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SUMMARY. This paper discusses the analysis of an extended finite mixture model where the latent classes 
corresponding to the mixture components for one set of observed variables influence a second set of observed 
variables. The research is motivated by a repeated memurement study using a random coefficient model 
to assess the influence of latent growth trajectory class membership on the probability of a binary disease 
outcome. More generally, this model can be seen as a combination of latent class modeling and conventional 
mixture modeling. The EM algorithm is used for estimation. As an illustration, a random-coefficient growth 
model for the prediction of alcohol dependence from three latent classes of heavy alcohol use trajectories 
among young adults is analyzed. 
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1. Introduction 
This paper proposes an extended finite mixture model that 
combines features of Gaussian mixture models and latent class 
models. Analysis of this model is carried out using maximum- 
likelihood estimation with the EM algorithm and bootstrap 
standard errors. The research is motivated by an alcohol study 
concerned with the longitudinal development of heavy drink- 
ing and its relation to alcohol dependence. 

Motzvatang Example 
A conventional random-coefficient repeated measurement 
model was initially used to describe heavy drinking 
development by a quadratic growth model. For individual z of 
age at at time t ,  using centering of age, and letting 77 denote 
a random coefficient, 

Yzt = 771% + (at - 6)7722 + (at - iq2773% + E t t ,  t = L 2 , .  ’ ‘ , T ,  
(1) 

where yzt is a measure of heavy drinking for individual i at 
age at ,  771 is the intercept, 772 is the linear rate, 773 is the 
quadratic growth rate, and t is a residual. Using the estimated 
means of the 7 coefficients, this analysis showed that heavy 
drinking among young adults typically accelerates from 18 to  
21 years of age and decelerates thereafter, which is in line with 
normative development found by alcohol researchers. Using 
77 values different from the means, other classes of trajectory 
shapes recognized in the alcohol literature were also seen, such 

as trajectories that are high at age 18 and either stay high or 
decrease with age and trajectories that increase from age 18 
and show no downturn. 

Of primary interest is how to model the relation between 
the shape of the heavy drinking trajectory for an individual 
in the 18-25-year age range and the probability of alcohol 
dependence at age 30. This could be done using logistic 
regression of dependence on the three 7 coefficients in (1). 
This is problematic, however, because a given 77 coefficient 
assumes different meanings depending on the value of the 
other 77 coefficients. A better approach, one that more clearly 
reflects that the curve shape has predictive value, is provided 
by an extended finite mixture model. This model allows the 
joint estimation of (i) a conventional finite mixture growth 
model where different curve shapes are captured by class- 
varying random coefficient means and (ii) a logistic regression 
of alcohol dependence on the classes. 

In contrast to this approach, a three-step procedure is 
needed using conventional modeling techniques: (i) estimating 
the conventional finite mixture growth model, (ii) estimating 
each individual’s most likely class membership based on 
the posterior probabilities for the classes derived from the 
estimated model in step (i), and (iii) regressing alcohol 
dependence on the estimated class membership. This three- 
step procedure introduces estimation errors in step (ii) by 
forcing each individual to be classified into a single class, 
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whereas each individual typically has a nonzero posterior 
probability for each class. 

The extended finite mixture model allows three generali- 
zations. First, the class membership probability is allowed 
to vary as a function of covariates. This is useful in alcohol 
studies, where it is known that white males are more likely 
to  have a high level of heavy drinking at age 18. Second, for 
each class, the values of the q coefficients are allowed to be 
influenced by covariates. Third, the latent class variable is 
allowed to predict more than one binary outcome variable. 

The case of multiple binary outcome variables predicted 
by the latent class variable warrants special attention. This 
model feature relates to latent class analysis (cf., Clogg, 
1995). The alcohol study provides an interesting application of 
multiple binary outcomes. Drawing on the alcohol literature, 
the age 18-25-year growth curve classes can be viewed 
as representing different developmental pathways, some of 
which manifest themselves as deviant behavior already 
in adolescence. Using adolescent observations of deviant 
behavior, such as early onset of regular drinking and dropping 
out of high school, to form multiple binary outcomes, these 
outcomes can therefore be viewed as early indicators of 
the latent classes, where alcohol dependence is a later 
indicator. Together with the heavy drinking y’s of equation 
(1) and the background variables, these binary outcomes 
contain information about the latent class membership. Given 
an estimated model, an individual’s observations on these 
outcomes can be used to compute posterior probability 
estimates for different classes before the individual reaches age 
2 5 .  This suggests for which individuals an intervention may 
be beneficial in order to avoid heavy drinking development 
typical of the nonnormative classes and to reduce the risk of 
developing alcohol dependence problems. 

2. The Extended Finite Mixture Model 
The following model incorporates the ideas presented in the 
Introduction. Consider a pdimensional vector y of continuous 
variables and an r-dimensional vector u of binary variables, 
which are related to each other and to a q-dimensional vector 
x of covariates. The three sets of observed variables are related 
to each other via two vectors of unobserved variables, an m- 
dimensional vector 1) of latent continuous variables, and a 
K-dimensional vector c of latent categorical variables. Here, 
ci = (c i l ,  . . . , c ~ K ) ’  has a multinomial distribution, where 
C i k  = 1 if individual z falls in class k and is zero otherwise. 

Consider the set of continuous observed variables y related 
to the continuous latent variables q for individual i, 

~i = Ayqi + ~ i ,  ( 2 )  

where Ay is a p x m matrix of parameters and ei is a 
residual vector that is uncorrelated with other variables in 
the model and is normally distributed with mean zero and a 
diagonal covariance matrix 0. The continuous latent variables 
1) are related to the categorical latent variables c and to the 
observed covariate vector x by the relations 

qi = Aci + rqxi + <i, (3) 

where the m x K matrix A contain columns f f k ,  k = 
1,2 ,  . . . , K ,  of intercept parameters for each c class, r, is an 

m x q parameter matrix, and is an m-dimensional residual 
vector that is normally distributed, uncorrelated with other 
variables, with mean zero and covariance matrix 9. 

Consider next modelipg of u. In line with latent class 
analysis, the r binary variables uij are assumed to be 
conditionally independent given c, , 

P ( U i 1 ,  Ui2r ‘ ’ ’ , UiT I 4 
= P ( U i l  I Ci)P(U,Z I C i )  ’ .  ’ P(Ui, I C i ) .  (4) 

Defining rij = P(uij = 1 I ci), the r-dimensional vector ~i = 
( q l ,  r i 2 , .  . . , qT)’ ,  and the r-dimensional vector logit(q) = 
(log[.r21/(1 - ~ z l ) l , 1 0 g [ ~ i 2 / ( ~  - W)l, ’ ’ ’ I log[~zT/(l - % ) I ) ’ ,  

logit(q) = A,ci, (5) 

where A,  is an r x K parameter matrix. Define ~ i j k  = 

The categorical latent variables of c represent mixture 
components that are related to x through a multinomial 
logit regression model for unordered polytomous response. 
Defining 7rik = P(cik = 1 I x,), the K-dimensional vector 
ri = (7ri1, 7ri2, . . . , T ~ K ) ’ ,  and the ( K  - 1)-dimensional vector 

P ( ’ U i j k  = 1 I Cik = 1). 

logit(rri)=(log[~il/~iKl,  lo&m“ix], . . . , l o g [ ~ i . ~ - ~ / ~ i ~ l ) ’ ,  

logit(r,) = ac + rcxi, (6) 

where ac is a (K - 1)-dimensional parameter vector and rc 
is a (K - 1) x q parameter matrix. 

In the model of (a),  (3), (4), ( 5 ) ,  and (6 ) ,  the finite mixture 
arises because the conditional distribution of y and u given x 
is governed by parameters that vary across the categories of 
c; the mean vector of y is allowed to vary due to the inclusion 
of c in (3); and the probabilities of u are allowed to  vary due 
to the inclusion of c in (5). 

3. The EM Algorithm 
Consider a sample of size n from the above model. The 
observed-data log likelihood may be expressed as follows. 
From the proposed model, we obtain [vi I ci, xi] = N,(Aci + 
rvxi, 9) and [yi I 1)i] = Np(Ayq , ,  0) so that 

= Np[Ay(Acz + rqxz), Ay@A& + 01, (7) 

where [z] denotes a density or probability distribution for a 
random variable vector z The observed-data log likelihood is 

n 

1% L = c W Y Z ,  uz I XZI, (8) 
,=I 

where the mixture is defined as 
K 

[Yzj uz I xz] = x n z k N p [ A , ( a k  + rvxz), A#A& f @] 
k = l  

[uz I Cak = 11, (9) 

where ir,k is defined in connection with (6), is the kth 
column of the matrix A in (3), and [u, 1 C z k  = 11 is defined 
by (4) and (5). 
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3.1 The Complete-Data Likelihood 
Maximization of (9) can be simplified by using the EM 
algorithm (cf., McLachlan and Krishnan, 1997). Here, the 
continuous latent variable observations 171,772, . . . , vn,  and 
the categorical latent variable observations c1, c 2 ,  . . . , cn are 
viewed as missing data. Given the model, the complete-data 
log likelihood can then be written as 

n 

1% L C  = cc 1 4 C i  I xi1 + lOd77i I cz, xi1 + log[Y-, I 1721 

i= 1 

+ w u i  I C i l L  (10) 

where 
n n K  

i=l i=l k = l  

and 
n n r K  

i= 1 z = 1  j=1 k=l 

+ (1 - U i j )  l o d l  - Tijkl l ,  

(12) 

where 7 i j k  is given in connection with (5). The remaining 
terms correspond to normal densities given by the model. 

3.2 The E-Step 
The EM algorithm maximizes the expected complete-data log 
likelihood (10) given the data on y, x, u. In the E-step, we find 
the conditional expectations of cik, s,,, see, svs, s,,, so, 
and S,, using the notation Szw = l/nCT=l ziwi. We note 
that 

[Ci ,77i  I YZ,Xi,Uil  = 1% I YiIXi,Ui1[77i I C i , Y i , X i , U i I .  (13) 

Corresponding to the first term, the posterior term for ci, we 
need the expectation E(c2k I yi,xi,ui), 

p(czk = 1 I Y z , x i ,  ui) 

= 7rikNp[hy(fXk f TvXi) ,  Ay*flL -t 01 
x [ui I cik = l ] / [Yi ,Ui  I xi], (14) 

where [yi, ui I xi] is given in (9). Let pik denote the posterior 
probability of (14). The resulting E-step quantities are given 
in the Appendix. 

3.3 The M-Step 
The M-step of the EM algorithm is defined as follows. 
Inserting the posterior probabilities p2k of (14) in (l l) ,  the 
M-step maximizes 

with respect to the parameters of acr r,. This may be seen as 
a multinomial logistic regression with fractional observations 
pik. Similarly, inserting pi,+ in (12), the M-step maximizes 

n r K  

i=l j=1 k = l  

with respect to the parameters of A,. This may be seen 
as a type of multivariate-response logistic regression with 
observations uz3 and weights p,k. We have found that the EM 
algorithm converges nicely even if only one or two Newton- 
Raphson steps are taken in the two logistic regressions (see 
also generalized EM as discussed in McLachlan and Krishnan, 
1997). The M-step estimates for the parameter arrays !P, r,, 
Ay, and 0 are obtained in closed form and are given in the 
Appendix. 
3.4 Comments 
The model is not identified without some parameter 
restrictions, which have to be determined for a given 
application. As a well-known example drawing on factor 
analysis (cf., Lawley and Maxwell, 1971), at least m2 
restrictions need to be imposed on the elements of Ay 
and/or !P. It is difficult to give rules for identification of the 
general model (cf., Titterington, Smith, and Makov, 1985). A 
heuristic approach to understanding the identification status 
of a particular case of the model is to divide the model into 
its parts. As an example, for the growth model in (l), all 
elements of Ay are fixed so that more than m2 restrictions 
are imposed. Here, the y, 77, c part of the model is the mixed- 
effect mixture model of Verbeke and Lesaffre (1996). The 
covariance matrices 9 and 0 are class invariant, while the 
random coefficient 77 means of A vary across classes with class 
probabilities determined by a,. The identification therefore 
concerns a multivariate normal mixture for y with class- 
invariant covariance matrix and with means that are functions 
of the class-varying means of the reduced dimension m of 
the underlying 7. Growth curve data with clearly separated 
growth forms are likely to be able to identify such mean 
mixtures. Adding x to the model introduces the parameter 
arrays rc and r,, for which the joint distribution of y 
and x carries information. The elements of I', affect the 
probabilities of c, where c class membership alters the means 
A of 77 and ultimately the means of y. For a certain x 
value, a certain mixture of the class-specific means A of 77 
is obtained, while at a different x value, a different mixture of 
the means is obtained. The model is identifiable as long as the 
resulting y means are different and there are more distinct x 
combinations than corresponding parameters. The elements 
of r,, concern effects of x on 17 given c. r, and r, affect the 
model differently in that the elements of r,, affect the 77 means 
an equal amount for each class, while the elements of r, affect 
the 17 means through a mixture. When the y, c, x part of the 
model is identified, the identification of the u, c,  x part of the 
model concerns only the parameters of A,. Information on 
these parameters is obtained from the marginal distribution 
of u and from the joint distribution of u and x. The marginal 
distribution of u may not be sufficient to identify A ,  unless 
there are many u variables relative to the number of classes 
(cf., Clogg, 1995). Each row of A ,  is, however, identifiable 
from the joint distribution of each u and x as in finite mixture 
logistic regression with class-varying intercepts (see Follman 
and Lambert, 1989, 1991). 

In some applications, it is of interest to generalize the model 
in ( 2 ) ,  (3), (4), (5), and (6) by allowing the inclusion of direct 
effects from x to y and from x to u. The former corresponds to 
using time-varying covariates in a growth model setting, while 
the latter will be shown useful in our application. To include 
direct effects from x to u, we extend the logit expression in 
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(5) to 

logit(r,) = A,c, + KUxZ, (17) 

where, more generally, K, can also be allowed to vary across 
k ,  with k = 1,2, .  . . , K .  

We may generalize the model to allow for class-specific 
effects r, in (3), e.g., by extending (3) to 

77, = Ac, + r;c:x, + Cz, (18) 

where r; = (rq1 I . . I rqK) and c: = c, @cIp. Class-specific 
covariance matrices rk and 0 may also be of interest. 

Standard errors of the estimates are obtained using a 
bootstrap procedure, where sampling an observation with 
replacement n times from the sample of size n is replicated 
200 times. Reasonably stable standard error estimates are 
obtained already after 50 replications. Here, the entire vector 
( u ~ , y ~ , x ~ )  is bootstrapped rather than holding the 5 part 
fixed. While x, is a covariate vector, in the applications 
considered here, it is a random vector, for which no model 
structure is imposed. A comparison of model fit across models 
with different numbers of classes is achieved by using BIC 
(Bayesian Information Criterion; Schwarz, 1978). 

4. A Growth  Curve Application 
This section returns to the alcohol research question discussed 
in the Introduction, i.e., what the influence of membership in 
different growth curve classes for heavy drinking from ages 
18 to 25 is on alcohol dependence at  age 30. Alcohol data 
from the National Longitudinal Survey of Youth (NLSY), a 
nationally representative household survey of young adults 
living in the U.S. in 1979, are used. The heavy drinking 
variable is obtained from the question “How often have you 
had 6 or more drinks on one occasion during the last 30 days?” 
The variable is scored 0 (never), 1 (once), 2 (2 or 3 times), 

3 (4 or 5 times), 4 (6 or 7 times), 5 (8 or 9 times), and 6 (10 
or more times). The vector y in equation (2) consists of heavy 
drinking measured at 18, L9,20,24, and 25 years for the NLSY 
cohort born in 1964. The growth model of (1) is expressed in 
finite mixture form by equations (2) and (3)) arranging the 
vector yz as yz = ( ~ ~ 1 ,  yz2,. . . , ~ ~ 5 ) ’  and defining 7) as the 3 x 1 
vector of intercept, linear, and quadratic coefficients and the 
5 x 3 matrix Ay as having columns of constants 1, (at - b), 
and (ut - t i )2. The time scale is centered so that the intercept 
refers to the approximate peak for the normative trajectory, 
ti = 21.2. As a starting point, a two-class model ( K  = 2) 
is postulated. In equation (3) for 17, the vector x consists 
of four covariates scored zero or one: male, Black, Hispanic, 
and FH123. Here, FH123 is scored one if the respondent has 
a first-degree relative and a second- or third-degree relative 
with alcohol problems. In equation (5) for u, three binary u 
variables are included. The first u, DEP, captures a diagnosis 
of alcohol dependence at age 30. This diagnosis is based 
on alcohol-dependent behaviors such as giving up important 
social or work-related functions in favor of or as a consequence 
of drinking. The second u, ES, is scored one if the respondent 
started drinking regularly at or before age 14 The third u, 
HS, is scored onc if the respondent did not complete high 
school by age 22. In equation (6) for c,  the same set of 2 
variables is used as in (3) for 77. The sample size is 935. The y 
variables are not normally distributed in this application. To 
investigate the sensitivity of the modeling to this assumption, 
an analysis of variables transformed as log(1 + y) was also 
carried out and gave very similar results. 

The two-class mixture model results in two local solutions 
when using different starting points for the EM algorithm. 
The estimates for the majority class showing the normative 
curve is very similar in the two solutions. However, the two 
solutions find different minority classes, one with a curve that 

1 I I I 

18 20 22 24 

Age 

Figure 1. Estimated three-class curves. 
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Table 1 
Marginal 3 t  of the three-class model 

ES HS DEP Observed Fitted Frequency 

0 0 
0 0 
0 1 
0 1 
1 0 
1 0 
1 1 
1 1 

0.652 
0.070 
0.113 
0.027 
0.088 
0.020 
0.025 
0.005 

0.637 
0.081 
0.126 
0.019 
0.095 
0.017 
0.021 
0.005 

610 
65 

106 
25 
82 
19 
23 
5 

Table 2 
Estimates f o r  the growth factors of 
q (standard errors in parentheses) 

Growth factor 

Parameter Intercept Linear rate Quadratic rate 

A 
High 

Norm 

Male 
Black 
Hisp 
FH123 

Intercept 
Linear 
Quadratic 

UP 

rv 

P 

2.263 (0.456) -0.268 (0.053) 
2.655 (0.556) 0.456 (0.062) 
0.829 (0.102) 0.007 (0.012) 

0.779 (0.133) 0.048 (0.015) 
-0.762 (0.124) 0.012 (0.014) 
-0.675 (0.137) -0.003 (0.018) 

0.076 (0.169) 0.019 (0.024) 

1.191 (0.206) 
0.025 (0.020) 0.062 (0.003) 

-0.076 (0.014) -0.001 (0.002) 

0.027 (0.043) 
-0.012 (0.045) 
-0.041 (0.008) 

-0.043 (0.010) 
0.043 (0.010) 
0.041 (0.011) 
0.002 (0.014) 

0.005 (0.001) 

is high at age 18 with a subsequent decrease and one with 
a curve that accelerates from age 18. A three-class solution 
captures the three classes represented in both two-class solu- 
tions and is therefore preferred. The three estimated curves 
for the three-class solution are shown in Figure 1 using the 
estimated mean of 7 for the subgroup of z = (0000),  white 
females with no family history of alcohol problems. The log 
likelihood value for the three-class solution is -4934.91. In 
comparison, the log likelihood value for the two-class solution 
that includes a curve that goes down is -5034.27, while the 
log likelihood value for the two-class solution that includes a 
curve that goes up is -5121.72. The corresponding three BIC 
values are 10,218.69, 10,376.36, and 10,551.26, suggesting a 
choice of three classes over two classes. 

A relatively strong assumption in the model is that the set 
of u variables depends on the z’s only through c as indicated 
in (5) and (6). A plausible alternative is that there are di- 
rect effects from some z’s to some u’s as in (17), i.e., some 
u’s differ in their probabilities not only as a function of class 
membership but also as a function of their covariate charac- 
teristics for given class membership. In this application, there 
are 12 such direct effects that could be included. Explorations 
of these effects show that only five of them are significant us- 
ing the improvement in the log likelihood as criterion. The 
direct effects are for male to DEP, for FH123 to DEP, for 
Black to ES and to HS, and for Hisp to HS and are all of 
expected signs. For the final three-class model, the log likeli- 
hood value is -4909.81, where the improvement in fit relative 

Table 3 
Estimates for  the latent class membership 

of c (standard errors an parentheses) 

Parameter High versus norm Up versus norm 

-2.510 (0.303) -3.282 (0.444) 
r, 

Male 1.293 (0.250) 1.419 (0.393) 
Black 

FH123 0.760 (0.353) 0.651 (1.202) 

-1.416 (1.054) -0.539 (0.594) 
Hisp 0.015 (0.307) -0.476 (0.538) 

to the three-class model without direct effects is significant, 
corresponding to a likelihood ratio chi-square value of 50.2 
with 5 d.f. 

A simple empirical approach to  checking the local identifi- 
ability of the estimated model is to start from a model that is 
known to be identified and check whether adding a parameter 
changes the observed-data log likelihood. For the five direct 
effects, this check was just accomplished by the chi-square 
difference test. Setting the 12 parameters of r, to zero gives 
a chi-square difference value of 127.16; setting the eight pa- 
rameters of r, to zero gives a chi-square difference value of 
71.54; and setting the nine parameters of A,  to zero gives a 
chi-square difference test of 1090.5. 

For the final three-class model, Table 1 shows that the 
marginal table for ES, HS, and DEP is well fitted. The y 
means also fit well. The three curves are almost exactly the 
same as in Figure 1. The notation High, Up, and Norm will be 
used for the classes corresponding to these three curve shapes, 
where High refers to those who are high at age 18, Up refers 
to those who accelerate their use, and Norm refers to the nor- 
mative curve. The three classes have estimated proportions 
0.120, 0.063, and 0.817. 

Table 2 shows the estimates for the growth factors of q cor- 
responding to (3). Table 3 shows the estimates for the latent 
class membership corresponding to (6). Table 4 shows the es- 
timates for y and u corresponding to (2) and (5) with direct 
effects K, corresponding to (17). In Table 5, these estimates 
have been translated into conditional probability estimates for 
the three u variables DEP, ES, and HS given class member- 
ship, evaluated at z = (0000).  The DEP probabilities vary 
greatly as a function of latent class membership, and ES and 
HS are indicative of membership in the nonnormative classes. 
The normative class constitutes about 89% of all individuals 
with z = (0000) ,  while the High and Up classes constitute 7 
and 4%, respectively. In contrast, for z = (1 0 0 l),  white males 
with family history, there are only 51% in the normative class 
and 33 and 16% in the High and Up classes, respectively. 
For this group, the DEP probabilities still vary greatly across 
the latent classes: 0.378, 0.560, and 0.194, for the High, Up, 
and Norm classes, respectively. This analysis illustrates the 
explanatory power of the latent class variable. 

5. Conclusion 
The extended finite mixture model proposed here offers a flex- 
ible analysis framework. On the one hand, the model may be 
seen as a generalization of latent class analysis, so that the 
emphasis of the analysis is not only on the indicators of the 
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Table 4 
Estamates for heavy drankang y and bznary outcomes u (standard errors zn parentheses) 

Parameter 
~ 

4 Fixed 
diag( 0) 0.598 (0.130) 1.006 (0.109) 0.980 (0.109) 1.147 (0.138) 0.525 (0.130) 

High UP Norm 

A,  DEP 
ES 
HS 

-1.903 (0.338) -1.159 (0.427) -2.820 (0.202) 
-0.436 (0.266) -1.243 (0.457) -2.015 (0.137) 
-1.584 (0.274) -1.440 (0.383) -2.205 (0.182) 

Male Black Hisp FH123 

KU DEP 0.719 (0.251) 0.689 (0.296) 

HS 0.658 (0.240) 1.153 (0.237) 
ES -0.738 (0.274) 

Table 5 
Estimated probabilities f o r  ua 

High UP Norm 
~ ~ ~ 

DEP 0.131 0.240 0.056 
ES 0.389 0.227 0.117 
HS 0.169 0.188 0.099 
Class probabilities 0.073 0.035 0.892 

a Evaluated at z = (0000) 

latent classes but also on incorporating other model parts 
and outcomes. On the other hand, the model may be seen as 
a generalization of conventional Gaussian mixture modeling 
where mixture indicators have been added. The EM algorithm 
was found to be a practical tool for estimation of the type of 
models considered. As an illustration of the broader analysis 
potential, the extended finite mixture model was found useful 
for random-coefficient growth modeling in the presence of sev- 
eral growth classes. Here, a mixture outcome was measured at  
a later time point and the latent growth classes were used as 
predictors of this outcome. Repeated measurement random 
coefficient modeling with mixtures avoids the normality as- 
sumption typically used for the random coefficients (see also 
Verbeke and Lesaffre, 1996). A drawback is that multiple so- 
lutions are often found so that multiple starting points are 
necessary. 
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RESUMB 
Dans cet article, nous discutons d’un modkle de mklange fini 
dans lequel les classes latentes correspondant aux composantes 

du mklange pour un ensemble des variables observkes influen- 
cent un second ensemble de variables observkes. La motivation 
de cette recherche provient d’une ktude de mesures rkp6tdes 
utilisant un modkle B coefficient alkatoire pour determiner 
l’influence de l’appartenance B une classe de trajectoire de 
croissance latente sur la probabilit6 de l’issue d’une maladie 
binaire. Plus gknkralement, on peut voir ce modkle comme une 
combinaison de modklisation de classe latente et de modklisa- 
tion d’un mklange conventionnel. Pour l’estimation, nous uti- 
lisons l’algorithme EM. Comme illustration, nous analysons 
un modkle de croissance B coefficient alkatoire pour prkdire 
la ddpendance alcoolique B partir de trois classes latentes de 
forte consommation alcoolique chez de jeunes adultes. 
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APPENDIX 

The E-Step 
Let pi = (pil,. . .  pi^)' and let S denote the conditional ex- 
pectation of S. This defines the E-step quantities for the miss- 
ing data involving c,  

n 

Scc = l /n  diag(pi) (19) 
i=l 

and 
n 

i= 1 

The average posterior probability for class k is 

i = I  

Furthermore, for the missing data involving 17, 

where 

c = VA&O-'S,,O-~A,V, (24) 

D = v~-lr,s,,o-ln, + VS-~AS,,O-~A,,  (25) 

sy, = S,,O-~A, + (sy,r; + S ~ , A ' ~ - ~ V ,  (26) 

s,, = v(!j-l(r,s,, +AS,,) + A ~ O - ~ S ~ , ) ,  (27) 

and 

SVc = V(9-'(rvSxp + AScc) + L I ~ O - ~ S ~ ~ ) .  (28) 

The M-Step 
The M-step for 9 and r, is obtained using the S matrices 
from the E-step. Maximizing with respect to the regression 
coefficients r, and A gives 

@,.A) = (s,zS,c)s& (29) 

9 = s,, f rvs,,r; $. ASCCA' - s,,r; - r,s,, - SVCA' 

where S,,c is the joint covariance matrix for (x, c ) .  Maximiz- 
ing with respect to the covariance matrix 9 gives 

A -  

- ASc, + r , S x c A '  + Ascxr;. (30) 

The M-step for Ay and 0 is obtained as 

A, = s,,s;;, (31) 

while, noting that 0 is assumed to be diagonal; 

6 = diag(S,, - Sy,li& - AySVy + AgS,vxy). (32) 




