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Meta-analysis and structural equation modeling (SEM) are two important statistical methods
in the behavioral, social, and medical sciences. They are generally treated as two unrelated
topics in the literature. The present article proposes a model to integrate fixed-, random-, and
mixed-effects meta-analyses into the SEM framework. By applying an appropriate transfor-
mation on the data, studies in a meta-analysis can be analyzed as subjects in a structural
equation model. This article also highlights some practical benefits of using the SEM
approach to conduct a meta-analysis. Specifically, the SEM-based meta-analysis can be used
to handle missing covariates, to quantify the heterogeneity of effect sizes, and to address the
heterogeneity of effect sizes with mixture models. Examples are used to illustrate the
equivalence between the conventional meta-analysis and the SEM-based meta-analysis.
Future directions on and issues related to the SEM-based meta-analysis are discussed.
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It is of methodological importance to see how seemingly
unrelated statistical methods can be linked together. Con-
sider the classic example of analysis of variance (ANOVA)
and multiple regression. Before the seminal work of Cohen
(1968; Cohen & Cohen, 1975), “the textbooks in ‘psycho-
logical’ statistics treat[ed multiple regression, ANOVA, and
ANCOVA] quite separately, with wholly different algo-
rithms, nomenclature, output, and examples” (Cohen, 1968,
p. 426). Understanding the mathematical equivalence be-
tween an ANOVA (and analysis of covariance, or AN-
COVA) and a multiple regression helps us to comprehend
the details behind the general linear model.

Another important example in social statistics has been
the development of structural equation modeling (SEM;
e.g., Bentler, 2004; Bollen, 1989; Jöreskog & Sörbom,

1996; L. K. Muthén & Muthén, 2007). SEM provides a
flexible framework for testing complicated models involv-
ing latent and observed variables. It integrates ideas of latent
variables in psychometrics, path models in sociology, and
structural models in econometrics. The general linear
model, path analysis, and confirmatory factor analysis are
some special cases of SEM.

Recently, it has been shown that many models used in the
social and behavioral sciences are related to SEM. Takane
and de Leeuw (1987; see also MacIntosh & Hashim, 2003)
showed how some item response theory (IRT) models could
be analyzed as structural equation models. Several authors
(e.g., Bauer, 2003; Curran, 2002; Mehta & Neale, 2005;
Rovine & Molenaar, 2000, 2001) demonstrated how multi-
level models could be formulated as structural equation
models. The advantage of integrating these models together
is that a unified framework can be used to address complex
research questions involving some of these models. There
are at least two such general models: Mplus (L. K. Muthén
& Muthén, 2007) combines SEM, multilevel models, mix-
ture modeling, survival analysis, latent class models, and
some IRT models into a single statistical modeling frame-
work, whereas Generalized Linear Latent and Mixed Mod-
els (GLLAMM; Skrondal & Rabe-Hesketh, 2004) inte-
grates SEM, generalized linear models, multilevel models,
latent class models, and IRT models.

Meta-analysis, a term coined by Glass (1976), represents
“the statistical analysis of a large collection of analysis
results from individual studies for the purpose of integrating
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the findings” (p. 3). It is also known as research synthesis
(Cooper & Hedges, 1994), the combining of information
(National Research Council, 1992), and systematic review
(Petticrew & Roberts, 2006). It has become the standard
methodology in synthesizing research findings in the social,
behavioral, and medical sciences.

Meta-analysis and SEM have their own traditions and
terminologies. They are usually treated as two unrelated
topics in the literature. For example, Stapleton and Leite
(2005) reviewed 55 SEM course syllabi; none of them
mentioned meta-analysis as a topic. Few SEM books dis-
cuss meta-analysis as a topic relevant to SEM.1 In the
literature on meta-analysis, Hunter and Schmidt (2004)
briefly mentioned a procedure of combining meta-analytic
and SEM techniques, which was called meta-analytic struc-
tural equation modeling (MASEM; M. W. L. Cheung &
Chan, 2005, in press).2 However, MASEM is limited to
combining correlation matrices and covariance matrices.
The pooled correlation or covariance matrix is then used to
estimate a structural model. It is not intended to synthesize
other effect sizes such as Hedges’s (1981) d, the standard-
ized mean change for repeated measures (Becker, 1988;
Morris & DeShon, 2002), or the odds ratio (Haddock,
Rindskopf, & Shadish, 1998).

The primary objective of this article is to propose a model
to integrate meta-analysis into the SEM framework. Fixed-,
random-, and mixed-effects meta-analyses (e.g., Hedges,
1994; Hedges & Olkin, 1985; Hedges & Vevea, 1998) can
be formulated as structural equation models. In other words,
SEM can be directly used to conduct a meta-analysis. For
the sake of discussion, in this article this new approach is
called SEM-based meta-analysis. This article contributes to
the methodological development of a new area of research
by integrating meta-analysis and SEM.

Apart from being of methodological interest, SEM-based
meta-analysis also has several practical benefits for applied
researchers who are conducting a meta-analysis. As many
state-of-the-art techniques have been implemented in many
SEM packages, these techniques are readily accessible to
researchers by using the SEM-based meta-analysis. Specif-
ically, this article will show how SEM-based meta-analysis
can be used to handle missing covariates, to quantify the
heterogeneity of effect sizes, and to address the heteroge-
neity of effect sizes with mixture models in a meta-analysis.
Another benefit of the proposed approach is that mathemat-
ical models of meta-analysis can be easily translated into
path diagrams in the SEM-based meta-analysis. Path dia-
grams preserve all of the necessary components in the
mathematical models (Curran & Bauer, 2007). They pro-
vide an alternative and accurate presentation of the mathe-
matical aspect of a meta-analysis. SEM-based meta-analysis
may make meta-analytic techniques more accessible to ap-
plied researchers.

This article is organized as follows. The next section

contains a brief review of the various meta-analytic models.
A model for integrating meta-analysis into SEM is then
presented. A data set from Hox (2002) is used to demon-
strate the equivalence between conventional meta-analytic
techniques and SEM-based meta-analysis. Finally, future
directions on this approach and related issues are discussed.

Meta-Analytic Models

Fixed-Effects Models

Effect sizes are quantitative indices that summarize the
results of a study. Common effect sizes include Hedges’s d,
the correlation coefficient (and its Fisher’s z transformed
score), and the odds ratio. Fleiss (1994) and Rosenthal
(1994) have provided comprehensive summaries of many
effect sizes and their estimated sampling variances.

Models without any covariate. The simplest analysis in
a meta-analysis involves pooling a series of independent
effect sizes using a fixed-effects model. In this article, I
denote yi as a generic effect size in the ith study. yi is
usually expressed as

yi � �Fixed � ei, (1)

where �Fixed and ei are the population effect size and the
sampling error in the ith study, respectively. ei is assumed
to be normally distributed with a mean of zero and a known
variance of �i

2.

1 Skrondal and Rabe-Hesketh (2004) presented a unified latent
variable modeling approach to multilevel, longitudinal, IRT, and
structural equation models as well as many extensions. An exam-
ple of meta-analysis was discussed in pp. 299–307. Conventional
meta-analytic techniques (not based on SEM) were presented as
the framework of analyses.

2 MASEM can be illustrated by using an example from Becker
(1992, 1995) of combining independent studies that addressed the
predictability of mathematics aptitude from spatial ability and
verbal ability. Correlation matrices among these variables from
four studies were synthesized with the generalized least squares
method. A linear model was then fitted on the pooled correlation
matrix by using mathematical aptitude as the dependent variable
and spatial ability and verbal ability as the independent variables.
Besides fitting regression models on the pooled correlation matrix,
MASEM has been extended to fit path models, exploratory factor
analysis, confirmatory factor analysis, and structural equation
models (e.g., Becker, 2000; Becker & Schram, 1994; S. F. Cheung,
2000; Furlow & Beretvas, 2005; Hafdahl, 2001; Shadish, 1996;
Viswesvaran & Ones, 1995).

Conventionally, researchers have synthesized correlation matri-
ces with meta-analytic techniques (e.g., Becker, 1992; Hedges &
Olkin, 1985; Hunter & Schmidt, 2004), whereas the pooled cor-
relation matrix is fitted in SEM. M. W. L. Cheung and Chan (2005,
in press) proposed an SEM approach to conducting MASEM. Both
synthesizing correlation matrices and fitting SEM on the pooled
correlation matrix are conducted in the SEM framework.
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The weighted effect size �̂Fixed under the fixed-effects
model is

�̂Fixed �

�
i�1

k

wiyi

�
i�1

k

wi

(2)

where wi � 1/�i
2 is the weight and k is the total number of

studies. The sampling variance ŝFixed
2 of �̂Fixed is computed

by

ŝFixed
2 � 1��

i�1

k

wi. (3)

If the population effect sizes are homogeneous, �̂Fixed is an
unbiased estimate of the population effect size. Moreover,
�̂Fixed has the smallest sampling variance of all possible
weighted estimators when the sampling variances are truly
known. Because �i

2 is usually estimated, the accuracy of
ŝFixed

2 in estimating the sampling variance of �̂Fixed depends
on how accurate the estimated value of �i

2 is (see Hedges,
2007; Hedges & Olkin, 1985). After the averaging, it is of
interest to test whether the weighted effect size �̂Fixed is
statistically significant. We may compute a test statistic

Z1 � �̂Fixed/ŝFixed. (4)

Under the null hypothesis H0 : �Fixed � 0, the test statistic
Z1 has an approximate standard normal distribution.

Combining estimates of effect sizes across studies with
the fixed-effects model is appropriate only when the effect
sizes are homogeneous (National Research Council, 1992);
otherwise, the estimated standard error on the weighted
mean under the fixed-effects models is smaller than its true
value when the effect sizes are heterogeneous. To test the
homogeneity of the effect sizes, we may compute a Q
statistic (Cochran, 1954):

Q � �
i�1

k

wi� yi � �̂Fixed�
2. (5)

Under the null hypothesis H0 : �1 � �2 � . . . � �k, the
Q statistic has an approximate chi-square distribution with
(k � 1) degrees of freedom. However, this does not neces-
sary mean that fixed-effects models should never be used
whenever the effect sizes are heterogeneous. Hedges and
Vevea (1998) pointed out that fixed-effects models are still
appropriate even if the effect sizes are heterogeneous when
the researchers are interested in only this collection of
studies. This is what they call a conditional inference.

Models with covariates. Besides estimating a common
effect size, study characteristics may be used as covariates
to model the variability among the effect sizes. Study char-
acteristics can be in the form of categorical covariates
(Hedges, 1982a) and continuous covariates (Hedges,
1982b). A weighted least squares (WLS) approach is usu-
ally used to model the variability among the effect sizes
with covariates (e.g., Hedges & Olkin, 1985). It would be
more convenient to express the model in matrix notation

y � X� � e, (6)

where y is a k � 1 vector of effect sizes, � is a p � 1 vector
of regression coefficients including the intercept, e is a k �
1 vector of residuals, and X is a k � p design matrix
including ones in the first column. Because the effect sizes
are assumed to be independent, the covariance matrix of the
residuals Ve is a diagonal matrix, that is, Ve � diag[�1

2,
�2

2, . . . , �k
2].

The vector of the estimated regression coefficients via
WLS is

�̂ � �XTVe
�1X��1XTVe

�1y, (7)

where Ve
�1 � diag[1/�1

2, 1/�2
2, . . . , 1/�k

2] and the asymp-
totic covariance matrix of �̂ is

V̂�̂� �XTVe
�1X��1. (8)

It is useful to test whether all of the p regression coefficients
including the intercept are statistically significant. We may
compute a large-sample test statistic

Q̃ � �̂TV̂�̂

�1
�̂. (9)

Under the null hypothesis H0 : � � 0, the test statistic Q̃ is
approximately distributed as a chi-square variate with p
degrees of freedom. The above test can easily be modified
to test hypotheses on some of the elements in �, for in-
stance, the regression coefficients excluding the intercept
(Hedges & Olkin, 1985).

After testing the significance of all (or some) regression
coefficients, we may want to construct an approximate Z test
to test the significance of an individual regression coeffi-
cient under H0 : �i � 0,

Z2 � �̂i/��V̂�̂�ii, (10)

where (V̂�̂)ii is the sampling variance of �̂i.

Random-Effects Models

Fixed-effects models assume that the population effect
sizes share a common value. Many researchers have argued
that studies are not direct replications of each other. It is
expected that there will be differences in the population
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effect sizes due to differences with the samples and methods
used across studies. Thus, random-effects models should be
more appropriate (e.g., Hedges & Vevea, 1998; Hunter &
Schmidt, 2000; National Research Council, 1992).

Besides the sampling error, random-effects models include
variations in the population effect sizes. According to Hedges
and Vevea (1998), the most important issue in determining a
fixed-effects versus a random-effects meta-analysis is the na-
ture of the inferences desired. Inferences based on fixed-effects
models can be applied only to those studies that have been
included in the analysis, whereas inferences based on random-
effects models can be generalized beyond the studies in the
analysis. Researchers should consider which model is more
appropriate for their research questions.

Models without any covariate. The random-effects
model is

yi � �Random � ui � ei, (11)

where �Random, ui and ei are the “super” population effect
size, the study specific effect, and the sampling error in the
ith study, respectively. In fixed-effects models, there is only
one source of variation, the sampling variance �i

2. In con-
trast, there are two sources of variation in a random-effects
model—the sampling variance and the between-studies
variance component, 	2 � var(ui). In the meta-analytic
literature, �i

2 and (	2 
 �i
2) are known as the conditional

and the unconditional variance, respectively.
One common estimator of 	2, which is based on the

quadratic form of the Q statistic in Equation 5, was pro-
posed by DerSimonian and Laird (1986). Their estimator is

	̂DL
2 �

Q � �k � 1�

c
, (12)

where Q is the statistic of the homogeneity test, k stands for
the number of studies, and c � ¥i�1

k wi � (¥i�1
k wi

2)/(¥i�1
k

wi). When the estimated value is negative, it is truncated to
zero. Hedges (1983) also proposed an estimator of 	2 based
on the unweighted method of moments. Maximum likeli-
hood (ML) and restricted maximum likelihood (REML)
estimations may also be used in estimating 	2 (see Viecht-
bauer, 2005, for an empirical comparison of these estima-
tors).

Once the variance component is estimated, the weighted
effect size �̂Random under the random-effects model is

�̂Random �

�
i�1

k

w̃iyi

�
i�1

k

w̃i

, (13)

where w̃i � 1/(�i
2 
 	̂2) is the weight. The sampling

variance ŝRandom
2 of �̂Random is estimated by

ŝRandom
2 � 1��

i�1

k

w̃i. (14)

As 	̂2 is always nonnegative, ŝRandom
2 is always larger than

ŝFixed
2 unless 	̂2 is zero.

Models with covariates. It is sometimes of theoretical
interest to include study-specific covariates in random-ef-
fects models (e.g., Overton, 1998). These are generally
known as mixed-effects models, and they are also widely
known as meta-regression in medical research (Berkey,
Hoaglin, Mostellar, & Colditz, 1995; Thompson & Higgins,
2002). Mixed-effects models include both fixed and random
effects. The fixed effects are the regression coefficients due
to the study-specific covariates, whereas the random effects
are the unexplained study-specific effects after controlling
for the covariates. The model in matrix notation is

y � X� � Iku � e, (15)

where y is a k � 1 vector of effect sizes, � is a p � 1 vector
of fixed-effects regression coefficients including the inter-
cept, u is a k � 1 vector of study-specific random effects
with u � N(0, Ik	

2), e is a k � 1 vector of residuals, X is
a k � p design matrix that includes ones in the first column,
and Ik is a k � k identity matrix. Because the effect sizes
are assumed to be independent, the conditional covariance
matrix of the residuals Ve is a diagonal matrix, that is, Ve �
diag[�1

2, �2
2, . . . , �k

2].
Raudenbush (1994) proposed a method of moments es-

timator on 	2 under the mixed-effects meta-analysis. When
	̂2 is available, a WLS with Equations 7 and 8 can be used
to obtain the parameter estimates and their asymptotic co-
variance matrix by using a new weight, w̃i � 1/(�i

2 
 	̂2).
Besides using the method of moments, multilevel models
may also be used to analyze random- and mixed-effects
meta-analyses (e.g., Hox, 2002; Hox & de Leeuw, 2003;
Konstantopoulos & Hedges, 2004; Raudenbush, 1994; Rau-
denbush & Bryk, 2002). From a mathematical point of view,
the model in Equation 15 is the most general model of all of
the models that have been mentioned thus far. By dropping
the term Iku, fixed-effects meta-analyses with or without
covariates are special cases of Equation 15.

Transforming Data to Achieve Identically
Distributed Errors

Fixed-effects models. A WLS regression is frequently
used to analyze a fixed-effects meta-analysis by using wi �
1/�i

2 as the weight (e.g., Hedges & Olkin, 1985). The WLS
criterion FWLS to be minimized in order to obtain the
parameter estimates is

FWLS � �y � X��TVe
�1�y � X��. (16)
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An alternative parameterization is to transform all variables
including the intercept by W1/ 2 � diag[1/�1, 1/�2, . . . ,
1/�k] (e.g., Kalaian & Raudenbush, 1996; Konstantopou-
los, 2008; Kutner, Nachtsheim, Neter, & Li, 2005; Rauden-
bush, Becker, & Kalaian, 1988). After the transformation,
the fixed-effects model becomes

W1/ 2y � W1/ 2X� � W1/ 2e

y* � X*� � e*, (17)

where y* � W1/ 2y, X* � W1/ 2X, and e* � W1/ 2e. It can
be readily shown that e* is distributed with a known identity
matrix Ik by considering

var�e*� � W1/ 2var�e�W1/ 2

W1/ 2VeW
1/ 2 � Ik, (18)

where W � Ve
�1.

Because the transformed error e* is assumed to be inde-
pendent and identically distributed with a unit variance,
ordinary least squares (OLS) can be directly applied to the
data. The OLS criterion FOLS to be minimized in order to
obtain the parameter estimates is

FOLS � �y* � X*��T�y* � X*��. (19)

The parameter estimates based on an OLS regression are
equivalent to those based on Equation 7 in a meta-analysis,
whereas the standard errors reported by the OLS regression
have to be adjusted by a factor.3

Random-effects models. The above transformation may
also be applied to random- and mixed-effects models. The
mixed-effects model based on the transformed data is

W1/ 2y � W1/ 2X� � W1/ 2Iku � W1/ 2e

y* � X*� � I*ku � e*, (20)

where I*k � W1/2Ik. After the transformation, e* is as-
sumed to be distributed with a known identity matrix Ik.
It should be noted that the same transformation with W1/2

is applied regardless of whether the model is a fixed- or
random-effects one because the conditional variance �i

2 is
the same under both fixed- and random-effects models.

Mathematically, under fixed-effects models a meta-
analysis using WLS with weights and one using an OLS
regression on the transformed data are equivalent. For
random-effects models, the transformed errors are as-
sumed to be conditionally identically distributed with a
unit variance. Transformation allows us to have effect
sizes that are assumed to be conditionally identically
distributed with a unit variance and to exclude the
weights from the analysis. In other words, studies in a

meta-analysis can be treated as subjects in a structural
equation model. This transformation is the basis for the
following SEM approach.

A Structural Equation Modeling Approach

Structural equation modeling (SEM), also known as a
covariance structure analysis or a correlation structure
analysis, is usually used to fit hypothetical models on the
first and second moments (mean vector, covariance, or
correlation matrices; e.g., Bentler, 2004; Bollen, 1989;
Jöreskog & Sörbom, 1996; L. K. Muthén & Muthén,
2007; Neale, Boker, Xie, & Maes, 2006). Recently, it has
been extended to the direct analysis of raw data with
missing data (e.g., Arbuckle, 1996; Neale, 2000). Chi-
square statistics and goodness-of-fit indices may be used
to determine the overall model fit of the proposed model,
whereas the significance of an individual parameter esti-
mate can be tested by the parameter estimate divided by
its standard error, which has an asymptotic normal dis-
tribution (Bollen, 1989).

To illustrate the equivalence between the conventional
meta-analysis and the SEM-based meta-analysis, a sum-
mary of 20 simulated studies reported in Hox (2002; Hox
& de Leeuw, 2003) is listed in Table 1. Table 1 shows the
effect size (in Hedges’s d), its sampling variance, and one
continuous study characteristic—the duration of the ex-
perimental intervention in terms of weeks (see Hox,
2002, for details). The variable W1/2 used for the trans-
formation and the transformed variables are also listed in
Table 1.

The computer program MiMa (Viechtbauer, 2006), im-
plemented in R (R Development Core Team, 2008), was
used to conduct the conventional meta-analysis reported
here, whereas Mplus (Version 5; L. K. Muthén & Mu-
thén, 2007) was used to conduct the SEM-based meta-

3 When common statistical packages such as SPSS and SAS are
used to conduct a meta-analysis with a WLS regression or with an
OLS regression on the transformed data, the reported standard

errors are incorrect. They have to be adjusted by SÊ��̂j�correct

� SÊ��̂j�reported/�MSe, where SÊ��̂j�reported is the standard error on
�̂j reported by the statistical packages and MSe is the mean square
error (see Hedges & Olkin, 1985; Konstantopoulos & Hedges,
2004). The reason for this is that the error is assumed to be
distributed with a known variance in a meta-analysis. However,
the error variance is still estimated in a WLS or OLS regression.

Thus, it is necessary to adjust the SÊs by rescaling the error
variance to a fixed value.
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analyses. The Mplus codes for the analyses are included
in the Appendix.4

Fixed-Effects Models

Models without any covariate. A model without any
covariate was first analyzed using a conventional meta-
analysis. The Q statistic was 49.585 (df � 19), p � .001.

The weighted effect size (and its SÊ) was 0.550 (0.065). The
z statistic was 8.465, which was statistically significant at

 � .001. To fit a fixed-effects meta-analysis in SEM, the
model in Equation 17 was fitted with the transformed inter-
cept as the design matrix, that is, X*0 � W1/ 21, where 1 is
a vector of ones.

Figure 1 shows the graphical model. Using conventional
SEM notation, squares, circles, and triangles represent the
observed variables, the latent variables, and the means,
respectively. There are two points that require attention.
First, instead of estimating the error variance on y*, it is

fixed as 1. The SÊs reported in the SEM-based meta-
analysis are now correct. There is no need to make any
corrections of the sort mentioned in footnote 3. Second, the
intercept of y* is fixed as 0 because the weighted effect size
is now represented by �̂0. This constraint is crucial when

applying the SEM-based meta-analysis. The �̂0 (and its SÊ)
was 0.550 (0.065). The z statistic was 8.465. The results

based on the conventional meta-analysis and the SEM-
based meta-analysis are identical. Calculations of the ho-
mogeneity test are discussed in a later section.

Model with a covariate. In this analysis, weeks was
used as a continuous covariate to model the variability in the
effect sizes. The design matrix in Equation 6 includes an
intercept and a continuous variable. By conducting a con-
ventional meta-analysis, the estimated intercept and regres-

sion coefficient (and their SÊs) were �0.204 (0.170) and
0.135 (0.028), respectively. The z statistics for the intercept
and the regression coefficient were �1.205 and 4.816, re-
spectively. Thus, weeks is significant in explaining part of
the variation in the effect sizes.

To conduct the same meta-analysis in SEM, a model on
the transformed data with two predictors was fitted. Figure
2 shows the model where X*0 � W1/ 21 and X*1 �
W1/ 2weeks were the transformed intercept and the trans-

4 Other SEM packages such as EQS (Bentler, 2004) and LIS-
REL (Jöreskog & Sörbom, 1996) may also be used to conduct a
fixed-effects meta-analysis. As a random slope analysis is required
for a random- and mixed-effects meta-analysis, Mplus and Mx are
required for these analyses. The complete data set, the Mplus code,
and the output are available at my website (http://courses.nus
.edu.sg/course/psycwlm/internet/).

Table 1
Simulated Data Set From 20 Studies in Hox (2002)

Study d var(d) Weeks W1/2 da Intercepta Weeksa
Two-class
solution

Three–four-class
solutions

1 �0.264 0.086 3 3.4100 �0.9002 3.4100 10.2299 1 1
2 �0.230 0.106 1# 3.0715 �0.7064 3.0715 3.0715# 1 1
3 0.166 0.055 2 4.2640 0.7078 4.2640 8.5280 1 1
4 0.173 0.084 4 3.4503 0.5969 3.4503 13.8013 1 1
5 0.225 0.071 3# 3.7529 0.8444 3.7529 11.2588# 1 1
6 0.291 0.078 6 3.5806 1.0419 3.5806 21.4834 1 1
7 0.309 0.051 7 4.4281 1.3683 4.4281 30.9965 1 1
8 0.435 0.093 9 3.2791 1.4264 3.2791 29.5122 1 2
9 0.476 0.149 3# 2.5906 1.2331 2.5906 7.7719# 1 2

10 0.617 0.095 6 3.2444 2.0018 3.2444 19.4666 1 2
11 0.651 0.110 6 3.0151 1.9628 3.0151 18.0907 1 2
12 0.718 0.054 7 4.3033 3.0898 4.3033 30.1232 1 2
13 0.740 0.081 9# 3.5136 2.6001 3.5136 31.6228# 1 2
14 0.745 0.084 5 3.4503 2.5705 3.4503 17.2516 1 2
15 0.758 0.087 6 3.3903 2.5699 3.3903 20.3419 1 2
16 0.922 0.103 5 3.1159 2.8728 3.1159 15.5794 1 2
17 0.938 0.113 5# 2.9748 2.7904 2.9748 14.8741# 1 2
18 0.962 0.083 7 3.4711 3.3392 3.4711 24.2974 1 2
19 1.522 0.100 9 3.1623 4.8130 3.1623 28.4605 2 3
20 1.844 0.141 9 2.6631 4.9108 2.6631 23.9681 2 3

Note. The data were obtained from Table 8.2 of Hox (2002, p. 146). Data points followed by the pound (#) sign were randomly deleted in the illustration
on handling missing covariates.
a Data transformed by multiplied by W1/2.
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formed weeks, respectively. The error variance and the
intercept of y* were fixed as 1 and 0, respectively, whereas

the �̂0 and �̂1 (and their SÊs) were �0.204 (0.170) and
0.135 (0.028), respectively. The z statistics for the intercept
and the regression coefficient were �1.205 and 4.816. The
results based on the conventional meta-analysis and the
SEM-based meta-analysis are the same.

Random-Effects Models

Models without any covariate. Because ML is usually
used as the estimation method in SEM, ML was used to

estimate the variance component in order to compare the
results of the conventional meta-analysis and the SEM-
based meta-analysis. Issues relating to the use of different
estimation methods in estimating the variance component
are discussed later. A random-effects model with an inter-
cept model was fitted. The ML estimate of 	2 reported in
MiMa was 0.135, whereas the weighted effect size (and its

SÊ) was 0.579 (0.105). The z statistic was 5.520. Thus, the
weighted effect size is statistically significant under the
random-effects model.

A random-effects meta-analysis can be formulated as a
single-level analysis with random slopes in SEM. The
model without any covariate in Equation 20 can be ex-
pressed as

y* � I*ku � e*, (21)

where u � N(�01, Ik	
2). Figure 3 shows the graphical

model in which X*0 � I*k is the transformed vector of ones.
In Figure 3, u with a dot in the arrow from X*0 to y*
represents a random slope that varies across studies.
Thus, ui in the ith study is treated as a random variable.
It can be easily shown that the mean of ui is the weighted
effect size �̂0, whereas the variance of ui (m in Figure 3)
is the variance component 	̂2. Because ui varies across
subjects (studies in the context of a meta-analysis), it is
necessary to conduct a random slope analysis (Mehta &
Neale, 2005; B. Muthén & Asparouhov, 2002, 2003;

L. K. Muthén & Muthén, 2007). The �̂0 (and its SÊ) was
0.579 (0.107). The z statistic was 5.406. The 	̂2 was
0.132, which is comparable to the estimates based on
MiMa.

y* X0*

1

0b

1.00

0.00

Figure 1. Structural equation model for a fixed-effects meta-
analysis without covariate. Squares and triangles represent the
observed variables and the means, respectively. y�, X*0, and b0 are
the transformed effect size, the transformed vector of ones, and the
weighted effect size under the fixed-effects model, respectively.

y*

X0*

1

X1*

0b

1b

1.00

0.00

Figure 2. Structural equation model for a fixed-effects meta-
analysis with a covariate. Squares and triangles represent the
observed variables and the means, respectively. y�, X*0, and X*1 are
the transformed effect size, the transformed vector of ones, and the
transformed covariate weeks, respectively. b0 and b1 are the esti-
mated intercept and the estimated slope under the fixed-effects
model, respectively.

y* X0*

1 u

u

1.00

0.00
m

0b

Figure 3. Structural equation model for a random-effects meta-
analysis without covariate. Squares, circles, and triangles represent
the observed variables, the latent variables, and the means, respec-
tively. y� and X*0 are the transformed effect size and the trans-
formed vector of ones, respectively. u, b0, and m are the study-
specific effect, the weighted effect size, and the variance
component under the random-effects model, respectively.
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Models with a covariate. The covariate weeks was then
added to the model. The 	̂2 dropped to 0.023 with �2(18) �
26.392, p � .091 reported by MiMa. The estimated re-

gression coefficients (and their SÊs) for the intercept and
weeks were �0.214 (0.193) and 0.139 (0.032), respectively.
The z statistics were �1.109 and 4.352. Thus, the covariate
weeks is still significant under the mixed-effects model.

The model in Equation 21 can easily be extended to
include covariates in the SEM-based meta-analysis. The
model with one covariate is

y* � X*0u � X*1�1 � e*, (22)

where �1 is the regression coefficient of weeks, X*0 � I*k is
the transformed vector of ones, and X*1 � W1/ 2weeks is the
transformed weeks that does not include the intercept. It
should be noted that the intercept �0 does not appear in
Equation 22 because it is absorbed by the mean of u. Figure
4 shows the graphical model with a covariate.

The 	̂2 was 0.023 in the SEM-based meta-analysis. The

mean (and its SÊ) of u was �0.214 (0.171). The regression

coefficient (and its SÊ) for weeks was 0.139 (0.036). There
are some minor differences in the estimated standard errors
between MiMa and Mplus. It is speculated that the differ-
ences are due to the iterative procedures and the conver-
gence criteria used in MiMa and Mplus.

Extensions of the SEM-Based Meta-Analysis

In the above examples, I have shown how SEM can be
used as a framework for conducting a meta-analysis. Re-
searchers with basic SEM knowledge may find the proposed
approach useful. This may stimulate more SEM researchers
into applying meta-analytic techniques in their research.
However, meta-analysts may wonder whether this new ap-
proach brings additional benefits beyond those that can be
obtained by carrying out a conventional meta-analysis. In
this section I demonstrate how many state-of-the-art tech-
niques implemented in SEM packages can be directly ap-
plied to meta-analyses. These include mixture modeling, the
bootstrap method, handling missing covariates with the full
information maximum likelihood (FIML), and computing
new parameters based on other parameters.

Most of these techniques are available in the literature;
researchers may implement them to suit their needs. How-
ever, implementing their own procedures may not be prac-
tical for researchers who lack a programming background.
The SEM approach can be applied using the Mplus code set
out in the Appendix. It is hoped that SEM-based meta-
analysis may provide a favorable alternative to conducting
advanced meta-analyses. In addition, SEM-based meta-
analysis allows researchers to apply more than one tech-
nique in the same meta-analysis. For example, a researcher
may want to handle missing covariates and to conduct a
mixture model in the same analysis. This may not be a
trivial task under a conventional meta-analysis.

Handling Missing Covariates

Study characteristics are usually used as covariates in a
meta-analysis. Because the primary studies are conducted
by different researchers with different research objectives, it
is quite common for different study characteristics to be
reported. This could create missing data on covariates of
interest to the meta-analyst (Pigott, 1994, 2001). Cooper
and Hedges (1994) have called missing data “perhaps the
most pervasive practical problem in research synthesis” (p.
525).

Rubin (1987) defined three types of missingness mecha-
nism. The missingness on a variable, say Y, is said to be
missing completely at random (MCAR) if the missingness
is unrelated to the value of Y itself or to the values of any
other variables in the model. This assumption may be rather
strong in applied settings. A considerably weaker assump-
tion is missing at random (MAR). MAR means that the
missingness on Y is unrelated to the value of Y after con-
trolling for other variables in the analysis. The missingness
on Y is said to be not missing at random (NMAR) if the
missingness on Y is related to the value of Y itself.

Rubin’s (1987) definitions have been directly adopted for
meta-analysis (Pigott, 2001; Sutton & Pigott, 2005; Sutton,

y* X0*

1

X1*

u

u

1.00

0.00

1b

m

0b

Figure 4. Structural equation model for a mixed-effects meta-
analysis with a covariate. Squares, circles, and triangles represent
the observed variables, the latent variables, and the means, respec-
tively. y�, X*0, and X*1 are the transformed effect size, the trans-
formed vector of ones, and the transformed covariate weeks,
respectively. b0, b1, u, and m are the estimated intercept, the
estimated slope, the study-specific effect, and the residual variance
component under the mixed-effects model, respectively.
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Abrams, Jones, Sheldon, & Song, 2000). In the context of
missing covariates, MCAR means that the missingness of a
covariate is unrelated to the value of that covariate or of
other variables. MAR means that the missingness of a
covariate may be related to other variables, for instance, the
effect size or other covariates, whereas NMAR means that
the missingness of a covariate is related to the value of that
covariate.

As researchers are not very likely to fail to report a study
characteristic, for example, mean age of the participants,
because of the value of that covariate, Sutton and Pigott
(2005) stated that “the assumption that [study-level covari-
ates] are MCAR or MAR may be reasonable and standard
missing-data methods may suffice in some situations” (p.
235). It should be noted that the missingness on the effect
sizes, for example, a correlation coefficient between job
satisfaction and performance, is likely to be NMAR. If the
effect sizes are nonsignificant, they are less likely to be
reported or published. This is known as publication bias,
which is beyond the scope of this article (see Rothstein,
Sutton, & Borenstein, 2005).

Pigott (2001) summarized several conventional methods
of handling missing covariates in a meta-analysis. These
include listwise deletion, mean substitution, and pairwise
deletion. However, these methods are generally not recom-
mended (Schafer & Graham, 2002). Pigott suggested using
an expectation-maximization (EM) algorithm and multiple
imputation (MI) to handle missing covariates. In order to
handle missing covariates in a regression analysis, Little
(1992) suggested employing MI and ML methods. Schafer
and Graham (2002) also recommended using the FIML
method, which has been implemented in many SEM pack-
ages, and MI to handle missing data with MCAR and
MAR.5

Assuming conditional multivariate normality in the data,
the casewise log-likelihood of the observed data under the
FIML method is obtained by maximizing the function

log Li � Ki �
1

2
log��i� �

1

2
�zi � �i�

T �i
�1 �zi � �i�,

(23)

where Ki is a constant that depends on the number of
complete data points for the ith case, zi is the observed
complete vector including the independent and the depen-
dent variables, and �i and �i are the implied population
mean and covariance matrix for the ith case, respectively
(e.g., Arbuckle, 1996; Enders, 2001b, 2006; Neale, 2000).
The overall log-likelihood of the N cases (studies in the
context of meta-analysis) is ¥i�1

N log Li. The ML estimates
are obtained by maximizing this likelihood function. Be-
cause the number of observed data in zi is allowed to be
different across subjects, missing data can be easily han-
dled.

The evidence from empirical studies supports the conten-
tion that FIML performs better than such conventional
methods as listwise deletion, pairwise deletion, and mean
imputation in handling missing data when the missingness
is either MCAR or MAR (see M. W. L. Cheung, 2007b, and
Enders, 2001a, for some empirical findings on a comparison
of methods of handling missing covariates in the context of
a latent growth model and a regression analysis). When the
missingness is NMAR, none of the above methods is unbi-
ased (see Schafer, 1997). However, the bias of the FIML is
still less than that resulting from listwise deletion, pairwise
deletion, and mean substitution (Jamshidian & Bentler,
1999; B. Muthén, Kaplan, & Hollis, 1987).

Because both FIML and MI are asymptotically equivalent
(e.g., Graham, Olchowski, & Gilreath, 2007), one may
wonder whether the FIML method available in SEM pack-
ages is preferable to MI for handling missing covariates.
There are two advantages to using FIML. First, the results
based on MI are asymptotically equivalent to those based on
FIML. More explicitly, they are equal only when the num-
ber of imputations in MI approaches infinity. It is generally
suggested that three to five imputations are sufficient to
obtain excellent results in MI (e.g., Schafer & Olsen, 1998).
However, Graham et al. (2007) have recently shown that a
few imputations might not be sufficient. They concluded
that “in sum, our simulations results show rather clearly that
FIML is superior to MI, in terms of power for testing small
effect sizes, unless one has a sufficient number of imputa-
tions” (p. 212).

Second, SEM assumes conditional normality on the de-
pendent variables conditional on the observed covariates
(e.g., Bollen, 1989; B. Muthén, 2004b). The observed co-
variates do not need to be normally distributed. Dummy and
ordinal variables may also be used as observed covariates
(see Jöreskog & Sörbom, 1996, for some examples of the
utilization of dummy variables in running ANOVA and
multivariate analysis of variance [MANOVA] in SEM).
When using FIML in SEM, the transformed covariates do
not need to be multivariate normal. In contrast, multivariate
normality is assumed for all variables in MI (see Schafer,
1997, for a discussion on the effect of nonnormality on MI).

To illustrate the procedures for analyzing missing covari-
ates, 5 out of 20 studies were deleted in the covariate weeks
(the data marked with the symbol # in Table 1). The missing-
ness was qualified as MCAR. Three analyses (the listwise
deletion analysis, the FIML analysis, and the MI analysis with

5 Different SEM packages use slightly different algorithms to
obtain the ML estimates in the presence of missing data. Amos,
LISREL, and Mx directly implement Equation 23, whereas Mplus
(B. Muthén, 2004b) and EQS 6 (Bentler, 2004) use an EM algo-
rithm (see Schafer & Graham, 2002, for a discussion on how SEM
packages implement the ML methods).
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100 imputations) based on the fixed-effects model were con-

ducted.6 The parameter estimates (and their SÊs) of the inter-
cept and the weeks for the listwise deletion analysis were
�0.313 (0.226) and 0.152 (0.036), respectively. The z statistics
were �1.385 and 4.212. The parameter estimates (and their

SÊs) of the intercept and the weeks for the MI analysis were
�0.315 (0.200) and 0.149 (0.033), respectively. The z statistics
were �1.575 and 4.579. Regarding the FIML analysis, the

parameter estimates (and their SÊs) of the intercept and the
weeks were �0.316 (0.208) and 0.150 (0.034), respectively.
The z statistics were �1.521 and 4.405.

When compared to the results of the full sample, the
parameter estimates and their standard errors based on the
sample with missing covariates are smaller (in absolute
values) and larger, respectively. This is expected because
some information will have been lost due to the missing
data. The standard errors based on the MI and the FIML
analyses were slightly smaller than those based on the
listwise deletion analysis because in an MI or FIML anal-
ysis it is not necessary to throw out the whole case in the
presence of missing values.

Quantifying Heterogeneity in a Meta-Analysis

Quantifying heterogeneity is essential in a meta-analysis
(Huedo-Medina, Sánchez-Meca, Marı́n-Martı́nez, & Botella,
2006). When the estimated variance component is small, the
results based on a fixed-effects and a random-effects model
are similar. Some researchers may choose to use random-
effects models only if the effect sizes are heterogeneous.
This approach is called the conditional random-effects
model (Hedges & Vevea, 1998). One problem with using
the Q statistic to quantify heterogeneity is that the Q statistic
depends on the number of studies in a meta-analysis. When
the number of studies increases, the Q statistic also in-
creases.

Higgins and Thompson (2002) proposed three indices to
quantify heterogeneity. Two of them are described here.
The first is the H2 index,

H2 �
Q

k � 1
. (24)

The second is the I2 index,

I2 �
H2 � 1

H2 . (25)

When I2 is negative, it is truncated to zero. The H2 and I2

indices can be interpreted as the relative excess in Q statistic
per degree of freedom and the proportion of the total vari-
ation due to the heterogeneity between studies, respectively.
Higgins and Thompson further put forward the following

formula to construct an approximate confidence interval
(CI) on ln(H):

exp�ln�H� � Z
SE�ln�H��, (26)

where Z
 is the (1 � 
/2) quantile of the standard normal
distribution and

SE�ln�H�� � �
1

2

ln�Q� � ln�k � 1�

�2Q � �2k � 3
if Q � k

� 1

2�k � 2� �1 �
1

3�k � 2�2� if Q � k
.

The CI of the I2 index may be transformed from the CI of
the H2 index by Equation 25. Because the I2 index is easier
to interpret, it was used in this illustration. The Q statistic
for the 20 studies was 49.585 (df � 19), p � .001. The
calculated I2 index and its 95% CI were 0.617 and (0.378,
0.764), respectively. Therefore, 62% of the variation of the
effect sizes is due to the population heterogeneity, whereas
38% of the variation is due to the sampling error.

So far, in all of the illustrations of the SEM-based meta-
analysis, the error variance of y* was always fixed at 1. By

so doing, the correct SÊs can be directly obtained from the
output. The error variance of y* is set free in estimating the
Q statistic. The ML estimate of the error variance of y* in
the fixed-effects model without any covariate is �̂e*

2 �
¥i�1

k (y*i � 1*�̂Fixed)2/k, where 1* � wi
1/ 2�1, which is

equivalent to ¥i�1
k wi(yi � �̂Fixed)2/k. 7 It should be noted

that k instead of (k � 1) is used in the ML estimator. Then,
it is readily clear that

Q � k�̂e*
2 . (27)

The above equation also applies to testing the residual
heterogeneity in the presence of covariates. Once the Q
statistic is estimated, it is easy to calculate the H2 and I2

indices.

6 Missing covariates are not allowed in the random-effects mod-
els in Mplus because it is not possible to estimate the variance
component on the basis of the missing values. Cases with missing
covariates will be deleted in the random slope analyses. An alter-
native approach is to use MI, which is also available in Mplus.

7 It can be easily shown that ¥i�1
k (y*i � 1*�̂Fixed)2 � ¥i�1

k wi(yi

� �̂Fixed)2 by considering the following:

�
i�1

k

wi� yi � �̂Fixed�
2 � �

i�1

k

�wi
1/ 2yi � wi

1/ 2�̂Fixed�
2

� �
i�1

k

�y*i � 1*�̂Fixed�
2,

where 1* � wi
1/ 2�1.

191META-ANALYSES AS STRUCTURAL EQUATION MODELS



Many SEM packages allow for the calculation of new
parameter estimates that are functions of other parameter
estimates in a model. Standard errors (based on the delta
method), Wald CIs, and bootstrap CIs on the parameter
estimates can be directly obtained from the output (see
M. W. L. Cheung, 2007a, in press, for some applications of
this approach in constructing CIs). By using the SEM-based
meta-analysis, these methods for constructing CIs are
readily available to meta-analysts.

Using the approaches in M. W. L. Cheung (2007a, in

press), the estimated Q statistic and I2 index (and their SÊs)
in the SEM-based meta-analysis were 49.585 (15.680) and
0.617 (0.121), respectively. A 95% CI on the I2 index was
also constructed. The Wald CI and bias-corrected bootstrap
CI with 2,000 replications were obtained in Mplus. On the
I2 index, the 95% Wald and bias-corrected bootstrap CIs
were (0.379, 0.854), and (0.263, 0.774), respectively. These
CIs are comparable to the one proposed by Higgins and
Thompson (2002). Because using SEM to quantify hetero-
geneity in meta-analysis is a new approach, further research
may address which method has the best coverage probabil-
ities and optimal length.

Addressing Heterogeneity With Mixture Models

As researchers tend to accept that population effect sizes are
heterogeneous, addressing heterogeneity properly is an impor-
tant issue in meta-analysis (Thompson & Sharp, 1999). One
common approach to handling heterogeneity is the use of
random- or mixed-effects models. Random-effects models as-
sume that the population effect sizes are distributed with an
unknown variance that needs to be estimated.

An alternative approach to handling heterogeneity is to
use finite mixture models (McLachlan & Peel, 2000).
Finite mixture models assume that the effect sizes are
drawn from several distinct unobserved populations.
Given the same population, the effect sizes are homoge-
neous within that population. They are useful for identi-
fying hidden populations. Several researchers (e.g.,
Böhning, 1999, 2005; Thomas, 1989; Xia, Weng, Zhang,
& Li, 2005) have extended mixture models to handle the
heterogeneity of effect sizes in meta-analysis.8 The basic
procedure is to conduct a fixed-effects meta-analysis with
covariates. When there is still large residual heterogene-
ity after controlling for the covariates, mixture models
along with the covariates are used to identify the number
of the hidden populations. On the basis of the predicted
classes, researchers may check whether any consistent
patterns are shown in these classes.

Mixture models have been integrated into some SEM pack-
ages such as Mplus and Mx (e.g., Lubke & Muthén, 2005; B.
Muthén, 2001, 2004a; Neale, 2000; Neale et al., 2006). They
have been applied to address unobserved populations in latent
growth modeling (B. Muthén, 2001, 2004a) and heterogeneity

in factor analysis (Lubke & Muthén, 2005; Yung, 1997). By
using the SEM-based meta-analysis, mixture models can be
easily accessible to meta-analysts. One advantage of using an
SEM package such as Mplus to conduct mixture modeling is
that multiple random starting values can be easily generated.
Multiple maxima of the likelihood often exist in mixture mod-
els (McLachlan & Peel, 2000). Multiple random starting val-
ues may be used to minimize the chance of having local
maxima.

Recall that the Q statistic and the 	̂2 in the SEM-based
meta-analysis are 49.585 (df � 19) and 0.132, respectively,
whereas the estimated variance component after controlling for
the covariate weeks is only 0.023, which is nonsignificant. As
a demonstration, I did not include the covariate weeks in the
mixture analyses; otherwise, one single class would be found
after controlling for the covariate weeks. In this illustration,
three mixture models based on two, three, and four mixtures
were fitted. Figure 5 shows the graphical model where c is a
latent categorical variable. The model implies that different
classes of effect sizes may have different �̂0. Posterior class
probabilities may be used to predict the studies into classes (see
L. K. Muthén & Muthén, 2007).

The predicted class memberships are reported in Table 1.
Regarding the four-class solution, only three classes were
estimated. Thus, only two- and three-class solutions were con-
sidered. There are several indices that may be used to
compare solutions with a different number of mixtures
(see McLachlan & Peel, 2000). One common statistic is
the Bayesian information criterion (BIC; Schwartz,
1978). The model with the smallest BIC is preferred. The
BICs for the two- and three-class solutions were 85.521
and 89.250, respectively. Another statistic is the adjusted
likelihood ratio test (aLRT; Lo, Mendell, & Rubin,
2001). Lubke and Muthén (2007) have recently shown
that the aLRT performed very well in identifying the
number of classes. The aLRT in comparing the two- and
three-class solutions was 1.939 (p � .060). This indicates
that the three-class solution is not better than the two-
class solution. Based on the BIC and aLRT, it seems that
the two-class solution is sufficient.

8 Mixture models have also been extended to general mixed-
effects models (e.g., Hall & Wang, 2005; Verbeke & Lesaffre,
1996; Wang, Schumitzky, & D’Argenio, 2007). Because mixed-
effects meta-analysis is a special case of general mixed-effects
models, it is possible to modify these models for mixed-effects
meta-analysis. However, researchers have to consider two practi-
cal issues. First, not all mixed-effects packages are capable of
fitting mixed-effects meta-analysis because the Level 1 variances
are fixed as known values in a mixed-effects meta-analysis (see
Hox, 2002, for a discussion). Second, multiple maxima of the
likelihood often exist in mixture models (McLachlan & Peel,
2000). Researchers have to generate multiple random starting
values in order to minimize the chance of local maxima.
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The weighted effect sizes (and their SÊs) for the two-class
solution were 0.463 (0.084) and 1.602 (0.161). These esti-
mates would be slightly different from those obtained by
running two separate analyses on the predicted classes. The
reason for this is that group membership is treated as a latent
variable in a mixture model, whereas it is treated as fixed
and known in running two separate analyses. By checking
the two-class solution, Studies 19 and 20 were classified as
belonging to a different class from other studies. The Q
statistics and their p values for these two classes were 26.6
(df � 17, p � .06) and 0.4 (df � 1, p � .52), respectively.
This also supports the argument that the two-class solution
is good enough to account for the heterogeneity when no
covariate is included.

The data in Table 1 were actually generated from a
population model yi � 0.15�Weeksi 
 ei with a mean
effect size of 0.6 across all studies (see Hox & de Leeuw,
2003). Conceptually speaking, each level of the covariate
weeks can be considered as a class, and the classes are
separated by 0.15 units. Some may expect to find as many
classes as the number of levels in the covariate weeks, that
is, eight classes in this example. However, the number of
classes identified in a mixture model depends on the class
separation and the within-class sample size (Lubke & Neale,
2006). In this particular example, the class separation (0.15
units in each class) is not large enough and the number of
studies within a particular level is also quite small. Thus,
only two classes were identified.

Lubke and Muthén (2007) also investigated the performance
of the factor mixture models via a computer simulation. One
general finding was that the parameter estimates are still very
good even for a small degree of separation among the classes,

whereas the correctness of class predictions depends on the
degree of separation among the classes. This means that the
estimated regression coefficients were very good. However,
the predicted class membership may be inaccurate if the pop-
ulation effect sizes are similar among the classes. Because
applications of mixture models in meta-analysis are relatively
new, further studies may be needed to address the empirical
performance of this approach.

Discussion and Future Directions

The present article proposes a model to integrate meta-
analysis into the SEM framework. By applying an appro-
priate transformation to the data, studies in a meta-analysis
can be treated as subjects in a structural equation model.
The illustrations demonstrated the equivalence between
conventional meta-analysis and SEM-based meta-analysis.
Many state-of-the-art techniques available in SEM can be
directly applied to meta-analysis. Integrating meta-analysis
into SEM opens several new research directions for meth-
odological development. The following is a brief discussion
of some possible directions for future research, as well as
related issues that will require further exploration.

Model Assessment With Chi-Square Test Statistics
and Goodness-of-Fit Indices

Thus far, the homogeneity of the effect sizes was tested
based on the conventional Q statistic in meta-analysis
(Equations 5 and 27). The likelihood ratio (LR) or chi-
square statistic is the fundamental test statistic in SEM. An
LR statistic may also be derived to test the homogeneity of
effect sizes. Let us consider a fixed-effects model without
any covariates. The model for the transformed data in an
SEM-based meta-analysis can be expressed as

y* � X*�Fixed � e*, (28)

where X* � W1/ 21 and �Fixed is a population effect size.
Under the null hypothesis that all effect sizes are equal, the
error variance of e* is exactly 1. In the SEM-based meta-
analysis, this model is fitted by fixing the error variance of
e* at 1. It is labeled as Model 0 here and its associated
chi-square statistic is �0

2(2).
If the null hypothesis is incorrect, the estimated variance

of e* in Equation 28 will be larger than 1. This is because
the study-specific effect is combined with the error variance.
This model may be fitted in SEM-based meta-analysis by
freeing the estimated variance of e*. It is labeled as Model
1 here with its associated chi-square statistic �1

2(1).
Under the null hypothesis H0 : �e*

2 � 1, a chi-square dif-
ference test may be used to compare these two nested models:
��2 � �0

2 � �1
2 with �df � 1. Because the null hypothesis H0

: �e*
2 � 1 is tested on a boundary condition, we have to adjust

the critical value in order to conduct a better test. If the

 1 .00 

 y * X0*

0

C

b
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 1 

Figure 5. Structural equation model for a fixed-effects meta-
analysis with a mixture model. Squares, circles, and triangles
represent the observed variables, the latent variables, and the
means, respectively. y�, X*0, b0, and c are the transformed effect
size, the transformed vector of ones, the weighted effect size, and
the latent categorical variable under the mixture model, respec-
tively. It should be noted that the weighted effect sizes can be
different in different latent classes.
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observed p value is larger than 2
, we reject the null hypoth-
esis at the 
 level.9 Regarding our example in Table 1, the
chi-square statistics for Models 0 and 1 are �0

2(2) � 14.453 and
�1

2(1) � 3.027, respectively. The chi-square difference test is
��2(1) � 11.426, p � .001. Recall that the Q statistic for this
example is 49.585 (df � 19), p � .001.

Although the above LR statistic may also be used to test
the homogeneity of effect sizes, the Q statistic is preferred
to the LR statistic in the context of meta-analysis. Viecht-
bauer (2007b) compared several statistics in testing the
population heterogeneity. These included the Q statistic, the
LR tests based on ML and REML, and the Wald and score
tests. Generally, the Q statistic was found to have the best
control over the Type I error rate and to have reasonable
statistical power.

One of the reasons for the above observation may be due
to the fact that the Q statistic has an exact chi-square
distribution, even for two studies where the within-study
sample sizes are sufficiently large. However, the LR statistic
must rely on both a large within-study sample size and a
large number of studies. Furthermore, large sample sizes
(number of studies) are required for the valid application of
LR statistics. This is clear when integrating meta-analysis
into the SEM framework; studies in a meta-analysis become
subjects in an SEM analysis.

Besides formal chi-square statistics, many goodness-of-
fit indices are available in SEM. Much research has been
devoted to the issue of how to assess the model fit using
goodness-of-fit indices (see Bollen & Long, 1993). Many
goodness-of-fit indices such as the comparative fit index
(CFI) and the nonnormed fit index (NNFI) use an indepen-
dence model (a model in which all of the variables are
uncorrelated) as the reference model for comparison. A null
model on the transformed data is not interpretable in a
meta-analysis. Thus, many goodness-of-fit indices may not
be well defined in the context of meta-analysis. Because
using SEM to conduct a meta-analysis is a new approach,
future research is definitely needed to explore whether or
not the rich knowledge on model fitting techniques in SEM
is applicable to meta-analysis.

Methods of Estimating the Variance Component

Method of moments is usually used to estimate the vari-
ance component (e.g., DerSimonian & Laird, 1986; Hedges
& Vevea, 1998). There are several appealing reasons for
using this method. First, close-form formulas are usually
available; no iterative procedure is required. Second, it is
distribution free. The first and the second moments are used
to estimate the variance component and its standard error,
respectively (see Biggerstaff & Tweedie, 1997, for the
details).

Maximum likelihood (ML or REML) methods are the
preferred choices when more complicated meta-analyses are

involved. For example, ML methods are used to handle
missing data and to handle heterogeneity with mixture mod-
els (Böhning, 1999, 2005). It is well known that the esti-
mated variance component in ML is negatively biased,
especially in small samples, whereas REML may be used to
correct the bias. Because the number of studies in a meta-
analysis may be relatively small, meta-analysts should be
cautious about applying the SEM-based meta-analysis if
their research interest is to estimate and compare the vari-
ance components of the random effects.

The REML estimate of the variance component can be
approximated by multiplying the ML estimate by k/(k � p),
where k is the number of studies and p is the number of
fixed effects (p is 1 in the random-effects model and p is 1
plus the number of covariates in the mixed-effects models;
see Overton, 1998; Viechtbauer, 2005). This approximation
can be easily obtained in the SEM approach, as many SEM
packages allow us to compute functions of other parameters.

It is also possible to use the variance component estimate
based on the method of moments (or the REML) in the
SEM-based meta-analysis. Once the estimated variance
component (based on the REML or the method of moments)
is available, it may be used to fix the variance of u (m in
Figures 3 and 4) in the SEM-based meta-analysis. However,
it should be remembered that this is just an approximation.
Further research may be necessary to address how different
estimation methods can be implemented in the SEM-based
meta-analysis.

Robust Standard Errors on the Variance Component

When the research questions are directly related to the
variance component, meta-analysts are interested in testing
the significance of the variance component (Viechtbauer,

9 It may not be obvious that the null hypothesis H0 : �e*
2 � 1

is tested at a boundary. The H0: 	2 � 0 in a conventional meta-
analysis is equivalent to H0 : �e*

2 � 1 on the transformed data in
an SEM-based meta-analysis, whereas H1: 	2 � 0 in a conven-
tional meta-analysis is translated into H1 : �e*

2 � 1 in an SEM-
based meta-analysis. Because 	2 cannot be negative, �e*

2 cannot be
smaller than 1, theoretically. Because of the boundary condition,
the ��2 is distributed as a 50:50 mixture of a degenerate random
variable with all of its probability mass concentrated at zero and a
chi-square random variable with 1 degree of freedom. One simple
strategy to correct for this issue is to use 2
 instead of 
 as the
alpha level. Thus, we should reject the null hypothesis when the
observed p value is larger than .10 for 
 � .05. Readers may refer
to Viechtbauer (2007b) and Stoel, Galindo-Garre, Dolan, and van
den Wittenboer (2006) for a discussion on this issue in the context
of meta-analysis and SEM. The estimates of 	2 can sometimes be
negative because of the sampling fluctuation. As there is a 1:1
mapping between 	2 in a meta-analysis and �e*

2 in an SEM-based
meta-analysis, the estimates of �e*

2 can also be smaller than 1 in
some cases.
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2007b) or in constructing approximate CIs on the variance
component (Viechtbauer, 2007a). Although estimating the
variance component with the method of moments does not
assume normality of the effect sizes, testing and construct-
ing CIs on the variance component requires such an as-
sumption. Moreover, the testing and constructing of CIs on
the weighted effect size with the standard error estimated by
Equation 14 also rely on the assumption of normality on the
part of the effect sizes. In other words, most methods,
including the method of moments, ML, and REML, implic-
itly or explicitly assume normality of the effect sizes or of
the variance component.

The assumption of the normality of the effect sizes has
been called into question. Several robust procedures have
been suggested in meta-analysis (e.g., Demidenko, 2004;
Sidik & Jonkman, 2006). One approach is to use a para-
metric and nonparametric bootstrap (e.g., Adams, Gure-
vitch, & Rosenberg, 1997; Takkouche, Cadarso-Suarez, &
Spiegelman, 1999; Van den Noortgate & Onghena, 2005).
For the parametric bootstrap, the parameter estimates are
used as population values to generate the CIs of interest
while the data are resampled with replacement to generate
the CIs of interest in the nonparametric bootstrap (see
Davison & Hinkley, 1997).

The robustness of test statistics and standard errors
against nonnormality is also an important topic of research
in SEM (e.g., Yuan & Bentler, 2007). Most SEM packages
have implemented some form of robust statistics that be-
haves better under nonnormality. As meta-analysis becomes
integrated in SEM, it is of interest to see how well these
robust standard errors work in the context of meta-analysis.
Moreover, many SEM packages have functions to conduct
bootstrapping. It is also of practical interest to explore the
usefulness of the bootstrap technique in meta-analysis.

A Final Remark on Modeling Meta-Analytic Data in
SEM

This article presents a SEM-based approach to conducting
meta-analysis. Readers should be reminded that data in
meta-analyses are usually more complex in terms of con-
ceptualization and data collection than data in primary stud-
ies. Inexperienced readers may wrongly conclude that once
the appropriate transformation described in this article has
been made and the study results in a meta-analysis have
become subjects in a structural equation model, there is no
difference between applying SEM to primary data versus
meta-analytic data in any phase of the research process.10

Similar concerns have also been raised about the useful-
ness of path diagrams in SEM and multilevel models (see
Curran & Bauer, 2007). Many SEM packages, for example,
AMOS, EQS, Mx, and LISREL, allow the use of path
diagrams as input. Inexperienced users may fit ill-formu-
lated models because fitting a model is similar to drawing a

path diagram. Curran and Bauer (2007) “firmly believe[d]
that the advantages of model diagrams vastly outweigh their
potential weakness” (p. 296). I also strongly believe that the
advantages of using the SEM approach to conducting a
meta-analysis also outweigh its potential misuse by inexpe-
rienced researchers. This article highlights the fact that
applied researchers can access several advanced statistical
techniques in meta-analysis via some popular SEM pack-
ages. Instead of spending time in implementing these algo-
rithms, applied researchers may now focus on the proper
applications of these techniques.

Finally, I have to emphasize that a meta-analysis is more
than just a statistical analysis. In this article, I have mainly
focused on the statistical methods of meta-analysis. There
are, however, other design and conceptual issues that are
specific to meta-analysis. For example, studies are usually
not direct replicas of each other (e.g., Hunter & Schmidt,
2000). It is sometimes difficult to define what a population
is. It is also generally agreed that the published data are
usually biased against nonsignificant findings (see Roth-
stein, Sutton, & Borenstein, 2005). Special care is required
to handle meta-analytic data. Cooper and Hedges (1994)
and Lipsey and Wilson (2001) provided a complete treat-
ment of issues related to meta-analysis. Readers are strongly
advised to consult their works before conducting a meta-
analysis.

To summarize, this article provides a start to integrating
meta-analysis into the SEM framework. It is hoped that this
new line of research will benefit both meta-analysts and
researchers in SEM. As many SEM packages are becoming
more and more powerful, some of these new developments
will prove useful to meta-analysts. A unified framework
may one day be available to researchers who conduct meta-
analysis, SEM, and other types of statistical analysis.

10 I thank an associate editor for bringing this issue to my
attention.
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Appendix

Mplus Version 5 Codes for the Meta-Analysis

TITLE: Fixed-effects model: An intercept model 
DATA: FILE IS hox.txt; 
VARIABLE: NAMES d varofd inter weeks; 

USEVARIABLES ARE d inter; 
DEFINE: w2 = SQRT(varofd**(-1)); ! Weight for the transformation 

d = w2*d;    ! Transformed d 
inter = w2*inter;  ! Transformed intercept 

MODEL:                
d ON inter; 
[d@0.0];    ! Intercept is fixed at 0 
d@1.0;    ! Error variance is fixed at 1 

OUTPUT: SAMPSTAT; 

TITLE: Fixed-effects model: A continuous covariate 
DATA: FILE IS hox.txt;  
VARIABLE: NAMES d varofd inter weeks; 

USEVARIABLES ARE d inter weeks; 
DEFINE: w2 = SQRT(varofd**(-1));  

d = w2*d; 
inter = w2*inter; 
weeks = w2*weeks;  ! Transformed weeks 

MODEL:  
d ON inter weeks; 
[d@0.0];    ! Intercept is fixed at 0 
d@1.0;    ! Error variance is fixed at 1 

OUTPUT: SAMPSTAT;       

TITLE: Random-effects model (with ML method): An intercept model 
DATA: FILE IS hox.txt;  
VARIABLE: NAMES d varofd inter weeks; 

USEVARIABLES ARE d inter; 
DEFINE: w2 = SQRT(varofd**(-1)); 

d = w2*d; 
inter = w2*inter; 

ANALYSIS: TYPE=RANDOM;  ! Use random slope analysis 
MODEL:  

[d@0.0];    ! Intercept is fixed at 0 
d@1.0;     ! Error variance is fixed at 1 
u | d ON inter;   ! u: random effects 

    u*;     ! var(u): tau^2 
    [u*];     ! mean(u): weighted effect size 
OUTPUT: SAMPSTAT;            

TITLE: Random-effects model (with ML method): A continuous covariate 
DATA: FILE IS hox.txt;  
VARIABLE: NAMES d varofd inter weeks; 

USEVARIABLES ARE d inter weeks; 
DEFINE: w2 = SQRT(varofd**(-1)); 

d = w2*d; 
inter = w2*inter; 
weeks = w2*weeks; 
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ANALYSIS: TYPE=RANDOM;  ! Use random slope analysis 
MODEL:  

[d@0.0];    ! Intercept is fixed at 0 
d@1.0;    ! Error variance is fixed at 1 
u | d ON inter; 
d ON weeks; 
u*;     ! var(u): tau^2 

    [u*];     ! mean(u): intercept 
OUTPUT: SAMPSTAT;            

TITLE: Fixed-effects model: Missing data on the covariate (FIML) 
DATA: FILE IS hox_miss.txt;  ! Data file with missing values  

! FIML is the default option started from Mplus Version 5 
! LISTWISE = ON;   ! Use listwise deletion 

VARIABLE: NAMES d varofd inter weeks; 
USEVARIABLES ARE d inter weeks; 
MISSING ARE ALL (999); ! Define missing values 

DEFINE: w2 = SQRT(varofd**(-1));  
d = w2*d; 
inter = w2*inter; 
weeks = w2*weeks;  ! Transformed weeks 

MODEL:                   
d ON inter weeks; 
[d@0.0];    ! Intercept is fixed at 0 
d@1.0;    ! Error variance is fixed at 1 

OUTPUT: SAMPSTAT;  

TITLE: Fixed-effects model: An intercept model with Q statistic and 
heterogeneity indices 
DATA: FILE IS hox.txt;   
VARIABLE: NAMES d varofd inter weeks; 

USEVARIABLES ARE d inter; 
DEFINE: w2 = SQRT(varofd**(-1)); 

d = w2*d; 
inter = w2*inter; 

ANALYSIS: BOOTSTRAP=2000;  ! Use bootstrap analysis 
MODEL:                

d ON inter; 
[d@0.0];    ! Intercept is fixed at 0 
d (p1);    ! Estimated error variance 

MODEL CONSTRAINT: 
NEW(Q_stat H2_stat I2_stat); 
Q_stat = 20*p1;   ! Q statistic 
H2_stat = Q_stat/19;  ! H2 index 
I2_stat = 1-19/Q_stat; ! I2 indice 

OUTPUT: SAMPSTAT;         
CINTERVAL(BCBOOTSTRAP); ! Bias-corrected bootstrap CI 
! CINTERVAL(symmetric);  ! Wald CI 

TITLE: Fixed-effects model: An intercept model with two mixtures 
DATA: FILE IS hox.txt;  
VARIABLE: NAMES d varofd inter weeks; 

USEVARIABLES ARE d inter; 
CLASSES=c(2);   ! Define two classes of mixtures 

DEFINE: w2 = SQRT(varofd**(-1)); 
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d = w2*d; 
inter = w2*inter; 

ANALYSIS: TYPE=MIXTURE;  ! Use mixture analysis 
STARTS 200 20;   ! Use 200 random starting values 
STITERATIONS = 20; 

MODEL:               
%OVERALL%    ! Overall model 
[d@0.0];    ! Intercept is fixed at 0 
d@1.0;    ! Error variance is fixed at 1 

d ON inter;   ! Weighted mean of the 1st mixture 

%c#2%     ! Second mixture 
d ON inter;   ! Weighted mean of the 2nd mixture 

OUTPUT: SAMPSTAT;     
TECH11;    ! Request an aLRT 

SAVEDATA: 
SAVE=CPROB;   ! Save the posterior probabilities 
FILE IS intercept_2mix.txt; 
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