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I. Full presentation of parallel-process GBT model. 
 
From manuscript Equation (43), the parallel-process groups-based trajectory model (GBT) is: 
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Each term in this expression was defined in the manuscript. It was noted in the manuscript that each term 
could be expressed using earlier-presented manuscript equations, so equations for each term were not 
repeated to save space. Here, specific equations for each term are presented for added concreteness. 

 
 Marginal probability of class membership for the z-process: 
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 Conditional probability of class membership for the y-process given class membership for the z-
process, here written supposing K=Q=3: 
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Q-1 dummy variable predictors are used to represent class membership in the z-process (which 
consists of Q classes).  di1 is 1 if z-process class=1, 0 otherwise. Dummy variable di2 is 1 if z-
process class=2, 0 otherwise. The denominator summation is over the K outcome classes in the y-
process, using summation index g. For identification, coefficients of the last/reference category=0 

(here, 3 31 32 0     ).  

 Assuming there are J items repeatedly measured for each process, the joint PDF of the y-process 
repeated measures within class k is given as a product of univariate normal PDFs 
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where the parameters ( )k
j (a function of estimated growth coefficients) and 2( )k

j of the 

univariate normal PDF for the jth y-process item are defined as in Equations (21) and (23) in the 
manuscript. 

 The joint PDF of the z-process repeated measures within class q is also given as a product of 
univariate normal PDFs 
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normal PDF for the jth z-process item are defined as in Equations (21) and (23) in the manuscript.  
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II. Full presentation of parallel-process LTA. 
 
From manuscript Equation (45):  
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Each term in this expression was defined in the manuscript. It was noted in the manuscript that each term 
could be expressed using earlier-presented manuscript equations, so equations for each term were not 
repeated to save space. Here, specific equations for each term are presented for added concreteness. 

 

 Marginal probability of time 1 latent state membership for the z-process: 
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 Conditional probability of time 1 state membership for the y-process given time 1 state 
membership for the z-process, here written supposing at time 1 K=Q=3: 
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Q-1 dummy variable predictors are used to represent time 1 latent state membership in the z-
process (which consists of Q time 1 states).  di1 is 1 if at time 1, z-process state=1, 0 otherwise. 
Dummy variable di2 is 1 if at time 1, z-process state=2, 0 otherwise. The denominator summation 
is over the K outcome states  (i.e., time 1 states in the y-process), using summation index g. For 

identification, coefficients of the last/reference category=0 (here, 3 31 32 0     ).  
 

 Conditional probability of time 2 state membership for the z-process given time 1 state 
membership for the y-process and z-process, here written supposing at K=Q=S=3: 
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Single primes (   ) are used to indicate that coefficients in this equation differ from those in the 

earlier-presented multinomial regression (for 1 1( | )y z
i ip c k c q  ) in this model. Here, K-1 

dummy variable predictors are used to represent time 1 latent state membership in the y-process 
(which consists of K time 1 states).  di1 is 1 if at time 1, y-process state=1, 0 otherwise. di2 is 1 if 
at time 1, y-process state=2, 0 otherwise. Additionally, Q-1 dummy variable predictors are used 
to represent time 1 latent state membership in the z-process (which consists of Q time 1 states).  
di3 is 1 if at time 1, z-process state=1, 0 otherwise. di4 is 1 if at time 1, z-process state=2, 0 
otherwise. The denominator summation is over the S outcome states (i.e. time 2 states in the z-
process), using summation index g. For identification coefficients of the last/reference category=0 

( 3 31 32 33 34 0             ).  

 
 Conditional probability of time 2 state membership for the y-process given time 1 state 

membership for the y-process and time 1 and 2 state membership for the z-process, here written 
supposing at K=Q=M=S=3: 
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Double primes (   ) are used to indicate that coefficients in this equation differ from those in the 
earlier-presented multinomial regressions in this model. Here, Q-1 dummy variable predictors are 
used to represent time 1 latent state membership in the z-process (which consists of Q time 1 
states).  di1 is 1 if at time 1, z-process state=1, 0 otherwise. di2 is 1 if at time 1, z-process state=2, 0 
otherwise. K-1 dummy variable predictors are used to represent time 1 latent state membership in 
the y-process (which consists of K time 1 states).  di3 is 1 if at time 1, y-process state=1, 0 
otherwise. di4 is 1 if at time 1, y-process state=2, 0 otherwise. Additionally, S-1 dummy variable 
predictors are used to represent time 2 latent state membership in the z-process (which consists of 
S time 2 states).  di5 is 1 if at time 2, z-process state=1, 0 otherwise. di6 is 1 if at time 2, z-process 
state=2, 0 otherwise. The denominator summation is over the M outcome states  (i.e. time 2 states 
in the y-process), using summation index g. For identification, coefficients of the last/reference 

category=0 (here, 3 31 32 33 34 35 36 0                   ).  
 

 Assuming there are J items measured at each timepoint, for each process: 
 the joint PMF of the y-process item responses at time 1 within state k is given as a product of 
univariate Bernoulli PMFs 
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where the parameter ( )
1
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of the univariate Bernoulli for the jth y-process item at time 1 (item 

endorsement probability) is defined as in Equation (24)  in the manuscript. 
 

 The joint PMF of the z-process item responses at time 1 within state q is given as a product of 
univariate Bernoulli PMFs 
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of the univariate Bernoulli for the jth z-process item at time 1 is defined 

as in Equation (24) in the manuscript. 
 

 the joint PMF of the y-process item responses at time 2 within state m is given as a product of 
univariate Bernoulli PMFs 
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of the univariate Bernoulli for the jth y-process item at time 2 defined 

as in Equation (25) in the manuscript. 
 

 The joint PMF of the z-process item responses at time 2 within state s is given as a product of 
univariate Bernoulli PMFs 
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of the univariate Bernoulli for the jth z-process item at time 2 defined 

as in Equation (25) in the manuscript. 
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III. Multinomial coefficients used to calculate conditional probabilities for empirical example. 
 
For the empirical example--a hybrid parallel-process LTA of oppositionality and depressive symptoms 
allowing across-process local dependence for the shared temper/irritability symptom--one kind of 
conditional probability of sequence membership was provided in the manuscript. Other kinds of marginal, 
conditional, and joint probabilities of potential substantive interest can be calculated (see Appendix A) 
from the following estimated multinomial intercepts and slopes. Notation adheres to that used in the 
previous section (II) of this online appendix, with the modification that in this example K=M=Q=S=2. 
       
Multinomial 
coefficient 

Estimate (SE) 

1  0.247 (0.086) 

1  
-3.538 (0.654) 

11
 

4.825 (0.667) 

1  -3.527 (0.624) 

11  0.901 (0.473) 

12  3.981 (0.747) 

1  -3.365  (0.697) 

11  -7.772  (15.893) 

12
 

10.859  (15.900) 

13
 

10.762  (15.892) 

 

Notes. For indentification, coefficients in the last/reference category were zero:  
2 0  ; 2 21 0   ; 2 21 22 0       ; 2 21 22 23 0          ).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Online Appendix                                                                                                                             Sterba 
 

Online Appendix  p.6 
 

IV. Mplus software syntax for each model described in manuscript. 
 
The following Mplus syntax (L.K. Muthén & B.O. Muthén, 1998-2012) is provided for all models 
described in the manuscript.  Although syntax for some of these models is also available in the Mplus 
users guide, that syntax relies more upon defaults for convenience.  Here, for pedagogical purposes, all 
estimated parameters within-class are explicitly represented in the syntax, so the syntax more directly 
mirrors the equation presented in the manuscript. 
 Regarding latent state or transition probabilities from LTA, parallel-process LTA, and parallel-process 
GBT (that were described in the manuscript's Appendix A), some are computed automatically by Mplus, 
from estimated multinomial coefficients. Alternatively or in addition, all of these probabilities can be 
computed by defining them as a function of estimated multinomial logistic coefficients in a MODEL 
CONSTRAINT command, using equations from the manuscript. Mplus 7.0 allows more of these 
probabilities to be automatically computed or requested, and also allows referring to the probabilities 
directly in the input (using parameterization=probability). 
 

Specifics on the below syntax: 
 Syntax for each model contains two classes (or two states per timepoint).  
 When there are multiple processes, each process has two classes (or two states per timepoint).  
 Where applicable, measurement invariance is imposed.  
 When residual and/or factor variances are estimated, they are constrained equal across-class. 
 For mixture models with one categorical latent variable, the between model (Equation (8)) is 

estimated automatically. In the UFNM syntax it is referred to explicitly for pedagogical purposes, 
and then in other models with one categorical latent variable, it is omitted. 

 Syntax for outputting posterior probabilities is the same for all models, so it is only shown for the 
UFNM.  

 Note that multinomial coefficients (intercepts or slopes) in the reference (last) class are never 
referred to in the syntax because they are automatically constrained to 0 for identification 
purposes, as discussed in the manuscript.  

 Plots like manuscript Figures 3-4 can be obtained by adding the PLOT command to the end of the 
input (e.g., PLOT: TYPE=PLOT1 PLOT2 PLOT3;) and listing the outcomes in the SERIES 
subcommand (e.g. SERIES IS y1-y5 (*); for a single process or SERIES IS y1-y5 (*) | z1-z5 (*); 
for two processes).  
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Univariate finite normal mixture:      Latent profile analysis:                   Latent class analysis: 
DATA: FILE IS yourdata.dat; 
VARIABLE:  
NAMES ARE y; 
 USEVARIABLES ARE y; 
 CLASSES = class (2); 
!request K=2 
 ANALYSIS: TYPE=MIXTURE; 
 ESTIMATOR=ML; 
!request maximum likelihood 
 STARTS = 500 50; 
!request random starting values 
 MODEL: 
 %overall% 
   [class#1]; !K-1 multinomial int. 
!from Eqn(8),automatically included 
   y; !variance 
 %class#1% 
   [y]; !mean in class 1 
 %class#2% 
   [y]; !mean in class 2 
 
 SAVEDATA: FILE IS 
2class_posteriorprob.dat; 
SAVE ARE cprobabilities; 
!request posterior probabilities 

 DATA: FILE IS yourdata.dat; 
VARIABLE:  
NAMES ARE y1-y5; 
USEVARIABLES ARE y1-y5; 
 CLASSES = class (2); 
 ANALYSIS: TYPE=MIXTURE; 
 ESTIMATOR=ML; 
 STARTS = 500 50; 
 

 MODEL: 
%overall% 
y1-y5; !J variances 
%class#1% 
[y1-y5]; !J means in class 1 
%class#2% 
[y1-y5]; !J means in class 2 
 
 
 
 

 DATA: FILE IS yourdata.dat; 
VARIABLE:  
NAMES ARE y1-y4; 
USEVARIABLES ARE y1-y4; 
CATEGORICAL ARE y1-y4; 
CLASSES = class (2); 
 ANALYSIS: TYPE=MIXTURE; 
 ESTIMATOR=ML; 
 STARTS = 500 50; 
 

 MODEL: 
 %overall% 
 %class#1% 
 [y1$1-y4$1];!J thresholds class1 
 %class#2% 
 [y1$1-y4$1];!J thresholds class2 
 

 
Groups-based trajectory model:                                      Latent transition analysis: 
DATA: FILE IS yourdata.dat; 
VARIABLE: NAMES ARE y1-y5; 
USEVARIABLES ARE y1-y5; 
 classes = class(2);                                               
ANALYSIS: TYPE = MIXTURE; 
ESTIMATOR=ML; STARTS = 500 50; 
 

MODEL: 
%overall% 
int by y1-y5@1;  
!define intercept coefficient, loadings are 1's 
linear by y1@0 y2@1 y3@2 y4@3 y5@4; 
!define linear coefficient, loadings are time scores 
quad by y1@0 y2@1 y3@4 y4@9 y5@16; 
!define quadratic coeff., loadings are sq. time scores 
[y1-y5@0]; 
y1-y5 (1) ; !J residual variances, equal across time 
int@0; linear@0; quad@0; !no factor variances 
int with linear@0; int with quad@0; linear with 
quad@0;        !no factor covariances 
%class#1% 
[int linear quad]; !growth coeff means in class 1 
%class#2% 
[int linear quad]; !growth coeff means in class 2 
 

 DATA: FILE IS yourdata.dat; 
VARIABLE:  
NAMES ARE y11 y21 y31 y41 y12 y22 y32 y42; 
USEVARIABLES ARE  
 y11 y21 y31 y41 y12 y22 y32 y42; 
CATEGORICAL ARE 
y11 y21 y31 y41 y12 y22 y32 y42; 
classes = c1 (2) c2 (2); 
!request K=2 and M=2 
ANALYSIS: TYPE = MIXTURE; ESTIMATOR=ML; 
STARTS = 500 50; 
 

MODEL: 
%overall% 
c2#1 on c1#1;  
!multinomial slope, regress  t state1 on t-1 state1 (Eq30) 
 [c2#1]; !multinomial intercept for t state1 (Eq30) 
 [c1#1]; !multinomial intercept, for t-1 (initial) state1 
model c1: 
%c1#1% 
[y11$1]  (1); [y21$1]  (2); [ y31$1]  (3); [y41$1]  (4); 
!J thresholds held equal within-state across-time -- MI 
%c1#2% 
[y11$1] (5); [ y21$1] (6); [ y31$1] (7); [ y41$1] (8); 
model c2: 
%c2#1% 
[ y12$1]  (1); [y22$1] (2); [y32$1] (3); [y42$1] (4); 
%c2#2% 
[y12$1] (5); [ y22$1] (6); [ y32$1] (7); [ y42$1] (8); 
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Note that for hybrid mixture models, there are several options for identifying the latent factors, and many 
options for what parameters to allow to vary across class. Below one option is shown per model.  
 
Factor mixture model:                                                    Categorical-item factor mixture model: 
DATA: FILE IS yourdata.dat; 
VARIABLE: NAMES ARE y1-y5; 
USEVARIABLES ARE y1-y5;  
CLASSES = class (2); 
ANALYSIS: TYPE= MIXTURE; 
ESTIMATOR=ML; STARTS = 500 50; 
 

MODEL: 
 %overall% 
 fac1 by y1-y5*; !J factor loadings 
 [fac1@0];   !factor mean fixed to 0 
fac1@1;   !factor variance fixed to 1 
y1-y5; !J residual variances 
 %class#1% 
 [y1-y5]; !J outcome intercepts, class 1 
%class#2% 
 [y1-y5]; !J outcome intercepts, class 2 

 DATA: FILE IS yourdata.dat; 
VARIABLE: NAMES ARE y1-y4;    
USEVARIABLES ARE y1-y4; 
CATEGORICAL ARE y1-y4; 
CLASSES = class (2); 
ANALYSIS: TYPE= MIXTURE; ESTIMATOR=ML; 
STARTS = 500 50; algorithm=integration; 
 

MODEL: 
%overall% 
fac1 by y1-y4*; !J factor loadings 
[fac1@0]; !factor mean fixed to 0 
fac1@1;  !factor variance fixed to 1 
%class#1% 
[y1$1-y4$1];  !J outcome thresholds, class 1 
%class#2% 
 [y1$1-y4$1]; !J outcome thresholds, class 1 

 
                                                                                         Latent transition model with a categorical-item                         
 Growth mixture model:                                               factor measurement model: 
DATA: FILE IS yourdata.dat; 
VARIABLE: NAMES ARE y1-y5; 
USEVARIABLES ARE y1-y5;  
CLASSES = class (2); 
ANALYSIS: TYPE= MIXTURE; 
ESTIMATOR=ML; STARTS = 500 50; 
 

MODEL: 
%overall% 
int by y1-y5@1;  
!define intercept coefficient, loadings are 1's 
linear by y1@0 y2@1 y3@2 y4@3 y5@4; 
!define linear coefficient, loadings are time scores 
quad by y1@0 y2@1 y3@4 y4@9 y5@16; 
!define quadratic coeff., loadings are sq. time scores 
 [y1-y5@0]; !J outcome intercepts, fixed to 0 
y1-y5 (1) ; !J residual variances, equal across time 
linear@0; quad@0; !no linear or quad variances 
int with linear@0; int with quad@0;  
linear with quad@0; !no factor covariances here 
%class#1% 
[int linear quad];  !growth coeff means in class 1 
 int; !intercept factor variance, class 1 
%class#2% 
[int linear quad];   !growth coeff means in class 2 
int; !intercept factor variance, class 2 

 DATA: FILE IS yourdata.dat; 
VARIABLE: NAMES ARE y11 y21 y31 y41 y12 y22 
y32 y42; USEVARIABLES ARE y11 y21 y31 y41 
y12 y22 y32 y42; CATEGORICAL ARE 
y11 y21 y31 y41 y12 y22 y32 y42; 
classes = c1 (2) c2 (2); 
ANALYSIS: TYPE= MIXTURE; ESTIMATOR=ML; 
STARTS = 500 50; 
 

MODEL: 
%overall% 
fac1 by y11* y21 y31 y41; !J factor loadings, time 1 
fac2 by y12* y22 y32 y42; !J factor loadings, time 2 
fac1@1; fac2@1; !factor variances fixed to 1 
fac1 with fac2@0; !factor cov here fixed to 0 
[fac1@0 fac2@0]; !factor means fixed to 0 
c2#1 on c1#1; 
!multinomial slope, regress  t state1 on t-1 state1 (Eq30) 
 [c2#1];  !multinomial intercept for t state1 (Eq30) 
[c1#1] ; !multinomial intercept, for t-1 (initial) state1 
 

model c1: 
%c1#1% 
[y11$1]  (1); [y21$1]  (2); [ y31$1]  (3); [y41$1]  (4); 
!J thresholds held equal within-state across-time -- MI 
%c1#2% 
[y11$1] (5); [ y21$1] (6); [ y31$1] (7); [ y41$1] (8); 
 

model c2: 
%c2#1% 
[ y12$1] (1); [y22$1] (2); [y32$1] (3); [y42$1] (4); 
%c2#2% 
[y12$1] (5); [ y22$1] (6); [ y32$1] (7); [ y42$1] (8); 
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Parallel-process latent class growth model:                 Parallel-process latent transition analysis: 
DATA: FILE IS yourdata.dat; 
VARIABLE: NAMES ARE y1-y5 z1-z5; 
USEVARIABLES ARE y1-y5 z1-z5; 
 classes = cy (2) cz (2);     
!request K=2 and Q=2                                          
ANALYSIS: TYPE = MIXTURE; 
ESTIMATOR=ML; STARTS = 500 50; 
 

MODEL: 
%overall% 
cy#1 on cz#1; 
!multinomial slope, regress  yclass1 on zclass1  
[cz#1]; !multinomial intercept for zclass1 
[cy#1]; !multinomial intercept for yclass1 
 
!define intercept, linear, quad coeff. for yprocess 
inty by y1-y5@1; 
lineary by y1@0 y2@1 y3@2 y4@3 y5@4; 
quady by y1@0 y2@1 y3@4 y4@9 y5@16; 
 [y1-y5@0]; !J intercepts, fixed to 0, in y process 
y1-y5 (1); !J equal res var across time, in y process 
 
!define intercept, linear, quad coeff. for zprocess 
intz by z1-z5@1; 
linearz by z1@0 z2@1 z3@2 z4@3 z5@4; 
quadz by z1@0 z2@1 z3@4 z4@9 z5@16; 
 [z1-z5@0]; !J intercepts, fixed to 0, in z process 
z1-z5 (2); !J equal res var across time, in z process 
 
inty lineary quady intz linearz quadz with  
intz@0 linearz@0 quadz@0 inty@0 lineary@0 
quady@0; !no factor covariances 
inty@0 lineary@0 quady@0 intz@0 linearz@0 
quadz@0; !no factor variances 
 

model cy: 
%cy#1% 
[inty lineary quady];!y process growth means class1 
%cy#2% 
[inty lineary quady];!y process growth means class2 
 

model cz: 
%cz#1% 
[intz linearz quadz];!z process growth means class1 
%cz#2% 
[intz linearz quadz];!z process growth means class2 
 

 DATA: FILE IS yourdata.dat; 
VARIABLE: NAMES ARE y11 y21 y31 y41 y12 y22 
y32 y42 z11 z21 z31 z41 z12 z22 z32 z42; 
USEVARIABLES ARE y11 y21 y31 y41 y12 y22 
y32 y42 z11 z21 z31 z41 z12 z22 z32 z42; 
CATEGORICAL ARE y11 y21 y31 y41 y12 y22 y32 
y42 z11 z21 z31 z41 z12 z22 z32 z42; 
classes =   c1z (2)  c1y (2) c2z (2) c2y (2) ; 
!request Q=2 and K=2 and S=2 and M=2                          
 ANALYSIS: TYPE = MIXTURE; ESTIMATOR=ML; 
STARTS = 500 50; 
 

MODEL: 
%overall% 
 [c2y#1] ; !multinomial intercept for t ystate1  
[c1y#1] ; !multinomial intercept for t-1 ystate1 
 [c2z#1] ; !multinomial intercept for t zstate1 
[c1z#1] ; !multinomial intercept for t-1 zstate1 
!multinomial slopes: 
c1y#1 on c1z#1;  
! regress  t-1 ystate1 on t-1 zstate1 
 c2z#1 on c1z#1  c1y#1; 
! regress  t zstate1 on t-1 zstate1, t-1 ystate1 
 c2y#1 on c1z#1 c1y#1 c2z#1; 
! regress  t ystate1 on t-1 zstate1, t-1 ystate1, t zstate1 
 

 model c1z: 
 %c1z#1% 
 [ z11$1]  (11); [ z21$1] (22);  
 [ z31$1] (33); [ z41$1] (44); 
!J thresholds=within-state within-process across-time: MI 
 %c1z#2% 
 [ z11$1]  (55); [ z21$1] (66); 
 [ z31$1] (77); [ z41$1] (88); 
 

model c1y: 
%c1y#1% 
 [ y11$1]  (1); [ y21$1] (2); 
 [ y31$1] (3); [ y41$1] (4); 
 %c1y#2% 
 [ y11$1]  (5); [ y21$1] (6); 
 [ y31$1] (7); [ y41$1] (8); 
 

 model c2z: 
 %c2z#1% 
 [ z12$1]  (11); [ z22$1] (22); 
 [ z32$1] (33); [ z42$1] (44); 
 %c2z#2% 
 [ z12$1]  (55); [ z22$1] (66); 
 [ z32$1] (77); [ z42$1] (88); 
 

 model c2y: 
 %c2y#1% 
 [ y12$1]  (1); [ y22$1] (2); 
 [ y32$1] (3); [ y42$1] (4); 
 %c2y#2% 
 [ y12$1]  (5); [ y22$1] (6); 
[ y32$1] (7); [ y42$1] (8); 
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Empirical example analysis model: 
Syntax is notated in blue with changes from the above parallel process LTA syntax. 
DATA: FILE IS empiricalex.dat; 
VARIABLE: NAMES ARE disob1 temper1 guilt1 whine1 saddep1 slowmv1 irrit1 conc1 
    disob2 temper2 guilt2 whine2 saddep2 slowmv2 irrit2 conc2; 
 USEVARIABLES ARE disob1 temper1 guilt1 whine1 saddep1 slowmv1 irrit1 conc1 
    disob2 temper2 guilt2 whine2 saddep2 slowmv2 irrit2 conc2; 
CATEGORICAL ARE disob1 temper1 guilt1 whine1 saddep1 slowmv1 irrit1 conc1 
    disob2 temper2 guilt2 whine2 saddep2 slowmv2 irrit2 conc2; 
MISSING ARE .; 
classes =   c1z (2)  c1y (2) c2z (2) c2y (2); 
ANALYSIS: TYPE= MIXTURE; ESTIMATOR=ML;  
STARTS = 500 50; algorithm=integration; !numerical integration is necessary 
 

MODEL: 
 %overall% 
  [c2y#1] ; 
  [c1y#1] ; 
  [c2z#1] ; 
  [c1z#1] ; 
  c1y#1 on c1z#1; 
  c2z#1 on c1z#1 c1y#1; 
  c2y#1 on c1z#1 c1y#1 c2z#1; 
  fac1 by irrit1@1 temper1 ; ! one y-process symptom & 1 z process symptom load on time t-1 factor 
! one factor loading is fixed for identification and the other factor loading is estimated 
  fac2 by irrit2@1 temper2; ! one y-process symptom & 1 z process symptom load on time t factor 
! one factor loading is fixed for identification and the other factor loading is estimated 
  fac1@1; fac2@1; ! factor variances are fixed to 1 for identification 
  fac1 with fac2@0; ! factor covariance is fixed to 0 (optional) 
  [fac1@0 fac2@0]; ! factor means are fixed to 0 
 

  model c1z: 
  %c1z#1% 
  [ disob1$1]  (11); [ temper1$1] (22); [ guilt1$1] (33); [ whine1$1] (44); 
  %c1z#2% 
  [ disob1$1]  (55); [ temper1$1] (66); [ guilt1$1] (77); [ whine1$1] (88); 
 

   model c1y: 
   %c1y#1% 
   [ saddep1$1]  (1); [ slowmv1$1] (2); [ conc1$1] (3); [ irrit1$1 ] (4); 
   %c1y#2% 
   [ saddep1$1]  (5); [ slowmv1$1] (6); [ conc1$1] (7); [ irrit1$1] (8); 
 

   model c2z: 
   %c2z#1% 
   [ disob2$1]  (11); [ temper2$1] (22); [ guilt2$1] (33); [ whine2$1] (44); 
   %c2z#2% 
   [ disob2$1]  (55); [ temper2$1] (66); [ guilt2$1] (77); [ whine2$1] (88); 
 

   model c2y: 
   %c2y#1% 
   [ saddep2$1]  (1); [ slowmv2$1] (2); [ conc2$1] (3); [ irrit2$1] (4); 
    %c2y#2% 
    [ saddep2$1]  (5); [ slowmv2$1] (6);[ conc2$1] (7);[ irrit2$1] (8); 
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V. Path diagrams for models discussed in manuscript. 
 

There is not an established path diagrammatic convention in mixture modeling that allows model 
equations to be exactly reconstructed from diagrams using, say, Wright's tracing rules, as there is in 
structural equation modeling. Rather, path diagram-like representations are used in a heuristic way for 
mixture models to help visualize the model, but without an exact mapping to the model equations. Here, a 
solid circle denoted with  c represents a categorical latent variable; dashed circles represent continuous 
latent variables. A straight arrows represent a regression path (that may be linear or nonlinear). The 
categorical latent variable points at parameters that are allowed to be class-varying--with the exception 
that when it points to a measured variable (square) or a latent factor, the corresponding mean is allowed to 
vary across class. (For simplicity, item intercepts/thresholds or factor means are not represented.) Curved 
arrows represent variances or covariances. J refers to the number of outcomes. 
 
Univariate finite normal mixture. 

 

         Latent profile analysis. 

  

      Latent class analysis. 

 

Groups-based trajectory model. 

 
Notes. Residuals are shown time-invariant, though this is 
not a necessity. Circles for growth coefficients without 
variances are fixed coefficients. J=5 shown. 

Latent transition analysis. 
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Factor mixture model. 
 

         

Categorical-item factor mixture model. 
 

   
 
 
 
 
 
 

Growth mixture model. 
 

 
 

Notes. As shown, only the intercept coefficient is a random 
factor and slope coefficients are fixed, though this is not a 
necessity.   

Latent transition analysis with a categorical-
item factor analysis measurement model. 
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Parallel process groups-based trajectory model. 
 

Parallel process latent transition model.
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VI. Brief overview of LTA with 3 timepoints. 
 
LTA with two timepoints is used in the manuscript. A LTA with three timepoints is briefly summarized 
here. At time 3 items yi13 - yiJ3 serve as indicators of 3ic , which has H latent states. yi3 is the response 
pattern for J items at time 3. Under a first-order Markov assumption, the combined LTA model for T=3 
would entail adding a within-state model for time 3, similarly to Equation (29), and adding a multinomial 
regression of latent states at time 3 on latent states at time 2 similarly to Equation (30) (implying an 
additional transition probability matrix). 

 1 2 1 3 2 1 1 2 2 3 3
1 1 1

( ) ( ) ( | ) ( | ) ( | ) ( | ) ( | )
H M K

i i i i i i i i i i i i
h m k

p p c k p c m c k p c h c m p c k p c m p c h
  

        y y y y

 
Probabilities of state membership at time 3 are calculable from estimated multinomial coefficients 
following principles in Appendix A. 
 
LTAs with T>3 allow the examination of stationarity of transition probabilities across time. They also 
allow the possibility of investigating a second-order Markov process  (regressing latent states at time t not 
just on states at t-1 but also on states at t-2), although the number of added parameters required may be 
prohibitive. These possibilities are not demonstrated here. 
 
 


