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Meuleman and Billiet (2009) have carried out a simulation study aimed at the question how
many countries are needed for accurate multilevel SEM estimation in comparative studies.
The authors concluded that a sample of 50 to 100 countries is needed for accurate estimation.
Recently, Bayesian estimation methods have been introduced in structural equation modeling
which should work well with much lower sample sizes. The current study reanalyzes the
simulation of Meuleman and Billiet using Bayesian estimation to find the lowest number of
countries needed when conducting multilevel SEM. The main result of our simulations is that
a sample of about 20 countries is sufficient for accurate Bayesian estimation, which makes
multilevel SEM practicable for the number of countries commonly available in large scale
comparative surveys.
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1 Introduction

International cross-cultural and other comparative sur-
veys involve a number of analysis issues. Measurement in-
struments must often be translated into different languages,
which raises the issue of measurement equivalence. Can we
assume that these instruments measure the same constructs
in the same way? We need to assess whether we have mea-
surement equivalence, and if not we need to investigate how
we may correct measures in order to achieve measurement
equivalence. Next, the analysis focuses on examining rela-
tionships within and between countries (or other contexts).
That is, relationships can be established at the individual
level within each country, but in comparative research the
central issue is often the question whether such relationships
are the same or different across countries. Finally, if we es-
tablish differences between countries, the question is whether
country characteristics can explain such differences.

The classic approach to deal with these questions is
structural equation modeling (SEM) using a multi-group
analysis. This analysis method makes it possible to test
equivalence of measurement models; special procedures for
categorical data enable SEM to be used to estimate and
test Item Response (IRT) models. Criteria for measurement
equivalence were already formulated by Jöreskog (1971), for
a review we refer to Vandenberg and Lance (2000), while for
a discussion in the context of comparative surveys we refer to
Harkness et al. (2010). If measurement equivalence may be
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assumed, multigroup SEM can be used to investigate the de-
gree of equivalence of structural (substantive) models across
countries.

When the number of countries is large, multi-group SEM
becomes unwieldy. The setups become complicated, espe-
cially if subtle differences in measurement properties must be
included. The statistical model for the structural differences
also becomes complicated. Multi-group SEM is a fixed ef-
fects model, which means that it takes each group or country
as given and the set of countries as the complete universe
to generalize to. Unless many equality constraints are im-
posed, SEM estimates a unique set of parameter values for
each different country, which results in a large model. Mul-
tilevel modeling (MLM) offers a different approach. Multi-
level modeling treats the countries as a sample from a larger
population. Instead of estimating a different parameter value
for each country, it assumes a (normal) distribution of pa-
rameter values and estimates its mean and variance. This
makes MLM much more parsimonious than SEM when the
number of countries increases. In addition, differences be-
tween countries can be modeled formally using country-level
variables. For a general introduction to multilevel modeling,
we refer to Goldstein (2011), Raudenbush and Bryk (2002)
and Hox (2010). Multilevel modeling for comparative sur-
veys has been discussed by Hox, de Leeuw and Brinkhuis
(2010) and Van de Vijver, van Hemert and Poortinga (2008).
We mention in passing that multilevel modeling of compara-
tive survey data not only poses statistical questions, but also
methodological questions about the design. The statistical
model assumes random sampling at all levels, while the sur-
vey design in fact does not use sampling at the country level.
We can still use multilevel modeling, but its use is based on
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the advantages of a model based approach where we can ex-
plicitly include country level explanatory variables and coun-
try level residual variation in the model, rather than a sample
design based argumentation. We refer to Groves (1989) for a
discussion of these two perspectives.

When multigroup SEM is used, the number of countries
is not a principled issue. Multigroup SEM can be used to
compare any number of groups. If the number of groups is
huge, there may be practical analysis issues, such as the ca-
pacity of the software or the computer (or even the interpre-
tational capacity of the analyst), but there is no formal lower
or upper limit on the number of groups. In multilevel anal-
ysis, the second level sample size (in comparative surveys
generally the number of countries) is an issue. The second
level sample size must be large enough to permit accurate
parameter estimates and associated standard errors.

Simulations have shown that multilevel regression mod-
eling can be used with second-level samples as low as 20,
provided that the interpretation focuses on the regression co-
efficients (Maas and Hox 2005). However, accurate estima-
tion and testing of variances requires much larger sample
sizes, Maas and Hox (2005) suggest 50 groups as a lower
limit when variances are important. Structural equation mod-
eling with latent variables relies on (co)variances, which sug-
gests that for multilevel SEM even larger samples are needed
for accurate estimation. Indeed, a simulation involving a
two-level confirmative factor model shows that with fewer
than 50 groups, the group level model parameters and their
corresponding standard errors are not estimated with accept-
able accuracy (Hox, Maas and Brinkhuis 2010). These simu-
lations suggest that for accurate estimation at least 50 groups
should be available.

Meuleman and Billiet (2009) have carried out a simula-
tion study directly aimed at the question how many countries
are needed for accurate multilevel SEM estimation in com-
parative surveys. They specified within country sample sizes
to follow the sample sizes typically achieved in the European
Social Survey. The number of countries was varied from 20
to 100. The simulation model at both the individual and the
country level is a confirmative one-factor model for four in-
dicator variables, plus a structural effect predicting the factor
from an exogenous observed variable. Meuleman and Billiet
(2009) conclude that a sample of 20 countries is simply not
enough for accurate estimation. They do not suggest a spe-
cific lower limit for the country level sample size; instead,
they discuss how model complexity and goal of the analy-
sis affect the country level sample size requirements. How-
ever, their simulation results indicate that if we require that
the 95% confidence interval for country level factor loadings
lies in fact between 90 and 99 percent, which corresponds to
a bias of about 5%, we require at least 60 countries. For 60
countries, the empirical alpha level for a test that the struc-
tural effect equals zero is 0.083, which is acceptable. With
40 countries, the empirical alpha level is 0.103, which is not
acceptable (cf. Boomsma and Hoogland 2001). The power
for a medium size structural effect at the country level is
0.523 with 60 countries, well below the value of 0.80 that
Cohen (1988) recommends as a worth pursuing. In conclu-

sion, Meuleman and Billiet confirm the suggestion that about
50 countries is the minimum sample size at the second level
for accurate estimation in multilevel SEM.

The sample size requirements suggested by the simula-
tion studies reviewed above imply that for most comparative
surveys the country level sample sizes are problematic. For
instance, the European Social Survey round four (2008) in-
cludes 30 countries (http://www.europeansocialsurvey.org),
the third wave of SHARE (2008-2009) includes 13 coun-
tries (http://www.share-project.org), the 2007 wave of
the mathematics survey TIMMS includes 36-48 countries
(http://nces.ed.gov/timss), and the 2009 large scale educa-
tional assessment PISA sponsored by the OECD includes 65
countries (http://www.opisa.oecd.org). These country level
sample sizes suggest that only the larger collaborative com-
parative surveys involve enough countries to consider em-
ploying multilevel SEM, but the majority appears too small
to employ multilevel structural equation modeling.

Recently, Bayesian estimation methods have been intro-
duced in structural equation modeling (Lee 2007). Bayesian
estimation works well with lower sample sizes, and will not
produce inadmissible parameter estimates such as negative
variances. Bayesian methods generally imply prior informa-
tion in the analysis, but when uninformative priors are used
this has only a small effect on the resulting parameter esti-
mates.

The goal of the current paper is to examine how well
Bayesian estimation deals with the problem of estimating pa-
rameters in a multilevel SEM model with a small sample size
at the country level. The paper starts with an introduction
of Bayesian estimation methods and the issues involved in
a Bayesian multilevel SEM analysis. Next, it describes the
simulation design which is patterned after Meuleman and
Billiet (2009). Our simulation design explicitly studies the
accuracy of the estimation method with very small numbers
of countries. The results and their implications for the anal-
ysis of comparative surveys are discussed in detail.

We provide a basic introduction of Bayesian statistics,
but interested researchers could further refer to Lynch (2007)
for an introduction to Bayesian estimation, and for technical
details to Gelman, Carlin, Stern, and Rubin (2004). Bayesian
structural equation modeling is discussed by Lee (2007) and
Bayesian multilevel modeling by Hox (2010). In this pa-
per we use the software Mplus (Muthén and Muthén 1998-
2010) because it is often used by applied researchers. For the
technical implementation of Bayesian statistics in Mplus, see
Asparouhov and Muthén (2010).

2. Estimation methods in
multilevel SEM

In this section we describe briefly different estimation
methods for multilevel SEM, including Bayesian estimation.
For a more elaborate accessible introduction we refer to Hox
(2010), and for a statistical treatment we refer to Kaplan
(2009).

Multilevel SEM assumes sampling at both individual
and country levels. The individual data are collected in a
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p-variate vector Yi j (subscript i for individuals, j for groups).
The data Yi j are decomposed into a between groups (Group

level) component YB = Y j, and a within groups (individ-

ual level) component YW = Yi j − Y j. These two compo-
nents are orthogonal and additive, thus YT = YB + YW . The
population covariance matrices are also orthogonal and ad-
ditive, thus

∑
T =

∑
B +
∑

W . Multilevel structural equa-
tion modeling assumes that the population covariance ma-
trices

∑
B and

∑
W are described by distinct models for the

between groups and within groups structure. Several ap-
proaches have been proposed to estimate the parameters of
the multilevel SEM. Muthén (1989) suggests to approximate
the full maximum likelihood solution by assuming equal
group sizes, which leads to a limited information estimation
method called MUML (for Muthén’s Maximum Likelihood).
A more accurate way to estimate a model for

∑
B and

∑
W

is a Weighted Least Squares (WLS) method implemented in
Mplus. Full maximum likelihood estimation for multilevel
structural equation modeling requires to model the raw data.
This minimizes the fit function given by

F =
N∑

i=1

log|∑i| +
∑N

i=1
log(xi − μi)

′∑−1
i (xi − μi), (1)

where the subscript i refers to the observed cases, xi to those
variables observed for case i, and μi and

∑
i contain the pop-

ulation means and covariances of the variables observed for
case i. Mehta and Neale (2005) show that models for mul-
tilevel data, with individuals nested within groups, can be
expressed as a structural equation model. The fit function
(1) applies, with clusters as units of observation, and indi-
viduals within clusters as variables. Unbalanced data, here
unequal numbers of individuals within clusters, are included
the same way as incomplete data in standard SEM. The two-
stage approaches that model

∑
B and

∑
W separately (MUML

and WLS) include only random intercepts in the between
groups model, the full ML representation can incorporate
random slopes as well (Mehta and Neale 2005). Maximum
likelihood estimation assumes large samples, and relies on
numerical methods to integrate out random effects. In com-
parison, Bayesian methods are reliable in small samples, and
are better able to deal with complex models. The Bayesian
approach is fundamentally different from classical statistics
(Barnett 2008). In classical statistics, the population param-
eter has one specific value, only we happen to not know it.
In Bayesian statistics, we express the uncertainty about the
population value of a model parameter by assigning to it a
probability distribution of possible values. This probability
distribution is called the prior distribution, because it is spec-
ified independently from the data. After we have collected
our data, this distribution is combined with the Likelihood of
the data to produce a posterior distribution, which describes
our uncertainty about the population values after observing
our data. Typically, the variance of the posterior distribution
is smaller than the variance of the prior distribution, which
means that observing the data has reduced our uncertainty
about the possible population values.

More formally, let M be a statistical model with a vector
of unknown parameters θ, for example regression parame-
ters and correlations, and let Y be the observed data set with
sample size n. In Bayesian estimation, θ is considered to be
random and the behavior of θ under Y in such a Bayesian
model can be described by

p(θ|Y,M) ∝ p(θ|M) × p(Y |θ,M) (2)

where p(Y |θ,M) is the likelihood function, the information
about the parameters in the data, p(θ|M) is the prior distribu-
tion, the information about the parameters before observing
the data, and p = (θ|Y,M) is the posterior distribution, the in-
formation about the parameters after observing the data and
taking the prior information into account.

For the prior distribution, we have a fundamental choice be-
tween using an informative prior or an uninformative prior.
An informative prior is a peaked distribution with a small
variance, which expresses a strong belief about the unknown
population parameter, and has a substantial effect on the pos-
terior distribution. In contrast, an uninformative or diffuse
prior serves to produce the posterior, but has very little influ-
ence. An example of an uninformative prior is the uniform
distribution, which simply states that all possible values for
the unknown parameter are equally likely. Another exam-
ple of an uninformative prior is a very flat normal distribu-
tion specified with an enormous variance. Sometimes such
a prior is called an ignorance prior, to indicate that we know
nothing about the unknown parameter. However, this is not
accurate, since total ignorance does not exist. All priors add
some information to the data, but diffuse priors add very lit-
tle information, and therefore do not have much influence
on the posterior. For our analyses we used the default prior
specifications of Mplus which uses uninformative priors.

If the posterior distribution has a mathematically simple
form, the known characteristics of the distribution can be
used to produce point estimates and confidence intervals.
However, in complex models the posterior is generally a
complicated multivariate distribution, which is often math-
ematically intractable. Therefore, simulation techniques are
used to generate random draws from the multivariate poste-
rior distribution. These simulation procedures are known as
Markov Chain Monte Carlo (MCMC) simulation. MCMC
simulation is used to produce a large number of random
draws from the posterior distribution, which is then used to
compute a point estimate and a confidence interval (for an
introduction to Bayesian estimation including MCMC meth-
ods see Lynch 2007). Typically, the marginal (univariate)
distribution of each parameter is used.

Given a set of initial values from a specific multivariate dis-
tribution, MCMC procedures generate a new random draw
from the same distribution. Suppose that Z(1) is a draw from
a target distribution f (Z). Using MCMC methods, we gener-
ate a series of new draws: Z(1) → Z(2) → . . .→ Z(t). MCMC
methods are attractive because, even if Z(1) is not from the
target distribution f (Z), if t is sufficiently large, in the end
Z(t) is a draw from the target distribution f (Z). Having good
initial values for Z(1) helps, because it speeds up the conver-
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(a) within (individual) level (b) between (country) level

Figure 1. Path diagram for within (individual) and between (country) level

gence on the target distribution, so the classical maximum
likelihood estimates are often used as initial values for Z(1).

The number of iterations t needed before the target distri-
bution is reached is referred to as the ‘burn in’ period of the
MCMC algorithm. It is important that the burn in is com-
plete. To check if enough iterations of the algorithm have
passed to converge on the target distribution, several diagnos-
tics are used. A useful diagnostic is a graph of the successive
values produced by the algorithm. A different procedure is
to start the MCMC procedure several times with widely dif-
ferent initial values. If essentially identical distributions are
obtained after t iterations, we decide that t has been large
enough to converge on the target distribution (Gelman and
Rubin 1992).

An additional issue in MCMC methods is that successive
draws are dependent. Depending on the distribution and the
amount of information in the data, they can be strongly cor-
related. Logically, we would prefer independent draws to
use as simulated draws from the posterior distribution. One
way to reach independence is to omit a number of succes-
sive estimates before a new draw is used for estimation. This
process is called thinning. To decide how many iterations
must be deleted between two successive draws, it is useful
to inspect the autocorrelations between successive draws. If
the autocorrelations are high, we must delete many estimates.
Alternatively, since each draw still gives some information,
we may keep all draws, but use an extremely large number
of draws.

The mode of the marginal posterior distribution is an at-
tractive point estimate of the unknown parameter, because it
is the most likely value, and therefore the Bayesian equiva-
lent of the maximum likelihood estimator. Since the mode

is more difficult to determine than the mean, the mean of the
posterior distribution is also often used. In skewed posterior
distributions, the median is an attractive choice. In Bayesian
estimation, the standard deviation of the posterior distribu-
tion is comparable to the standard error in classical statis-
tics. However, the confidence interval generally is based on
the 1/2 α and 100 − 1/2 α percentiles around the point esti-
mate. In the Bayesian terminology, this is referred to as the
100− α% credibility interval. Mplus by default uses the me-
dian of the posterior distribution for the point estimate, and
the percentile-based 95% credibility interval, which we have
followed in our simulations. Bayesian methods have some
advantages over classical methods. To begin, in contrast to
the asymptotic maximum likelihood method, they are valid
in small samples. Given the correct probability distribution,
the estimates are always proper, which solves the problem of
negative variance estimates. Finally, since the random draws
are taken from the correct distribution, there is no assumption
of normality when variances are estimated. In this study, we
examine if Bayesian estimation will help in drawing correct
inferences in multilevel SEM if the number of groups (coun-
tries) is relatively small. The simulation studies cited in the
introduction typically find that at smaller country level sam-
ple sizes the parameter estimates themselves are unbiased,
but that the standard errors are underestimated, which leads
to poor control of the alpha level and undercoverage for the
confidence intervals. We expect that the credibility intervals
in our Bayesian estimation will perform better at the country
level sample sizes usually encountered in comparative survey
research.
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3. Simulation design

The simulation design in this study closely follows Meule-
man and Billiet (2009). The model at both the individual and
the country level is a one-factor model with four indicators.
There is one structural effect from an observed exogenous
variable on the factor. Figure 1 shows the path diagram with
the population parameter values.

The simulated data were generated from a population that
has the same characteristics as used in Meuleman and Billiet
(2009:48):
• The observed variables have a multivariate distribu-

tion.

• The intraclass correlation of the observed indicators is
0.08.

• The within level unstandardized factor loadings are
0.90, 0.90, 0.75 and 0.70.

• The between level factor unstandardized loadings are
0.27, 0.27, 0.28 and 0.28.

• The within level independent variable has an unstan-
dardized effect of 0.25.

• The between level independent variable has an effect
that is manipulated. One condition has an effect size
of 0.00. The other effect sizes were manipulated to
be 0.10 (small), 0.25 (medium), 0.50 (large) and 0.75
(very large), following Cohen’s (1988) suggestions for
effect sizes.

• The within level sample size is 1755.
Meuleman and Billiet generate data for five different num-

bers of countries: 20, 40, 60, 80 and 100. We have generated
data for 10, 15 and 20 countries, with 1000 replications for
each condition in our simulation design.

We have used Mplus 6.1 for our simulation. Mplus has
a set of commands that can be used to tweak the Bayesian
estimation process. Assuming that most users will use the
default settings, we have not attempted to modify the de-
fault settings. The major issue here is to let Mplus automat-
ically decide how long the burn-in must be. Mplus uses the
Gelman-Rubin potential scale reduction (PSR; Gelman and
Rubin 1992) to decide when the chain has converged. By
default, two independent MCMC chains are produced, and
the between and within chain variation is compared. When
the between chain variance is smaller than 0.05, convergence
is assumed. Lee (2007) discusses this and other Bayesian
model checks, we will come back to this issue in the discus-
sion.1

4. Results

The simulation results are summarized in Table 1, which
also reports a selection of the results obtained by Meuleman
and Billiet (2009).

Table 2: Statistical power for detecting the country level structural
effect, for various effect sizes and country level sample sizes

Number of countries

Bayesian estimation ML estimation1

10 15 20 20 40 60
Effect size
None (0.00) 0.03 0.05 0.05 0.16 0.10 0.08
Small (0.10) 0.04 0.06 0.06 0.18 0.15 0.16
Medium (0.25) 0.08 0.13 0.15 0.31 0.41 0.53
Large (0.50) 0.26 0.43 0.58 0.75 0.94 0.99
Very large (0.75) 0.67 0.89 0.97 1.00 1.00 1.00

1 Parameters estimated by Meuleman and Billiet 2009.

Table 1 shows that, compared to ML estimation, Bayesian
estimation tends to result in a much larger bias for the coun-
try level residual variance estimates, but to less bias for the
country level factor loadings and the structural effect. The
95% credibility intervals show a much better coverage in
Bayesian estimation than their maximum likelihood based
counterparts. For example, with 20 countries the between
level factor loadings have a mean absolute bias of 0.03 in
Bayesian estimation, and -0.07 in Maximum Likelihood es-
timation. The actual coverage of the nominal 95% interval is
0.94 in Bayesian estimation, and 0.84 with Maximum Like-
lihood estimation, which is woefully inadequate.

Table 2 shows the proportion of p-values below 0.05, for
various effect sizes. For an effect size of zero, the table shows
the operating alpha level, which indicates the prevalence of
the type I error. It is clear that ML estimation does not con-
trol the alpha level well, with an operating alpha level of 16%
with twenty countries. Thus, if the nominal alpha level is set
at the common value of 0.05, the prevalence of type I errors
is actually 0.16. The alpha level is much better controlled
in Bayesian estimation, where even at 10 countries the op-
erating alpha level is 0.03, which is reasonably close to the
nominal alpha level of 0.05.

Table 2 also shows that with a small number of countries the
power in both Bayesian and Maximum Likelihood to detect
anything but the largest effects is low. When the effect size
is not zero, ML estimation does reject the null hypothesis
more often than Bayesian estimation. For example, with 20
countries the power to detect a large effect is 0.58 in Bayesian
estimation and 0.75 in Maximum Likelihood estimation. As
we showed above, this increased power is at the expense of a
very poorly controlled alpha level.

5. Discussion

The results of the simulation show that Bayesian estima-
tion indeed can get away with far fewer countries than Max-
imum Likelihood estimation. Both the parameter estimates
and the coverage of the 95% interval are surprisingly good.
However, the between level residual error variances are esti-
mated very poorly. We come back to this issue later in the

1 One simulation run encountered convergence problems, which
were solved by setting this convergence criterion to 0.01.
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Table 1: Mean absolute bias for various country level sample sizes

Number of countries

Bayesian estimation ML estimation1

10 15 20 20 40 60
Parameter bias
Within factor loadings 0.00 0.00 0.00 0.00 0.00 0.00
Within error variances 0.00 0.00 0.00 0.00 0.00 0.00
Within structural effect 0.00 0.00 0.00 0.00 0.00 0.00
Between factor loadings 0.50 0.04 0.03 -.07 -.03 -.02
Between error variances 0.59 0.33 0.24 -.10 -.05 -.04
Between structural effect -.05 -.05 -.04 0.11 0.05 0.04

Coverage
Within factor loadings 0.95 0.96 0.95 0.93 0.94 0.94
Within error variances 0.93 0.94 0.93 0.93 0.94 0.94
Within structural effect 0.95 0.95 0.96 0.93 0.94 0.94
Between factor loadings 0.96 0.96 0.94 0.84 0.89 0.91
Between error variances 0.95 0.95 0.94 0.81 0.88 0.90
Between structural effect 0.96 0.94 0.95 0.85 0.90 0.92
1 Parameters estimated by Meuleman and Billiet 2009.

discussion, when we discuss convergence problems in the
Bayesian context. With respect to statistical power, it is clear
that Bayesian estimation does not solve the problem of small
sample, only very large country level effects can be discov-
ered when the number of countries is small.

The results also show that Bayesian estimation is not magic.
With ten countries, problems start to show in the summary ta-
bles, but they are clearer when the simulation output is stud-
ied in more detail. For the condition with ten countries, each
simulation run contains some outliers for the estimates of the
error variances and corresponding standard errors, with esti-
mates up to twenty times the population values. Such outliers
would be recognized as such in a real analysis. The between
model contains a total of 10 parameters, so it is not surprising
that problems arise when the number of countries approaches
the number of parameters in the between model. Simplifying
the model, for instance by using the mean of the observed in-
dicators instead of a latent variable would make estimation
easier.

We briefly mentioned convergence problems and outlying
estimates. In MCMC estimation, convergence means con-
vergence of the chain to the correct distribution. In our simu-
lation, we have decided to emulate a relatively nave user and
therefore to follow all defaults implemented in the software
(Mplus 6.1). We also used an automatic cut-off criterion to
decide whether convergence had been reached. In one sim-
ulation run, we needed to change the default criterion to a
more strict value. Textbooks introducing Bayesian statistics
caution users to always use diagnostic tools such as plots of
the iteration history (trace plots, c.f. Gelman, Carlin, Stern
and Rubin 2004; Lynch 2007), and we completely agree with
such recommendations. Obviously, in a simulation, visually
inspecting trace plots for 15,000 replications times 20 param-
eters is not possible. In applied Bayesian analysis, we con-
sider such inspection mandatory. In addition, especially in
modeling situations as extreme as having as many parameters

as we have countries, we recommend inspection of autocor-
relations and setting much stricter criteria for convergence.
In fact, if we deviate from the software defaults and set the
convergence criteria much stricter, the bias in the residual
variances at the country level becomes much smaller, at the
cost of a much increased computation time.

Softwarewise, we have simply specified a different estima-
tion method. From a principled standpoint, we have chosen
a different kind of statistics. As a result, the 95% credibil-
ity interval now may correctly be interpreted as the interval
that contains the population parameter with 95% probability.
In our power table, we presented p-values. In the Bayesian
case, this is not the normal p-value, but the so-called poste-
rior predictive p-value. This is roughly interpreted as a stan-
dard p-value, but it is actually a different entity. Bayesian
modeling in general prefers that decisions about parameters
are based on credibility intervals, and that decisions about
models are based on comparative evidence, such as informa-
tion criteria or Bayes factors. A discussion of these issues is
beyond the scope of this paper, but we believe that applied
researchers should be aware that doing a Bayesian analysis
is not just choosing a different estimation method.

In our analysis, we have chosen the default uninformative
priors provided by Mplus. Other choices are possible. One
interesting option is using an informative prior. For example,
the default prior for a factor loading in Mplus is a normal
distribution with a mean of zero and a very large variance
(1010). We have more prior knowledge than that. If we model
seven-point answer scales with an underlying factor, using
standard identifying constraints, we know that the (absolute)
factor loadings will not exceed, say, the value ten. Why not
use a prior distribution that reflects this knowledge? In doing
so, we would become real subjectivist statisticians, a posi-
tion that is far away from mainstream statistics. If we im-
pose priors that describe only realistic parameter values, the
convergence problem discussed above will disappear. But in
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small samples, such prior information could easily dominate
the information in the data. In this paper, we have taken the
position that this is undesirable, and prefer to work with un-
informative priors.
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