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Abstract

Bayesian methodology can be used to estimate cluster specific
structural equation models with two-level data where all measure-
ment and structural coefficients, including intercepts, factor loadings
and regression coefficients can be estimated as cluster level random
effects rather than fixed parameters. Bayesian methodology is also
well-suited for estimating latent variable models where subjects are
not the only random mode, but also items and contexts. A general
cross-classified structural equation model is presented where obser-
vations are nested within two independent clustering variables. The
models include continuous and categorical dependent variables. Var-
ious applications are discussed. The random loading model is used
for estimating multiple group factor analysis models with large num-
ber of groups and measurement non-invariance. Individual differences
factor analysis model is described where factor loadings, as well as
factor means and variances are individually specific. This model is
used for analyzing ecological momentary assessment data for mood
disorders. Finally, the cross-classified structural framework is used for
the estimation of time intensive longitudinal structural models.

1 Introduction

In this article we describe some new modeling possibilities for multilevel
and cross classified data. Using Bayesian methodology it is possible to sub-
stantially expand the set of structural equation models beyond the set of



models that can be estimated with maximum likelihood estimation (MLE)
or weighted least squares (WLS) estimation methodology. Currently the lat-
ter two estimators provide the basis for almost all structural equation model
fitting.

The first modeling extension described in this article is for two-level SEM
where the measurement loadings are allowed to vary across clusters. The
standard two-level SEM, which can be estimated with the ML estimator, has
cluster specific random intercepts as well as cluster specific regression slopes
for observed predictors. If the predictor variable however is an unobserved
latent factor as in the case of the factor analysis measurement model the
slope coefficient has to be a fixed parameter otherwise the MLE will require
numerical integration. In practical settings this is not feasible when the num-
ber of cluster specific effects is greater than 3 or 4. In the case of categorical
dependent variables WLS estimation can be used to estimate two-level SEM
with random intercepts, see Asparouhov and Muthén (2007), however the
WLS method can not estimate models with random slopes even for observed
variables. The MLE estimator can be used with categorical variables to esti-
mate models with random intercepts, slopes, and loadings, however again the
method is not feasible when the number of random effects is greater than 3 or
4. In this article we show that the Bayesian methodology can be used to eas-
ily estimate SEM with any number of random intercepts, slopes and loadings
with categorical and continuous dependent variables. This is a breakthrough
not only because random loadings are included in this more general frame-
work but also because models with large number of cluster specific random
effects can now be easily estimated without encountering inadmissible solu-
tions. The ML and WLS estimators frequently yield non-positive definite
or singular variance covariance matrices, or negative residual variances when
the number of random effects is larger. The Bayesian methodology does not
have this flaw.

Cross classified modeling has been of interest in the last two decades as
the next step of hierarchical modeling, see for example Fielding and Goldstein
(2006) for an overview. Cross classified models are used to model hierarchical
data which has two-way clustering. For example students are clustered within
schools but are also cross clustered within neighborhoods. Both clustering
levels can have an effect on the individual outcomes. Until recently most of
the research and applications of cross classified modeling has been focused on
regression models. The Bayesian methodology has been used in Browne et al.
(2007) and Gonzalez et al. (2008) to estimate multivariate and SEM cross-



classified models. In this article, we describe a generalization of the cross-
classified SEM model described in Gonzalez et al. (2008). We extend the
model to include structural equations on all three levels: individual level and
the two clustering levels, random slopes and loadings as well as interactions
between random effects from the two different clustering levels.

It is clear that a multitude of recently proposed Bayesian methods are
available for psychological research but are largely unknown to psychologists.
Promising new methods extensions are ready for exploration by psychological
researchers. Furthermore, it has not been made sufficiently clear how to use
the new methods in practice. As an attempt to improve the situation, this
paper has three aims. The first is to give an overview of the many new and
promising Bayesian approaches to random effect latent variable modeling
that have been proposed in the recent statistical literature. The second is
to make several additional modeling contributions. The third is to place
all these new methods in the general latent variable modeling framework of
the Mplus program as implemented in Mplus Version 7. Mplus input for all
analysis are available at www.statmodel.com. In Section 2 we describe the
random loadings model. In Section 3 we describe the general cross-classified
SEM. In Section 4 we discuss model fit evaluation for the two-level and cross-
classified models. In Section 5 we illustrate the random loading model with
a factor analysis model on teacher effectiveness. In Section 6 we extend the
random loading model to include cluster specific factor mean and variance
parameters. In Section 7 we define the individual differences factor analysis
model and use that model for analyzing ecological momentary assessment
data for mood disorders. In Section 8 we use the general cross-classified
structural equation modeling framework for the estimation of time intensive
longitudinal structural models on students aggressive-disruptive behavior.
Section 9 concludes.

2 Two-level SEM with random loadings

In this section we describe a generalized two-level SEM with random loadings,
i.e., the factor loadings in this model are cluster specific random effects. Let
Yi; be the vector of observed variables. The general two-level structural
equation model, as described in Muthén (1994), is defined by the following
equations



Yii=Y1,;+Ys, (1)

Yiig = Minigj + e (2)

M = Bimig + T + &1 (3)
Yo =vo + Aomaj + €25 (4)

M2, = Q2 + Bomnaj + oz j + &a 5. (5)

The variables z; ;; and x5 ; are the vectors of predictor variables observed
at the two levels. The variables 7, ;; and 7, ; are the vectors of latent vari-
ables. The residual variables €1 5,15, €2,5, {2 are zero mean normally dis-
tributed residuals with variance covariance matrices O, Uy, ©9, Uy respec-
tively. The parameters oy, Ay, B, I'x, kK = 1,2, are the model parameters to
be estimated. The above model can easily be extended to categorical variable
using the probit link function. For each categorical variable Y,,;; we define
the underlying variable Y,;; such that

}/pij =ls Ti—1p < Y

pij < Tip (6)

where 7, are the threshold parameters. To include a categorical variable
in the general model above we substitute the variable Y,;; with Y;,. For
identification purposes the variance of €1 ,;; is fixed to 1. The two-level model
described above is the standard two-level SEM model. We extend this model
to allow the parameters A;, B, and I'; to be cluster specific random effects
instead of fixed parameters. These random effects are essentially between
level latent variables, i.e., are variables in the vector 7 ;.

The Bayesian estimation of this model is a marginal extension of the
standard two-level SEM estimation as described in Asparouhov and Muthén
(2010a) and (2010b). Conditional on the within level latent variable the
Gibbs sampler for the between level random effects is the same as if the
within level latent variable is observed, i.e., once the within level latent vari-
able is sampled the conditional posteriors are as in the regular SEM model
with random effects on observed variables. More details on the Bayesian
estimation of the above model can be found in De Jong et al. (2007) and De
Jong and Steenkamp (2009).



The random loadings technique has a number of practical applications.
For example, in multilevel structural equation models allowing the random
loadings to vary across clusters yields a more flexible model. Another prac-
tical application is in the case of multiple group SEM when there are many
groups and many minor but significant loadings differences between the
groups, see De Jong et al. (2007) and Davidov et al. (2012) for modeling
cross-cultural measurement non-invariance. In that case the random load-
ings approach can be used to obtain a better fitting and a more parsimonious
model that allows for loadings non-invariance between the groups without in-
creasing the number of parameters. In addition, the random loadings model
would avoid the step-wise modeling strategy that relaxes loading equalities
one at a time.

3 Cross-classified SEM

Cross-classified data arises in various practical applications. For example, in
a longitudinal study the students performance scores are clustered within
students and within teachers, see Luo and Kwok (2012). Such a model
can be used to simultaneously estimate the students innate abilities and the
teachers abilities and can be combined with a student level growth model.
Another example arises in survey sampling where observations are nested
within neighborhoods and interviewers.

A different type of cross-classified applications arises in the analysis of
multiple random mode data as discussed in Gonzalez et al. (2008), where
observations are nested within persons and cross nested within treatments or
situations. In multiple random mode data, there are two or more dimensions
that vary randomly. For example, one random dimension can be persons,
while the second random dimension can be situational contexts. Persons
are random samples from a population. Contexts are also random samples
from a target population of contexts. Observations are collected for various
persons in various contexts. Experimental design data can also be treated
as multiple random mode data when various experiments are conducted for
various subjects. The experiments are randomly selected from a large pop-
ulation of possible experiments and subjects are randomly selected from a
population as well.

Finally, a third type of cross-classified applications arises in Generalizabil-
ity theory, see Cronbach et al. (1963), Marcoulides (1999), Brennan (2001)



and De Boeck (2008) where test questions are modeled as random samples
from a population of test items. In this case observations are nested within
persons and also cross-nested within items.

It should be noted the importance of accounting for all sources of cluster-
ing when analyzing clustered data. If one of the clustering effects is ignored,
the model is essentially underspecified and fails to discover the true explana-
tory effect stemming from the additional clustering. This misspecification
can also lead to underestimating or overestimating of the standard errors,
see Luo and Kwok (2009).

While basic multilevel models are easy to estimate through maximum-
likelihood via the EM algorithm, see Raudenbush and Bryk (2002) and
Goldstein (2011), the cross classified models are not. Rasbash and Gold-
stein (1994) found a way to obtain the maximum-likelihood estimates for a
cross classified model by respecifying the model as a multilevel model. How-
ever that method can not be used in general settings when the number of
cluster units at both classification levels is large. The MCMC estimation
method proposed in Browne et al. (2001) is a general estimation method for
fitting cross classified models with no restriction on the data structure. The
method can be applied for normally distributed variables as well as categor-
ical variables.

Suppose that the observed data is clustered within J level 2 units. Sup-
pose also that there is a different type of clustering for this data, we will call
this level 3 clustering, with K level 3 units. The data is cross classified when
the level 2 clusters are not nested within the level 3 clusters and vice versa.
Denote by Y,,;r the p—th observed variable for person ¢ belonging to level
2 cluster 7 and level 3 cluster k. The number of observations that belong
to level 2 cluster j and level 3 cluster k can be any number including 0. In
some special experimental designs the number of such observations is exactly
1, see for example Gonzalez et al. (2008). Raudenbush (1993) shows that
the cross classified modeling can be conducted even for sparse situations in
which most of the intersection cells (j,k) are empty.

Denote by Yjji the vector of all observed variables. The definition of the
cross-classified SEM model is based on the following 2-way ANOVA equation

Yiie = Yiijp +Yo; + Y (7)

where Y3 ; is the random effect contribution of the j-th level 2 cluster, Y5
is the random effect contribution of the k-th level 3 cluster and Y7 ;;;, is the



individual level residual. Alternative interpretation for Y5 ; and Y3 is that
they are the random intercepts in the linear model.

At this point we can define separate structural equations for the 3 sets of
variables at the 3 different levels

Yiije = v1 + Minuije + €1k (8)
Mije = o1+ Binije + Dz + ik 9)
Yo, = Aomj + 2, (10)

N2 = Qo + Bt j 4+ Toxgj 4 &o (11)
Y5 = Asns i + e (12)

N3k = o3 + Bans  + Tsxg o + &3 (13)

The variables x5, ¥2; and w3; are the vectors of predictor at the
three different levels. The variables 7 5, 72; and 713 are the vectors of
the latent variables on the three different levels. The residual variables
E1,ijk,> §1,ijks €2,55 §2,5» €3,k E3,1 are zero mean normally distributed residuals with
variance covariance matrices ©1, W1, Oy, Wy, O3, U3 respectively. In the above
equations the intercept parameter vector vy can be present just in one of the
three levels. The parameters ay, Ag, By, 'y, k = 1,2, 3, are fixed model pa-
rameters, however, Ay, By,['; can be cluster specific random effects defined
at cluster level 2 or cluster level 3 or it can be the sum of two random effects,
one defined at level 2 and one defined at level 3. In addition, Ag, Bo, 'y can
be cluster specific random effects defined at cluster level 3 which will allow
the interaction modeling between observed and unobserved variables defined
on the two clustering levels. These random effects are essentially between
level latent variables, i.e., are variables in the vectors 7 ; or 73 ;. Categor-
ical data can easily be incorporated in this model through the probit link
approach used in the previous section.

The estimation of the above model is based on the MCMC algorithm
with the Gibbs sampler and is only marginally different from the estima-
tion of the two-level structural equation model described in Asparouhov and
Muthén (2010a) and Asparouhov and Muthén (2010b). The two-level model
estimation is based on first sampling the between component for each vari-
able from its posterior distribution. Then the Gibbs sampler for two-group



structural equation models is used to sample the rest of the components. The
two groups are the within and the between levels. Similarly here we sample
the two between level components in separate Gibbs sampling steps

and
D/é,k|*7}/ijkayv2,j]‘ (15>

Both of these posterior distributions are obtained the same way as the pos-
terior for the two-level between components since conditional on Y3 the
model for Y, is essentially a two-level model with the between component
being Y5 ;. Similarly the conditional posterior distribution of Y3, given Y5 ;
is the same as the posterior for the two-level component in a two-level model.
After the above two steps, the Gibbs sampler continues sampling the remain-
ing components as if the model is a 3 group structural equation model where
Y1k, Yo ; and Y3 are the observed variables in the 3 groups.

4 Model fit

Model fit can be evaluated in two different ways, using the PPP (posterior
predictive p-value), see Meng (1994), and using DIC, see Spiegelhalter et
al. (2002). These inference statistics are available under certain conditions.
The PPP is available when there are no random slopes and loadings. DIC is
available when all the variables are continuous.

First we describe the PPP fit statistic. The PPP value is based on a test
statistic f. For a cross-classified model the test statistic we use is as follows

f(}/l,ijk7}/2,j7 }/}),k‘a 9) = fl(}/l,ijk7 9) + f2(}/2,j7 9) + f3(}/r3,k:a 9) (16)

where 6 represents the model parameters. The function fi(Y1,jx,6) is the
standard chi-square SEM test of fit which tests the model implied level 1
mean and variance covariance against the unrestricted mean and variance
covariance on level 1. Similarly fo(Y2;,60) and f3(Y54,60) are the chi-square

tests of fit for level 2 and 3. The posterior predictive p-value is the proportions
of MCMC iterations for which

f(}/i,ijk7 YVQ,ja YE’),ka 9) < f(le#:zyk? Y;‘:ja ?jka 9) (17)



where Y7, Yo', and Y5, are model generated data using the current MCMC
generated parameters . This PPP value can be used similarly to the fre-
quentist p-values. A wvalue above 0.05 or 0.01 indicates a good model fit
while a value smaller than these cut off levels indicates poor model fit. The
PPP can be used as a test of fit for a structural cross-classified model. The
structural model is essentially tested against the unrestricted cross-classified
model where the variance covariance on each level is unrestricted. For two-
level structural models the PPP value is computed similarly but the test
function f consists of only two chi-square statistics coming from the two
different levels.

To compute DIC for the cross-classified and the two-level models we com-
pute the deviance D(6) at each MCMC iteration

D(9) = —21og(p(Y|6) (18)

where 6 represents all model parameters as well as all between level random
effects. We then compute the effective number of parameters pp and DIC

pp =D — D(0) (19)

DIC =pp+ D (20)

Note that pp is the only penalty for model complexity with this information
criterion. DIC can be used to compare any number of competing models, not
necessarily nested. The best model is the model with the lowest DIC value.
Note that the definition of DIC is somewhat ambivalent. In single level mod-
els, for the computation of the deviance we condition only on the model
parameters and not on any latent variables or random effects. Latent vari-
ables and random effects are marginalized. In two-level and cross-classified
models we condition also on all the between level random effects. Some mod-
els can be estimated as single level wide models or as two-level long models
which leads to two different definitions of DIC for the same model. In using
DIC for comparison it is important that the DIC is computed in the same
framework, i.e., it would be incorrect to compare wide model DIC with long
model DIC. In single level models DIC is asymptotically the same as AIC
computed with maximume-likelihood estimation. This property does not hold
for two-level and cross-classified models again due to the fact that random
effects are not marginalized. In single level models the effective number of pa-
rameters pp is approximately the same as the number of model parameters.



In two-level and cross-classified models the effective number of parameters
also includes all between level random effects, i.e., for each random effect in
the model pp is expected to increase by the number of clusters where the
random effect is defined. If there are 100 clusters in the data, each between
level random effect will contribute approximately 100 to pp as that is the
number of random parameters that are used to fit the model. However, the
more correlated the random effects are the lower the pp contribution is, i.e.,
if two random effects are very highly correlated they will not contribute as
two parameters but possibly as one and a half. Also the smaller the random
effect variance is the smaller the pp contribution is. These observations are
important as pp is the only complexity penalty in the DIC criterion. The es-
timation of DIC appears to need more MCMC iterations than the estimation
of the model parameters. This is particularly the case when the model has a
large number of random effects. Therefore if DIC is used for model compar-
ison a large number of MCMC iterations should be used for the estimation.
Similar to AIC, DIC does not penalize sufficiently over-parameterized mod-
els. While BIC asymptotically selects the true model, that is not true for
AIC and DIC. AIC and DIC may not select the true model but will always
select a well fitting model, possibly somewhat over-parameterized. AIC and
DIC are also more robust than BIC. If the true model is not among those
that are compared AIC and DIC are expected to perform better than BIC.
In the presence of missing data there are also two ways of computing DIC.
The missing data can be marginalized or it can be treated as yet additional
parameters. These two-versions of computing DIC are also not comparable.
In model selection one of the two versions should be used for all competing
models. In Mplus the missing data is marginalized and does not contribute
to the estimated number of parameters while in MLwiN for example the
missing data are treated as additional parameters.

Next we illustrate how DIC can be used for model comparison. We gen-
erate a data set according to a cross-classified factor analysis model with five
continuous indicators and one factor on each of the levels. All loadings and
residual variance parameters are set to 1 and all intercept parameters are set
to 0. We analyze the data using the true cross-classified model, which we
denote by model M1, as well as a two-level factor analysis model M2 where
one of the two clustering variables is ignored. The cross-classified data set
has 100 clusters on each level with just one observation in each pair of crossed
clusters for a total of 10000 observations. The DIC results are presented in
Table 1 and clearly show that model M1 is better than model M2 by a wide
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Table 1: DIC simulation results for cross-classified factor analysis data

Model | pp DIC
M1 | 996.6 | 161084
M2 | 499.7 | 196113

Table 2: DIC simulation results for two-level factor analysis data

Model | pp DIC
M1 | 558.1 | 160380
M2 | 504.2 | 160373

margin. The estimated number of parameters pp matches the number of
random effects for the two models: 1000 random effects for model M1 and
500 random effects for M2.

Next we generate a data set according to model M2 and analyze the
data again using model M1 and M2, i.e., the data is a two-level data and we
analyze it with a two-level model as well as a cross-classified model where the
extra clustering level doesn’t have any effect on the data. As expected the
random effects for model M1 on the extra level are estimated to be very close
to zero and their variances are close to zero. These DIC results are presented
in Table 2. Only by a small margin DIC prefers the true model M2. The
deviance D for the two models would be very close as both estimated models
imply the same, namely, that the data should be analyzed as two-level data
and the effect of the extra clustering is near zero. Model M2 obtained better
DIC due to having smaller effective number of parameters. For model M2 the
effective number of parameters matches the 500 random effects. For model
M1 the effective number of parameters is 558 which is far off the 1000 random
effects in the model. The reason that happens is because the random effects
on the extra level are barely detectable as they are near zero. Nevertheless
model M2 is assessed to have larger number of effective parameters and thus
DIC prefers the correct model M1.
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5 Student evaluation of teacher effectiveness
example

In this section we describe a practical application of the random loading
model. We use the SEEQ data, student evaluation of teacher effectiveness,
described in Marsh and Hocevar (1991). The data consists of 35 continuous
items. The teacher evaluations are split in 21 subsamples based on the qual-
ifications of the teacher and the academic discipline. In Marsh and Hocevar
(1991) a 9 factor analysis model is considered. For simplicity however, we
consider a 1-factor analysis model, although using several factors does not
elevate the complexity of the model particularly when all measurements load
on a single factor. It was noted in Marsh and Hocevar (1991) that minor vari-
ation exists in the loadings between the 21 groups. The sample size in this
application is 24158 and therefore any minor variations in the factor loadings
between the groups would be statistically significant. Thus the model that
imposes measurement invariance would be rejected. Such sample size and
group combinations are not unusual. Davidov et al. (2012) analyzes data
from 26 countries and 43779 observations.

The model without measurement invariance would have more than 1500
parameters and thus would not be parsimonious. It is possible to evaluate
the measurement non-invariance for each variable and group however that
would be a very tedious process given that over 1500 parameters are involved
and it is not clear which subset of parameters should be held equal and which
should not be held equal. If the measurement non-invariance is ignored the
factor score estimates which represent the teacher effectiveness could have a
substantial error. One method for dealing with measurement non-invariance
using the Bayesian methodology is developed in Muthén and Asparouhov
(2012) where all parameters are estimated but approximate equality is en-
forced between the loadings across groups, i.e., the loadings are estimated
as different parameters but a strong prior specification is used that amounts
to holding the loadings approximately equal. This approach treats the load-
ings as fixed parameters rather than random effects. In this section we will
illustrate how the random loading model can be used to easily resolve the
measurement invariance problems.

To illustrate the random loading model we standardize all variables and
estimate three different models. Let Y;; be the observed indicator vector for
individual ¢ in group j. The first model M1 is the standard 1-factor analysis
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model estimated with the maximum-likelihood estimator
Yij = a+ Anij + &5 (21)

where 7;; ~ N(0,1) and ¢;; ~ N(0,©).
The second model M2 is a 1-factor analysis model with random intercepts
estimated with the maximume-likelihood estimator

Y;j = Oéj + )\7]” -+ Eij (22)

where 7;; ~ N(0,1), g;; ~ N(0,0), and a; ~ N(«, ).
The third model M3 is a 1-factor analysis model with random intercepts
and loadings using the Bayes estimator

Y;j =y + /\jnij + 5z‘j (23)

where 7,; ~ N(0,1), €;; ~ N(0,0), a; ~ N(,X), and \; ~ N(X,33). In
Models M2 and M3 we estimate diagonal variance covariance matrices > and
Y, for simplicity.

Table 3 contains the factor loading estimates for the 35 variables and the
three models. In Models M3 we also include the 95% range for the cluster
specific factor loadings based on the estimated normal distribution for the
random loadings. It can be seen from these results that the random loading
range is quite wide and that cluster specific loadings can be substantially
different from their fixed ML based estimates. The advantage of model M3
is that it does not assume measurement invariance of the factor analysis
model and thus it is more flexible than models M1 and M2. Model M3
simply assumes that a one factor analysis model holds in each group without
assuming loading or mean group invariance.

Table 4 compares the overall model fit using DIC for the three models.
Model M3 clearly outperforms models M1 and M2 for this data. Also model
M2 provides better fit than M1. The decrease in the DIC value obtained by
allowing cluster specific means is about 7 times larger than the decrease in
the DIC value obtained by allowing also cluster specific variance covariance.
This quantification of the decrease might be useful in comparing different
data sets. The effective number of parameters pp for model M1 matches
approximately the actual number of parameters 105. For model M2, pp
matches approximately the number of between level random effects 735 (21
clusters times 35 random intercepts) plus the within level parameters 70 for
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Table 3: Factor loading estimates for SEEQ data

M1 | M2 M3
0.76 | 0.79 | 0.81(0.67,0.94
0.78 | 0.81 | 0.82(0.71,0.92
0.80 | 0.80 | 0.82(0.71,0.93
0.73 | 0.74 | 0.76(0.67,0.85
0.88 | 0.83 | 0.85(0.70,1.01
0.89 | 0.83 | 0.85(0.74,0.96
0.84 | 0.75 | 0.77(0.64,0.91
0.90 | 0.87 | 0.89(0.83,0.95
0.81 | 0.85 | 0.87(0.73,1.01
0.78 | 0.85 | 0.87(0.71,1.02
0.78 | 0.83 | 0.84(0.71,0.98
0.75 | 0.71 | 0.73(0.58,0.88
0.80 | 0.66 | 0.67(0.48,0.85
0.79 | 0.65 | 0.66(0.47,0.86

(

(

(

(

(

(

)
)
)
)
)
)
)
)
)
)
)
)
)
0.86 | 0.80 | 0.82(0.68,0.95)
0.84 | 0.73 | 0.75(0.59,0.90)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

0.73 | 0.75 | 0.77(0.57,0.97
0.70 | 0.75 | 0.77(0.60,0.93
0.76 | 0.77 | 0.80(0.66,0.93
0.66 | 0.69 | 0.72(0.58,0.85
0.82 | 0.76 | 0.78(0.64,0.92
0.84 | 0.77 | 0.79(0.64,0.94
0.86 | 0.78 | 0.80(0.65,0.95
0.80 | 0.73 | 0.75(0.63,0.87
0.70 | 0.77 | 0.79(0.66,0.91
0.74 | 0.78 | 0.80(0.62,0.98

0.73 | 0.78 | 0.79(0.65,0.93

(
0.62 [ 0.63 | 0.64(0.44,0.84
0.68 | 0.73 | 0.74(0.57,0.90
0.83 [ 0.89 | 0.90(0.77,1.04
(
(

0.92 | 0.92 | 0.93(0.84,1.02
0.17 | 0.18 | 0.17(0.01,0.34

0.18 | 0.16 | 0.15(-0.03,0.32)
0.11 | 0.14 | 0.15(-0.06,0.35)
0.14 | 0.11 | 0.10(-0.08,0.27)
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Table 4: DIC comparison for factor loading models for SEEQ data

Model | pp DIC
M1 104 | 1594590
M2 792 | 1523405
M3 1443 | 1514784

a total of 805. For model M3, pp matches approximately the number of
between level random effects 1470 plus the within level parameters 35 for a
total of 1505.

6 Estimating group specific factor mean and
variance

For many practical applications the multiple group factor analysis model with
random intercepts and loadings (23) is insufficient. In the standard multi-
ple group factor analysis models the goal is to estimate group specific factor
mean and variance parameters and to explain as much of the difference in
the observed variables distribution across groups as differences in the factor
distribution across groups. Since model (23) is so flexible that it already has
group specific intercepts and loadings it is not possible to identify addition-
ally the group specific factor mean and variance. The group specific factor
mean is confounded with the group specific intercepts and it is not possible
to separate the two. Factor mean variability across groups can be absorbed
by the intercept variability across groups. Similarly, the group specific fac-
tor variance is confounded with group specific factor loadings and it is not
possible to separate the two. Factor variance variability across groups can
be absorbed by the loading variability across groups. In standard multiple
group modeling the factor mean and variance parameters are identified by es-
timating an invariant measurement model, i.e., by holding equal the loadings
and intercepts across groups. Thus in the modeling framework of model (23)
where all loadings and intercepts are group specific there is no information in
the data about the group specific factor mean and variance parameters and
it is a matter of interpretation of what factor mean and variance parameters
are, i.e., it is a matter of subjective choice similar to how in EFA the optimal
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rotation is determined subjectively without any support from the data.

One simple way to identify the group specific factor mean and variance
parameter is to assume that a particular factor indicator is invariant. Natu-
rally the group specific factor mean and variance parameters will depend on
which indicator is assumed to be invariant however the model fit will not. Re-
gardless of which indicator is assumed to be invariant the model fit is as good
as the fit of model (23) which essentially estimates a saturated group spe-
cific one factor analysis model. Other methods for estimating group specific
factor mean and variance parameters are possible. In Fox (2010) for exam-
ple the factor mean and variance are identified by constraining the intercept
parameters to add up to zero in each group and the loading parameters to
multiply to 1 in each group. In this section we provide a different approach
to identifying the factor mean and variance that is consistent with two-level
SEM methodology.

Consider first adding a group specific mean to model (22) as follows

Nij = M2,5 T Mij (24)

where 72 ; ~ N(0,%) and 7, ;; ~ N(0,1). Together with (22) this model can
be reformulated as follows

Yij =Yo; + Y1 (25)
where

Yiii = Ani; + €ij (26)

Yo = Aoy + oy (27)

The above equation shows that the group specific factor mean 7, ; is identi-
fied as the factor behind the group specific indicator means Y5 ;, i.e., as the
between level factor. Thus the factor mean is identified from the correlations
between the random intercepts and is interpreted as the common change in
the random intercepts.

Similarly we will show below that the factor variance can naturally be
identified from the correlations between the random loadings and can be
extracted from the common change of the random loadings. Consider the
model

Yij = aj + Ajiij + Aji + i (28)
where o are the group specific mean a; ~ N(«,X) where X is a diagonal
matrix, A; are the group specific loadings \; ~ N (X, X2), 72, is the group
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specific factor mean 7y ; ~ N(0,7), €;; ~ N(0,0) is the residual and the
factor ny;; ~ N(0, (1 + 0;)?), has a group specific variance (1 4 ¢;)* where
o; is a group specific random parameter o; ~ N(0,0). This model can be
reformulated as follows

Y;‘j == Oéj -+ /\](1 + Uj)rr]l,z‘j + /\j772,j + gij (29)

assuming 7 ,; ~ N(0,1), i.e., the random loading is now s; = X;(1 + 0;).
Denote by Ajo = A; — A the residual of \;, i.e, Ajo ~ N(0,%3). Now the
random loading s; is

Sj:Aj(1+O'j) = ()\+>\]0)(1+UJ) (30)

Under the assumption of approximate invariance, both ;o and o; are small
and therefore their product \jpo; is of smaller magnitude and it can be
ignored. Therefore we obtain the following approximation

Sj %)\—i‘)\jo—F)\O'j. (31)

The above equation shows that o; can be interpreted as the between level
factor behind the random loadings, i.e., just as the the group specific factor
mean can naturally be identified as the factor behind the random intercepts,
the group specific factor variance can naturally be identified from the factor
behind the random loadings.

From a practical perspective in multiple group modeling we want to have
as much variation in the factor mean and variance and as little as possible
in the intercept and the factor loadings to pursue measurement invariance
or approximate measurement invariance. Factor analysis estimation tends
to absorb most of the correlation between the indicators via the factors and
to minimize the residual variances. Thus the model where the factor mean
is the factor behind the random intercept and the factor variance is con-
structed from the factor behind the random loadings will try to explain as
much as possible the variation between the correlation matrices across groups
as a variation in the factor mean and variance rather than as a variation in
the intercepts and the factor loadings. Thus this model is ideal for evalu-
ating and separating factor means non-invariance from indicator intercepts
non-invariance and factor variances non-invariance from factor loadings non-
invariance. The model naturally separates the across-group variation in the
factor mean and the across-group variation in the indicator intercepts. The
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model also naturally separates the across-group variation in the factor load-
ings and the across-group variation in the factor variance. We conclude that
the model is perfect for identifying factor mean and variance parameters in
the presence of random intercepts and loadings. Other approaches to this
identification problem use artificial constraints or unverifiable assumptions
and therefore are inferior.

Note also that testing > = 0 is essentially a test for intercept invariance.
Testing 3o = 0 is a test for loading invariance. Testing ¢ = 0 is a test for
factor variance invariance. Testing 1) = 0 is a test for factor mean invariance.
In the Bayesian framework testing for significance of the variance of random
effects has been described in Verhagen and Fox (2012) based on Bayes factor
methodology. This method is also implemented in Mplus Version 7.

7 Individual differences factor analysis

To illustrate the model described in the previous section we use an example
presented in Jahng et al. (2008)'. The data is obtained from an ongo-
ing study of affective instability in borderline personality disorder (BPD)
patients. Affective instability is considered a core feature of BPD that dis-
tinguishes this disorder from other disorders like depressive disorders. The
data contains 84 individuals. Two groups of outpatients were entered into
the study, 46 individuals with borderline personality disorder and 38 with
major depressive disorder or dysthymic disorder. The mood factor for each
individual was measured with 21 self-rated items on a scale of 1-5. We ana-
lyze the data assuming continuous distributions for the items and standardize
the variables to have zero mean and variance one. For each individual the
measurements were collected randomly several times a day over a 4 week
period. In total between 76 to 186 assessments were conducted per person.
An analysis of the 21-item measurement instrument needs to take into
account that repeated observations over time are correlated within individ-
uals. One possible approach is the standard two-level factor analysis model
where repeated measures are nested within individuals. Let Y},;; be the p-th
item for individual ¢ at assessment j and X; be the binary indicator for the
individual being classified with borderline personality disorder. Let P be the
number of assessment items. A two-level factor model can be defined by the

"We thank Tim Trull and Phil Wood for providing the data and providing helpful
comments
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following two equations
Ypis = tp + Apllij + Cpi + Epij (32)

ni; = ni + BX; + &j. (33)

Here p1, is the intercept parameter for the p-th item, ¢, is the individual
variation from this mean parameter. The mean of (,; is fixed to 0 for identi-
fication purposes and the variance parameter v, is estimated. The factor 7;;
is decomposed as the sum of the mean factor value 7; for individual 7 and the
assessment specific deviation from that mean &;;. The loading parameters A\,
are all estimated as well as the variance ¢ of 7; while the variance of §;; is
fixed to 1 for identification purposes. The residual €p,; is a zero mean nor-
mally distributed residual with variance 6,. This model has 4P parameters:
tps Ap, Op, and v, as well as two parameters ¢ and 3 for a total of 4P + 2
parameters. Note again that with this approach the individual variable takes
the role of the grouping variable because there are multiple assessments for
each individual.

The two-level factor analysis model, however, has important shortcom-
ings for these types of data. The model accommodates individually spe-
cific random intercepts for the factor as well as for each indicator through
the latent variables 7; and (,;. However, the model does not accommodate
individual-specific factor variances, nor individual-specific factor loadings.
The individual-specific factor variance is a key indicator of the individual’s
stability over time, in this case mood stability. Large factor variance for the
mood factor is considered a core feature of BPD that distinguishes this dis-
order from other disorders like depressive disorders. Thus the individually
specific factor variance is the most important feature in this study.

In addition, individual-specific factor loadings can capture differences in
how individuals interpret the measurement instrument. For example, if one
individual answers items 1 and 2 the same way and a second individual does
not, then separate factor analysis models with individually specific factor
loadings are needed to fit the data for both individuals. If the correlation
matrix for the observed variables varies across individuals that means that
the loadings should be individually specific. The data in this application
is perfect to check whether the measurement instruments is interpreted the
same way by different individuals because we have repeated measurements
and we can easily estimate the individually specific parameters. This can
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not be done in cross-sectional studies where each individual has just one
measurement.

The individually specific factor variance is confounded with individually
specific factor loadings. In the previous section we described a model that
can naturally separate the across-individual variation in the factor loadings
and the across-individual variation in the factor variance. We utilize this
model in the BPD analysis. The model can be described as follows

Yoig = tip + 8piflij + Gpi + Epij (34)
Nij = N + b1 Xi + & (35)
Spi = )\p + )\pO'Z' + €pi (36)

Here we regress the factor and the variance of the factor on the BPD covariate
X;. The regression coefficient 5; shows the amount of increase or decrease in
the average factor value due to the borderline personality disorder. The re-
gression coefficient B, shows the amount of increase or decrease of the factor
variance due to the borderline personality disorder. Thus the two regression
coeflicients 31 and [, represent the effect of the covariate X; on the mean
and the variance of the mood factor. The above model has an additional
P + 2 parameters compared to model (32-33). These are the parameters s,
Var((;) = o? and the P parameters w, = Var(e,). An analysis based on
this model will be called an Individual Differences Factor Analysis (IDFA).
To summarize, the model accommodates individually specific factor inter-
cept and variance, individually specific factor loadings as well as individually
specific intercepts for each indicator variable.

It should be noted that when using IDFA individuals can be compared
on their factor scores even when there is measurement non-invariance. The
scores for the individual factor mean 7; in (35) can be estimated using Bayes
plausible values.

The parameter estimates and standard errors for the IDFA model are
presented in Table 5. There are 4 parameters not presented in Table 5: 1, (5o,
) and o2 and the estimates for these parameters are as follows: 0.702(0.116),
0.287(0.153), 0.584(0.107), 0.379(0.111) respectively. It is interesting to note
that both B, and [, are statistically significant, i.e., the individuals with
borderline personality disorder have significantly higher average mood factor
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and higher variation in the mood factor compared to individuals with other
major depressive disorder.

In Table 5 we also present the percentage of the factor loading variation
that can be explained by the variation in the factor variance. That percentage
varies from 25% to 81%. Testing the statistical significance for w, using
Verhagen and Fox (2012) method shows that all variance components are
statistically significant, i.e., the loading parameters should be individually
specific. This is a clear evidence that measurement instruments may not
be interpreted the same way by different individuals and thus individual
specific adjustments are needed to properly measure underlying factors. This
fact is probably true even for many cross-sectional studies as well, however,
individual specific adjustments to the factor loadings can be done only when
repeated assessments are conducted.
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Table 5: Individual Differences Factor Analysis: Borderline personality dis-
order study.

Percentage
loading
item 0, Ap p invariance
Item 1 | 0. 418(0 005) | 0.214(0.026) | -0.221(0.058) | 0. 271(0 045) | 0. 042(0 007) 0.29
Ttem 2 | 0.400(0.005) | 0.258(0.029) | -0.285(0.062) | 0.317(0.054) | 0.048(0.009) 0.34
Item 3 | 0.321(0.004) | 0.465(0.044) | -0.449(0.030) | 0.056(0.011) | 0.025(0.006) 0.77
Ttem 4 | 0.314(0.004) | 0.449(0.043) | -0.441(0.035) | 0.089(0.016) | 0.027(0.006) 0.74
Item 5 | 0.353(0.005) | 0.442(0.045) | -0.429(0.019) | 0.019(0.004) | 0.061(0.011) 0.55
Ttem 6 | 0.390(0.005) | 0.363(0.037) | -0.352(0.045) | 0.152(0.026) | 0.046(0.009) 0.52
Ttem 7 | 0.264(0.004) | 0.390(0.037) | -0.373(0.051) | 0.202(0.034) | 0.020(0.004) 0.74
Ttem 8 | 0.253(0.003) | 0.405(0.038) | -0.387(0.047) | 0.176(0.029) | 0.015(0.004) 0.81
Ttem 9 | 0.349(0.005) | 0.345(0.037) | -0.341(0.033) | 0.084(0.015) | 0.054(0.010) 0.46
Item 10 | 0.240(0.003) | 0.358(0.039) | -0.383(0.037) | 0.102(0.019) | 0.073(0.013) 0.40
Ttem 11 | 0.245(0.003) | 0.383(0.036) | -0.361(0.053) | 0.219(0.037) | 0.019(0.004) 0.75
Item 12 | 0.337(0.005) | 0.366(0.039) | -0.356(0.031) | 0.074(0.014) | 0.056(0.010) 0.48
Ttem 13 | 0.336(0.004) | 0.319(0.032) | -0.309(0.054) | 0.231(0.039) | 0.030(0.006) 0.56
Item 14 | 0.211(0.003) | 0.323(0.039) | -0.353(0.037) | 0.102(0.018) | 0.099(0.017) 0.29
Ttem 15 | 0.317(0.004) | 0.314(0.033) | -0.323(0.065) | 0.336(0.057) | 0.047(0.009) 0.44
Item 16 | 0.307(0.004) | 0.250(0.028) | -0.242(0.065) | 0.339(0.057) | 0.035(0.006) 0.40
Ttem 17 | 0.213(0.003) | 0.348(0.039) | -0.369(0.042) | 0.138(0.024) | 0.074(0.013) 0.38
Item 18 | 0.343(0.005) | 0.376(0.047) | -0.363(0.010) | 0.002(0.001) | 0.159(0.028) 0.25
Item 19 | 0.225(0.003) | 0.391(0.049) | -0.390(0.016) | 0.014(0.004) | 0.174(0.029) 0.25
Item 20 | 0.279(0.004) | 0.410(0.045) | -0.420(0.024) | 0.038(0.008) | 0.096(0.017) 0.40
Item 21 | 0.273(0.004) | 0.408(0.048) | -0.390(0.015) | 0.012(0.003) | 0.153(0.026) 0.29
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8 Intensive longitudinal data

Intensive longitudinal data have become quite common in recent years due to
accumulating long-term longitudinal studies as well as a result of the use of
new technological devices for data collection such as mobile devices, beepers
and web interfaces, see Walls and Schafer (2006). New models need to be
developed to analyze such data. Longitudinal data typically has been ana-
lyzed with multivariate models however if the number of time points is large
these models can fail due to too many variables and parameters involved in
the modeling. Estimating structural latent variable models in intense lon-
gitudinal settings can lead to additional challenges. Factor analysis models
may be unstable over time and measurement invariance may be violated to
some degree. Thus the time invariant structural models would be insuffi-
cient and inaccurate. The framework described in this article can resolve
these problems. The random loading and intercept models can be used to
model measurement and intercept non-invariance. These models have the
advantage of borrowing information over time in the estimation the same
way standard structural models do when assuming invariance. At the same
time these new models have the advantage of accommodating measurement
non-invariance the same way longitudinal structural models do. The models
are also more parsimonious than longitudinal structural models. All these
advantages will typically lead to more accurate model estimation.

To illustrate the intensive longitudinal modeling we will use the TOCA ex-
ample described in Ialongo et al. (1999). The data consists of a teacher-rated
measurement instrument capturing aggressive-disruptive behavior among a
sample of U.S. students in Baltimore public schools. The instrument consists
of 9 items scored as 0 (almost never) through 6 (almost always). A total of
1174 students are observed in 41 classrooms from Fall of Grade 1 through
Grade 6 for a total of 8 time points. The multilevel (classroom) nature of
the data is ignored in the current analysis. The item distribution is very
skewed with a high percentage in the Almost Never category. The items are
therefore dichotomized into the Almost Never versus all the other categories
combined. For each student a 1-factor analysis model is estimated with the
9 items at each time point.

In the following sections we illustrate the three different approaches to
intensive longitudinal data modeling: Longitudinal SEM, Multilevel SEM,
Cross-classified SEM. We discuss the advantages and disadvantages of each
method.
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8.1 Longitudinal SEM

Let Y,; be the p—th item for individual 7 at time ¢. The factor analysis
model at time ¢ is described by

P(Ypie = 1) = ©(Apimit — Tpt) (38)

where @ is the standard normal distribution function resulting in a 2-parameter
probit (normal ogive) IRT model. The variance of the aggressive behavior
factor n;; is fixed to 1 and the mean is fixed to 0 for identification purposes.
There are 8 times points and 9 items so in total we have 72 thresholds param-
eter 7,; and 72 loading parameters A,. In addition, the aggressive behavior
factors n;; are nested within individual and thus we should account for the
correlation between the individual factors across time. One approach is to
simply estimate an unrestricted correlation matrix for the 8 individual fac-
tors. This would contribute an additional 28 correlation parameters for a
total of 172 parameters. Because this model has 8 latent variables it cannot
be estimated easily with the ML estimator which would require an 8 dimen-
sional numerical integration. The model can be estimated however with the
WLSMYV estimator as implemented in the Mplus program, see Muthén and
Muthén (1998-2014). The main problem with this model however is that
it is not scalable in terms of time. The number of parameters grows as a
quadratic function of the number of time points. In addition, the model is
estimated as a multivariate model and this estimation is based on fitting an
unrestricted multivariate probit model with 72 variables. This model has
72 threshold parameters and 2556 correlation parameters. The estimation
of the unrestricted model can easily become computationally prohibitive as
the number of time points increases. In addition, the sample size needed to
estimate this unrestricted model may be substantial.

While the above model is flexible and accounts for measurement and
threshold non-invariance it is difficult to provide interpretation for the varia-
tion in the parameters across time and to guarantee that the factor measure-
ment model is sufficiently stable so that we can interpret it as the same factor
changing over time. This leads to estimating additional models with ad-hoc
parameter restrictions designed to parse those model parameters that are
significantly different from those that are not. This process however is not
feasible when the number of time points is substantial. A reasonable model
to explore is the model that assumes complete measurement invariance

P(Ypir = 1) = ®(\ynie — 7). (39)
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In addition we can impose a linear or quadratic growth model for the aggres-
sive behavior factors n;. The linear trend model is described as follows

Mit = pe + 0 + B - T+ €. (40)

The variables «; and 5; are individual level random effects, ¢;; is the residual
of the growth model and ; is a time specific parameter. The variance of ¢,
is also a time specific parameter #;. The means of «; and (; are fixed to 0
for identification purposes. The intercept and residual variance parameters
at time ¢t = 0, o and 6, are also fixed to 0 and 1 for identification purposes.
The above model can be estimated with the WLSMV estimator and it has
35 parameters only: 9 threshold and loading parameters, 7 factor intercept
and factor residual variances as well as the three parameters in the variance
covariance matrix of a; and ;. The growth model here is a model for the
individual growth of the aggressive behavior factor and it reflects the factor
variation beyond the average change over time which is modeled with the
parameters p;. If the linear trend model in (40) does not hold, the g; random
effect will be estimated to 0 and its variance will be estimated to zero as well.
An alternative model is the model where the linear change over time includes
modeling the change in the factor mean. This can be achieved by removing
the parameters p; and estimating a mean parameter for §;. However, often
in practical applications the parameters p; will not follow a linear trend and
such a model would most likely lead to a model misfit. The above model
can only be estimated as a multivariate model with the WLSMV estimator.
The model is more parsimonious than model (38), however, it relies on the
assumption of measurement invariance. The model is also not scalable with
respect to time.

8.2 Multilevel SEM

A different approach to modeling time intensive data is two-level modeling
where the cluster variable is the individual and the observations at the dif-
ferent time points are the observations within cluster. Consider for example
the model

P(Ypir = 1) = ®(Aymie — 7) (41)

Nit = o + B -t + €t (42)

The variance of ¢;; is fixed to 1 for identification purposes and the random
effects o; and 3; are individual level growth factors. The random effect «;
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has a mean 0 for identification purposes. The mean of 3; is not zero, i.e.,
in this model we actually restricted the parameters p; from (40) to follow
a linear trend. This model is time scalable. The number of parameters is
21: 9 threshold and loading parameters as well as the mean of 5; and the
variance parameters of «; and ;. This model can be estimated as a two-
level model with 3 dimensional numerical integration and it can be estimated
with a large number of time points without any computational problems.
In fact, the more time points there are the more accurate the estimates of
the random effects and the model parameters. Thus this model has the
advantage of being time scalable. However, the model has the disadvantage
that it assumes measurement invariance.

Another advantage of two-level models for intensive longitudinal data
is the fact that we can accommodate more individual level random effects.
Consider for example the model

P(Yyir = 1) = ®(Apmie — 7i)- (43)
Nit = O + Eit (44>
Tpi = Tp + €pi (45)

The difference between this model and the model (41-42) is that it accommo-
dates individual level variation ¢;, in the threshold parameters. Such random
effects are useful in modeling individual level variation from the factor model.
For example, individuals may score lower or higher on a particular item, in-
consistent with the rest of the items, due to reasons other than the aggressive
behaviors factor. This model has 28 parameters: 9 thresholds, loadings and
individual level residual variances as well as the variance parameter of «.
This model is also scalable in terms of time and it can be estimated with the
WLSMYV estimator as a two-level model. The model cannot be estimated
easily with the ML estimator because such an estimation would require 10
dimensional numerical integration. The Bayes estimator can also be used to
estimate this model, in fact, the Bayes estimator can be used to estimate
a model that combines all of the features in models (41-42) and (43-45),
including the linear trend random effect f;.

In the above two-level models the latent variable «; is essentially a be-
tween level factor where the between level factor loadings are the same as the
within level factor loadings. This however need not be the case. Separate
loadings can be estimated for 7n;; and «a;. Other variations of the two-level
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models are possible, however, all two-level models assume measurement in-
variance across time. It is possible to introduce dummy variable predictors
for the different time points and thus accommodate threshold non-invariance
however such models are not time-scalable due to the many parameters and
dummy variables in the model.

8.3 Cross-classified SEM

The cross-classified SEM framework described in this article which accom-
modates cross-classified modeling as well as random loadings can be used to
construct time scalable models that can also accommodate non-invariance
for the loadings and threshold parameters. Growth modeling for the factor
variable can also be estimated. We use the cross-classified SEM framework
because in the intensive longitudinal data the observations are cross-nested
within individual and time. Consider the model

P(Ypi = 1) = @(Apnie — Tpir)- (46)
Nit = & + €t (47)
Tpit = Tp + €pi + gpt (48>

This model is very similar to model (43-45). It has an additional random ef-
fect (¢ which has 0 mean and variance v,. This random effect accommodates
threshold non-invariance across time. The model has a total of 37 parame-
ters, all of the parameters in model (43-45) plus the 9 random effect variance
parameters 1,. The next model we consider is the model that accommodates
the features of models (41-42), (43-45) and (46-48). This is accomplished by
substituting equation (47) with equation (42). This model has just two more
parameter: the mean and variance of f3; for a total of 39 parameters. The
next modeling extension is to accommodate loading non-invariance across
time. Consider the model

P(Ypir = 1) = @(Apunit — Tpit)- (49)
Nit = & + Bi - T+ € (50)

Tpit = Tp + Epi + gpt (51)

>\pt = /\p + Spt- (52)
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The random effects &,; allow variation across time in the loading parameters.
The mean of §, is 0 and the variance is w,. This model has just 9 more
parameter, the variances parameters w, for a total of 48 parameters. The
final modification we make is to include time specific factor variance. As in
the IDFA model the time specific factor variance is introduced by adding
a factor model for the random loadings. In addition, we include a time
specific factor mean to account for non-invariance of the factor mean that
goes beyond the individual growth model. Thus the final model we present
is given by the following equations

P(Yoie = 1) = @(Apenie — Tpit)- (53)
N = vy +a; + B -t + ey (54)
Tpit = Tp + €pi + Cpt (55)

Apt = Ap + Aot + Ept. (56)

The new random effects v, and o; have zero mean and variances v and o
respectively. The model has a total of 50 parameters. Additional model flex-
ibility can be introduced in the above model by allowing the random loadings
to vary not just across time but also across individuals just like the thresholds
vary both across time and individuals. Individually specific factor loadings
essentially amounts to incorporating the IDFA model into this longitudinal
cross-classified framework. For simplicity here we present the parameter es-
timates for model (53-56). The estimates and standard errors for the item
specific parameters are presented in Table 6. The estimates for the variance
of the random effects for «;, 5;, v, and oy are 1.069(0.076), 0.024(0.003),
0.009(0.020), and 0.008(0.038) respectively. The estimate for the mean of
Bi is 0.033(0.019). The Verhagen and Fox (2012) test of significance for the
variance components in Table 6 yields that all variance components are sig-
nificant with the exception of the random effect (g;. For this random effect
the Bayes factor for the hypothesis Var((s;) < 0.001 is 2.7, i.e., the variance
component is only marginally significant. These results imply that inter-
cept and loading non-invariance should be accounted for in the TOCA data.
Model (53-56) does so without increasing the number of parameters or with-
out increasing the complexity of the model. This model is easy to interpret
because all random effects have a clear purpose. The model is easy to es-
timate even though it has a total of 31 between level random effects. The
model also illustrates the new methodological idea of model customization
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Table 6: TOCA cross-classified intensive longitudinal growth model

Variation Variation Variation
across across across
time individual time

Var(muli) = | Var(m|t) = Var(Ay) =
item T Var(Cy) Var(ey) Ap Var(&y)
Item 1 | -0.781(0.139) | 0.064(0.124) | 0.153(0.036) | 1.017(0.080) | 0.013(0.044
Item 2 | -0.690(0.109) | 0.021(0.053) | 0.171(0.047) | 1.413(0.117) | 0.011(0.046
Item 3 | 1.167(0.300) | 0.157(0.520) | 0.078(0.041) | 1.904(0.207) | 0.108(0.328
Item 4 | 1.611(0.194) | 0.227(0.452) | 0.111(0.045) | 1.438(0.167) | 0.087(0.197
Item 5 | 0.045(0.107) | 0.029(0.072) | 0.231(0.044) | 1.319(0.145) | 0.058(0.140
Item 6 | 1.056(0.211) | 0.220(0.338) | 0.079(0.037) | 1.513(0.130) | 0.022(0.079
Item 7 | 0.433(0.166) | 0.079(0.156) | 0.159(0.040) | 1.476(0.149) | 0.053(0.131
Item 8 | 0.279(0.094) | 0.006(0.020) | 0.120(0.036) | 1.324(0.118) | 0.024(0.079
Item 9 | -0.374(0.133) | 0.043(0.092) | 0.200(0.047) | 1.369(0.124) | 0.025(0.077

where model parameters can be easily adjusted and customized to a particu-
lar subset of the data to achieve better fit without compromising the quality
of the model and keeping the model as parsimonious as it can be.

In conclusion, the Cross-classified SEM presented in this section has the
advantage that it is time scalable and can accommodate measurement non-
invariance. Neither the Longitudinal SEM nor the Multilevel SEM could
accomplish both of these tasks at the same time.

9 Conclusion

The Bayesian estimation of structural equation models has become more
popular as stable numerical algorithms have been developed. It is now pos-
sible to explore models that go beyond the reach of traditional ML and WLS
estimators using the Bayesian estimation. Cross classified structural models
and random loading models are two such examples. Using these new models
it is now possible to address data modeling issues that were not possible to
address within the standard structural modeling framework.
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