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|. Full presentation of parallel-process GBT model.

From manuscript Equation (43), the parallel-process groups-based trgjectory model (GBT) is:
Q K
fyz)=2 2 p@=a)p(@ =k|c=a)f(y, |¢'=K) f (z |¢"=q)

g=1 k=1
Each term in this expression was defined in the manuscript. It was noted in the manuscript that each term
could be expressed using earlier-presented manuscript equations, so equations for each term were not
repeated to save space. Here, specific equations for each term are presented for added concreteness.

e Marginal probability of class membership for the z-process:

Q
p(c’ =q) =exp(w'®) /> exp(w'?) . For indentification v = 0.
g=1

Conditional probability of class membership for the y-process given class membership for the z-
process, here written supposing K=Q=3:

p(c’ =k|c*=q) = 3eXp(ak + Lty + Liodi)
Z eXp(Olg + ﬂgldil + ﬂgZdiZ)
g1

Q-1 dummy variable predictors are used to represent class membership in the z-process (which
consists of Q classes). dj; is1if z-process class=1, 0 otherwise. Dummy variable di; is 1 if z
process class=2, 0 otherwise. The denominator summation is over the K outcome classes in the y-
process, using summation index g. For identification, coefficients of the last/reference category=0

(here, a; = 5, = 5, =0).

e Assuming there are J items repeatedly measured for each process, the joint PDF of the y-process
repeated measures within class k is given as a product of univariate normal PDFs

fy 7=k = (e =k)

(K)

where the parameters ;" (afunction of estimated growth coefficients) and 0'12(") of the

univariate normal PDF for the jth y-process item are defined asin Equations (21) and (23) in the
manuscript.

e Thejoint PDF of the z-process repeated measures within class q is also given as a product of
univariate normal PDFs

f(z qu=q)=Hf(zj |c*=q)

(2

where the parameters £, (a function of estimated growth coefficients) and O'J-Z(Z) of the univariate

normal PDF for the jth z-processitem are defined asin Equations (21) and (23) in the manuscript.
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I'1. Full presentation of parallel-processLTA.

From manuscript Equation (45):
S M Q K

f(yiz) =22, 2> p(ci=a) p(ci=k | ci=a)p(cy=s|ci=k;ci=q) p(c},=m]|c] = G, G =k; C}=S)
s=1 m=1 gq=1 k=1

Py lci=K) Py, |c;=m) p(z,, | ¢i=0) P(Z; | c;,=S)

Each term in this expression was defined in the manuscript. It was noted in the manuscript that each term

could be expressed using earlier-presented manuscript equations, so equations for each term were not
repeated to save space. Here, specific equations for each term are presented for added concreteness.

e Marginal probahility of time 1 latent state membership for the z-process:
Q
p(c; = a) = exp(e'?) /D exp(w'?) . For indentification ™) = 0.
g=1

® Conditional probability of time 1 state membership for the y-process given time 1 state
membership for the z-process, here written supposing at time 1 K=Q=3:

_exp(ey + Bydi + B,d,)

3
z exp(ag + ﬁgldil + ﬂgzdi2)
g-1

Q-1 dummy variable predictors are used to represent time 1 latent state membership in the -
process (which consists of Q time 1 states). di; is1if at time 1, z-process state=1, 0 otherwise.
Dummy variable d;; is 1if at time 1, z-process state=2, 0 otherwise. The denominator summation
isover the K outcome states (i.e., time 1 states in the y-process), using summeation index g. For

identification, coefficients of the |ast/reference category=0 (here, o, = 3, = B, =0).

® Conditional probability of time 2 state membership for the z-process given time 1 state
membership for the y-process and z-process, here written supposing at K=Q=S=3:

p(clz2 =5 | C|);|l_ — k, C|1 — q) — - exp(as + ﬁsldil + ﬂszdiZ + ﬂsSdiC% + ﬂs4di4)
z exp(aé + ﬁéldil + ﬂézdiz + ﬁésdis + ﬁ;4di4)
g=1

Single primes ( ) are used to indicate that coefficients in this equation differ from those in the
earlier-presented multinomial regression (for p(c) =k |c3 =Qq)) inthismodel. Here, K-1
dummy variable predictors are used to represent time 1 latent state membership in the y-process
(which consists of K time 1 states). di; is1if at time 1, y-process state=1, O otherwise. di; is 1 if
at time 1, y-process state=2, 0 otherwise. Additionally, Q-1 dummy variable predictors are used
to represent time 1 latent state membership in the z-process (which consists of Q time 1 states).
dizislif at time 1, z-process state=1, O otherwise. di, is 1 if at time 1, z-process state=2, 0
otherwise. The denominator summation is over the S outcome states (i.e. time 2 statesin the z-
process), using summeation index g. For identification coefficients of the last/reference category=0

(o =By =By =Pr=Pu=0).

® Conditional probability of time 2 state membership for the y-process given time 1 state
membership for the y-process and time 1 and 2 state membership for the z-process, here written
supposing at K=Q=M=S=3:
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p(C|y2:m|C|§_:q1C’|)]l_:k1C’|22:S): Bexp(am—l_ﬁ d +ﬂ 2d|2+ﬁ 3d|3+ﬁ 4d|4+ﬁ 5d|5+ﬁ 6d|6)

zexp(a;/_l_ ﬂ”d + ﬁ” d ﬁ” d + ﬂ” d ﬁ” d ﬂ” dle)
g=1

Double primes ( ”) are used to indicate that coefficients in this equation differ from those in the
earlier-presented multinomial regressionsin this model. Here, Q-1 dummy variable predictors are
used to represent time 1 latent state membership in the z-process (which consists of Q time 1
states). d; is1if at time 1, z-process state=1, O otherwise. d;; is 1 if at time 1, z-process state=2, 0
otherwise. K-1 dummy variable predictors are used to represent time 1 latent state membership in
the y-process (which consists of K time 1 states). dizis1if at time 1, y-process state=1, 0
otherwise. diz is 1if at time 1, y-process state=2, 0 otherwise. Additionally, S-1 dummy variable
predictors are used to represent time 2 latent state membership in the z-process (which consists of
Stime 2 states). disis1if at time 2, z-process state=1, 0 otherwise. digis 1 if at time 2, z-process
state=2, 0 otherwise. The denominator summation is over the M outcome states (i.e. time 2 states
in the y-process), using summation index g. For identification, coefficients of the last/reference

—_ 7 _ 44 _ 44 _ 44 _ 44 _ 44 _ 44 _
category=0 (here, oty = [y = Py = Pz = Py = Pas = P36 = 0).

e Assuming there are J items measured at each timepoint, for each process:
the joint PMF of the y-process item responses at time 1 within state k is given as a product of
univariate Bernoulli PMFs

J
Py, 1Cr=K) = H p(yijl |ci=k)
j=1

where the parameter 7z ) of the univariate Bernoulli for the jthy-processitem at time 1 (item
endorsement probability) is defined asin Equation (24) in the manuscript.

e Thejoint PMF of the z-process item responses at time 1 within state g is given as a product of
univariate Bernoulli PMFs

J
p(z,lci=a)=]] p(z,1ci=0)
j=1

where the parameter 7Z'(q) of the univariate Bernoulli for the jth z-process item at time 1 is defined
asin Equation (24) in the manuscript.

e thejoint PMF of the y-process item responses at time 2 within state mis given as a product of
univariate Bernoulli PMFs

J
P(Yi, |C|yz =m)= H p(yijz |C|yz =m)

where the parameter 72 ) of the univariate Bernoulli for the jth y-process item at time 2 defined
asin Equation (25) in the manuscript.

e Thejoint PMF of the z-process item responses at time 2 within state sis given as a product of
univariate Bernoulli PMFs

J
p(ziz |C|Zz =9)= H p(ij |C|22 =9)
j=1

where the parameter 72(3) of the univariate Bernoulli for the jth z-process item at time 2 defined
asin Equation (25) in the manuscript.
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I11. Multinomial coefficients used to calculate conditional probabilitiesfor empirical example.

For the empirical example--a hybrid parallel-process LTA of oppositionality and depressive symptoms
allowing across-process local dependence for the shared temper/irritability symptom--one kind of
conditional probability of sequence membership was provided in the manuscript. Other kinds of marginal,
conditional, and joint probabilities of potential substantive interest can be calculated (see Appendix A)
from the following estimated multinomial intercepts and slopes. Notation adheres to that used in the
previous section (I1) of this online appendix, with the modification that in this example K=M=Q=S=2.

Multinomial Estimate (SE)

coefficient
't 0.247 (0.086)
a, -3.538 (0.654)
ﬂl . 4.825 (0.667)
0(1’ -3.527 (0.624)
ﬂl’l 0.901 (0.473)
131’2 3.981 (0.747)
al” -3.365 (0.697)
ﬂl’i -7.772 (15.893)
131’; 10.859 (15.900)
ﬂl’é 10.762 (15.892)

Notes. For indentification, coefficients in the last/reference category were zero:
2 . _ _ . ’ ’ ’ . 2 7 A "
0 =0;0,=0,=0,0, =0, =0,=0; & =[5 =0,=0F5=0).
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V. Mplus softwar e syntax for each model described in manuscript.

The following Mplus syntax (L.K. Muthén & B.O. Muthén, 1998-2012) is provided for all models
described in the manuscript. Although syntax for some of these modelsis also available in the Mplus
users guide, that syntax relies more upon defaults for convenience. Here, for pedagogical purposes, all
estimated parameters within-class are explicitly represented in the syntax, so the syntax more directly
mirrors the equation presented in the manuscript.

Regarding latent state or transition probabilities from LTA, parallel-process LTA, and parallel-process
GBT (that were described in the manuscript's Appendix A), some are computed automatically by Mplus,
from estimated multinomial coefficients. Alternatively or in addition, all of these probabilities can be
computed by defining them as a function of estimated multinomial logistic coefficientsin a MODEL
CONSTRAINT command, using equations from the manuscript. Mplus 7.0 allows more of these
probabilities to be automatically computed or requested, and also alows referring to the probabilities
directly in the input (using parameterization=probability).

Specifics on the below syntax:

Syntax for each model contains two classes (or two states per timepoint).

When there are multiple processes, each process has two classes (or two states per timepoint).

Where applicable, measurement invariance is imposed.

When residual and/or factor variances are estimated, they are constrained equal across-class.

For mixture models with one categorical latent variable, the between model (Equation (8)) is

estimated automatically. In the UFNM syntax it isreferred to explicitly for pedagogical purposes,

and then in other models with one categorical latent variable, it is omitted.

e Syntax for outputting posterior probabilities is the same for all models, so it is only shown for the
UFNM.

e Notethat multinomial coefficients (intercepts or slopes) in the reference (last) class are never
referred to in the syntax because they are automatically constrained to O for identification
purposes, as discussed in the manuscript.

o Plotslike manuscript Figures 3-4 can be obtained by adding the PLOT command to the end of the
input (e.g., PLOT: TYPE=PLOT1 PLOT2 PLOTS3;) and listing the outcomesin the SERIES
subcommand (e.g. SERIESISy1-y5 (*); for asingle process or SERIESISy1-y5 (*) | z1-25 (*);
for two processes).
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Univariate finite normal mixture:

L atent profile analysis:

Sterba

L atent class analysis.

DATA: FILE IS yourdata.dat;

VARIABLE:

NAMES ARE y;
USEVARIABLES ARE vy;
CLASSES = class (2);

Irequest K=2
ANALYSIS: TYPE=MIXTURE;
ESTIMATOR=ML,;

Irequest maximum likelihood
STARTS =500 50;

Irequest random starting values
MODEL:

%overall%

[class#1]; 'K-1 multinomial int.

Ifrom Eqn(8),automatically included

y; lvariance

%class#1%

[y]; 'mean in class 1

%class#2%

[y]; 'mean in class 2

SAVEDATA: FILE IS
2class_posteriorprob.dat;
SAVE ARE cprobabilities;
Irequest posterior probabilities

DATA: FILE IS yourdata.dat;
VARIABLE:

NAMES ARE y1-y5;
USEVARIABLES ARE y1-y5;
CLASSES = class (2);
ANALYSIS: TYPE=MIXTURE;
ESTIMATOR=ML,

STARTS =500 50;

MODEL:

%overall%

y1-y5; 1J variances
%class#1%

[y1-y5]; 13 means in class 1
%class#2%

[y1-y5]; 13 means in class 2

DATA: FILE IS yourdata.dat;
VARIABLE:

NAMES ARE y1-y4;
USEVARIABLES ARE y1-y4;
CATEGORICAL ARE yl-y4;
CLASSES = class (2);
ANALYSIS: TYPE=MIXTURE;
ESTIMATOR=ML,

STARTS =500 50;

MODEL:

%overall%

%class#1%

[y1$1-y4$1];\J thresholds classl
%class#2%

[y1$1-y4$1];!J thresholds class2

Groups-based trajectory model:

L atent transition analysis.

DATA: FILE IS yourdata.dat;
VARIABLE: NAMES ARE y1-y5;
USEVARIABLES ARE y1-y5;

classes = class(2);

ANALYSIS: TYPE = MIXTURE;
ESTIMATOR=ML; STARTS = 500 50;

MODEL.:

%overall%

int by y1-y5@1;

ldefine intercept coefficient, loadings are 1's

linear by y1@0 y2@1 y3@2 y4@3 y5@4;
ldefine linear coefficient, loadings are time scores
quad by y1@0 y2@1 y3@4 y4@9 y5@16;
ldefine quadratic coeff., loadings are sq. time scores
[yl-y5@0];

y1-y5 (1) ; W residual variances, equal across time
int@0; linear@0; quad@O0; !no factor variances
int with linear@0; int with quad@0; linear with
quad@o; Ino factor covariances

%class#1%

[int linear quad]; !growth coeff means in class 1
%class#2%

[int linear quad]; !growth coeff means in class 2

DATA: FILE IS yourdata.dat;

VARIABLE:

NAMES ARE y11 y21 y31 y41 y12 y22 y32 y42;
USEVARIABLES ARE

y11y21 y31 y41yl12 y22 y32 y42;
CATEGORICAL ARE

y11y21 y31 y41 y12 y22 y32 y42;

classes = c1 (2) c2 (2);

Irequest K=2 and M=2

ANALYSIS: TYPE = MIXTURE; ESTIMATOR=ML,;
STARTS = 500 50;

MODEL:

%overall%

C2#1 on C1#1,

Imultinomial slope, regress t statel on t-1 statel (Eq30)
[c2#1]; !multinomial intercept for t statel (Eq30)
[c1#1]; !multinomial intercept, for t-1 (initial) statel
model c1:

%c1#1%

[y11$1] (1); [y21$1] (2); [y31$1] (3); [y41$1] (4);
1J thresholds held equal within-state across-time -- Ml
%c1#2%

[y11$1] (5); [ y21$1] (6); [ y31$1] (7); [ y41$1] (8);
model c2:

%c2#1%

[y12$1] (1); [y22$1] (2); [y32$1] (3); [y42$1] (4);
%C2#2%

[y12$1] (5); [ y22$1] (6); [ y32$1] (7); [ y42$1] (8);
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Note that for hybrid mixture models, there are several options for identifying the latent factors, and many
options for what parametersto allow to vary across class. Below one option is shown per model.

Factor mixture mode!;

Categorical-item factor mixture model:

DATA: FILE IS yourdata.dat;
VARIABLE: NAMES ARE y1-y5;
USEVARIABLES ARE y1-y5;
CLASSES = class (2);

ANALYSIS: TYPE= MIXTURE;
ESTIMATOR=ML; STARTS =500 50;

MODEL:

%overall%

facl by y1-y5*; 1J factor loadings
[facl@0]; !factor mean fixed to O
facl@1; !factor variance fixed to 1
y1-y5; 1J residual variances
%class#1%

[y1-y5]; 1J outcome intercepts, class 1
%class#2%

[y1-y5]; 1J outcome intercepts, class 2

DATA: FILE IS yourdata.dat;

VARIABLE: NAMES ARE y1-y4;
USEVARIABLES ARE y1-y4;

CATEGORICAL ARE y1-y4;

CLASSES = class (2);

ANALYSIS: TYPE= MIXTURE; ESTIMATOR=ML;
STARTS = 500 50; algorithm=integration;

MODEL:

%overall%

facl by y1-y4*; 1J factor loadings
[fac1@0]; !factor mean fixed to 0

facl@1; !factor variance fixed to 1
%class#1%

[y1$1-y4$1]; 'J outcome thresholds, class 1
%class#2%

[y1$1-y4$1]; 1J outcome thresholds, class 1

Growth mixture moddl:

L atent transition model with a categorical-item
factor measurement mode!:

DATA: FILE IS yourdata.dat;
VARIABLE: NAMES ARE y1-y5;
USEVARIABLES ARE y1-y5;
CLASSES = class (2);

ANALYSIS: TYPE= MIXTURE;
ESTIMATOR=ML; STARTS = 500 50;

MODEL:

%overall%

int by y1-y5@1;

ldefine intercept coefficient, loadings are 1's

linear by y1@0 y2@1 y3@2 y4@3 y5@4;
ldefine linear coefficient, loadings are time scores
quad by y1@0 y2@1 y3@4 y4@9 y5@16;
ldefine quadratic coeff., loadings are sq. time scores
[y1-y5@0]; 1J outcome intercepts, fixed to 0
y1-y5 (1) ; 1J residual variances, equal across time
linear@0; quad@0; !no linear or quad variances
int with linear@0; int with quad@O;

linear with quad@0; 'no factor covariances here
%class#1%

[int linear quad]; !growth coeff means in class 1
int; lintercept factor variance, class 1
%class#2%

[int linear quad]; !growth coeff means in class 2
int; lintercept factor variance, class 2

DATA: FILE IS yourdata.dat;

VARIABLE: NAMES ARE y11 y21 y31 y41 y12 y22
y32 y42; USEVARIABLES ARE y11 y21 y31 y41
y12 y22 y32 y42; CATEGORICAL ARE

y11 y21 y31 y41 y12 y22 y32 y42;

classes = c1 (2) c2 (2);

ANALYSIS: TYPE= MIXTURE; ESTIMATOR=ML;
STARTS = 500 50;

MODEL:

%overall%

facl by y11* y21 y31 y41; 1J factor loadings, time 1
fac2 by y12* y22 y32 y42; 1J factor loadings, time 2
facl@1; fac2@1; 'factor variances fixed to 1

facl with fac2@O0; !factor cov here fixed to 0
[fac1@0 fac2@0]; !factor means fixed to O

C2#1 on c1#1,

Imultinomial slope, regress t statel on t-1 statel (Eq30)
[c2#1]; multinomial intercept for t statel (Eq30)
[c1#1] ; Imultinomial intercept, for t-1 (initial) statel

model c1:

%cl1#1%

[y11$1] (1); [y21$1] (2); [y31$1] (3); [y41$1] (4);
1J thresholds held equal within-state across-time -- Ml
%cl1#2%

[y11$1] (5); [ y21$1] (6); [ y31$1] (7); [ y41$1] (8);
model c2:

%cC2#1%

[ y12$1] (1); [y22$1] (2); [y32$1] (3); [y42$1] (4);
%Cc2#2%

[y12$1] (5); [ y22$1] (6); [ y32$1] (7); [ y42$1] (8);
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Par allel-process latent class growth mode!:

Sterba

Par allel-process latent transition analysis:

DATA: FILE IS yourdata.dat;
VARIABLE: NAMES ARE y1-y5 z1-75;
USEVARIABLES ARE y1-y5 z1-z5;
classes =cy (2) cz (2);

Irequest K=2 and Q=2

ANALYSIS: TYPE = MIXTURE;
ESTIMATOR=ML; STARTS = 500 50;

MODEL:

%overall%

cy#1 on cz#1,

Imultinomial slope, regress yclassl on zclassl
[cz#1]; 'multinomial intercept for zclass1
[cy#1]; 'multinomial intercept for yclass1

ldefine intercept, linear, quad coeff. for yprocess
inty by y1-y5@1;

lineary by y1@0 y2@1 y3@2 y4@3 y5@4;
quady by y1@0 y2@1 y3@4 y4@9 y5@16;
[y1-y5@0]; 1J intercepts, fixed to 0, in y process
y1-y5 (1); 1J equal res var across time, in y process

ldefine intercept, linear, quad coeff. for zprocess
intz by z1-z5@1;

linearz by z1@0 z2@1 z3@2 z4@3 z5@4;
quadz by z1@0 z22@1 z3@4 z4@9 z5@16;
[z1-z5@0]; 1J intercepts, fixed to 0, in z process
z1-z5 (2); 'J equal res var across time, in z process

inty lineary quady intz linearz quadz with
intz@O linearz@0 quadz@O inty@0 lineary@0
quady@0; !no factor covariances

inty@0 lineary@0 quady@0 intz@0 linearz@0
guadz@0; !no factor variances

model cy:
%cy#1%
[inty lineary quady];ly process growth means class1
%cy#2%
[inty lineary quady];ly process growth means class?2
model cz:
%cz#1%
[intz linearz quadz];!z process growth means class1
%cz#2%
[intz linearz quadz];!z process growth means class2

DATA: FILE IS yourdata.dat;

VARIABLE: NAMES ARE y11 y21 y31 y41 y12 y22
y32y42 z11 z21 z31 z41 712 z22 232 242,
USEVARIABLES ARE y11 y21 y31 y41 y12 y22
y32y42 z11 z21 z31 z41 712 z22 232 242,
CATEGORICAL ARE y11 y21 y31 y41 y12 y22 y32
y42 z11 z21 231 z41 z12 222 232 z42;

classes = cl1z (2) cly (2) c2z (2) c2y (2) ;

Irequest Q=2 and K=2 and S=2 and M=2

ANALYSIS: TYPE = MIXTURE; ESTIMATOR=ML;
STARTS = 500 50;

MODEL:

%overall%

[c2y#1] ; 'multinomial intercept for t ystatel
[c1y#1] ; 'multinomial intercept for t-1 ystatel
[c2z#1] ; 'multinomial intercept for t zstatel
[c1z#1] ; 'multinomial intercept for t-1 zstatel
Imultinomial slopes:

cly#1 on clz#1,

I regress t-1 ystatel on t-1 zstatel

c2z#1 on clz#1 cly#1,

I regress t zstatel on t-1 zstatel, t-1 ystatel
c2y#1 on clz#1 cly#1 c2z#1,

I regress tystatel on t-1 zstatel, t-1 ystatel, t zstatel

model c1z:

%c1z#1%

[z11$1] (11); [ z21%$1] (22);

[ zZ31%$1] (33); [ z41%$1] (44);

1J thresholds=within-state within-process across-time: Ml
%c1z#2%

[ z11$1] (55); [ z21%$1] (66);

[ z31%1] (77); [ z41%$1] (88);

model cly:
%cly#1%
[y11$1] (1); [y21$1] (2);
[y31$1] (3); [ y41$1] (4);
%Cly#2%
[y11$1] (5); [y21$1] (6);
[y31$1] (7); [ y41$1] (8);

model c2z:
%c2z#1%
[z12%1] (11); [ z22%1] (22);
[ z32%$1] (33); [ z42%$1] (44);
%c2z#2%
[ z12$1] (55); [ z22%1] (66);
[ z32%1] (77); [ z42%1] (88);

model c2y:

%c2y#1%

[y12$1] (1); [y22$1] (2);
[ y32$1] (3); [ y423$1] (4);
%Cc2y#2%

[y12$1] (5); [ y22$1] (6);
[y328$1] (7); [ y42$1] (8);
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Empirical example analysis mode!:
Syntax is notated in blue with changes from the above parallel process LTA syntax.

DATA: FILE IS empiricalex.dat;

VARIABLE: NAMES ARE disobl temperl guiltl whinel saddepl slowmvl irritl concl
disob2 temper2 guilt2 whine2 saddep2 slowmv2 irrit2 conc2;

USEVARIABLES ARE disob1 temperl guiltl whinel saddepl slowmv1 irritl concl
disob2 temper2 guilt2 whine2 saddep2 slowmv2 irrit2 conc2;

CATEGORICAL ARE disobl temperl guiltl whinel saddepl slowmvl irritl concl
disob2 temper2 guilt2 whine2 saddep2 slowmv2 irrit2 conc2;

MISSING ARE .;

classes = c¢1z (2) cly (2) c2z (2) c2y (2);

ANALYSIS: TYPE= MIXTURE; ESTIMATOR=ML;

STARTS = 500 50; algorithm=integration; !numerical integration is necessary

MODEL:

%overall%

[c2y#1] ;

[cly#1];

[c2z#1] ;

[c1z#1];

cly#1 on clz#1,

c2z#1 on clz#1 cly#1;

c2y#1 on clz#1 cly#l c2z#1;

facl by irritl@1 temperl ; ! one y-process symptom & 1 z process symptom load on time t-1 factor
one factor loading is fixed for identification and the other factor loading is estimated

fac2 by irrit2@1 temper2; ! one y-process symptom & 1 z process symptom load on time t factor
one factor loading is fixed for identification and the other factor loading is estimated

facl@1; fac2@1; ! factor variances are fixed to 1 for identification

facl with fac2@0; ! factor covariance is fixed to O (optional)

[facl@0 fac2@O]; ! factor means are fixed to 0

model c1z:
%clz#1%
[ disob1$1] (11); [ temperl$l] (22); [ guiltl$l] (33); [ whinel$l] (44);
%c1z#2%
[ disob1$1] (55); [ temperl$l] (66); [ guiltl$l] (77); [ whinel$1] (88);

model cly:
%cly#1%
[ saddepl$1] (1); [ slowmv1$1l] (2); [ concl$l] (3); [irritl$l ] (4);
%Cly#2%
[ saddepl$1] (5); [ slowmv1$1] (6); [ concl$l] (7); [irritl$1] (8);

model c2z:
%c2z#1%
[ disob2$1] (11); [ temper2$1] (22); [ guilt2$1] (33); [ whine2$1] (44);
%cC2z#2%
[ disob2$1] (55); [ temper2$1] (66); [ guilt2$1] (77); [ whine2$1] (88);

model c2y:
%c2y#1%
[ saddep2$1] (1); [ slowmv2$1] (2); [ conc2$1] (3); [ irrit2$1] (4);
%c2y#2%
[ saddep2$1] (5); [ slowmv2$1] (6);[ conc2$1] (7);[irrit2$1] (8);
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V. Path diagramsfor models discussed in manuscript.

Thereis not an established path diagrammatic convention in mixture modeling that allows model
equations to be exactly reconstructed from diagrams using, say, Wright'stracing rules, asthereisin
structural equation modeling. Rather, path diagram-like representations are used in a heuristic way for
mixture models to help visualize the model, but without an exact mapping to the model equations. Here, a
solid circle denoted with ¢ represents a categorical latent variable; dashed circles represent continuous
latent variables. A straight arrows represent a regression path (that may be linear or nonlinear). The
categorical latent variable points at parametersthat are allowed to be class-varying--with the exception
that when it points to a measured variable (square) or alatent factor, the corresponding mean is allowed to
vary across class. (For simplicity, item intercepts/thresholds or factor means are not represented.) Curved
arrows represent variances or covariances. J refers to the number of outcomes.

Univariate finite normal mixture. Latent profile analysis. Latent class analysis.

y V1 Yol VYy
7 f,\ e
© c1“~ o
Groups-based trgjectory model. Latent transition analysis.
N : ~
{ Intercept ) Iglr:)epaer ) /QuadratiC\
No Slope
\ ) 2/

Y| (Y21 | Yi1 Yi2| | Y22 YJ2

o2 c? o? c? G2

Notes. Residuals are shown time-invariant, though thisis
not a necessity. Circles for growth coefficients without
variances are fixed coefficients. J=5 shown.
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Factor mixture model.

Yol Y2||Ys ||V

t
NN Cre) )
e1 - 92 = 93 ~ eJ ~—

Categorical-item factor mixture model.

Growth mixture model.

Wo C( _
Co N Linea? \
\ / Quadratic

Intercept \ Slope

\no \

Slope

n/

Notes. As shown, only the intercept coefficient is arandom
factor and slope coefficients are fixed, though thisis not a
necessity.

Latent transition analysis with a categorical-
item factor analysis measurement model.
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Parallel process groups-based trajectory model.

c% G2z G622 o2z 522

1
Slope / Slope \

Linear Intercept \

n2?
Qe \ n¢ \ J
PN N\ ~
( Intercept | [ Ig:';epaer ) /Quadratic»

Slope

\ﬂo’

Parallel process latent transition model.

Z11| | 221|421 Z12| |Z22||ZJ2

S

Yar | [Y21|| Yo Yz | |Y22|-|YJ2
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V1. Brief overview of LTA with 3 timepoints.

LTA with two timepointsis used in the manuscript. A LTA with three timepointsis briefly summarized
here. Attime 3 itemsyiis - Yip Serve asindicators of ¢, , which has H latent states. y;; is the response

pattern for J items at time 3. Under afirst-order Markov assumption, the combined LTA model for T=3
would entail adding awithin-state model for time 3, similarly to Equation (29), and adding a multinomial
regression of latent states at time 3 on latent states at time 2 similarly to Equation (30) (implying an
additional transition probability matrix).

P =33 > (p(6, = k) P(G, = MG, = K) P(Gs = 16, = M) P |62 = K) P(Yia |G = M) Py 16 = 1)

h=1 m=1 k=1

Probabilities of state membership at time 3 are calculable from estimated multinomial coefficients
following principlesin Appendix A.

LTAswith T>3 allow the examination of stationarity of transition probabilities acrosstime. They also
allow the possibility of investigating a second-order Markov process (regressing latent states at timet not
just on states at t-1 but also on states at t-2), although the number of added parameters required may be
prohibitive. These possibilities are not demonstrated here.
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