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1 Introduction

Plausible values are imputed values for latent variables. All latent variables

can be thought of as observed variables that have missing data for all ob-

servations. Using Mplus imputation utilities based on the MCMC Bayesian

estimation, see Asparouhov and Muthén (2010), we can produce imputed

values for each latent variable. If sufficient number of imputed values are

drawn are we essentially obtain the entire posterior distribution of the latent

variables.

There are two types of applications that we describe below. The first

applications is when the individual level latent variable is of interest. One

such example is the case when we want to construct a factor scores estimate

for a latent variable and a standard error for that factor score estimate. To be

able to do this it is necessary to use many imputed values. For example 100 or

500 such values can yield a precise posterior distribution for a latent variable

which can be used to compute the posterior mean factor score estimate. In

this note we will use 500 plausible values for the purpose of computing factor

scores and their standard errors.

The second type of application is the case when a population level statistic

is of interest. One such example is when the plausible values are used into

a secondary model. In this case only 5 imputed data sets can be used.

These plausible value data sets are analyzed just like missing data imputed

data sets, i.e, by combining the results across the imputations using Rubin’s

method (1987).

For particular applications of plausible values see also von Davier et al.

(2009), Mislevy et al. (1992) and Carlin (1992).
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2 Factor Score Estimates For Small Sample

Sizes

In many SEM applications the ML or WLS estimators yield negative residual

variances. This is commonly referred to as Heywood Case and it often occurs

for no other reason but a small sample size. In that case the frequentist

estimation methods will not be able to produce factor score estimates at all.

The Bayes estimator however can be used to construct factor score estimates

by using the plausible values utility to compute the posterior mean for each

latent variable. In this section however we focus on a more intricate situation

when a Heywood case does not occur but one of the residual variances is

near zero. In such a case the the frequentist methods can produce factor

score estimates, however, these estimates are likely to be of poor quality

because the factor score estimates will be almost perfectly correlated with

the measurement variable with small residual variance. Again these problems

can also occur for no other reason but a small sample size.

Consider the following factor analysis example

Yj = µj + λjη + εj

where Yj are the observed variables for j = 1, ..., 3, η is the latent factor and

εj are the residual variables. We generate a single data set with N = 45

observations using the following parameter values µj = 0, λj = 1 and the

factor variance as well as the residual variances are set to 1. All variables are

generated from a normal distribution. Using this data set we estimate the

factor model with the ML and the Bayes estimators. The model parameter

estimates are presented in Table 1. The two estimators yield similar results
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Table 1: ML and Bayes Estimates for Factor Analysis Model

Parameter ML Bayes

µ1 0.307 0.270

µ2 0.008 -0.053

µ3 0.296 0.212

λ2 0.873 0.976

λ3 1.665 1.543

θ1 1.298 1.407

θ2 1.587 1.603

θ3 0.034 0.589

ψ 0.966 0.946

with the exception of the estimates for the residual variance parameter θ3.

The ML estimator in this example produced a near Heywood case, i.e., the

ML estimate for this residual variance is a small but positive number.

Next we estimate the factor scores for η and the factor score standard

errors using both the ML and the Bayes estimators. To evaluate the perfor-

mance of the factor score estimates we compute

MSE =

√√√√ 1

N

N∑
i=1

(η̂i − ηi)2

where η̂i is the factor score estimate and ηi is the true factor score value.

For the ML estimator the MSE is 0.636 while for the Bayes estimator it is

0.563. This indicates that the Bayes estimator produces more accurate factor

score estimates. In addition MSE should be near the average SE values for
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the factor scores. In this example the average SE for the ML estimator is

0.109 while for the Bayes estimator it is 0.484, i.e., the Bayes estimator yields

more accurate SE estimates. This can also be seen by computing the coverage

probability for both estimators, that is, the percentage of observations for

which the 95% symmetric confidence interval around the factor score estimate

contains the true factor score value. Using the ML estimator we obtain a

coverage of 20%, while using the Bayes estimator we obtain a coverage of

89%. The underestimation of the factor score standard errors is rooted in

the small sample size, which leads to a small residual variance estimate, which

in turn leads to underestimation of the factor score standard errors.

We conclude that for small sample size the Bayes factor score estimates

and standard errors are more reliable than those obtained by the ML esti-

mator.

Also note here that the ML factor score standard errors are the same

across all observations. Only the factor score estimate changes across the

observations but the factor score standard error remains constant. This is

not the case for the Bayes estimator because with the Bayes estimator the

parameters are not assumed to be constants as in the ML estimator. For

the Bayes estimator the parameters are assumed to vary according to the

estimated posterior distribution. This is another advantage of the Bayes

estimator because the uncertainty in the model parameter estimates is taken

into account. The correlation between the absolute factor score estimates and

the factor score standard error estimates is 0.76, i.e., a strong correlation

exist between these estimates. The larger the absolute factor score value

is the larger the standard error is. This result has a natural explanation.
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Large absolute factor score values are generally in the tail of the factor score

distribution, i.e., in a region with fewer observations. Thus having larger

standard errors in that region is natural. When the sample size is large

however the uncertainty in the parameter estimates becomes so small that the

Bayes standard errors also become nearly constant, i.e., the varying standard

error phenomenon is only relevant for small sample sizes.

3 Factor Score Estimates For Large Sample

Sizes and Non-normally Distributed Fac-

tors

In this section we explore the effect of factor non-normality on the factor score

estimates. We use the same model as in the previous section however to avoid

any small sample size related problems we generate a very large data set of

size N = 10000. The parameters used in the data generation are as in the

previous section. The factor variable η is generated either from a standard

normal distribution or an exponential distribution with mean and variance

1. The residual variables are always generated from a normal distribution.

Asymptotically the ML and the Bayes estimator yield the same results not

just for the parameters but also for the posterior distribution of the factors.

This occurs regardless of whether the data is normally distributed or not. We

analyze the data using the true one factor model with the parameterization

where all the loadings are estimated and the factor variance is assumed to

be fixed to 1.
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In this example we first analyze the data with normally distributed factors

and we obtain the following results. The coverage for the factor scores for

both the ML and the Bayes estimator is 94%. MSE for both estimators is

0.507 which is close to the average factor score SE of 0.496 for ML and 0.495

for Bayes. When we analyze the data with non-normally distributed factors

we obtain the following results. The MSE for the ML estimators is 0.502 and

for the Bayes estimator it is 0.496 while the average factor score standard

error for both estimators is 0.496. The coverage for both estimators is 95%.

From these results we make the following conclusions. The Bayes and

the ML estimators asymptotically yield the same factor score estimates and

factor score standard errors. In addition non-normality of the factor does

not affect the quality of the factor score estimates or the quality of the factor

score standard error.

4 Using Plausible Values in Secondary Anal-

ysis

4.1 Plausible Values for Categorical Latent Variables

In this section we demonstrate how plausible values for categorical latent

variables can be used for secondary modeling. The imputed plausible values

can be used as observed values to build models after the latent variable has

been imputed. As an example we will use one of the latent class models de-

scribed in Clark and Muthén (2009). In this model there are 10 binary latent

class indicators Uj and a single latent class predictor variable X. Denote by
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C the latent class variables. The variables Uj as well as the variable C take

values 1 and 2. The model is described as follows.

P (Uj = 1|C = 1) = p1j (1)

P (Uj = 1|C = 2) = p2j (2)

for j = 1, ..., 10. In addition

P (C = 1|X) =
1

1 + Exp(α + βX)
. (3)

We generate 100 data sets according to the above model all of size N = 1000.

We use the following parameter values to generate the data: α = 0, β = 0.5,

p1j = 0.73, and p2j = 0.27. The entropy for this mixture model is 0.8.

The goal of the following simulation study is to demonstrate how the

latent variable C can be imputed from a latent class model and then used

separately to estimate the logistic regression equation (3). We consider two

imputation models for the latent class variable. The first model is the latent

class model given by equations (1) and (2), i.e., this imputation model does

not include X. The second model we use as an imputation model is the model

where the X variable is included as an indicator variable, i.e., in addition to

equations (1) and (2) we estimate the following equation

X|C = αC + ε. (4)

In general imputation models should include as many variables as possible

because each observed variable can carry some unique information about the

latent variables. The exact specification for the imputation model is not very

important as long as it reasonably flexible.
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Table 2: Using plausible values to estimate a logistic regression for a latent

class variable.

Imputation Model Bias Coverage MSE

Model without X -0.11 75% 0.123

Model with X -0.02 97% 0.076

For each of the 100 generated data sets we use the two imputation mod-

els to impute the latent class variable C. We generate 5 imputed data sets.

The imputed data sets are then used to estimate a logistic regression of the

imputed values for C on the predictor variable X. This is done as in the

usual imputation analysis using the Mplus implementation of Rubin (1987)

method. The results of this simulation study are presented in Table 2. In

this table we only report the results for the logistic regression coefficient β.

The true value for this regression coefficient is 0.5. The latent class imputa-

tion where X is included in the model clearly outperforms the latent class

imputation without X. When X is included in the imputation the estimate

of β is unbiased, the coverage is near the nominal 95% and the MSE is better

than for the imputation model without X. In fact this imputation method

shows that plausible values can indeed be used for secondary analysis. Using

the imputation model without the X variable we get slightly biased esti-

mates, which leads to low coverage and increase in MSE. These results also

match the results obtained by the pseudo draw method reported in Clark and

Muthén (2009) in the case when the entropy is 0.8. The pseudo draw method

is very similar to the plausible values method. We conclude that plausible
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values method can be used to perform secondary analysis using latent vari-

ables measured and imputed from a previously estimated model, however,

the imputation models should be as broad as possible and should include all

relevant variables, otherwise the secondary analysis could be slightly biased.

We also demonstrated in the above simulation study that 5 imputed data

sets are sufficient for the purpose of secondary model estimation.

4.2 Plausible Values for Continuous Latent Variables

In this section we show the advantages of plausible values over traditional

factor score estimates for the use in secondary analysis. Consider the follow-

ing factor analysis model with two factors each measured by three dependent

variables. The model is given by the following two equations. For j = 1, ..., 3

Yj = µj + λjη1 + εj

and for j = 4, ..., 6

Yj = µj + λjη2 + εj.

We generate a single data set of size 10000 using the following parameter

values µj = 0, λj = 1, the variance θj of εj is 1, the variance ψii of ηi is

1 and the covariance ψ12 between η1 and η2 is 0.6. We estimate the true

model using the ML estimator and we estimate the factor scores for both

factors. In addition we estimate the true model with the Bayes estimator

and generate 5 sets of plausible values. We use the factor scores and the

plausible values to simply estimate the factor means, the factor variance and

the factor correlation in a secondary run. The plausible values are used again

as multiple imputation values. The results of this simulation are presented
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Table 3: Using plausible values and factor scores to estimate factor means,

factor variances and covariances.

Parameter True Value Factor Scores Plausible Values

α1 0 0.00 0.00

α1 0 0.00 0.00

ψ11 1 0.76 1.03

ψ22 1 0.80 1.05

ψ12 0.6 0.57 0.63

ρ 0.6 0.73 0.61

in Table 3. The factor means are denoted by αi. The factor correlation

is denoted by ρ. It is clear from these results that the plausible values

method yields more accurate estimates for the factor variances and the factor

correlation. The factor score method overestimates the factor correlation and

underestimates the factor variances.
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