
Contextual Analysis 

 

1

1

 
Running head: CONTEXTUAL ANALYSIS 

Draft 8/21/07.  This paper has not been peer reviewed.  Please do not copy or cite 

without author’s permission 

 

The Multilevel Latent Covariate Model: A New, More Reliable Approach to Group-Level 

Effects in Contextual Studies 

 

Oliver Lüdtke 

Max Planck Institute for Human Development, Berlin 

Herbert W. Marsh 

Oxford University, UK 

Alexander Robitzsch 

Institute for Educational Progress, Berlin 

Ulrich Trautwein 

Max Planck Institute for Human Development, Berlin 

Tihomir Asparouhov 

Muthén & Muthén 

Bengt Muthén 

University of California, Los Angeles 

 

 

 

Author note 

Correspondence concerning this article should be addressed to Oliver Lüdtke, Max Planck 

Institute for Human Development, Center for Educational Research, Lentzeallee 94, 14195 



Contextual Analysis 

 

2

2

Berlin, Germany. E-mail: luedtke@mpib-berlin.mpg.de 



Contextual Analysis 

 

3

3

Abstract 

In multilevel modeling (MLM), group level (L2) characteristics are often measured by 

aggregating individual level (L1) characteristics within each group as a means of assessing 

contextual effects (e.g., group-average effects of SES, achievement, climate). Most previous 

applications have used a multilevel manifest covariate (MMC) approach, in which the 

observed (manifest) group mean is assumed to have no measurement error. This paper shows 

mathematically and with simulation results that this MMC approach can result in substantially 

biased estimates of contextual effects and can substantially underestimate the associated 

standard errors, depending on the number of L1 individuals in each of the groups, the number 

of groups, the intraclass correlation, the sampling ratio (the percentage of cases within each 

group sampled), and the nature of the data. To address this pervasive problem, we introduce a 

new multilevel latent covariate (MLC) approach that corrects for unreliability at L2 and 

results in unbiased estimates of L2 constructs under appropriate conditions. However, our 

simulation results also suggest that the contextual effects estimated in typical research 

situations (e.g., fewer than 100 groups) may be highly unreliable. Furthermore, under some 

circumstances when the sampling ratio approaches 100%, the MMC approach provides more 

accurate estimates. Based on three simulations and two real-data applications, we critically 

evaluate the MMC and MLC approaches and offer suggestions as to when researchers should 

most appropriately use one, the other, or a combination of both approaches.  

 

 

Keywords: multilevel modeling, contextual analysis, latent variables, multilevel latent 

covariate model, structural equation modeling, Mplus, formative factors, reflective factors  
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The Multilevel Latent Covariate Model: A New, More Reliable Approach to Group-Level 

Effects in Contextual Studies  

In the last two decades multilevel modeling (MLM) has became one of the central 

research methods for applied researchers in the social sciences. A major advantage of MLMs 

over single level regression analysis lies in the possibility of exploring relationships among 

variables located at different levels simultaneously (Goldstein, 2003; Raudenbush & Bryk, 

2002; Snijders & Bosker, 1999). In the typical application of MLM, outcome variables are 

related to several predictor variables at the individual level (e.g., students, employees) and at 

the group level (e.g., schools, work groups, neighborhoods).  

Different types of group-level variables can be distinguished. The first type can be 

measured directly (e.g., class size, school budget, neighborhood population). These variables 

that cannot be broken down to the individual level are often referred to as “global” or 

“integral” variables (Blakely & Woodward, 2000). The second type is generated by 

aggregating variables from a lower level. For example, ratings of school climate by individual 

students may be aggregated at the school level, and the resulting mean used as an indicator for 

the school’s collective climate. Variables that are obtained through the aggregation of scores 

at the lower level are known as “contextual” or “analytical” variables. For instance, 

Anderman (2002), using a large data set with students nested within schools, examined the 

relations between school belonging and psychological outcomes (e.g., depression, optimism). 

School belonging was included in the multilevel regression model as both an individual (L1) 

characteristic and a school (L2) characteristic. School-level belonging was based on the 

within-school aggregation of individual perceptions of school belonging. In a similar vein, 

Ryan, Gheen, and Midgley (1998) related student reports of avoidance of help seeking to 

student and classroom goals (for other applications, see Harker & Tymms, 2004; Kenny & La 

Voie, 1985; Lüdtke, Köller, Marsh, & Trautwein, 2005; Miller & Murdock, 2007; 

Papaioannou, Marsh, & Theodorakis, 2004).  
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Croon and van Veldhoven (2007) have emphasized the applicability of these issues to 

many subdisciplines of psychology; including educational, organizational, cross-cultural, 

personality, and social psychology. Iverson (1991) provided a brief summary of the extensive 

application of contextual analyses in sociology, dating as far back as Durkheim’s study of 

suicide and including topics as diverse as the racial composition of neighborhoods, village use 

of contraceptives, local crime statistics, political behavior in election districts, families in the 

study of SES and schooling, voluntary organizations, churches, workplaces, and social 

networks. In fact, the issues are central to any area of research in which individuals interact 

with other individuals in a group setting, leading Iverson to conclude: “This range of areas 

illustrates how broadly contextual analysis has been used in the study of human behavior” (p. 

11). 

In the MLM literature, models that include the same variable at both the individual 

level and the aggregated group level are called contextual analysis models (Boyd & Iverson, 

1979; Firebaugh, 1978; Raudenbush & Bryk, 2002) or sometimes compositional models (e.g., 

Harker & Tymms, 2004). The central question in contextual analysis is whether the 

aggregated group characteristic has an effect on the outcome variable after controlling for 

interindividual differences at the individual level. The effects of the L1 characteristic may or 

may not be of central importance, depending on the nature of the study and the L1 construct 

(e.g., Papaioannou et al., 2004). 

One problematic aspect of the contextual analysis model is that the observed group 

average obtained by aggregating individual observations may not be a very reliable measure 

of the unobserved group average if only a small number of L1 individuals are sampled from 

each L2 group (O’Brien, 1990; Raudenbush, Rowan, & Kang, 1991). For instance, in 

educational research, where only a small proportion of students might be sampled from each 

participating school, the observed group average is only an approximation of the unobserved 

“true” group mean – a latent variable. When MLMs are used to estimate the contextual 
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analysis model, it is typically assumed that the observed L2 variables based on aggregated L1 

variables are measured without error. However, when only a small number of L1 units are 

sampled from each L2 group, the L2 aggregate measure may be unreliable and result in a 

biased estimate of the contextual effect. 

In the present study we introduce a latent variable approach, implemented in the latent 

variable modeling software Mplus (Asparouhov & Muthén, 2007; Muthén, 2002; Muthén & 

Muthén, 1998-2006; but see also Muthén, 1989; Schmidt, 1969), which takes the unreliability 

of the group mean into account when estimating the contextual effect. Because the group 

average is treated as a latent variable, we call this approach the multilevel latent covariate 

(MLC) model. In contrast, we label the “traditional” approach, which relies solely on the 

(manifest) observed group mean, the multilevel manifest covariate (MMC) model. The term 

manifest indicates that this approach treats the observed group means as manifest and does not 

infer from them to an unobserved latent construct that controls for L2 measurement error.  

Our article is organized as follows. We start by distinguishing between reflective and 

formative L2 constructs. We then give a brief description of how the MMC is usually 

specified in MLMs, outlining the factors that affect the reliability of the group mean and 

deriving mathematically the bias that results from using the MMC approach to estimate the 

contextual effect. After introducing the MLC model as it is implemented in Mplus, we 

summarize the results of simulation studies comparing the statistical properties of the latent 

and manifest approaches. In addition, we present analyses comparing the Croon and van 

Veldhoven (2007) two-step approach to our (one-step) MLC approach. We then present two 

empirical examples using both the latent and the manifest approach. Finally, based on all of 

these results, we offer suggestions for the applied researcher and propose directions for 

further research. 

Reflective and Formative L2 Constructs 
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We argue that the appropriateness of the MLC approach depends in part on the nature of the 

construct under study. For the present purposes, we propose a distinction between formative 

and reflective aggregations of L1 constructs (for more general discussion of formative and 

reflective measurement, see Bollen & Lennox, 1991; Edwards & Bagozzi, 2000; Kline, 2004; 

also see Howell, Breivik, & Wilcox, 2007). Reflective L2 constructs have the following 

characteristics: the purpose of L1 measures is to provide reflective indicators of an L2 

construct; all L1 indicators within each L2 group are designed to measure the same L2 

construct; and scores associated with different individuals within the same L2 group are 

interchangeable. The L2 construct is assumed to “cause” the L1 indicators (i.e., arrows in the 

underlying structural model go from the latent L2 construct to the L1 indicators). Thus, 

reflective aggregations are analogous to the typical latent variable approach based on classical 

measurement theory and the domain sampling model (Kline, 2004; Nunnally & Bernstein, 

1994), in which multiple indicators (in this case, multiple persons within each group rather 

than the multiple items for each construct) are used to infer a latent construct that is corrected 

for measurement error (based on the number of indicators and the extent of agreement among 

the multiple indicators) that would otherwise result in biased estimates. Hence, the concept of 

reflective measurement is consistent with the notion of a generic group-level construct that is 

measured by individual responses (Cronbach, 1976; Croon & van Veldhoven, 2007). Under 

these conditions, it is reasonable to use variation within each L2 group (the intraclass 

correlation, ICC) to estimate L2 measurement error that includes error due to finite sampling 

and error due to a selection of indicators (i.e., a specific constellation of individuals used to 

measure a group-level construct). Within-group variation represents lack of agreement among 

individuals within the same group in relation to an L2 construct rather than a substantively 

important characteristic of the group. Examples of reflective L2 constructs might include 

individual ratings of classroom, group, or team climate; individual ratings of the effectiveness 



Contextual Analysis 

 

8

8

of a teacher, coach, or group leader; individual marker ratings of the quality of written 

compositions, performances, artworks, grant proposals, or journal article submissions.  

Formative aggregations of L1 constructs are considered to be an index (or composite) 

of L1 measures within each L2 group (i.e., arrows in the underlying structural model go from 

the L1 indicators to the L2 construct; e.g., Kline, 2004). Formative constructs have the 

following characteristics: the focus of L1 measures is on an L1 construct; L1 individuals 

within the same L2 group are likely to have different L1 true scores; scores for different 

individuals within the same L2 group are NOT interchangeable. In this case, variation among 

individuals can be thought of as a substantively important group characteristic (i.e., groups are 

relatively heterogeneous or homogeneous in relation to a specific L1 characteristic). 

Particularly when the sampling ratio (the percentage of L1 individuals considered within each 

L2 group) approaches 100%, it is inappropriate to use variation within each L2 group (ICC) to 

estimate L2 measurement error. For example, assume that a researcher wants to evaluate the 

gender composition of students in each of a large number of different classes and has 

information for all students within each class. An appropriate L2 aggregate variable (e.g., 

percentage females) can be measured with essentially no measurement error at either L1 or 

L2. Students within each class are clearly not interchangeable in relation to gender, and 

within-class heterogeneity does not reflect L2 measurement error. Even if a particular class – 

by chance or design – happens to have a disproportionate number of boys or girls, this feature 

of the class reflects a true characteristic of that class rather than L2 measurement error. 

Examples of formative L2 constructs might include L2 aggregations of L1 characteristics 

such as race, age, gender, achievement levels, socioeconomic status (SES), or other 

background/demographic characteristics of individuals within a group.  

 The distinction between formative and reflective variables is particularly important in 

climate research (for further discussion, see Papaioannou et al., 2004). For example, if all 

individual students within each of a large number of different classes are asked to rate the 
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competitive orientation of their class as a whole, the aggregated L2 construct will be an L2 

reflective construct. The observed measure is designed to reflect the L2 construct directly and 

is not intended to reflect a characteristic of the individual student. However, if each individual 

student is asked to rate his or her own competitive orientation, the aggregated L2 construct 

will be a formative L2 construct. The observed L1 measure is designed to reflect an L1 

construct rather than being a direct measure of an L2 construct, even if the L2 aggregation of 

the L1 measures is used to infer an L2 construct. We would expect agreement among different 

ratings by students within the same class (ICC) to be substantially higher for the L2 reflective 

construct than for the corresponding L2 formative construct. Whereas lack of agreement 

among students within the same class on the L2 reflective variable can be used to infer L2 

measurement error, lack of agreement on the L2 formative construct reflects within-class 

heterogeneity in relation to an L1 construct.  

Contextual Analysis 

The Contextual Analysis Model in Multilevel Modeling 

In this section, we give a short description of the contextual analysis model in the 

traditional multilevel framework. We assume that we have a two-level structure with persons 

nested within groups and an individual-level variable X (e.g., socioeconomic status) 

predicting the dependent variable Y (e.g., reading achievement). Applying the MLM notation 

as it is used by Raudenbush and Bryk (2002), we have the following relation at the first level:  

Level 1:      ijjijjjij rXXY +−β+β= ).(10                   (1) 

where the variable Yij is the outcome for person i in group j predicted by the intercept 

β0j of group j and the regression slope β1j in group j. The predictor variable Xij is centered at 

the respective group mean jX • . This group-mean centering of the individual-level predictor 

yields an intercept equal to an expected value of Yij for an individual whose value on Xij is 
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equal to his or her group’s mean. At Level 2, the L1 intercepts β0j and slopes β1j are dependent 

variables: 

Level 2:       
101

001000

γ=β

+γ+γ=β •

j

jjj uX
        (2) 

where γ00 and γ10 are the L1 intercepts and γ01 is the slope relating jX • to the intercepts 

from the L1 equation. As can be seen, only the L1 intercepts have an L2 residual u0j. MLMs 

that allow only the intercepts to deviate from their predicted value are also called random 

intercept models (e.g., Raudenbush & Bryk, 2002). Note that in these models group effects 

are only allowed to modify the mean level of the outcome for the group. The distribution of 

effects among persons within groups (e.g., slopes β1j) is left unchanged. Now inserting the L2 

equations into the L1 equation we have:  

ijjjjijij ruXXXY ++γ+−γ+γ= •• 0011000 )(        (3) 

This notation is referred to as the linear mixed-effect notation (McCulloch & Searle, 

2001) and is used, for example, by the Mixed Module in SPSS and similar procedures in other 

statistical packages. Equation (3) reveals that the main difference between a single-level 

regression analysis and an MLM lies in the more complex error structure of the multilevel 

specification. Furthermore, it is now easy to see that γ10 is the within-group regression 

coefficient describing the relationship between Y and X within groups and that γ01 is the 

between-group regression coefficient that indicates the relationship between group means 

jY• and jX •  (Cronbach, 1976). A contextual effect is present if γ01 is higher than γ10, meaning 

that the relationship at the aggregated level is stronger than the relationship at the individual 

level.   

Grand-Mean Centering. Another approach to test for a contextual effect (which is 

mathematically equivalent under certain conditions; see Raudenbush & Bryk, 2002) is to use 

a different centering option for the individual-level predictor. Instead of using group-mean 
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centering of the predictor variables – where the group mean of the L1 predictor is subtracted 

from each case – researchers often center the predictor at its grand mean. In grand-mean 

centering, the grand mean of the L1 predictor is subtracted from each L1 case. Substituting 

the group-mean jX •  in Equation (3) by the grand-mean ••X  gives the following model:  

ijjjijij ruXXXY ++γ+−γ+γ= ••• 0011000 )(        (4) 

In contrast to the group-mean centered model, where the predictor variables are 

orthogonal, the predictors )( ••− XX ij  and jX •  in this grand-mean centered model are not 

independent. Thus, γ10 is the specific effect of the group mean after controlling for 

interindividual differences on X. Note that, in the grand-mean centered model, the individual 

deviations from the grand mean, )( ••− XX ij , also include the person’s group deviation from 

the grand mean. Consequently, a contextual effect is present if γ01 is statistically significantly 

different from zero. However, it can be shown that, in the case of the random-intercept model, 

the group-mean model and the grand-mean centered model are mathematically equivalent (see 

Kreft, de Leeuw, & Aiken, 1995). For the fixed effects, the following relation holds for the L2 

between-group regression coefficient: groupmean
10

groupmean
01

grandmean
01 γ−γ=γ . The within-group 

regression coefficient at Level 1 will be the same in both models: groupmean
10

grandmean
10 γ=γ . Hence, 

the results for the fixed part of the grand-mean centered model can be obtained from the 

group-mean centered model by a simple subtraction.1 In the remainder of this article, our 

investigation of the analysis of group effects in MLM focuses on the group-mean centered 

case.  

The Reliability of the Group Mean for Reflective Aggregations of L1 Constructs. One 

problematic aspect of the contextual analysis model, as described earlier, is that the observed 

group average jX •  might be a highly unreliable measure of the unobserved group average 

because only a small number of L1 individuals are sampled from each L2 group (O’Brien, 



Contextual Analysis 

 

12

12

1990). For reflective aggregations of L1 constructs, the reliability of the aggregated L2 

construct as a measure of the “true” group mean depends on at least two aspects: the 

proportion of variance that is located between groups – measured by the intraclass correlation 

(ICC) – and the number of individuals in the group (Bliese, 2000; Snijders & Bosker, 1999).  

In the multilevel literature, the ICC is used to determine the proportion of the total 

variance that is based upon differences between groups (Raudenbush & Bryk, 2002). The ICC 

is based on a one-way analysis of variance with random effects, where the outcome on L1 is 

the dependent variable and the grouping variable is the independent variable. The ICC is 

defined as follows:  

ICC= τ2/( τ2 + σ2)         (5) 

where τ2 is the variance between groups and σ2 is the variance within groups. Thus, the ICC 

indicates the proportion of total variance that can be attributed to between-group differences.  

For reflective aggregations of L1 constructs, the reliability of the aggregated data jX •  

is estimated by applying the Spearman-Brown formula to the ICC, with n being the number of 

persons per group (Bliese, 2000; Snijders & Bosker, 1999):  

L2 Reliability
ICCn

ICCnX j ⋅−+
⋅

=
)1(1

).(        (6) 

As can be seen, the reliability of jX •  (Equation 6) for reflective aggregations of L1 

constructs depends on two factors: the proportion of variance that is located between groups 

(ICC) and the group size (n). In most cases, the mean group size can be entered for n if not all 

groups are of the same size (see Searle, Casella, & McCulloch, 1992, on how to deal with 

pronounced differences in group size). For example, assuming that students in 50 classes rate 

their mathematics instruction, the ICC indicates the reliability of an individual student’s rating 

– sometimes referred to as the single-rater reliability (Jayasinghe, Marsh, & Bond, 2003; 

Marsh & Ball, 1981). The reliability of the class-mean rating can be estimated by the 

Spearman-Brown formula, with n being the number of students per class. As is apparent from 
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Equation (6), the reliability of the class-mean rating increases with the number of students (n). 

In other words, the more students in a class provide ratings, the more reliably the class-mean 

rating will reflect the true value of the construct being measured. It is worth noting that 

Equation (6), which determines the reliability of the observed group mean, says nothing about 

the reliability of the L1 measure. In general, measurement error at Level 1 results in lower 

reliability of the group mean (Raudenbush et al., 1991). However, Equation (6) does not 

differentiate between L1 variance that is due to measurement error and L1 variance that is due 

to true differences between L1 individuals. For reflective aggregations of L1 constructs, the 

assessment of L2 measurement error is – as noted above – analogous in many ways to 

traditional approaches to reliability based on multiple, interchangeable indicators of each 

latent construct (i.e., with multiple persons as interchangeable indicators of each latent group 

mean).  

Bias of the Between-Group Regression Coefficient for Reflective Aggregations of L1 

Constructs. Let us now assume that a contextual model holds in the population and that the 

within-group and between-group relationships are described by the within-group regression 

coefficient βwithin and the between-group regression coefficient βbetween (see Snijders & 

Bosker, 1999, p. 29). We want to estimate these coefficients by sampling a finite sample of 

L2 groups from the population. In the next stage, a finite sample of L1 individuals is obtained 

for each sampled L2 group. Bearing in mind the previous formula for the reliability of the 

group mean, results from the literature on regression analysis suggest that the regression 

coefficient for the L2 average will be biased. Applying standard results from theory on linear 

models (Seber, 1977), the expected bias of the within- and between-group regression 

coefficients in a contextual analysis model can be determined depending on the reliability of 

the group mean. Because it is assumed that the individual-level variable is measured without 

error for reflective aggregations of L1 constructs, the within-group coefficient is an unbiased 
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estimator. In contrast, it can be shown that the between-group coefficient 01γ̂  is a biased 

estimator of the between-group coefficient βbetween (for the derivation, see Appendix A): 

nICCICC
ICC

n
E

xx

x

/)1(
)1(1)()ˆ( betweenwithinbetween01 −+

−
⋅⋅β−β=β−γ     (7) 

The relationship between the expected bias and the ICC as well as the group size is 

depicted in Figure 1 for betweenwithin β−β  values of .2, .5, and .8. In all three panels, the bias 

become smaller with larger group sizes n. In other words, when the group mean is more 

reliable due to a higher n, βbetween can be more precisely approximated by the manifest group 

mean predictor. The bias also decreases as the intraclass correlation increases. As shown in 

Equation (6), the reliability of the group mean is a direct function of the group size n and the 

intraclass correlation. Indeed, for sufficiently large cluster sizes, the difference between the 

manifest and latent approaches will be trivially small, even for reflective factors. The bias in 

the between-group coefficient has direct consequences for the estimation of the “true” 

contextual effect for reflective aggregations of L1 constructs. In the group-mean centered 

model, the contextual effect is calculated as the difference, γ01 – γ10, between the between-

group regression coefficient γ01 and the within-group coefficient γ10. Assuming perfect 

measurement of the group mean, this would correspond to a “true” difference of 

withinbetween β−β . It follows that the bias of the estimated contextual effect can be expressed by: 

nICCICC
ICC

n
E

xx

x

/)1(
)1(1)()()ˆˆ( betweenwithinwithinbetween1001 −+

−
⋅⋅β−β=β−β−γ−γ   (8) 

This relationship indicates that the contextual effect in the population will be 

underestimated by the contextual analysis model if betweenwithin β<β . However, if 

betweenwithin β>β  the contextual effect will be positively biased.2 Thus, a low ICC together with 

small samples of L1 individuals from each L2 group will affect the bias of contextual effect 

considerably.  
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In the approach to contextual analysis for reflective aggregations of L1 constructs 

outlined above, the group-level predictor was formed by aggregating all of the observed 

measurements in each group (MMC approach). In the next section, we introduce an 

alternative approach to contextual analysis that infers the latent unobserved group mean from 

the observed data, and that takes into account the unreliability of the group mean (L2 

measurement error) when estimating the contextual effect (MLC approach). Historically, 

nearly all contextual effect studies have used an MMC approach, due in part to technical 

limitations in most statistical packages that made a fully latent covariate approach extremely 

difficult to formulate. With the enhanced flexibility of MLM programs such as Mplus, 

however, it is now possible to introduce and evaluate an MLC approach (but see Croon & van 

Veldhoven, 2007, for an alternative implementation). Hence, the purpose of this article is to 

demonstrate the MLC approach, to evaluate statistical properties with simulated data, to 

illustrate its application with two actual (real-data) examples, and to critically evaluate its 

appropriateness from a theoretical and philosophical perspective.  

A Multilevel Latent Covariate (MLC) Model  

The concept of latent variables was originally introduced in the social and behavioral 

sciences to represent entities that may be regarded as existing but cannot be measured directly 

(e.g., Lord & Novick, 1968). For instance, in psychometric research, intelligence is 

considered as a latent variable that cannot be directly observed, but can only be inferred from 

the participants’ observed behavior in tests. In these traditional psychometric applications, the 

values of a latent variable represent participants’ scores on a trait or ability. Recently, several 

methodologists have proposed that the conceptualization of latent variables be broadened to 

include other circumstances in which unobserved individual values might profitably be 

included in the model (Muthén, 2002; Raykov, 2007; Skrondal & Rabe-Hesketh, 2004). In 

this latent variable framework, latent class membership and missing data are just two 

examples of latent variables.  
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The flexibility of this modeling framework is expressed in the definition provided by 

Skrondal and Rabe-Hesketh (2004, p.1): “we simply define a latent variable as a random 

variable whose realizations are hidden from us.” As a consequence of this generality, the 

latent variable framework is able to integrate MLM and structural equation modeling (see 

Raykov, 2007, for an application to longitudinal analysis) and is currently implemented, for 

example, in the Mplus (Muthén & Muthén, 1998-2006) and GLLAMM (Skrondal & Rabe-

Hesketh, 2004) software. In the present study, we use the MLC approach to consider the 

group effect as an unobserved latent variable that has to be inferred from the observed data. 

More specifically, the unobserved group mean is regarded as a latent variable that is measured 

with a certain amount of precision by the group mean of the observed data (Asparouhov & 

Muthén, 2007). As is typical within structural equation modeling (SEM), the estimate of the 

group-level coefficient is then corrected for the unreliable measurement of the latent group 

mean by the observed group mean. In the present study, our MLC approach is implemented 

using a Maximum Likelihood procedure in Mplus, which provides estimates that are 

consistent and asymptotically efficient within a very flexible approach to estimating latent 

variable models. 

The basis for the latent covariate approach is that each variable is decomposed into 

unobserved components, which are considered as latent variables (Asparouhov & Muthén, 

2007; Muthén, 1989; Schmidt, 1969; Snijders & Bosker, 1999). The dependent variable Y and 

the independent variable X can be decomposed as follows: 

yijyjyij

xijxjxij

RUY
RUX

++μ=
++μ=

                                                                            (9) 

where μx is the total mean of X, Uxj are group-specific deviations, and Rxij are individual 

deviations. The same decomposition holds for Y. Note that Xij and Yij are observed variables, 

whereas Uxj, Uyj, Rxij, Ryij are unobserved. We are interested in estimating the relationship 

between these unobserved variables at the individual and the group level: 
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ijxijyij RR ε+β= within  

jxjyj UU δ+β= between                                                                                   (10) 

The two equations can be combined into one by substituting (10) into (9). The dependent 

variable Y is then predicted by the individual and group-specific deviations:  

ijjxijxjyyijyjyij RURUY ε+δ+β+β+μ=++μ= withinbetween                 (11) 

It is now easy to see that (11) is approximated by the group-mean centered model expressed 

by (4), which is based on observed variables. The latent unobserved group deviation Uxj 

corresponds to the observed group means jX •  and the individual deviation Rxij to )( ••− XX ij . 

It is worth noting that the latent covariate approach to contextual analysis can also be 

implemented in traditional multilevel programs such as HLM or MLwiN by using a stepwise 

procedure (Goldstein, 1987; Hox, 2002). In the first step, a within- and between-group 

covariance matrix is estimated using a multivariate MLM. Hox (2002) demonstrated how a 

multivariate model can be estimated using MLM software designed to estimate univariate 

models (for a recent application of a multivariate MLM, see Bauer, Preacher, & Gil, 2006). In 

the second step, the within- and between-group coefficients are estimated based on these 

covariance matrices.3 Of course, the multivariate approach is much more limited than the 

implementation of the latent covariate approach in Mplus in that it can only be applied easily 

to random-intercept models.  

Recently, Croon and van Veldhoven (2007) proposed a two-stage latent variable 

approach. The unobserved group mean for each L2 unit is calculated using weights obtained 

from applying basic ANOVA formulas. These adjusted group means form the basis for an 

ordinary least squares (OLS) regression analysis at the group level. Croon and van Veldhoven 

showed analytically and by means of simulation studies that an OLS regression analysis based 

on the observed group means results in biased estimates, whereas the results based on the 

adjusted group means are unbiased. However, in contrast to our full information maximum 
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likelihood MLC approach, their two-stage procedure is only a limited information approach. 

The model parameters of the two-stage procedure are thus likely to be less efficient than those 

of the full information SEM approach (Wooldridge, 2002). As part of the present 

investigation, we conducted a simulation study to evaluate the differences between these two 

implementations of the MLC approach. 

To summarize, researchers using aggregated individual data to assess the effects of 

group characteristics are often confronted with the problem that the observed group average 

score is a rather unreliable measure of the unobserved group mean. For reflective 

aggregations of L1 constructs, the unreliability of the group mean can lead to biased 

estimation of contextual effects, particularly when the number of observations per group is 

small and when the ICC of the corresponding individual observations is low. Our new MLC 

approach regards the unobserved group mean as a latent variable, consistent with the 

reflective aggregation of L1 constructs. In the following section, we present a simulation 

study comparing the statistical properties of the new MLC approach with the traditional MMC 

approach that assumes the observed group mean to have no L2 measurement error.    

Study 1:  

Simulation Study Comparing the Multilevel Latent Covariate (MLC) and Multilevel 

Manifest Covariate (MMC) Approaches 

The simulation study was designed to generate data that resemble the data structures 

typically found for reflective aggregations of L1 constructs in psychological and educational 

research. The purpose of the simulation was to explore the statistical behavior of the MMC 

and MLC approaches under a variety of conditions approximating those encountered in actual 

practice. 

Conditions 

The population model used to generate the data was a random-intercept model with 

one explanatory variable at the individual level and one explanatory variable at the group 
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level as specified in Equation (3). Each generated data set was analyzed using the MMC and 

the MLC approach. The conditions manipulated were: the number of L2 groups (50, 100, 200, 

and 500); the number of observations per L2 group (5, 10, 15, and 30); and the ICC of the 

predictor variable (.05, .10, .20, and .30). In the following, we explain why these particular 

levels were selected. 

Number of L2 groups. The numbers of L2 groups were set to K = 50, 100, 200, or 500 

(Croon & van Veldhoven, 2007, considered two levels: 50 and 100). A sample of 50 groups is 

common in educational and organizational research (e.g., Maas & Hox, 2005), although many 

MLM studies are conducted with fewer than 50 L2 groups. At the same time, a growing 

number of large-scale assessment studies, including educational assessments such as ECLS 

(Early Childhood Longitudinal Study) and NELS (National Education Longitudinal Study), 

have sampled up to 1000 schools. Hence, we included conditions with 200 and 500 groups. 

Covering a broad range of L2 groups enables us to study asymptotic behavior in the latent 

variable approach. More specifically, we anticipate that the variability of the estimator is 

likely to be sensitive to the number of L2 groups. 

Number of observations per L2 group. We then manipulated the number of 

observations per L2 group to n = 5, 10, 15, and 30 (Croon & van Veldhoven, 2007, 

considered two levels: 10 and 40). A group size of 5 is normal in small group research, where 

contextual models are also applied (see Kenny, Mannetti, Pierro, Livi & Kashy, 2002). Group 

sizes of 20 and 30 reflect the numbers that typically occur in educational research assessing 

class or school characteristics. 

ICC of predictor variable. The ICC of the predictor variable (i.e., the amount of 

variance located between groups) was set at ICC = .05, .10, .20, or .30 (Croon & van 

Veldhoven, 2007, considered two levels: .1 and .2). Intraclass correlations rarely show values 

greater than .30 in educational and organizational research (Bliese, 2000; James, 1982).4  
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For each of 4 x 4 x 4 = 64 conditions, 1500 simulated data sets were generated. The 

regression coefficients are specified as follows: 0 for the intercept, 0.2 for βwithin, and 0.7 for 

βbetween. Because the contextual effect βcontext equals βbetween - βwithin, these values imply a 

contextual effect of 0.5. Given that the total variance of both the dependent variable Y and the 

independent variable X were fixed to 1, this corresponds to a medium effect size (see Cohen, 

1988). The ICC for the dependent variable is 0.2. Because the amount of variance explained 

at Level 2 depends on the ICC of the predictor variable, the following R2 values at Level 2 

were obtained for the different simulation conditions: .12 for ICC = .05, .25 for ICC = .10, .49 

for ICC = .20, and .74 for ICC = .30. The corresponding R2 values at Level 1 ranged from .04 

for ICC = .30 to .05 for ICC = .30.5 For every cell, the 1500 repetitions were simulated and 

analyzed with Mplus using full information maximum likelihood (Muthén & Muthén, 1998-

2006).  

In our simulation study, we focused on three aspects of the estimator for the contextual 

effect in reflective aggregations of L1 constructs: the bias of the parameter estimate, the 

variability of the estimator, and the accuracy of the standard error. The relative bias indicates 

the accuracy of the estimator for the contextual effect. Let contextβ̂  be the estimator of the 

population parameter βcontext, then the relative percentage bias is given by 100 * [( contextβ̂ - 

βcontext)/ βcontext]. To assess the variability of the estimator, the Root Mean Square Error 

(RMSE) was computed by taking the square root of the mean square difference of the 

estimate and the true parameter. The accuracy of the standard error of the contextual effect is 

analyzed by determining the observed coverage of the 95% confidence interval (CI). 

Coverage was given a value of 0 if the true value was included in the confidence interval and 

a value of 1 if the true value was outside the confidence interval.  

To determine which of the study’s conditions contributed to the relative bias and the 

RMSE, ANOVAs were conducted using the relative bias, RMSE, and coverage as the 
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dependent variable and each manipulated condition (method, number of L2 groups, number of 

L1 individuals within each L2 group, ICC of predictor variable) as a factor. The ANOVAs 

were conducted at the cell level, with each cell average being treated as one observation (so 

that the four-way interaction could not be separated from the error). To describe the practical 

significance of the conditions, the η2-effect size was calculated for all main effects, and for 

the two- and three-way interactions. 

Results and Discussion  

No problems were encountered in estimating the coefficients of the MLC and the 

MMC model; the estimation procedure converged in all 960,000 simulation data sets.  

Relative percentage bias. Table 1A shows the relative bias in the parameter estimates 

for all four conditions. To determine the relative bias, the cell mean for each of the 1500 

repetitions was calculated, subtracted from the population values, and then divided by the 

population value. For the MLC approach, the relative percentage bias ranged in magnitude 

from -14.4 to 19.6 (M = 0.6, SD = 4.7). As expected from the mathematical derivation in 

Equation (8), the relative bias for the MMC approach was larger, with values ranging from -

79.3 to -7.0 (M = -36.9, SD = 20.8). In contrast to the MLC approach, the MMC approach 

underestimated the contextual effect, especially for conditions with low ICCs. Consequently, 

the differences between the MLC approach and the MMC approach were particularly 

pronounced for low ICCs and small numbers of L1 individuals within each L2 group.  

The source of the relative bias was further investigated by conducting a four-way 

factorial ANOVA with relative bias as the dependent (Table 2). The largest effect was the 

main effect of method (η2 = .61). Almost two-thirds of the variance in the relative bias across 

the conditions was explained by the difference between the MLC and the MMC approach. 

The number of L1 individuals within each L2 group (η2 = .09) and the ICC (η2 = .09) had 

smaller but still substantial effects on the relative bias. When the ICC and the number of L1 

individuals within each L2 group were high, the average magnitude of relative bias was low. 
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The number of L2 groups had no effect on the magnitude of the relative bias. Furthermore, 

two two-way interactions were found to have an effect on the relative bias. First, the number 

of L1 individuals within each L2 group had a stronger effect on the magnitude of the relative 

bias for the MMC approach than for the MLC approach. Second, the effect of the ICC on the 

relative bias was more pronounced in the MMC approach than in the MLC approach.  

RMSE. Next we assessed the variability of the MLC and the MMC estimator (see 

Table 1B). The Root Mean Square Error (RMSE) was computed for every cell by taking the 

square root of the mean square difference of the estimate and the true parameter. Interestingly, 

in many conditions, the RMSE was higher for the MLC approach than for the MMC 

approach. The RMSE ranged in magnitude from .03 to 1.18 (M = .22, SD = .22) for the MLC 

approach, and from .04 to .44 (M = .21, SD = .10) for the MMC approach. The difference in 

the RMSE was particularly pronounced in the conditions with low ICCs and small numbers of 

L2 groups. For instance, in the condition with ICC = .05, n = 5, and K = 50, the RMSE was 

1.18 for the MLC approach and .44 for the MMC approach. As the number of L2 units (K) 

increases, however, the MLC approach begins to outperform the MMC approach; the RMSE 

for the MLC model approaches zero whereas that for the MLC model approaches the value of 

the bias estimate given in Equation (7). ANOVAs with RMSE as the dependent variable 

revealed that the largest effect was found for the ICC. More than one-third of the variance in 

the RMSE was explained by the main effect of ICC. In addition, the sample sizes at Level 1 

(n) and Level 2 (K) had a substantial impact on the RMSE. Despite the large differences in 

certain conditions, there was no main effect for method. However, inspection of the two-way 

interactions revealed that the MLC approach performed better than the MMC approach in 

terms of RMSE when the number of L2 units was large (η2 = .06) and the ICC was high (η2 = 

.04). Moreover, a significant three-way interaction was found between method, number of L2 

units, and ICC (η2 = .04). This interaction indicates that the ICC had a higher influence on the 

difference between the two methods when the number of L2 units was low. 
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The RMSE assesses variability of the estimates as well as the bias in relation to the 

known population value. To separate these two aspects, we calculated the empirical standard 

deviation across the 1500 replications within each cell. As expected given the results for the 

RMSE, the estimates of the MLC approach were more variable than those of the MMC 

approach. The empirical standard deviation ranged in magnitude from .03 to 1.18 (M = .22, 

SD = .22) for the MLC approach, and from .02 to .24 (M = .09, SD = .05) for the MMC 

approach. ANOVAs with the empirical standard deviation as the dependent variable showed 

that a substantial amount of variance was explained by the factor method (η2 = .17). 

Similarly, the difference between the MLC and MMC approach was more pronounced when 

the ICC was low (η2 = .13). In other respects, the results were nearly identical to those 

reported for the RMSE. From a statistical perspective, the smaller variability in the estimates 

of the MMC approach might be expected, because the group mean of the covariate is treated 

as observed. In contrast, the group mean as unobserved in the MLC approach, which naturally 

results in greater variability of the estimates. 

Coverage. The accuracy of the standard errors was evaluated in terms of the coverage 

rate, which was assessed using the 95% CIs (Table 1C). Coverage rates for the MLC approach 

were better than for the MMC approach, reflecting the established finding that standard errors 

are underestimated if a predictor contains measurement error (e.g., Carroll, Ruppert, & 

Stefanski, 1995). The coverage rate ranged from 93.4 to 97.0 (M = 94.0, SD = 1.3) for the 

MLC approach, near the nominal coverage rate of 95%. In contrast, the coverage rate for the 

MMC approach ranged from 0 to 91.7 (M = 47.7, SD = 31.1). ANOVAs indicated that more 

than half of the variance in coverage was due to method (manifest vs. latent approaches). 

Evaluation of the two-way interactions (Table 1B) revealed that differences between the latent 

and manifest approaches were more pronounced when the number of L1 individuals within 

each L2 group was low (η2 = .08) and the number of L2 groups was large (η2 = .12). The 

negative effect of the number of L2 groups on the coverage rate for the MMC approach was 
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due to the smaller CIs in conditions where the number of L2 groups was high. Because the 

bias was generally independent of the number L2 groups, the narrower CIs in conditions with 

high numbers of L2 groups for the biased MMC approach increased the probability that the 

CIs would not cover the true value. In addition, the coverage rates were affected by the main 

effects of the number of L1 individuals within each L2 group (η2 = .08), the ICC of the 

predictor variable (η2 = .03), and the number of L2 groups (η2 = .11). 

Summary 

Overall, the results from the simulation study confirmed the findings from the 

mathematical derivation showing that the MMC approach is biased for reflective aggregations 

of L1 constructs, whereas the bias for the MLC approach is negligible. Furthermore, the MLC 

approach performed well in terms of the coverage rate, which was near the nominal rate of 

.95. However, results for the RMSE showed that in certain data constellations (e.g., small 

numbers of L2 groups, small ICCs, and small group sizes) the MMC approach was less 

variable than the MLC approach. The differences between the two approaches in terms of 

variability were most pronounced with small group sizes (n < 10), small ICCs (ICC < 0.10), 

and only a modest number of L2 groups (K = 50, 100). When the number of L2 units 

increased, the RMSE for our MLC approach converged to zero, in contrast to that for the 

MMC approach, which remained positive. From asymptotic theory, it follows that the full 

information maximum likelihood (FIML) latent variable estimation approach yields consistent 

estimates of the contextual effect. In contrast, the estimates of the MMC approach are not 

consistent and are less efficient than those of our MLC approach. However, the results of the 

simulation study suggest that large numbers of L2 groups (e.g., K = 500) are sometimes 

needed for these asymptotic properties to hold. Furthermore, when interpreting the findings of 

the simulation study, it is important to keep in mind that the MLC as opposed to the MMC 

approach directly corresponded to the model used to generate data in our simulation study. 

Hence, from a purely statistical point of view, the increased variability of the MLC approach 
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in certain data constellations (e.g., small numbers of L2 groups, small ICCs, and small sample 

sizes) seems to be a limitation to the applicability of that approach. However, as will be 

argued in a later section, the choice between the approaches also depends strongly on the 

nature of the group construct under investigation and on the underlying aggregation process.  

Study 2: A Two-Stage Implementation of a Multilevel Latent Covariate (MLC) 

Approach 

As mentioned above, Croon and van Veldhoven (2007) recently proposed a two-stage latent 

variable approach. The unobserved group means for the covariate are calculated using weights 

obtained from applying basic ANOVA formulas. These adjusted group means form the basis 

for an OLS regression analysis at the group level. Because their two-stage procedure is only a 

limited information approach, Croon and van Veldhoven suggest that it may be less efficient 

than a full information latent variable approach such as that implemented in Mplus (2007, p. 

55):  

The stepwise estimation method proposed in this article is a limited information 

approach that does not directly maximize the complete likelihood function for the data 

under the model considered. Although the full information maximum likelihood 

approach would lead to the asymptotically most efficient estimates of the model 

parameters, the limited information approach is probably not much less efficient. A 

more systematic comparison of both approaches is needed here. […] A disadvantage 

of the maximum likelihood approach is that it requires rather complex optimization 

procedures that are not yet incorporated into any readily available software package.  

In response to this suggestion, we conducted an additional simulation study to compare the 

full information MLC approach (using the readily available Mplus package) to the two-stage 

approach proposed by Croon and van Veldhoven. A number of conditions from the previous 

simulation study were selected to generate the data. The conditions manipulated were: the 

number of L2 groups (50, 200); the number of observations per L2 group (10, 30); and the 



Contextual Analysis 

 

26

26

ICC of the predictor variable (.1, .2, .3). Again, the magnitude of the contextual effect was set 

to 0.5. In our analysis of this simulation study, we focus on the bias and the RMSE of the 

estimator for the contextual effect. 

Results and Discussion 

Bias. Table 3A shows the relative percentage bias in the parameter estimates for all 

four conditions. Overall, similar to the MLC approach, the stepwise approach was almost 

unbiased. The relative percentage bias for the two-stage approach ranged in magnitude from -

.9 to 12.6 (M = 1.98, SD = 3.7), whereas that for the MLC approach ranged from -.8 to 6.1 (M 

= 1.30, SD = 2.1). As anticipated by Croon and van Veldhoven (2007), the two-stage 

approach showed a larger bias than our one-step FIML approach in the condition where the 

ICC is low and the sample sizes at Level 1 and Level 2 are small.  

RMSE. As shown in Table 3B, the results for the RMSE were almost identical. A 

substantial difference between the two implementations of the MLC approach was present in 

one condition only (number of L2 units = 50, number of L1 units within each L2 unit = 10, 

ICC = .1), where the RMSE was .57 for the two-stage approach and .41 for the FIML 

approach.   

Summary  

To summarize, comparison of two alternative implementations of the MLC approach 

showed that the two approaches yielded very similar results, except under the condition with a 

small sample size at both levels and a low ICC. In this condition, our MLC approach 

outperformed the two-stage approach in terms of both bias and RMSE. This is not surprising, 

given that the MLC approach is a full information maximum likelihood that uses all 

information inherent in the raw data. In contrast, the two-stage approach is a limited 

information approach that relies on a stepwise procedure. Hence, it can be concluded that the 

problems of our MLC approach with small sample sizes at L2, as outlined in the previous 

simulation study, are even more serious for the two-stage approach. In conclusion, given 
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appropriate statistical software, there appears to be no reason to choose the two-stage 

approach proposed by Croon and van Veldhoven (2007) over the one-step MLC approach 

presented here, although the two approaches will yield nearly identical results for many 

situations.  

Study 3: The Role of Sampling Ratio in the Multilevel Latent Covariate (MLC) 

Approach 

Sampling ratio is a critical issue that has not received sufficient attention in the 

development of the MLC approach (but see Goldstein, 2003), which implicitly assumes that 

L1 cases are sampled from an infinite sample of L1 cases within each L2 group. This is a 

reasonable assumption for a reflective aggregation process in which a generic group-level 

construct is assumed to be measured by the corresponding constructs at the individual level. 

Croon and van Veldhoven (2007) thus regarded the group mean of the L2 construct as a latent 

variable and treated the corresponding individual scores at Level 1 as “reflective indicators for 

that variable” (p. 55). However, this reflective measurement assumption is not appropriate for 

formative L2 constructs. For example, in the earlier discussion of gender composition, the 

percentage of girls in a class can be measured with essentially no measurement error at Level 

1 or sampling error at Level 2 – consistent with the assumption underlying the MMC 

approach. In this example, the MLC approach would not be appropriate. In general, the MMC 

approach seems better suited than the MLC approach whenever the sampling ratio approaches 

1.0 for a formative L2 construct.  

What happens in a formative aggregation process in which the sampling ratio does not 

approach 1.0? The true value of the L2 aggregated variable is unknown because the entire 

cluster has not been sampled. For example, let us assume that researchers want to assess 

school-average SES by sampling 5 students from a school of 1000 students, a sampling ratio 

of .005. Using the MMC approach, the average SES of this sample would not provide an 

error-free estimate of the school-average SES. In scenarios with such a low sampling ratio, 
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the MLC approach might be used to correct the estimator of the contextual effect for L2 

measurement error.  

In order to address these concerns, we conducted a simulation study to further 

investigate the suitability of the MLC approach for a formative aggregation process in which 

the true L2 group average is not known. In contrast to the previous simulations, we assumed 

that the number of L1 units within each L2 group was some finite number (e.g., 100). 

Although the number of L1 units was fixed, the L2 units were randomly sampled from a 

population. Hence, we utilized a two-step procedure to generate populations with finite L1 

sample sizes and a fixed number of randomly drawn L2 units. More specifically, in the first 

step, a certain number of clusters were drawn (e.g., K = 500 L2 units with n = 100 L1 units 

within each L2 unit) to establish a population model with finite sample size within each L2 

unit. In the next step, a sample was drawn from this finite population according to a particular 

sampling ratio (e.g., 20%). This two-step procedure was replicated 1000 times for each 

condition, and both the MLC and the MMC approaches were tested. The following conditions 

were manipulated: the number of L2 groups (K = 100, 500); the number of L1 observations 

per L2 group in the finite population (n = 25, 100, 500), the ICC of the predictor variable 

(ICC = .10, .30), and the sampling ratio (the percentage of L1 observations considered within 

each L2 group: SR = 20%, 50%, 80%, 100%). Thus, for example, L2 group averages were 

based on 5 cases per class when the number of student within the class (n) was 25 and the 

sampling ratio (SR) was 20% 

Results and Discussion 

Bias. Table 4A shows the relative percentage bias in the parameter estimates for all 

four conditions. Overall, there was a tendency for our MLC approach to be positively biased – 

to overestimate the true contextual affect (M = 9.8, SD = 10.2, range = 0.2 to 39.1), and for 

the MMC approach to be negatively biased (M = -7.8, SD = 12.0, range = -52.0 to 0.2). The 

difference between the MLC approach and the MMC approach was particularly marked when 
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the finite sample size (i.e., number of L1 units within each L2 unit) and the ICC were small. 

This finding was confirmed by two significant interactions between method and L1 sample 

size (η2 = .23) and method and ICC (η2 = .09) in a five-way ANOVA.  

In the worst combinations (ICC = .1 and SR = .2 in Table 4A), the bias was extremely 

positive (+33.0% and +29.8%) in our MLC approach, and extremely negative (-51.4% and -

52.0%) in the MMC approach. Whenever our MLC approach led to a substantial positive bias, 

the MMC approach led to a substantial negative bias. However, the pattern of differences was 

not symmetrical. In particular, the size of the negative bias in the MMC approach declined 

sharply as the sampling ratio increased (and disappeared for SR = 1), whereas the positive 

bias for our MLC approach did not vary systematically with SR. 

It is not surprising that the MMC approach is unbiased when the sampling ratio is 1.0, 

given that all cases are sampled from the finite population. However, our MLC approach is 

most positively biased under these conditions, because it assumes that the samples were 

drawn from an infinite population. When the sampling ratio is low (.2), the negative bias of 

the MMC approach is larger than the positive bias of our MLC approach. In these conditions, 

the MMC approach is negatively biased because it does not correct for the unreliability of the 

aggregated L2 variable, whereas our MLC approach is positively biased because it 

overcorrects the contextual effect based on biased estimates of unreliability of the aggregated 

L2 variable. With increasing magnitude of the number of L1 units in the finite population, the 

bias of both the latent and manifest approach is reduced. However, except for the lowest 

sampling ratio, the absolute value of bias based on the MMC approach was systematically 

smaller than that of our MLC approach.  

To further study the bias of both approaches, a condition with a very low sampling 

ratio (SR = .05) was included for n = 500. As expected, our MLC approach was unbiased for 

a low ICC (K = 100: 2.4%; K = 500: 2.2%) as well as for a high ICC (K = 100: 0.0 %; K = 

500: 0.6%). In contrast, the MMC approach was seriously biased for such a low sampling 
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fraction, with the bias being more pronounced for a low ICC (K = 100: -25.7%; K = 500: -

25.7%) than for a high ICC (K = 100: -8.4%; K = 500: -8.3%). 

RMSE. As shown in Table 4B, the RMSE for both methods was of a similar 

magnitude. The RMSE for the MLC approach ranged in magnitude from .03 to .46 (M = .11, 

SD = .09). For the MMC approach, the RMSE ranged from .03 to .29 (M = .10, SD = .06). In 

general, the RMSE was high when the number of L1 units within each L2 unit, the number of 

L2 units, and the ICC were low. The MLC approach showed a higher RMSE than the MMC 

approach in some conditions (e.g., when the number of L2 units was 100, the ICC was .1, and 

the number of L1 units within each L2 unit was 25). Furthermore, in line with the results from 

the previous simulation studies, the RMSE for the MLC approach was affected by the number 

of L2 units.  

In the condition with a very low sampling ratio (SR = .05) and n = 500, only slight 

differences were found between the two approaches. As expected, the RMSE for the MLC 

approach was larger for a modest number of L2 units (ICC = 0.1: .18; ICC = 0.3: .08) than for 

a larger number of L2 units (ICC = 0.1: .08; ICC = 0.3: .04). The RMSE for the MMC 

approach was almost identical for a modest number of L2 units (ICC = 0.1: .18; ICC = 0.3: 

.08), but slightly higher for a large number of groups (ICC = 0.1: .14; ICC = 0.3: .06). 

Coverage. As in Study 1, the accuracy of the standard errors was evaluated in terms of 

the coverage rate, which was assessed using the 95% CIs. As shown in Table 4C, the 

coverage rates were generally better for the MLC approach than for the MMC approach, 

ranging from 32.8 to 96.0 (M = 87.8, SD = 13.1) for the MLC approach, and from 0.2 to 95.6 

(M = 83.5, SD = 21.6) for the MMC approach. 

In addition, we looked at the coverage for a condition with a very low sampling ratio 

(SR = .05) and n = 500. As expected, our MLC approach showed coverage rates near the 

nominal coverage rate of 95% for a modest number of L2 units (ICC = 0.1: 94.3%; ICC = 0.3: 

94.5%) and for a large number of L2 units (ICC = 0.1: 94.0%; ICC = 0.3: 94.3%). In contrast, 
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the CIs of the MMC approach were not accurate. The probability that the CIs do not cover the 

true value was higher for the conditions with a high number of L2 units (ICC = 0.1: 39.0%; 

ICC = 0.3: 73.5%) than for the conditions with a modest number of L2 units (ICC = 0.1: 

81.0%; ICC = 0.3: 88.6%).  

Summary  

Overall, this simulation study showed that the results for the manifest and latent 

approach depend on the size of the finite population that is assumed to generate the observed 

data. When the sample size and sampling ratio are both small, both approaches perform 

poorly – albeit in counter-balancing directions. Particularly when the sample size is low (n = 

25) and/or the sampling ratio is high, the MLC approach suffers from the fact that it assumes 

an infinite population for each L2 unit, whereas estimates based on the MMC approach show 

little or no bias.6 However, when the sampling ratio is low and the sample size is high, the 

MLC approach appears to behave more favorably than the MMC approach. For instance, in 

the conditions with a large number of L2 units (K = 500), a low sampling ratio (20%), and a 

large number of L1 units (n = 100), the MLC approach outperformed the MMC approach in 

terms of bias as well as RMSE. When the number of L1 units is further increased (e.g., n = 

500) and the sampling ration is low (e.g., SR = .05), the finite population sampling model is 

almost equivalent to the infinite population sampling model. Hence, the results would be 

nearly identical to the findings reported in the simulation study above, in which an infinite 

population was assumed (see Tables 1 and 2).  

Studies 4 and 5: Manifest and Latent Variable Approaches With Actual Data: 

Two Applications 

We next present two examples illustrating the difference between the latent and the 

manifest approaches to contextual analysis. The first example utilizes students’ ratings of their 

teachers’ behavior, a reflective aggregation of L1 constructs. The central question is whether 

the individual and shared perceptions of a specific teaching behavior are related to students’ 
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achievement outcomes. Because the contextual variable is based on different students’ 

perceptions of a specific teacher behavior, it seems reasonable to assume that students within 

each class are interchangeable in relation to this L2 reflective construct.  

The second example is a classic in contextual analysis, namely the question of whether 

the school composition in terms of socioeconomic background (SES) affects students’ reading 

literacy (Raudenbush & Bryk, 2002). Again, L1 scores (individual student SES) are used to 

assess the L2 construct (school-average SES). In this case, however, the aggregation of L1 

constructs is formative; the aggregated L2 construct is an index of L1 measures that may be 

very heterogeneous. Because SES can be measured with a reasonably high level of reliability 

at L1 and the number of students within each L2 group is substantial, the reliability of the L2 

aggregate (school-average SES) may be sufficient. Furthermore, within-school variability in 

SES is a potentially interesting characteristic of the school (i.e., heterogeneity of SES).  

We selected these two examples to illustrate that, from a theoretical perspective, the 

appropriateness and the reasons for applying the MLC approach may depend on the nature of 

the specific construct under study. 

Study 4: Teacher Behavior: Contextual Analysis of a Reflective L2 Construct 

In educational research, it is widely posited that individual students’ learning 

outcomes are affected by teacher behaviors. Empirical studies draw on different data sources 

to elucidate aspects of the learning environment. One simple and efficient research strategy is 

to ask students to rate several specific teacher behaviors. In this approach, each student is 

regarded as an independent observer of the teacher, and responses are aggregated across all 

students within a class to provide an indicator of teacher behavior. At the individual level, 

student ratings represent the individual student’s perception of the teacher behavior. Scores 

aggregated to the classroom level reflect shared perceptions of teacher behavior in which 

idiosyncrasies associated with the responses of individual students tend to cancel each other 

out (Lüdtke, Trautwein, Kunter, & Baumert, 2006; Miller & Murdock, 2007; Papaioannou et 
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al., 2004). Several studies – many using MLM – have provided empirical support for the 

predictive validity of these individual and shared perceptions of features of the learning 

environment with respect to student outcomes (Kunter, Baumert, & Köller, in press; Lüdtke et 

al., 2005; Urdan, Midgley, & Anderman, 1998).  

Background to the application  

In this first example, we examine students’ perceptions of a specific teaching behavior. 

Students were asked to rate how easily distracted their mathematics teacher was (teacher 

distractibility) on three items (sample item: “Our mathematics teacher is easily distracted if 

something attracts his/her attention”). The scale was developed on the basis of Kounin (1970), 

and covers teacher behavior that leads to the disruption or discontinuation of learning 

activities in class. Such behavior makes lessons less efficient and is negatively related to 

students’ learning gains (Gruehn, 2000). Consistent with the rationale for the reflective 

aggregation of L1 constructs to form an L2 construct that is the primary focus of study, all 

student ratings are supposed to measure the same construct (i.e., the teacher behavior under 

study). L1 student responses are thus used to construct an L2 reflective construct that reflects 

a specific teacher characteristic, namely distractible teaching style (Cronbach, 1976; Miller & 

Murdock, 2007).  

We used the German sample of lower secondary students who participated in the 

Third International Mathematics and Science Study (TIMSS; Baumert et al., 1997; Beaton et 

al., 1996). The data set contains 2133 students nested within 108 classes (average cluster size 

= 19.75). The intraclass correlation for the student ratings was .08, indicating that a moderate 

proportion of the total variance was located at the class level. The amount of variance located 

at the student level indicates that there is a considerable lack of agreement among students 

about the distractibility of their mathematics teacher. Based on Equation (8), the MMC 

approach might be expected to underestimate the strength of the relationship between 

perceived distractible teaching style and mathematics achievement at the class level.  



Contextual Analysis 

 

34

34

Both the MLC and the MMC approaches were specified in Mplus (see Appendix B). 

Students’ perceptions of their teachers’ distractibility and mathematics achievement scores 

were standardized across the entire sample (z-score with M = 0, SD = 1) at the individual 

level. For the MMC approach, the standardized distractibility was aggregated but not re-

standardized at the class level (thus, class-level effects are measured in terms of student-level 

SDs). 

Results and Discussion 

The parameter estimates for both approaches were nearly identical except for the L2 

(between) regression coefficient 01γ̂ and the L2 residual variance (Table 4C). As expected on 

the basis of both the mathematical derivation of the bias and the simulation study, the 

regression coefficient for teacher distractibility at the class level was larger in the MLC 

approach than in the MMC approach, but also exhibited a larger standard error. Classes with 

teachers who were perceived as showing a high level of distractibility in lessons had lower 

levels of achievement than classes with teachers who were perceived to be less distractible. At 

the student level, there was no effect of the individual students’ perception of their teachers’ 

teaching style on individual achievement. Given that variables were standardized at the 

individual level, the large regression coefficient obtained at the class level seems unusual. The 

reason for these large values at the group level is that the standard deviation of the aggregated 

group-level predictor is often smaller than 1. When the regression coefficient for the MLC 

approach is interpreted in relation to the class-level standard deviation of teacher 

distractibility, it decreases to .45. However, there are currently no agreed upon standards for 

how to calculate standardized regression coefficients in MLM. Standardization strategies in 

MLM remain a topic of research (e.g., Raudenbush & Bryk, 2002).   

Students’ ratings of their teachers’ behavior seem to be a good example of an L2 

reflective construct where the rationale of the MLC approach is appropriate. In this example, 

the main purpose of the L2 measurements is to assess an L2 group-level construct – the 
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behavior of a particular teacher as perceived by his or her students. In his seminal paper on 

multilevel issues in educational research, Cronbach (1976) was very clear about the role of 

students’ perceptions in assessing aspects of the learning environment. In a discussion of the 

Learning Environment Inventory (LEI), he argued that: “The purpose of the LEI is to identify 

differences among classrooms. For it, then, studies of scale homogeneity or scale 

intercorrelation should be carried out with the classroom group as unit of analysis. Studying 

individuals as perceivers within the classrooms could be interesting, but is a problem quite 

separate from the measurement of environments” (p. 9.18). From this point of view, it is 

reasonable to correct for factors that impinge the measurement of that class level construct. In 

the MLC approach, the restriction to small samples of students within classes and 

disagreement among students are taken into account when estimating the effect of aggregated 

student ratings on achievement.  

Study 5: School-Average SES: A Contextual Effect Analysis of a Formative L2 Construct 

Educational researchers believe that a student’s performance in school is affected by 

the characteristics of his or her fellow students (Marsh, Kong, & Hau, 2000; Willms, 1985). 

For example, several researchers have posited that aggregated school SES or mean ability 

affects individual student outcomes (e.g., student achievement or academic self-concept), 

even after controlling for the individual effects of these L1 constructs – a contextual effect. 

Raudenbush and Bryk (2002, p. 139) define such a contextual effect to exist “when the 

aggregate of a person-level characteristic, jX • , is related to the outcome, Yij, even after 

controlling for the effect of the individual characteristic, Xij.”  

Background to the application  

In the present example, individual students’ SES is used to assess the effect of school-

average SES on reading literacy after controlling for individual SES, drawing on data from 

the German sample (Baumert et al., 2002) of the PISA 2000 study (OECD, 2001). The 

analyses are based on 4460 students in 189 schools, giving a mean of 23.6 students per 
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school. Note that the PISA study sampled 15-year-old students from schools rather than 

classes. Hence, in contrast to Study 4, where the L2 groups were classes, the present example 

focused on the school at Level 2 (meaning that the sampling ratio is much lower). The ICC 

for SES was .22, indicating that a substantial amount of the variance in students’ SES was 

located at the school level.  

Results and Discussion 

The results for both manifest and latent models are reported in Table 5. SES and 

reading scores were standardized (z-score with M = 0, SD = 1) at the individual level. For the 

MMC approach, the standardized SES was aggregated but not re-standardized at the school 

level. As expected, the differences between the two approaches in the parameters based on 

student-level data were negligible. The effect of students’ SES 01γ̂  on reading achievement, 

the L1 residual, and the intercept 00γ̂  were almost the same. In contrast, estimates at the 

school level differed across the two approaches. As expected on the basis of Equation (8), the 

effect of school-average SES was higher in the MLC approach, which corrects for 

unreliability of the school-average SES scores. Because we group centered the L1 predictor 

variable, the compositional effect was determined by subtracting the within-school regression 

coefficient from the between-school regression coefficient: 1001 ˆˆ γ−γ  (e.g., Raudenbush & 

Bryk, 2002). We obtained a compositional effect of 1.42 for the MLC approach and 1.19 for 

the MMC approach. The contextual effect can be interpreted as the difference expected in 

reading literacy between two students with the same individual SES who attend schools 

differing by one unit in mean SES. One unit in mean SES corresponds to one standard 

deviation at the individual level metric because the aggregated individual SES score were not 

re-standardized. Similarly, when the regression coefficients at the school level are interpreted 

in relation to the school-level standard deviation of SES, they decrease in absolute size. For 

instance, the regression coefficient for the MLC decreases to .71 when interpreted in relation 
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to the school-level standard deviation. Again, this demonstrates that the magnitude of the 

parameter estimates is very sensitive to the different standardization strategies.  

The central question now is whether we can justifiably correct for unreliability based 

on the MLC approach in the present example. In contrast to Study 4, where students’ 

responses serve as reflective indicators of the L2 construct (each student provides a single 

fallible estimate of the teacher’s distractibility), in Study 5 student responses reflect the L1 

construct SES. Variability in individual student levels of SES in a given school clearly reflects 

systematic true score variation in a well-defined L1 construct (consistent with the formative 

approach to aggregation). Hence, it does not seem appropriate to assume a reflective 

aggregation process for school average SES. However, another reason for choosing a MLC 

approach might be a low sampling ratio. On average, 23.6 students were sampled from each 

school in the present example. Assuming an average school size of 500, only 5% of the pupils 

from each school were sampled. Given such a low sampling ratio in connection with a 

potentially very large number of L1 units within each L2 unit, application of the MLC 

approach may be justified. As this example shows, the choice of the analysis model (MLC or 

MMC approach) is very sensitive to the assumptions made about the underlying population 

sampling model. For instance, if classes (with ns of approximately 25) and not schools were 

chosen as L2 units, and the sampling ratio approached 1.0, we would have more confidence in 

the MMC approach. For a formative process in which the sampling ratio is small or moderate, 

our simulation results might provide preliminary evidence about the relative size (and 

direction) of biases under the manifest and latent approaches. Resolving this problem is 

clearly beyond the scope of this study. It is, however, important that applied researchers are 

aware of the problem, which does not seem to have been clearly demonstrated in previous 

research.  
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Discussion 

Multilevel analyses are frequently used to estimate the effects of group-level (L2) 

constructs in the social sciences. When using aggregated individual data to assess an L2 

construct within the MMC approach, however, the observed group mean might not be a 

reliable measure of the unobserved, latent group characteristic. We compared two approaches 

to the analysis of contextual models: a new MLC approach that corrects for the unreliable 

assessment of the latent group mean when estimating MLMs, and the traditional MMC 

approach, which relies on manifest group means that assume no measurement error.  

Statistical Considerations  

By means of mathematical derivation, we showed that the MMC approach results in 

biased estimates of contextual effects for reflective aggregations of L1 constructs, particularly 

when the ICC and L1 sample sizes within groups are small. This result was confirmed by a 

simulation study, which also showed that the MLC approach is generally unbiased. Although 

the contextual effects estimated within the MLC approach were larger, they were also 

substantially more variable in certain data constellations (e.g., small number of L2 groups, 

small ICCs, and small n) than those obtained using the traditional MMC approach. Indeed, 

due to this trade-off, the results of Study 4 suggested that the likelihood of obtaining 

statistically significant results was similar for both approaches. Although this paper clearly 

does not provide sufficient evidence to suggest that this result will generalize more broadly, it 

is a relevant consideration for further research. More generally, because the contextual effect 

estimates are so variable within our MLC approach, results based on a given sample may 

deviate substantially from the true population parameter – as can be demonstrated by a simple 

inspection of the standard error.  

What are the consequences of these mixed findings for the statistical properties of the 

estimator of the contextual effect in cases of reflective aggregation? The MMC approach is 

used almost exclusively in research practice. Our results suggest that at least the sizes of 
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contextual effects published are likely to be conservative. Although the new MLC approach is 

unbiased, the large sampling variability in certain data constellations (e.g., small number of 

L2 groups, small ICCs, and small n) suggests that it should be applied only very cautiously in 

such cases. Although asymptotically the MLC approach provides the most efficient and 

consistent estimator of the contextual effect and is thus asymptotically superior to the MMC 

approach, the results of our simulation study suggest that large numbers of L2 groups (K) may 

be needed for these asymptotic properties to hold. Particularly for studies where the number 

of L2 groups and the number of L1 cases within each group are modest, the latent variable 

approach can only be recommended when the ICC is very large. 

We also compared our MLC approach to the two-stage latent variable approach for L2 

reflective constructs proposed by Croon and van Veldhoven (2007). Consistent with their 

speculations, our simulation study showed that the two approaches yielded very similar 

results, except under the condition with small sample sizes at both L1 and L2 and a low ICC. 

For this data constellation, our FIML MLC approach outperformed the two-stage approach. 

Because the two-stage approach is only a limited information approach, the FIML 

implementation should be generally preferred. Although not a focus of our study, we also note 

that the potentially cumbersome two-stage approach to estimating standard errors requires 

further consideration. When discussing critical issues for future research in multilevel latent 

variable modeling, Croon and van Veldhoven (2007) emphasized that “…efforts should be 

made to develop a reliable numerical and generally applicable procedure that yields the full 

information maximum likelihood estimates of the model parameters” (p. 55). Mplus provides 

such a flexible latent variable model that integrates several different analysis models within a 

unified MLM framework (Muthén & Muthén, 1998-2006). Hence, we recommend that the 

one-step approach demonstrated here be used instead of the two-stage approach.  

Another even simpler approach (related to the Croon & van Veldhoven, 2007, two-

stage approach) would be to estimate the reliability of the group mean via Equation (6) and 
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then to correct the estimated regression coefficient for the unreliability of the group mean (see 

Grilli & Rampichini, 2007). To this end, the well-known correction for attenuation formula 

can be used to adjust the between-group regression coefficient by multiplying it by 

2

22 /
)(Rel

1
τ
σ+τ

=
n

X j

. This disattenuation approach thus consists of two steps. First, the 

MMC model is specified to estimate the between-group regression coefficient. Second, the 

estimated between-group regression coefficient is corrected for unreliability by the 

attenuation formula. In other words, the MMC approach is used to implement an MLC 

approach. A major drawback of that approach is that it is only well defined for balanced group 

sizes. However, even if the group sizes vary moderately, it may be acceptable to use the mean 

group size (see Snijders & Bosker, 1999, for a discussion of different adjustment formulas). In 

addition, the standard error of the regression coefficient needs to be adjusted when applying 

the disattenuation approach (e.g., using a bootstrapping procedure; see Carpenter, Goldstein, 

& Rasbash, 2003). Further research should evaluate how this disattenuation approach is 

related to the FIML implementation of the MLC approach as well as to the MMC approach 

for balanced and unbalanced group sizes. Although it may be premature to recommend that 

this disattenuation approach be used routinely, it does provide the applied researcher with an 

initial indication of the size of the bias that might be expected within the MMC approach 

when our MLC approach is appropriate. However, further investigation of the approach is 

required, particularly for small sample sizes.  

Another important application of our MLC approach is when the true value of an L2 

formative construct is unknown because the entire cluster has not been sampled. In this case, 

the MLC approach is used to control for a low sampling ratio and the limited reliability of the 

L2 formative construct. In Study 3, we tested the MLC approach’s suitability for adjusting for 

the effect of a small sampling ratio from a finite population. The results showed that, when 

the finite sample size of the L2 units is at least moderate (e.g., 100) and the sampling ratio is 
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low (e.g., 20%; 20 cases from a finite population of 100), the MLC approach outperformed 

the MMC approach in terms of both bias and RMSE. Critically, however, the bias associated 

with the two approaches was in opposite directions. Importantly, for formative aggregations, a 

sampling ratio tending to 0 corresponds with the assumptions of the MLC approach, whereas 

a sampling ratio of 1 corresponds with the assumptions of the MMC approach. 

The relative sizes of the counter-balancing biases associated with the two approaches 

varied systematically with sample size and sampling ratio. When the number of L1 cases 

within each L2 group is sufficiently large, the manifest and latent approaches give similar 

results (because L2 measurement error is negligible). However, when the sampling ratio and 

sample size are both small, and the two approaches are thus likely to give very different 

results, the only conclusion that the applied researcher can make with confidence is that the 

true value is on average somewhere between the results of the MMC and the MLC 

approaches. Hence, the most reasonable recommendation is to use both approaches to 

determine whether their results point to substantively different conclusions. If so, conclusions 

must be made with caution.  

What are the consequences of these findings for applying the MLC approach to group-

level constructs based on formative aggregation? In research practice, it is often difficult to 

determine the true cluster sizes because ad hoc samples are frequently drawn without a 

sampling scheme. In Study 5, for example, there was an average of 23.6 students per school. 

If we assume that the average school size is at least 500 students, then the sampling ratio is 

less than .05. However, the sample was limited to students who were 15 years of age, and the 

average number of 15-year-old students per school might be just 100. We are not necessarily 

arguing for this alternative interpretation, but use this example to illustrate why the 

computation of sampling ratio might not be straightforward. Furthermore, the true cluster 

sizes are likely to vary, perhaps substantially, across different L2 groups. Thus, further 

research is needed to study the effect of varying finite sample sizes of the L2 clusters on the 
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estimator of the contextual effect based on L2 formative constructs. Although our simulation 

results do not provide a sufficient basis for making detailed recommendations, we would like 

to offer the following guidelines (subject to further research).  

For formative L2 constructs (as in Study 5), the MMC approach can comfortably be 

used when the sampling ratio approaches 1.0. Even when the sampling ratio is moderate (at 

least 0.5), the MMC approach seems to provide relatively unbiased estimates as long as the 

sample size and ICC are large. Our MLC approach should be considered instead of the MMC 

approach when the sampling ratio is very small and the numbers of L2 groups and L1 cases in 

each L2 group are large. In all other cases, the applied researcher should apply both the latent 

and manifest approaches and compare the results of each. If the results of the two approaches 

differ substantively, the applied researcher should be cautious in drawing any conclusions. 

Because these recommendations are not entirely satisfactory in providing a clear-clear cut 

advice, this is an area in which more research is needed.  

For reflective L2 constructs, the researcher should always use the MLC approach in 

preference to the MMC approach – even when the apparent sampling ratio is very large. The 

rationale for this recommendation, as for the domain sampling rationale in the classical 

approach to measurement, is that there is a potentially infinite number of L1 indicators that 

could be sampled. There are, however, important qualifications to this recommendation. 

When the number of groups, the number of cases within each group, and the ICC are all 

modest, the contextual effect estimates for the MLC approach are – because of their larger 

variability – less accurate than those of the MMC approach. However, we cannot recommend 

the MMC approach because the parameter estimates are likely to be very negatively biased 

and the apparently small SEs are likely to substantially underestimate sampling variability (at 

least in terms of making population inferences). Rather, we recommend that the results of 

contextual effects studies for reflective L2 constructs based on small Ns at L1 and, in 

particular, small numbers of L2 groups be interpreted very cautiously unless the ICCs are 



Contextual Analysis 

 

43

43

substantial. These conclusions have dire consequences: we suspect that many published 

contextual effects studies do not meet even these minimally acceptable standards. More 

research is needed to ascertain with confidence what these minimal standards are.  

Theoretical Considerations  

In multilevel studies, group-level constructs are often constructed by aggregating 

individual data at the group level. The theoretical rationale for the aggregation process may 

differ. In this paper, we distinguish two quite different aggregation processes – reflective and 

formative aggregation – that represent opposite ends of a continuum.  

At the reflective aggregation end, the aggregation process assumes an isomorphic 

relationship between the individual-level data and the group-level construct. In other words, a 

generic group-level construct is assumed to be measured by the corresponding constructs at 

the individual level. A typical research paradigm was presented in Study 4, in which L1 

students’ responses were treated as observers of their L2 teacher’s behavior. Ideally, each 

student would assign the same rating, such that the responses of students in the same class 

would be interchangeable. Because the L1 perceptions of each student were designed to 

measure the same L2 construct, variation within each class can be regarded as L2 

measurement error (Cronbach, 1976; Van Mierlo, Vermunt, & Rutte, in press). This situation 

is analogous to typical assumptions in test construction, in which differences between 

multiple items are assumed to reflect measurement error that varies as a function of the 

number of items and the size of correlations among items. Further examples of group-level 

constructs that rely on this aggregation process are multiple L1 assessors’ evaluations of the 

L2 quality of grant proposals (Jayasinghe et al., 2003), L1 students’ evaluations of L2 

teaching effectiveness (Marsh, 1987, 2007), and multiple interchangeable L1 markers 

assessing the quality of student essays. In each of these situations, the reflective aggregation 

of L1 constructs to form L2 constructs and application of the MLC approach seem reasonable. 

At the formative aggregation end of the continuum, the aggregation process assumes 
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that the group-level variable is merely an index of a well-defined L1 construct that is 

aggregated to the L2 group level. In other words, the aggregation is not based on multiple 

interchangeable observations of a single entity, but on different characteristics associated with 

discrete (non-interchangeable) individuals. In fact, under appropriate circumstances (high 

levels of reliability at L1 and large numbers of L1 cases within each L2 group or a sampling 

ratio that approaches 1.0), it is reasonable to argue that nearly all of the within-group 

variability reflects true score differences among different individuals within each group. As 

such, L2 measurement error becomes trivial in size and, perhaps, ignorable (consistent with 

the manifest covariate approach). Particularly when the main aim of a construct is to reflect 

individual differences at L1 (e.g., academic achievement, SES, individual demographic 

characteristics such as race, age, and gender), the level of interrater agreement associated with 

the aggregated L2 construct is of no consequence to construct validity at L1 (Bliese, 2000). 

This situation was demonstrated in Study 5, in which school-average SES was determined by 

aggregating individual-level student SES.  

Limitations of the Manifest and Latent Approaches: Directions for Further Research 

 As formulated in this article, both the manifest and latent covariate approaches begin 

with manifest scale scores at L1, largely ignoring the potential to estimate and control for 

measurement error at L1 – even when L1 measures are based on multiple indicators. Under 

appropriate circumstances, the integration of multiple L1 indicators into the analyses would 

allow researchers using either of the two approaches to differentiate between L1 measurement 

error and L2 measurement error due to sampling error associated with the aggregation process 

in moving from L1 to L2 aggregations. This would be particularly valuable for the manifest 

covariate approach, offering researchers a way to estimate L2 measurement error in L2 

formative measures (see Kline, 2004, for discussion of how to take account of measurement 

error in observed exogenous variables). Furthermore, low reliability of individual measures 

can give the appearance of substantial estimates of group-level contextual effects. However, 
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these estimates are biased because the aggregate measure is more reliable and “mops up” 

variance that would be explained at the individual level with more reliable measures – the so-

called phantom effect or contextual fallacy (Harker & Tymms, 2004; see also Lüdtke, 

Robitzsch, & Köller, 2002). Historically, limitations in statistical software posed intractable 

problems in integrating CFA/SEM and MLM models (e.g., Mehta & Neale, 2005; Muthén, 

1991). However, even with conventional MLM programs that do not explicitly incorporate 

multiple indicators of each L1 construct, it is possible to incorporate information about L1 

measurement error (e.g., Goldstein, 2003; Raudenbush & Bryk, 2002). More sophisticated 

statistical packages are increasingly providing applied researchers with added flexibility to 

incorporate multiple indicators at L1 while addressing the multilevel structure of their data.  

 Even in the MMC approach applied to formative L2 constructs, sampling variability 

remains a potentially important limitation when group sizes and sampling ratios are small. 

This problem is exacerbated when there is marked variation in group sizes within the same 

study. In theory, this is not a problem with the MLC approach because sampling error that 

differs substantially because of variation in samples sizes is incorporated in the estimation 

process. Nevertheless, it would be useful to conduct simulation research to evaluate MLC 

approach’s actual ability to handle this problem. However, even within the MMC approach, it 

is possible to differentially weight groups in relation to the number of cases in each group 

(e.g., Marsh, in press).  

 Implicit in our presentation of the MLC approach for L2 reflective measures is the 

assumption that L1 individuals can be regarded as indicators and that these indicators are 

drawn from a population of infinite potential indicators to represent each L2 group, analogous 

to assumptions made in the domain sampling approach to classical measurement theory. From 

this perspective, sampling ratio is not a critical concern for reflective L2 measures, although 

concerns about having adequate numbers of L1 cases in each L2 group are still relevant. 

Although the correction for unreliability in L2 aggregates in our MLC approach is generally 
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appropriate under the assumption that it is at least hypothetically possible to have an infinitely 

large sample size, this assumption may be questionable in situations in which it is not feasible 

to have a large number of L1 cases for each L2 group.  

Conclusion 

The simultaneous investigation of individual and group effects is one of the basic 

features of MLMs. In research practice, the L2 group characteristics are often measured by 

aggregation from L1 individual measures. Two approaches that differ in their treatment of the 

aggregated group level construct were compared. Whereas the MLC approach corrects for the 

unreliable assessment of the latent group mean when estimating MLMs, the MMC approach 

relies solely on the observed group mean that is assumed to be measured with no L2 

measurement error. We argue that the appropriateness of either of these approaches depends 

on the research question and the nature of the L2 construct under study. If a generic group-

level construct is assessed through a reflective aggregation of L1 measures to form the L2 

construct, then the MLC approach is appropriate and offers many advantages as long as 

minimal standards are met. However, when the aggregated variable is a formative summary of 

the observations at the individual level (e.g., school-average SES), the assumptions made by 

the MLC approach are appropriate only when the sampling ratio is small. In research practice, 

the distinction between group-level variables based on reflective and formative aggregation is 

not usually so clear cut, and it is easy to imagine situations in which the theoretical status of 

the group-level construct is ambiguous and the calculation of the sampling ratio is not 

straightforward. Hence, it might be useful to analyze the sensitivity of empirical results to 

both approaches. In conclusion, although the latent covariate approach demonstrated here has 

wide applicability in relation to a serious limitation of existing research, the appropriateness 

of its application varies depending on the nature of the data, the number of L2 groups, the 

number of cases within each group, and the sampling ratio.  
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Footnotes 

1 A little more algebra is needed for the conversion of the variance components (see 

Kreft et al., 1995). Note that the models are no longer equivalent in either the fixed part or the 

random part when random slopes or nonlinear components are allowed. 

2 This constellation is present in research on the so-called frog-pond effect (Davis, 

1966). The most prominent example is the big-fish-little-pond effect: the observation that 

individual student achievement has a substantially positive effect on academic self-concept, 

whereas the effect of school- or class-average achievement is consistently negative (Marsh & 

Hau, 2003). As is apparent from Equation (8), the BFLPE is probably underestimated in 

absolute terms when the manifest covariate approach is applied.  

3 We ran a small simulation study to compare the results of a contextual analysis 

model using the latent covariate approach in Mplus with the two-step approach based on the 

output of traditional MLM software. The results were exactly the same.   

4 We also tried to include a condition with a very low ICC (.01) in our simulation 

study. However, Mplus showed serious convergence problems under this condition. 

5 Additional simulation studies, which will not be reported here, showed that the 

magnitude of the R2 value at Level 1 only marginally affects the results of the simulation for 

the contextual effect. Typically, larger R2 values lead to smaller standard errors of the 

parameter estimates, which are reflected in less variable estimates of the regression 

coefficients. However, the sample sizes at Level 1 of the conditions of our multilevel 

simulation study are large and the corresponding standard error of the L1 regression 

coefficient is therefore of small magnitude. 

6 Additional, unreported simulations showed that the bias for the MLC approach 

becomes even more extreme when the sampling ratio approaches 1.0 and the number of cases 

is very small. In the most extreme situation, with n = 10, ICC = .1, K = 100, and SR = 1.0, the 

bias for our MLC approach was very positive (91.6%), whereas the MMC approach was 
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almost unbiased (-0.8%). The RMSE was also considerably higher for our MLC approach 

(0.53) than for the MMC approach (0.12). When the number of L2 units was increased to K = 

500 and the ICC was set to 0.3, our MLC approach performed better (bias: 23.3%; RMSE: 

.13), but it was still outperformed by the manifest approach (bias: -0.3%; RMSE: .04).
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Table 1  

Study1. Bias of Contextual Effect (A), Root Mean Square Error of Contextual Effect (B) and Percentage Coverage Rate of Contextual Effect (C): 

Fitting the Multilevel Manifest Covariate Model and the Multilevel Latent Covariate Model as a Function of the ICC of the Predictor Variable, the 

Number of Level-1 Units Within Each Level-2 Unit and the Number of Level-2 Units 

A: Bias of Contextual Effect  
  Number of Level-1 units within each Level-2 unit 
   

  n = 5 n = 10 n = 20 n = 30 
Number of Level-2 units   Latent Manifest Latent Manifest  Latent Manifest Latent Manifest 

ICC = 0.05 -14.4 -79.3 17.7 -64.2 19.6 -54.9 4.9 -38.6 
ICC = 0.10 0.4 -64.9 6.5 -48.6 0.6 -39.7 4.8 -20.9 
ICC = 0.20 -5.0 -46.5 2.8 -28.6 2.7 -20.6 -1.0 -13.3 

K = 50  

ICC = 0.30 -6.0 -31.7 0.7 -19.0 -1.0 -14.8 0.2 -7.4 
          

ICC = 0.05 -2.10 -78.4 10.3 -64.7 8.2 -54.9 2.3 -38.4 
ICC = 0.10 -1.0 -64.5 -0.4 -48.3 -1.8 -39.5 1.1 -22.8 
ICC = 0.20 -0.3 -44.3 2.3 -27.9 1.9 -20.0 0.5 -11.7 K = 100 

ICC = 0.30 -3.3 -32.2 0.1 -19.3 1.8 -12.4 -0.7 -8.1 
          

ICC = 0.05 0.2 -78.9 -2.2 -67.0 3.7 -55.9 -0.3 -39.5 
ICC = 0.10 -1.9 -64.3 0.6 -47.8 2.0 -36.9 1.6 -22.1 
ICC = 0.20 -2.2 -45.3 -1.2 -29.4 -0.1 -21.3 -0.5 -12.3 K = 200 

ICC = 0.30 -4.1 -32.4 0.2 -18.9 0.2 -13.5 0.2 -7.2 
          

ICC = 0.05 -6.2 -79.2 0.5 -65.3 0.9 -55.6 0.0 -39.1 
ICC = 0.10 -3.3 -64.6 0.6 -47.2 0.5 -37.3 0.8 -22.5 
ICC = 0.20 -0.6 -44.4 -0.4 -28.8 0.3 -20.9 0.5 -11.4 K = 500 

ICC = 0.30 -2.3 -31.7 0.0 -18.9 -0.4 -13.9 0.3 -7.0 
(table continues)  
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Table 1 (continued) 
 

B: Root Mean Square Error of Contextual Effect 
  Number of Level-1 units within each Level-2 unit 
   

  n = 5 n = 10 n = 20 n = 30 
Number of Level-2 units   Latent Manifest Latent Manifest  Latent Manifest Latent Manifest 

ICC = 0.05 1.18 0.44 0.81 0.38 0.70 0.34 0.46 0.31 
ICC = 0.10 0.64 0.36 0.43 0.29 0.31 0.26 0.24 0.21 
ICC = 0.20 0.29 0.27 0.20 0.19 0.18 0.17 0.13 0.13 

K = 50  

ICC = 0.30 0.19 0.21 0.13 0.14 0.11 0.12 0.09 0.09 
          

ICC = 0.05 0.74 0.41 0.51 0.35 0.41 0.31 0.27 0.25 
ICC = 0.10 0.42 0.34 0.25 0.27 0.22 0.23 0.15 0.16 
ICC = 0.20 0.19 0.24 0.13 0.17 0.11 0.13 0.09 0.10 K = 100 

ICC = 0.30 0.13 0.18 0.09 0.12 0.08 0.09 0.06 0.07 
          

ICC = 0.05 0.54 0.40 0.29 0.35 0.29 0.30 0.19 0.23 
ICC = 0.10 0.22 0.33 0.17 0.25 0.14 0.20 0.12 0.14 
ICC = 0.20 0.14 0.24 0.09 0.16 0.08 0.12 0.07 0.09 K = 200 

ICC = 0.30 0.09 0.17 0.06 0.11 0.06 0.08 0.04 0.05 
          

ICC = 0.05 0.34 0.40 0.19 0.33 0.15 0.28 0.12 0.21 
ICC = 0.10 0.14 0.33 0.11 0.24 0.09 0.19 0.07 0.12 
ICC = 0.20 0.08 0.23 0.06 0.15 0.05 0.11 0.04 0.07 K = 500 

ICC = 0.30 0.06 0.16 0.04 0.10 0.03 0.07 0.03 0.04 
(table continues)  
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Table 1 (continued) 
 

C: Percentage Coverage Rate of Contextual Effect 
  Number of Level-2 units within each Level-2 unit 
   

  n = 5 n = 10 n = 20 n = 30 
Number of Level-2 units   Latent Manifest Latent Manifest  Latent Manifest Latent Manifest 

ICC = 0.05 93.5 40.1 92.6 61.6 94.1 72.7 93.4 83.9 
ICC = 0.10 94.8 48.9 92.8 68.5 90.5 76.1 92.5 88.1 
ICC = 0.20 94.1 62.4 92.6 78.7 90.4 83.3 91.6 88.7 

K = 50  

ICC = 0.30 94.2 74.8 93.7 83.0 93.7 85.6 93.1 91.7 
          

ICC = 0.05 95.3 13.4 96.1 33.3 93.1 51.2 94.1 76.0 
ICC = 0.10 94.7 23.0 92.6 45.3 92.0 59.9 94.1 83.8 
ICC = 0.20 95.2 38.9 93.4 66.4 92.9 75.5 95.6 88.3 K = 100 

ICC = 0.30 94.1 54.4 92.3 71.6 93.8 83.8 94.9 89.5 
          

ICC = 0.05 95.2 0.9 96.4 6.6 94.6 24.6 92.5 59.2 
ICC = 0.10 95.5 1.2 94.6 18.6 94.0 37.5 93.4 73.0 
ICC = 0.20 94.0 10.2 94.6 35.1 94.0 55.9 91.9 78.4 K = 200 

ICC = 0.30 93.7 24.9 97.0 52.6 94.6 67.3 95.8 84.7 
          

ICC = 0.05 93.0 0.0 94.9 0.1 95.5 0.9 94.1 21.5 
ICC = 0.10 94.7 0.0 93.5 0.5 94.1 5.0 94.4 43.0 
ICC = 0.20 95.0 0.3 94.4 4.7 95.2 20.6 94.7 64.7 K = 500 

ICC = 0.30 94.1 3.1 94.3 15.9 94.4 32.4 95.1 69.5 
 

Note. Latent = multilevel latent covariate model. Manifest = multilevel manifest covariate model. K = number of Level-2 units. n = number of 
Level-1 individuals within each Level-2 unit. ICC = intraclass correlation of predictor variable. 
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Table 2  

Study 1. ANOVA Tables for the Effects of the Simulation Conditions on Bias, RMSE, and 

Coverage (η2) 

 Bias RMSE Coverage
    

Main effects    

Method 0.61 0.00 0.53 

K 0.00 0.14 0.11 

N 0.09 0.15 0.08 

ICC 0.09 0.44 0.03 
    

2-way-interactions    

Method: K 0.00 0.06 0.12 

Method: n 0.06 0.00 0.08 

Method: ICC 0.13 0.04 0.03 

K: n 0.00 0.01 0.01 

K: ICC 0.00 0.05 0.00 

n: ICC 0.00 0.03 0.00 
    

3-way-interactions    

Method: K: n 0.00 0.01 0.01 

Method: K: ICC 0.00 0.04 0.00 

Method: n: ICC 0.01 0.02 0.00 

K: n: ICC 0.00 0.00 0.01 
    

Error 0.00 0.01 0.01 

Note. Method = multilevel latent covariate model vs. multilevel  
manifest covariate model. K = number of Level-2 units. n = number  
of Level-1 units within each Level-2 unit. ICC = intraclass correlation  
of predictor variable. 
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Table 3 

Study 2. Relative Percentage Bias of Contextual Effect (A) and Root Mean Square Error of 

Contextual Effect (B): Fitting Two Alternative Implementations of a Multilevel Latent 

Covariate Approach as a Function of the ICC of the Predictor Variable, the Number of Level-

1 Units Within Each Level-2 Unit, and the Number of Level-2 Units 

  n = 10 n = 30 

  Two-Stage FIML Two-Stage FIML 
      

A: Relative Percentage Bias of Contextual Effect  

      

 ICC = 0.1 12.6 6.1 -0.9 -0.8 

K = 50 ICC = 0.2 4.8 4.9 0.5 0.6 

 ICC = 0.3 2.5 1.7 0.0 0.1 
      

 ICC = 0.1 1.9 1.0 1.3 1.2 

K = 200 ICC = 0.2 0.7 0.4 -0.2 -0.2 

 ICC = 0.3 0.2 0.1 0.5 0.5 
  

B: Root Mean Square Error of Contextual Effect  

 
 

    

 ICC = 0.1 0.57 0.41 0.24 0.24 

K = 50 ICC = 0.2 0.19 0.19 0.14 0.14 

 ICC = 0.3 0.13 0.12 0.09 0.09 
      

 ICC = 0.1 0.17 0.17 0.11 0.11 

K = 200 ICC = 0.2 0.09 0.09 0.07 0.07 

 ICC = 0.3 0.07 0.07 0.04 0.04 

Note. Two-stage = two-stage multilevel latent covariate approach. FIML = full information 
maximum likelihood multilevel latent covariate approach. K = number of Level-2 units. n = 
number of Level-1 units within each Level-2 unit. ICC = intraclass correlation of predictor 
variable. 
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Table 4 

Study 3. Relative Percentage Bias of Contextual Effect (A), Root Mean Square Error of Contextual Effect (B), Percentage Coverage Rate 
Contextual Effect (C): Fitting the Multilevel Manifest Covariate Model and the Multilevel Latent Covariate Model as a Function of the ICC of the 
Predictor Variable, the Number of Level-1 Units Within Each Level-2 Unit, the Number of Level-2 Units and the Sampling Ratio 

A: Relative Percentage Bias of Contextual Effect 
   

  n = 25 n = 100 n = 500 
   Latent Manifest Latent Manifest  Latent Manifest 
          

SR = 0.2 33.0 -51.4 11.8 -24.2 0.8 -8.3 
SR = 0.5 39.1 -22.3 9.9 -7.7 2.0 -2.5 
SR = 0.8 37.3 -6.9 8.9 -2.9 1.5 -1.3 

ICC = 0.1 

SR = 1 37.4 -0.6 8.0 -1.7 1.5 -1.0 
        

SR = 0.2 9.3 -25.8 2.4 -8.7 0.2 -2.3 
SR = 0.5 9.8 -8.4 2.5 -2.3 1.0 -0.1 
SR = 0.8 9.2 -2.6 2.9 -0.2 0.8 -0.2 

K = 100 

ICC = 0.3 

SR = 1 9.9 0.2 2.6 0.1 0.5 -0.2 

   
      

SR = 0.2 29.8 -52.0 9.3 -25.4 1.7 -8.2 
SR = 0.5 35.5 -23.2 8.9 -9.2 1.3 -4.2 
SR = 0.8 36.0 -7.3 9.3 -3.8 1.6 -2.6 

ICC = 0.1 

SR = 1 36.5 -1.1 9.4 -1.3 1.4 -2.1 
        

SR = 0.2 9.3 -25.4 2.5 -8.5 0.6 -2.2 
SR = 0.5 9.4 -8.8 2.4 -2.6 0.6 -0.8 
SR = 0.8 9.5 -2.3 2.5 -0.7 0.2 -0.9 

K = 500 

ICC = 0.3 

SR = 1 9.4 -0.3 2.5 -0.3 0.4 -0.8 
(table continues)    
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Table 4 (continued) 
 

B: Root Mean Square Error of Contextual Effect 
   

  n = 25 n = 100 n = 500 
   Latent Manifest Latent Manifest  Latent Manifest 
          

SR = 0.2 0.46 0.29 0.21 0.18 0.15 0.14 
SR = 0.5 0.31 0.17 0.16 0.14 0.14 0.14 
SR = 0.8 0.27 0.13 0.15 0.13 0.14 0.14 

ICC = 0.1 

SR = 1 0.26 0.13 0.15 0.14 0.13 0.14 
        

SR = 0.2 0.16 0.16 0.09 0.09 0.07 0.07 
SR = 0.5 0.11 0.09 0.07 0.07 0.07 0.07 
SR = 0.8 0.10 0.08 0.07 0.07 0.07 0.07 

K = 100 

ICC = 0.3 

SR = 1 0.09 0.08 0.07 0.07 0.07 0.07 

   
      

SR = 0.2 0.21 0.27 0.10 0.14 0.07 0.08 
SR = 0.5 0.20 0.13 0.08 0.08 0.06 0.08 
SR = 0.8 0.20 0.08 0.08 0.08 0.06 0.08 

ICC = 0.1 

SR = 1 0.20 0.07 0.08 0.07 0.06 0.08 
        

SR = 0.2 0.08 0.13 0.04 0.06 0.03 0.04 
SR = 0.5 0.06 0.06 0.03 0.04 0.03 0.04 
SR = 0.8 0.06 0.04 0.03 0.03 0.03 0.03 

K = 500 

ICC = 0.3 

SR = 1 0.06 0.04 0.03 0.03 0.03 0.04 
(table continues)    
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Table 4 (continued) 
 

C: Percentage Coverage Rate Contextual Effect 
   

  n = 25 n = 100 n = 500 
   Latent Manifest Latent Manifest  Latent Manifest 
          

SR = 0.2 92.8 36.0 92.1 80.2 92.9 90.3 
SR = 0.5 84.7 82.3 92.8 91.9 94.1 93.7 
SR = 0.8 81.3 91.6 93.5 93.8 93.6 92.8 

ICC = 0.1 

SR = 1 78.6 92.7 92.7 93.1 94.4 93.3 
        

SR = 0.2 93.7 61.1 93.5 87.3 93.5 92.8 
SR = 0.5 91.2 87.6 93.9 92.6 92.8 92.3 
SR = 0.8 89.6 91.1 92.8 93.0 93.3 92.8 

K = 100 

ICC = 0.3 

SR = 1 89.1 92.5 94.3 94.0 93.4 92.9 

   
      

SR = 0.2 86.5 0.2 90.3 38.7 94.7 88.5 
SR = 0.5 54.5 42.9 89.0 86.1 94.0 92.0 
SR = 0.8 39.1 88.7 88.3 92.3 95.4 93.2 

ICC = 0.1 

SR = 1 32.8 92.5 88.5 92.7 95.1 93.8 
        

SR = 0.2 88.5 11.5 93.2 73.9 94.9 93.8 
SR = 0.5 80.3 74.3 93.1 92.8 94.8 94.9 
SR = 0.8 74.8 92.3 92.6 94.0 96.0 95.6 

K = 500 

ICC = 0.3 

SR = 1 74.1 93.1 93.1 94.6 94.1 93.7 
 

Note. Latent = multilevel latent covariate model. Manifest = multilevel manifest covariate model. K = number of Level-2 units. n = number of 
Level-1 individuals within each Level-2 unit. ICC = intraclass correlation of predictor variable. SR = Sampling ratio.
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Table 5 

Study 4. Empirical Analysis Results: Effects of Students’ Perception of their Teachers’ 

Distractibility on Mathematics Achievement 

  Latent Manifest 

  Coefficient S.E. Coefficient S.E. 

Fixed effect      

00γ̂ intercept  -0.06 0.07 -0.06 0.07 

01γ̂ distractible teaching (average)  -1.23 0.31 -0.83 0.19 

10γ̂ distractible teaching (student)   -0.03 0.02 -0.03 0.02 
     

  Var Comp  Var Comp 

  Coefficient  Coefficient  

Random effect    

)( 0 juVar   0.42  0.46  

)( ijrVar   0.48  0.48  

Note. N(Level 1) = 2133. N(Level 2) = 108. Average cluster size = 19.75. Var Comp = 
variance component. All parameter estimates except the intercept and γ10 are statistically 
significantly different from zero (p < .001). 
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Table 6 

Study 5. Empirical Analysis Results: Effects of Socioeconomic Status on Reading Achievement 

  Latent Manifest 

  Coefficient S.E. Coefficient S.E. 

Fixed effect      

00γ̂ intercept  -0.01 0.03 -0.02 0.03 

01γ̂ SES (average)  1.52 0.06 1.29 0.06 

10γ̂ SES (student)   0.10 0.01 0.10 0.01 
     

  Var Comp  Var Comp 

  Coefficient  Coefficient  

Random effect    

)( 0 juVar   0.08  0.15  

)( ijrVar   0.43  0.43  

Note. N(Level 1) = 4460. N(Level 2) = 189. Average cluster size = 23.6. SES = 
socioeconomic status. Var Comp = variance component. All parameter estimates except the 
intercept are statistically significantly different from zero (p < .001).
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Figure 1. Relationship between the expected bias of the between-group regression coefficients, the number of Level-1 units within each Level-2 
unit (n), and the ICC of the predictor for three different values of βwithin - βbetween. 
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Appendix A 

Derivation of Bias for the Multilevel Manifest Covariate (MMC) Approach 

In this Appendix, we derive the bias for the MMC approach. Because we are interested in 

within-group and between-group relations, the following population model for two variables 

X and Y will be assumed (see Snijders & Bosker, p. 29): 

yijyjyij

xijxjxij

RUY
RUX

++μ=
++μ=

 

In this model, group (e.g., school) j has specific main effects Uxj and Uyj for variables X and Y, 

and the within-group deviations Rxij and Ryij are associated with individual (e.g., student) i. 

The population means are denoted μx and μy, and it is assumed that the U’s and the R’s have 

population means 0. In addition, the U’s and the R’s are independent.  

The covariance matrix of X and Y at Level 1 and Level 2 can be written as: 

Level 1 (within) Level 2 (between) 

⎟
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⎠
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⎝
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yxy
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We are interested in estimating the following relationship in the population:  

ijjxjxijyij URY ε+δ+β+β+μ= betweenwithin  

where μy is the grand mean, βwithin the within-group regression coefficient, βbetween the 

between-group regression coefficient, δj a group-specific residual, and εij an individual-

specific residual. In the group-mean centered case, the following multilevel model would be 

specified to estimate βwithin and βwithin: 

ijjjjijij ruXXXY ++γ+−γ+γ= •• 0011000 )(  

Under the assumption of equal group sizes n, ∑
=

• =
n

i
ijj X

n
X

1

1 is the mean for group j. 

Furthermore, γ00, γ10, and γ01 denote the estimators for μy, βwithin, and βbetween. The L2 and L1 
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residuals are given by u0j and rij. Given the covariance matrix of X and Y at Level 1 and Level 

2, the observed covariance matrix of Yij, jij XX •− , and jX •  is distributed as follows 
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As can be seen, the covariances between Yij, jij XX •− , and jX •  depend on the common 

group size as well as on the “true” covariances within and between groups. Employing the 

OLS principle and bearing in mind that the predictors jij XX •−  and jX •  are uncorrelated, 

the estimator 10γ̂ for the within-group regression coefficient βwithin can be obtained as: 

within2210 )/11(
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Now let 22

2

xx

x
xICC

σ+τ
τ

= denote the ICC for X. The estimator 01γ̂ of the between-group 

regression coefficient βbetween can now be formulated as follows: 
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Thus, the bias on the between level is now computed as follows: 

nICCICC
ICC

n
E

xx

x

/)1(
)1(1)()ˆ( betweenwithinbetween01 −+

−
⋅⋅β−β=β−γ  

As can be seen, the bias depends primarily on the proportion of variance in X that is located 

between groups (ICCx ) and on the average group size n. If ∞→n , the estimator will be 

unbiased.  
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Appendix B 

Mplus Syntax for the Multilevel Latent Covariate and the Multilevel Manifest Covariate 

Approach 

 
TITLE: Multilevel Latent Covariate;  
DATA: LatentCovariate.dat; 
ANALYSIS: type is twolevel 
VARIABLES: names are classid mathematics distract; 

cluster is schoolid; 
analysis: type is twolevel; 

MODEL: 
%within% 
mathematics on distract; 
%between% 
mathematics on distract; 

 
TITLE: Multilevel Manifest Covariate; 
DATA: ManifestCovariate.dat; 
VARIABLES: names are classid mathematics distract a_distract; 

cluster is schoolid; 
within = distract; 
between = a_distract; 
centering = groupmean(distract); 

ANALYSIS: type is twolevel; 
MODEL: 

%within% 
mathematics on distract; 
%between% 
mathematics on a_distract; 

 


