A Structural Probit Model With Latent Variables

BENGT MUTHEN*

A model with dichotomous indicators of latent variables is developed.
The latent variables are related to each other and to a set of exogenous
variables in a system of structural relations. Identification and
maximum likelihood estimation of the model are treated. A socio-
logical application is presented in which a theoretical construct (an
attitude) is related to a set of background variables. The construct is
not measured directly, but is indicated by the answers to a pair of
questionnaire statements.
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1. INTRODUCTION

Consider the situation of regression analysis with
several dichotomous dependent variables. For this case,
Ashford and Sowden (1970) proposed the multivariate
probit model, and, using the multivariate logistic func-
tion, Nerlove and Press (1973) and Schmidt and Strauss
(1975) treated polytomous variables and models similar
to simultaneous-equation models for quantitative vari-
ables, that is, interval or ratio scaled variables (see
Amemiya 1975 for a review).

In this article, a structural equation model involving
latent variables underlying the dichotomous responses
is developed. This allows for a general representation of
the causal relations between the response and the exog-
enous variables.

2. THE MODEL

Let v be a dichotomous variable with the two possible
values 0 and 1. The traditional model of probit analysis
assumes

Pr(v = 1|z) = &(a + 0'x) , (2.1)

where ® denotes the standardized normal distribution
function and x is a ¢-dimensional random vector (e.g.,
see Finney 1971).

A different model is

Pr(v=1J7) =&k + M) , (2.2)
where 7 is a latent quantitative variable such that
n=xx+7{, (2.3)

and { is a random disturbance. Here, v acts as an indi-
cator of the value of 7, in the sense that the conditional
probability of a v response is a monotonically increasing
or decreasing function of 5. Attention is now focused on
n and the structural relation (2.3). The specification
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may be more reasonable than (2.1) in problems such as
attitude studies, in which the subject’s response to a
certain question or statement is designed to measure a
hypothetical construct, the subject’s attitude toward
something. The primary concern is how the attitude,
rather than the observed response, is related to other
variables of interest.

In this situation, there are usually many response
variables that can be used to measure the same con-
struct, that is, we can have multiple indicators of the
same latent variable. A similar situation occurs in
medical studies, in which questionnaire information on
symptoms is used to indicate the development of some
disease. The same specification may also be relevant in
econometric studies with characteristics such as the
purchase or nonpurchase of some commodity, the work
or leisure of a person, and so on. We may then think of
the latent variable as a desire to consume, a desire to
work, and so forth. In such applications, however, the
existence of multiple indicators is less frequent, because
often a single response variable may be the only relevant
indicator. As will be shown in Section 2, the availability
of multiple indicators for each latent variable is, in gen-
eral, necessary for the identification of the model.

It is assumed that ¢ in (2.3) is independent of x and
normally distributed with mean zero and variance y.
Because the scale for 7 is arbitrary, the model has an
indeterminacy such that the parameter N may be multi-
plied by a constant and 7 divided by the same constant
without affecting Pr (v = 1|n). We eliminate this
indeterminacy by setting N = 1 (also see the general
formulation of the model given later).

As shown in the Appendix, an interesting property
of the model is that Pr (v = 1|x) can be expressed in
terms of the normal distribution function as

Pr (v = 1|x) = &(6x 4+ 82'x) , (2.4)
where

d=@w+ 1.

Thus the present model has the same functional form
as the traditional probit model of (2.1), and wheny = 0
they are equivalent. With y = 0, the disturbance ¢,
representing the effect of omitted exogenous variables,
is excluded from the model. In most social science ap-
plications, however, this disturbance is needed; this
motivated Amemiya and Nold (1975) to attempt a
modification of the logit model. With one response
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variable, a disturbance of this type is not identified be-
cause it is only possible to identify & = 6« and 8 = d+.
As shown in Section 3, however, two or more indicators
of the latent variable make it possible to identify the
disturbance.

The simple model shown may be generalized to the
case of p indicators and m structural relations. Let v
be a p-dimensional vector of dichotomous variables,
and let n be an m-dimensional vector of latent variables.
The following measurement specification is the same as
in the factor analysis model for dichotomous variables
(e.g., see Bock and Lieberman 1970 and Muthén 1978),
and, in the case of m = 1, it is the same as the classical
latent trait model (e.g., see Lord and Novick 1968).

The relation between v and n is described by the param-
eters of a vector x(p X 1) and a matrix A(p X m). Let
A'; be the ith row of A. Then, (2.2) is generalized to

Pr(w:=1|9) = &k + Vin) ,

i=1,2....,p. (25)

Usually different (possibly overlapping) groups of v’s
are chosen to measure different 5’s, so that certain ele-
ments of A are zero a priori. As before, the scale of the
7’s may be determined by setting one element equal to 1
in each column of A. The latent variables are assumed to
account for all the interdependencies among the indi-
cators, so that conditional on %, the v’s are independent
(e.g., see Anderson 1959). Thus,

fln) = fi(vs[n) f2(v2]m). .. fp(vplm) ,

where f, f1, f2, ..
tributions.
We wish to study a linear structural equation system

Bp=TIx+ 1, (2.7)

(2.6)

., f» are conditional probability dis-

where B(m X m) is nonsingular, B and I'(m X ¢) are
parameter matrices of structural coefficients, n(m X 1)
is the vector of latent variables, x(¢ X 1) is a vector of
observed fixed or random variables, and {(m X 1) is a
vector of disturbances that is independent of x and has
a multivariate normal distribution, with mean vector
zero and covariance matrix ¥'. Both B and I may con-
tain some fixed elements (zeroes and ones) specified a
priori. The structural equation system is of the same
form as studied in econometrics, but the difference is
that » is not directly observed. Structural relations in-
volving such latent variables are often useful in the social
sciences. Currently, such models are used in the case in
which n has quantitative indicators, as in the so called
LISREL model (see Joreskog 1973, 1977).

The model is now completely specified, and we can
deduce the probability distribution of v for given x. To
describe this, we let F(a, C) be the p-variate normal
distribution function with argument a, mean vector
zero, and covariance matrix C. We note that for a diagonal
matrix D(p X p), with positive diagonal elements,

F(Da, DCD) = F(a, C). When p = 1, F(a, 1) = &(a).
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The probabilities of different v observations conditional
on x may all be expressed as functions of the different
marginal probabilities for observing one or several v's
equal to 1, conditional on x. If we use the result in the
Appendix, these marginal probabilities are obtained as
the marginal counterparts of the following p-variate
normal distribution function

Pr(va=1,...,0, = 1|x)

= F(x + AB-'Tx, AB-'WB-VA’ + 1) . (2.8)

It is interesting to relate this model to the multivariate
probit model of Ashford and Sowden (1970). In the
latter, we have

Pr(vi=1,...,v,=1|x) =F(a+ 0x, 8) , (2.9)

where a(p X 1), ®(p X ¢q), and E(p X p) are param-
eter matrices, with diag (2) = I. The probabilities for
other v observations are obtained in the same way as
previously described.

Put
=BT , (2.10)
Q = B-'wBV | (2.11)
E=AQA +1, (2.12)
A = diag ()~ (2.13)
A comparison between (2.8) and (2.9) yields
« = Ax , (2.14)
0 = AAII (2.15)
E = AZA . (2.16)

Thus, the two models have the same functional form.
Our model is, however, stronger and more restricted be-
cause it imposes the structure of (2.15) and (2.16) on
® and Z, where the number of parameters in A, B, T,
and W is less than or equal to the number of parameters
in ® and E.

3. IDENTIFICATION AND MAXIMUM
LIKELIHOOD ESTIMATION

To study the identification of parameters in the general
formulation of our model, we may consider

F(a + Ox, ) = F(Ax + AAIIX, AXA) . (3.1)

In the Ashford and Sowden (1970) model we can identify
the p(p — 1)/2 correlations of &, the p elements of e,
and the p X ¢ elements of ® (assuming that there are at
least ¢ + 1 different x values). We note that this is the
maximum number of identifiable parameters under the
present model and that x, A, B, T, and ¥ necessarily
have to be identified in terms of «, ®, and E to yield an
identified model.

First, consider the case in which a certain latent
variable 7, has a single indicator v, in the sense that the
element A\, of A is the only nonzero element in the sth
row and the fth column of A. Then, it is seen that
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multiplication of the sth row of x and the {th row of II
by the same scalar can be compensated by a change in
= through the elements of the tth row (and column) of
Q, leaving (3.1) unaltered. Because the imposed changes
in II and Q generally can be absorbed in B, T, and W,
such a model is not identified.

Identification rules are difficult to establish in the
general case. By considering parts of the model sepa-
rately, however, using results pertaining to factor-analysis
models and simultaneous-equation models, we can ob-
tain a useful set of sufficient conditions for the identifica-
tion of the model.

Consider the correlation matrix of (3.1):

Z = AXA = A(AQA’ + DA . (3.2)

We note that the scale factors of A are functions of the
elements of A and Q, but of no other parameters. Are
A and Q identified in terms of the correlations of &?
This is the case if A and Q are identified in terms of the
covariances of X, that is, the off-diagonal elements of
AQA’. These covariances have the well-known structure
of a restricted factor-analysis model (e.g., see Lawley
and Maxwell 1971), for which the identification status is
known for common applications. Identification can be
obtained through a suitable arrangement of at least
m — 1 zeroes and one element set equal to 1 in each
column of A (also see Joreskog 1969 and Dunn 1973).
The identification of the factor model thus implies that A
and Q are identified.
Now, consider the argument of (3.1),

o+ Ox = Ax + AAIX . (3.3)

Given the identification of A and Q, A is given, and we
can identify x and II (where II = (A’A)'A’AT'O,
assuming that A has full-column rank). The remaining
parameter matrices B, I', and ¥ are identified in terms
of I and @ under conditions that are well known in
simultaneous-equation modeling (e.g., see Goldberger
1964, Ch. 7.)

The fact that this set of conditions is sufficient and not
necessary for identification is illustrated by the case of
p = 2. Here, A and Q obviously are not identified in
terms of &, but for m = 1 the model is still identified
due to the restrictions on ®. Let p be the single correla-
tion coefficient of &. The parameters are x1, k2, Ay = 1,

N2, Y1, V2, ..., Yo, ¥. After some algebra, we find that ¢
is identified as

¥ = 01,0570/ (1 — 61,057%p) , (3.4)

the v’s as
vi = 01:(1 — 01;02,70)7F, (3.5)

and \; as
A? = 0172022 (1 — 01,82,7'p)/ (1 — 61,70250) , (3.6)
where ¢, j = 1,2, ..., ¢, and the sign of \; is determined

by the notation of the two v, alternatives (to obtain real
solutions, 1 — 01,‘02]'_2[) >0 and 1 — 01]'—102jp > 0) This
determines A and thus ki, k2.
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Now consider the maximum likelihood estima-
tion (MLE) of the model. The data are a sample
of N independent observations on the random vector
(v/, x’). Let D be the number of distinet x values ob-
served in a given sample, and let R be the number of
possible v responses (R = 27). Denote by Pry, and ng.,
the probability and the observed frequency, respec-
tively, of the rth v response, given the dth distinct x
value. The Pry.’s are functions of the parameter in the
way described in Section 2. Because the parameters of
the x distribution are not restricted, maximizing the
likelihood L of the sample is equivalent to minimizing

D R
— > ¥ nalog Pry

d=17=1

F = 3.7
with respect to x, A, B, T', and W. It is clear that the
numerical minimization of F involves heavy computa-
tions for large values of D or p. In the application of
Section 3, D = 76 and p = 2 yield moderate computa-
tional work.

For the MLE’s of the vector of parameters 0, say,
large-sample standard errors in principle may be ob-
tained from the inverse of the Fisher information matrix

E(dlog L/36 0 log L/36") , (3.8)

where 3 log L/30 = — 0F/06. Let the subscript s denote
the v-response pattern for the ith x observation and
put

>
1
™ =

d log Pri;/300 log Pr;, /96’ (3.9)

-
[
-

=

(3.10)

1
Mvu

Nar/Pra?d Pra,/300 Pra, /30" .
1

!
]
-

T

n

The matrix A is an asymptotically valid approximation
of (3.8). Thus, A~! evaluated at the minimum of F will
be used as the estimate of the covariance matrix of the
MLE’s.

4. A SOCIOLOGICAL APPLICATION

As an example, a model with one structural relation
and two dichotomous indicators of a single latent variable
will now be estimated. The data and the basic idea of
the model formulation have been kindly supplied by
Otis Dudley Duncan, Department of Sociology, Uni-
versity of Arizona. The data are from a 1971 Detroit
area study, and the responses of 659 married women with
complete data regarding the following variables will be
used.
The dichotomous responses come from the interview
question :
Here are some things that might be done by a boy or a girl.
Suppose the person were about 13 years old. As I read each of
these to you, I would like you to tell me if it should be done as a
regular task by a boy, by a girl or both.

. Shoveling walks

. Washing the car

. Dusting furniture
. Making beds.

o TP

[=%
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Maximum Likelihood Estimates
Y Yo Vs Jl A A iy Ry
.238 .181 —.094 757 ,1.0002 1.695 —.289 —.880
(.078) (.067) (.046) (.270) — (.751) (271) (.258)
2 Fixed value.

b Standard errors in parentheses.

For this illustration, we will use statements b. (CAR)
and d. (BEDS), corresponding to each of the two do-
mains of the traditional sexual division of labor. The
response was practically limited to the alternative
“both” (coded as 1) and the alternative “boys” for
CAR, “girls” for BEDS (each coded as 0). The observed
proportions of ‘“‘both’” answers are .689, .653, and .543
for CAR, BEDS, CAR and BEDS, respectively.

The latent variable of interest is the attitude regarding
“sex typing,”’ or rather ‘“the propensity to reject sex
typing”’ (Duncan 1975). This propensity is assumed to
be a quantitative variable, large positive values being
connected with a “liberal”’ view. Let v; correspond to the
CAR response and v, correspond to the BEDS response.
Here, v; and v, are two different indicators of the sex-
typing propensity, where, for each indicator, the prob-
ability of a “both” answer is supposed to increase for
increasing value of the propensity, as in (2.5). The sex-
typing propensity is linearly related to three quantita-
tive z variables, £, and z. being the number of years of
schooling completed by the respondent and the spouse,
respectively (as reported by the respondent), and x3
as the number of years married (which may well act as
a proxy for age). The education variables are scored from
1 to 4, with the categories: elementary (0-8 years);
high school, nongraduate (9-11); high school, graduate
(12) ; and college (13 and more). Years married is scored
1 to 6, corresponding to the intervals 1-9, 10-19, 20-29,
..., 50-59.

It is interesting to note that the model in this example
is analogous—and generalizes—to the situation of the
“multiple indicators—multiple causes” model studied,
for example, by Joreskog and Goldberger (1975). The
essential difference is that in our case quantitative indi-
cators are not available, but only dichotomous ones.

The estimates and their standard errors are shown in
the table. The ‘“‘explained” variance in the sex-typing
propensity, V(y'x)/V (y), is estimated as 18 percent,
emphasizing the role of the disturbance parameter, as
discussed in Section 2. Muthén (1976) considers a more
complex application of the general model to this set of
data. Here, the response of the spouse is also included,
with reciprocal interaction between the spouses’ sex-
typing propensities.

5. CONCLUSION

In this article, we have proposed a latent-variable
model to deal with situations involving multivariate
dichotomous response. The latent variables were used

in a set of structural equations to model the causal
relations underlying the response. Identification and
MLE of the model were considered. The ML approach
was found to involve too heavy computations in the
general case.

APPENDIX

Denote by F(a, C) the distribution function with argu-
ment a for a multivariate normal vector with mean zero
and covariance matrix C, and denote by ¢(z; a, C) the
density of a multivariate normal distribution with mean
a and covariance matrix C. Consider the k-dimensional
dichotomous vector u and the n-dimensional multi-
variate normal vector y.

Theorem: If
Pr(us=1,...,ur=1ly) =F@+By,C), (Al
where y has mean d and covariance matrix E, then
Prur=1,...,ur=1)
= F(a+ Bd,BEB’ 4+ C) . (A.2)

Proof: Integrating (A.1) over y, we find after a variable
transformation and a change of the order of integration,

Pr(ur=1,...,u=1)

_ /‘" _,,/_akf(z)dzl...dzk . (A3)

where

f(z) = /°° /°° ¢(y; d, E)¢(z; —By, C)dyi. . .dyn.
" - (A.4)

Using standard results on normal distributions, we find
that
f(z) = ¢(z; —Bd, BEB' + C) . (A.5)

Inserting (A.5) in (A.3) and (A.2) immediately follows.

In the text, the theorem is applied to the distribution
of n conditional on x, which is multivariate normal with
mean B-!I'x, corresponding to d, and covariance matrix
B-'wB-V, corresponding to E. Furthermore, it is seen
that %, A, and I correspond to a, B, and C, respectively.

[ Received November 1976. Revised August 1978.]
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