however, essential

information associated with each item’s uniqueness may be concealed at the cost

of artificially inflating the interfactor correlations. Finally, the rotation criterion

selected may significantly influence theory development as EFA results often

guide future research using those items or factors in later statistical analyses

(e.g., structural equation models, multiple regression analyses, etc.).

Limitations

Despite the insight provided by this study, several important limitations should

be noted. First, not all rotation criteria were evaluated and the same rotations

may not perform similarly in other software packages. As pointed out by a

reviewer, there are numerous rotation criteria and each has a different intended

function. Consequently, this creates an epistemological problem for EFA be-

cause the rotation criterion chosen, which may be arbitrary, could influence the

interpretation of the results. It is then critical for researchers to justify their

choice of a rotation criterion and interpret the results while keeping in mind that

the selected rotation significantly impacts the factor pattern matrix.

Like all simulation studies, this study has limited generalizability due to

the conditions considered. It may be that other factor structures will result in

different findings, especially with other rotation criteria. More specifically, the

number of variables and factors investigated, along with the factor pattern load-

ing magnitudes, may not generalize to solutions with more than two factors and

a different number of variables/items. In a positive light, the work of Asparouhov

and Muthén (2009), Browne (2001), and Crawford and Ferguson (1970) provides

generalizability evidence associated with this study. These articles are also
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excellent references for additional insight into how the number of variables and

factors influence each rotation criterion. Users can also calculate how adding or

removing variables and factors will influence row and column complex within

the CF family (see Table 1). This study does touch on an important range of

conditions researchers may experience, although additional research is needed

to investigate conditions with greater diversity.

Another limitation is the type of data generated. In most cases, data are not

multivariate normal with continuous variables. As indicated earlier, this type of

data was selected to purify the design of confounding variables. Assuming the

correct estimation method and correlation matrix is employed, it is believed that

the results should not differ significantly given that each rotation criteria seeks

to minimize a complexity function. Nevertheless, additional research is needed

to confirm this notion with categorical data and other data structures. Moreover,

it would be interesting to learn if variables with varying distributions influence

the rotation criteria.

CONCLUSIONS

As demonstrated in this study, the selected rotation criterion can have profound

effects on the estimated factor pattern loadings and interfactor correlations. This

is of concern given that two researchers who analyze the same data may draw

different conclusions simply because they used a different rotation criterion.

Given the indeterminacy problem in EFA, “the choice of the best solution

therefore cannot be made automatically and without human judgment” (Browne,

2001, p. 145). There is no right or wrong rotation criterion but instead the goal

is to select the rotation that provides the simplest and most informative solution

(Asparouhov & Muthén, 2009). Thus, researchers should consider the rotation

best suited to address the research goal (Kass & Tinsley, 1979). It is important

that researchers rely on strong theoretical justifications when choosing a rotation

criterion as the type of factor structure hypothesized should determine the

rotation criterion employed. Consequently, researchers should avoid traditional

practice of selecting a rotation criterion, such as Varimax, simply because it

provides an easily interpretable solution. Instead, it is vital for researchers to

realize that their choice of a rotation criterion will significantly impact the

manifestation of the hypothesized factor structure.

For these reasons, it is critical that researchers consider the rotation criterion

selected and how it influences the interpretation of the results. The conclusions

related to the number of factors may not differ but instead the degree of factor

complexity or the decision related to whether or which variables should be

removed. Researchers should also be cognizant when comparing factor analytic

results across different studies as the conclusions can vary based on the selected
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102 SASS AND SCHMITT

rotation criterion as well as numerous other reasons (i.e., sampling character-

istics, estimation method or correlation matrix employed, etc.). Overall, this

study demonstrated the significance of selecting a rotation criterion and the

implications when selecting a rotation that seeks to acquire row or column

complexity.
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