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ABSTRACT 

Factor mixture modeling was used to investigate potential response incongruity between positively and 

negatively worded items. Survey respondents (N = 591) answered questions about job satisfaction and 

dissatisfaction. Results revealed two classes of respondent: a majority class, who generally do not have 

problems answering positively and negatively worded items; and a minority class, who have serious 

trouble with negatively worded items. With the exclusion of the minority class, job satisfaction and 

dissatisfaction were found to be essentially unidimensional, rather than bidimensional as previous 

research had suggested. These results not only challenge previous findings regarding the bidimensionality 

of job satisfaction, but also question the widespread research practice of assuming population 

homogeneity in survey responses. A flow diagram illustrating the analytic procedure and an Mplus syntax 

program are provided so that researchers can conduct similar investigations on constructs of interest.  

 

Keywords: item wording; factor mixture modeling; unidimensionality  
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Investigating Response Heterogeneity in the Context of Positively and Negatively Worded Items by 

Using Factor Mixture Modeling  

 Whereas positively worded items measure the presence of a construct, negatively worded items 

measure its absence. Although positively and negatively worded items are supposed to measure the same 

construct, the correlation between them is far from perfect: indeed, it is well known that survey 

respondents may answer positively worded and negatively worded items differently. This result has led to 

the “dimensionality debate” concerning many constructs, such as presence versus absence of anxiety 

(Vautier & Pohl, 2009), optimism versus pessimism (Kam & Meyer, 2012), positive versus negative self-

esteem (Marsh, Scalas, & Nagengast, 2010), and job satisfaction versus dissatisfaction (Credé, 

Chernyshenko, Bagraim, & Sully, 2009). 

Consider job satisfaction. Some researchers argue that satisfaction (positively worded) items and 

dissatisfaction (negatively worded) items are the opposite ends of a unidimensional construct (e.g.,Kam & 

Meyer, 2012; Rauch, Schweizer, & Moosbrugger, 2007), whereas others believe that they represent 

separate, distinct constructs (e.g., Herzberg, Glaesmer, Hoyer, 2006; Marshall et al., 1992). A common 

yet untested assumption in most of these studies is that respondents approach survey items in a similar 

manner and thus the same dimensionality solution applies to everyone in the data set. 

The purpose of the current article is twofold: first, to demonstrate the untenability of this ‘one-

size-fits-all’ assumption, and second, to propose a method researchers can use to test this assumption. The 

paper is organized as follows. We begin by discussing why researchers include negatively worded items 

in construct measurement, and why respondents may answer positively and negatively worded items 

differently. We then propose a method to investigate the assumption, and finally demonstrate the utility of 

the method by describing an empirical investigation. 

Negatively Worded Items 

 Psychometricians have long been concerned about acquiescence response style, that is, 

participants’ tendency to agree with survey items regardless of content (Nunnally & Bernstein, 1994). 

When survey scales include items worded in the same keying direction (e.g., for job satisfaction, asking 
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‘Are you satisfied with your job?’), construct mean scores can be systematically inflated due to the effect 

of response style. In addition, acquiescence response style can affect construct correlations (Kam & 

Meyer, 2015a). If acquiescence affects any two constructs, correlations between them will be biased in 

the positive direction: positive correlations will be inflated (i.e., increase in the absolute magnitude of a 

positive correlation) and negative correlations deflated (i.e., decrease in the absolute magnitude of a 

negative correlation). 

To control for acquiescence response style, researchers typically include reverse-keyed items1 

(e.g., ‘Are you dissatisfied with your job?’). Reverse-keyed items have other advantages as well (Weijters 

& Baumgartner, 2012): (a) they widen the sampling of a construct’s domain, thus leading to higher 

content validity in the measurement of the construct (Tourangeau, Rips, & Rasinski, 2000); and (b) they 

act as a kind of cognitive speed bump for respondents who are trying to breeze through a survey 

(Podsakoff, MacKenzie, Lee, & Podsakoff, 2003), thus potentially encouraging them to pay closer 

attention. Therefore, psychometricians often recommend using a balanced set of positively and negatively 

worded items to minimize the effect of acquiescence response style, and to enhance the validity of a 

construct’s score (Nunnally & Bernstein, 1994). 

Assuming that acquiescence affects positively and negatively worded items equally, the effect of 

the response style will cancel out, and the resulting score is potentially more valid than when a construct 

is measured only by positively worded items (see Kam & Meyer, 2015a, 2015b, for more advantages of 

using both positively and negatively worded items).  

 Despite the apparent advantages of summing up scores from positively and negatively worded 

items, some researchers have warned against the use of negative items. They pointed out that even though 

positively and negatively worded items were supposed to measure the same construct, the two types 

                                                           
1 The current article uses the terms regularly-keyed items and positively worded items interchangeably. 

Both measure the presence of a construct. Similarly, the current article uses the terms reverse-keyed items 

and negatively worded items interchangeably. Both measure the absence of a construct. 
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might not be highly correlated. In the realm of job satisfaction, for example, satisfaction (positively 

worded) items did not correlate highly with dissatisfaction (negatively worded) items (Credé et al., 2009). 

Similarly, for optimism, optimism items did not correlate highly with pessimism items. Some researchers 

took this as evidence of construct bidimensionality: positively and negatively worded items were 

measuring different constructs (Dalbert, Lipkus, Sallay, & Goch, 2001; Credé et al., 2009; Fincham & 

Linfield, 1997). These researchers suggested to calculate two separate scores from positively and 

negatively worded items and to treat them as distinct constructs. Other researchers believed less-than-

perfect correlations were an artifact caused by participants having trouble responding to negatively 

worded items (Carmines & Zeller, 1979; Greenberger et al., 2003; van Sonderen, Sanderman, & Coyne, 

2013; Vautier & Pohl, 2009). They suggested not to use negatively worded items to measure a construct.  

Response Incongruity between Positively and Negatively Worded Items 

Negatively worded items have been found to have lower item quality than positively worded ones 

(Holden & Fekken, 1990; Schriesheim, Eisenbach, & Hill, 1991; Schriesheim & Hill, 1981; Sliter & 

Zickar, 2014), suggesting that participants may have more problems responding to negatively worded 

items. For example, Sliter and Zickar (2014) showed that negatively worded items had lower item 

discrimination than positively worded ones, implying that negatively worded items correlated less well 

with their latent construct. Holden and Fekken (1990) found that participants, over a period of one month, 

were less consistent in their responses to negative items than to positive ones. This result could mean that 

negative items are more vulnerable to transient or situational influences than positive items. Holden and 

Fekken also found that on a clinical scale, negatively worded items correlated slightly but negatively with 

clinician ratings, implying that negative items have lower criterion validity than positive items. 

Schriesheim and colleagues revealed that negatively worded items had substantially lower internal 

consistency reliability than positively worded items, implying that participants provided less consistent 

responses to negatively worded items (Schriesheim & Hill, 1981; Schriesheim et al., 1991).  

A potential limitation of these studies, however, is that they assumed population homogeneity: all 

respondents are considered to be a sample from the same population. It is possible, though, that only 
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some—not all—of the respondents have trouble with negatively worded items. Therefore, any research 

findings based on the assumption of population homogeneity is potentially misleading, if not 

fundamentally flawed.  

There is some evidence that individual differences may influence the observed relationship 

between positively and negatively worded items. Some researchers have found that response 

inconsistency is correlated with certain personality constructs (de Jonge & Slaets, 2005; Michaelides, 

Koutsogiorgi, & Panayiotou, 2015; Quilty, Oakman, & Risko, 2006). Inconsistency was also found to be 

associated with low cognitive ability (Gnambs & Schroeders, 2017), with low reading ability (Corwyn, 

2000; Marsh, 1996), and with trait anxiety (Tomás et al., 2013). Therefore, it is possible that the 

relationship between positively and negatively worded items, and thus the observed dimensionality of a 

construct, differs across individuals in a population. However, there is a dearth of research on potential 

population heterogeneity as such. 

Recovering Population Heterogeneity 

Factor mixture modeling (FMM) has been employed to investigate population heterogeneity (e.g., 

Lubke & Muthén, 2005; Raykov, Marcoulides, & Chang, 2016), and this approach may be employed to 

investigate population heterogeneity as related to positively and negatively worded items. In many 

statistical analyses, it is assumed that respondents all come from the same underlying population, hence 

population homogeneity. The possibility of population heterogeneity is not examined in many situations, 

partially due to the limitations of many analytical approaches. Usually, testing for population 

heterogeneity is possible only when researchers have prior knowledge regarding participants’ 

characteristics. This is the case with between-group comparisons in t-tests or multi-group structural 

equation modeling (SEM) analysis. In a multi-group SEM, for example, Asian and White participants can 

be compared if information regarding ethnic group membership is available. In that case, the 

heterogeneity of Asian and White participants becomes an empirical question. Put differently, these 

analyses are only applicable when the information concerning the membership (e.g., Asian vs. White, 

male vs. female) is already known (i.e., observed). 
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In many situations, population heterogeneity may exist, but this is unknown. Similarly, the 

membership information concerning the possible sub-populations is also unknown (i.e., latent). An 

advantage of FMM is that it does not require researchers to have prior knowledge regarding group 

membership; instead, based on the data of the response variables, the algorithm searches for qualitatively 

distinct subgroups within the sample data. If identified, members of the same subgroup are qualitatively 

more similar to each other, but more different from those in other subgroups. FMM is thus a useful tool to 

explore patterns of hitherto unobserved heterogeneity.  

Purpose of the Current Study 

 The purpose of the current study is to investigate possible incongruity in responses to positively 

and negatively worded items. As we have noted, previous studies have assumed population homogeneity 

in participants’ response patterns. However, there is growing evidence of possible population 

heterogeneity in these situations. For example, in the area of research on organizational commitment, 

employees could be in qualitatively distinct subgroups, each with its own validity, antecedents, and 

outcomes (Kam, Morin, Meyer, & Topolnytsky, 2016). The same phenomenon (i.e., distinctly different 

subpopulations) may with respect to participants’ responses to positively and negatively worded items. As 

noted earlier, individual differences in answering positively and negatively worded items have been 

identified (de Jonge & Slaets, 2005; Gnambs & Schroeders, 2017; Michaelides et al., 2015; Quilty et al., 

2006). Therefore, the assumption of homogeneity in this specific situation needs to be investigated.  

 The current study is thus a timely investigation about the question of potential population 

heterogeneity in responses to positively and negatively worded items. As a preliminary study, we focus 

on a construct the dimensionality of which is currently a matter of some debate: job satisfaction. Although 

some past research did not show strong evidence for differential validity between satisfaction (positively 

worded) items and dissatisfaction (negatively worded) items (e.g., Hines, 1973), more recently, some 

research challenged this finding. In particular, Credé et al. (2009) found that job satisfaction and 

dissatisfaction items were imperfectly correlated, implying that the construct could be bidimensional. 
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Similar to other researchers, Credé et al. made an assumption of population homogeneity (i.e., the 

bidimensionality of job satisfaction applies to everyone in the sample).  

The current study investigates this assumption. If, for instance, a subgroup of respondents would 

have difficulty answering negatively worded items, then the overall correlation between satisfaction and 

dissatisfaction would be less than perfect, which could be mistakenly construed as evidence of 

bidimensionality for the entire group. If this reasoning is correct, exclusion of the subgroup that had 

difficulty in responding to negatively worded items should better recover the ‘actual’ correlation between 

satisfaction and dissatisfaction. 

Although the current study focuses on job satisfaction, we would like to make it clear that we are 

using the construct of job satisfaction only as an example. Our aim is to propose a general analytical 

procedure for applied researchers, so that they can investigate the issue dimensionality of any construct of 

interest when positively and negatively worded items are involved. 

Methods 

Participants 

 The original sample was 828 full-time working respondents from the U.S. and Canada recruited 

by an online data collection company. For the purpose of screening out careless respondents, the survey 

included five instructed response questions that asked participants to select a particular response (e.g., 

‘strongly disagree’) or skip an item. Previous research (Kam & Meyer, 2015a; Meade & Craig, 2012) has 

shown that instructed response questions are effective in screening out careless respondents. Kam and 

Meyer (2015a) also showed that careless responding can severely distort the correlation between 

positively and negatively worded items; as a result, screening out careless respondents could improve data 

quality. These findings were supported by other research (e.g., Huang, Liu, & Bowling, 2015). The final 

sample after screening out careless respondents2 included 591 respondents (257 male and 334 female; 

Mage = 42.53, SDage = 10.56), who answered all the instructed questions correctly. Although other parts of 

                                                           
2 For procedural details of screening out careless respondents, please see Kam and Meyer (2015a).  
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the data have been analyzed for other issues and published elsewhere (Authors), the findings reported 

here have not been previously published. 

Instrument 

 We designed five pairs of overall job satisfaction items by adapting existing items from the 

literature. Two items in a pair are parallel in wording. For example, a satisfaction item was ‘Considering 

everything, I am satisfied with my job,’ and the corresponding dissatisfaction item was ‘Considering 

everything, I am dissatisfied with my job’. Parallel items ensure that the only difference between them 

was item wording direction (i.e., satisfied vs. dissatisfied). All items were worded such that participants 

were encouraged to consider their overall impression about their job, as opposed to a specific aspect. 

Previous research (Wanous, Reichers, & Hudy, 1997) has found that a custom-made, one-item job 

satisfaction item has considerable validity, and therefore our five-item scale should be an even better 

measure of the construct. The items are shown in Supplementary Material S2.   

To facilitate the interpretation of the results, all satisfaction and dissatisfaction items were coded 

such that a higher value represents higher satisfaction. Therefore, when job satisfaction correlated 

perfectly with job dissatisfaction, their latent correlation would be +1 (rather than -1) in the current study. 

Analytical Procedure 

 The data analyses were done by using the factor mixture modeling program under Mplus 7.11 

(Muthén & Muthén, 1998-2017). The procedural steps for testing response incongruity between 

positively and negatively worded items are shown in Figure 1. These procedural steps are similar to those 

used to examine the Trait × Method interaction under the MTMM framework proposed by Litson et al. 

(2017). We will discuss the major differences between them in Discussion section later.  

The fit of the single-class configural invariance models is first examined (Step 1). Positively 

worded (job satisfaction) and negatively worded (job dissatisfaction) items loaded on two separate 

factors, and the factors were allowed to covary with each other (Figure 2). One reference item was chosen 

for positively worded items and another for negatively worded items to have the loading of 1. These 
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reference items had item intercepts of 0 so that factor means could be estimated. This can be observed 

with the following model specifications (Litson et al., 2017): 

y1jk = τ1jk + ε1jk , when the reference item is item 1 for method j (i = 1) 

yijk = αijk + τijk + εijk , for other items 

where y refers to the observed item score, τ refers to true construct scores, i refers to item number, j refers 

to a specific method, and k refers to class number from 1 to c (when a multi-class model is specified).  

Factor means (τ) can be estimated from the mean score of the reference item (y1jk). In addition, 

when a scale is comprised of items with parallel wording, failure to account for covariance due to item 

parallel wording will bias trait variance (Cole, Ciesla, & Steiger, 2007). Therefore, residual covariances 

were added between each pair of parallel items. If the fit of this model was good, we tested a more 

parsimonious model of weak invariance in which loadings of parallel items between positively and 

negatively worded items were constrained to be identical. Weak invariance is necessary to test equality of 

factor variances between satisfaction and dissatisfaction. If the fit did not deteriorate significantly, we 

tested an even more parsimonious model of strong invariance, in which item intercepts were constrained 

to be identical between parallel items. Strong invariance (i.e., equal factor loadings and item intercepts) is 

necessary to test equality of factor means between satisfaction and dissatisfaction. If the fit did not 

significantly worsen, we examined the strict invariance model in which factor loadings, item intercepts, 

and item residual variances were all constrained to be equal between parallel items. Comparisons among 

these nested models were made using the Satorra-Bentler chi-square difference statistic (Satorra, 2000) 

because robust maximum likelihood (MLR) estimator was used for data that deviates from multivariate 

normality. A non-significant chi-square statistic means that a more constrained model (e.g., weak 

invariance) does not fit significantly worse than a less constrained model (e.g., configural invariance), and 

thus the more constrained model is preferred. 

 After establishing the best single-class model, we proceeded to test a model with one additional 

class (Step 2). Using factor mixture modeling (FMM), we specified the number of classes to be two. The 

general specification of the model was the same as the single-class configural invariance model, except 
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that model parameters were allowed to differ across classes. The factor loading of the reference items was 

still constrained to be 1 in both classes. If the baseline model fitted well, we proceeded to examine model 

parameters to test the possibility of invariance models (i.e., weak, then strong, then strict invariance) 

between methods within the same class (Step 2) and between classes (Step 3). We tested measurement 

invariance between methods within each class first, and then tested measurement invariance between 

classes, because our main purpose is to test comparability between positively and negatively worded 

items. Testing of measurement invariance between classes is a secondary concern, simply to derive a 

more parsimonious model. 

Model comparisons were facilitated by referencing Akaike’s information criterion (AIC) and 

Bayesian information criterion (BIC). A model with lower AIC and BIC values is preferred. Previous 

research has shown that BIC outperforms AIC in class identification (cite). Although not used for class 

selection, entropy indicates certainty of class assignment among respondents, with a higher value 

potentially indicating better accuracy in this process. After identifying the best model in the two-class 

models, we tested three-class models with one additional class. The process of adding additional classes 

stopped when all invariance models did not converge or when the best higher-class model fitted worse 

than the best model with one less class. Equality of variance, factor means, and factor correlations were 

considered after the best model was identified (Step 4). Previous research suggested the possibility of 

response inconsistency among positively worded items or among negatively worded items. When 

inconsistency was found in at least one class, we examined respondents’ raw responses to positively or 

negatively worded items (Step 5).  

Results 

Single-class Models 

Configural invariance model (CMI1) fit the data well (χ2 = 82.81, df = 29, p < .001, TLI = .97, CFI 

= .96, RMSEA = .06, SRMR = .04). All factor loadings were sizeable, with standardized βs ranging 

from .69 to .85 (detailed results not shown) and all statistically significant. The factor correlation between 

job satisfaction and dissatisfaction was estimated to be .76 (95% C.I. = [.70, .82]), suggesting 
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bidimensionality. Two of the five-item residual covariances were statistically significant (.13 and .18 

respetively, ps < .03), suggesting a weak effect of parallel item wording. A more parsimonious model of 

weak invariance fit the data statistically worse (Δχ2 = 18.24, Δdf = 4, p = .001), indicating that item factor 

loadings differ between job satisfaction items and dissatisfaction items. Due to the much-less-than-perfect 

factor correlation (i.e., .76) and the metric non-invariance, applied researchers may conclude that job 

satisfaction and dissatisfaction are distinct yet related constructs, with positively and negatively worded 

items demonstrating non-comparable qualities that should not be summed together to form a total score. 

Two-class Models 

The two-class configural invariance model (CMI2) showed an improvement in fit compared to the 

one-class model, as indicated by the former’s lower BIC and AIC values (see Table 1). The results 

pointed to possible population heterogeneity, and thus it may not be appropriate to assume that all 

respondents came from the same population, as previous research on job satisfaction typically did. The 

data showed a majority class (with ~78% of respondents) and a minority class (~22%).  

The majority class had similar values of unstandardized factor loadings across the items of job 

satisfaction and those of dissatisfaction, with reasonably small standard errors in these parameter 

estimates (SEs < .07). The second class, in contrast, featured fluctuating unstandardized factor loadings 

even within the item group of job satisfaction or that of dissatisfaction, with unreasonably large standard 

errors (SEs = 0.36 to 2.02). The large standard errors suggest that FMM has severe difficulties in 

parameter estimation in the minority class. Given the estimation uncertainty in this class, we reasoned that 

it would not be meaningful to test weak invariance between classes, as the establishment of weak 

invariance between classes could simply be the result of large standard errors in the second (minority) 

class. We will return to this issue of large standard errors in the minority class later. For now, we proceed 

to test measurement invariance between methods (i.e., positively vs. negatively worded items) in the first 

(majority) class. 

The model with weak invariance between methods in the majority (WMI2) class had lower BIC 

and AIC values, meaning that the new model fit the data better. The size of the class allotment did not 
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change much from the previous model. The best model, however, was the one with strong invariance 

between methods in the majority class, as it had even lower BIC and AIC values (Table 1). Further 

analysis showed that the strict invariance model (StMI2) featured non-replicable likelihood value and 

improper solution (an abnormally large factor loading and an even larger standard error in one item in 

class 2). We also inspected the confidence interval for those unstandardized residual variances in the 

SMI2 model. The residual variances were consistently larger for job dissatisfaction than for job 

satisfaction in the majority class, meaning that the between-method strict invariance model is likely 

untenable. Therefore, we concluded that the best two-class model was the model with strong between-

method invariance in the majority class (SMI2). 

Three-class Models 

The three-class configural invariance (CMI3) model failed to produce replicable maximum 

likelihood values. The best maximum likelihood values also fluctuate wildly, suggesting substantial 

instability of the solutions. Therefore, we concluded that the best solution was the two-class solution, with 

strong between-method invariance in the majority class (i.e., Model SMI2 in Table 1).  

Testing for Invariance and Strict Unidimensionality between Methods  

We tested equality of factor means and factor variance in the majority class in our SMI2 solution. 

The higher BIC and AIC values in the mean equality model suggested that job satisfaction and 

dissatisfaction, although having seemingly comparable factor means (3.91 vs. 4.03), are still statistically 

different. The results mirror previous findings that respondents have a slightly stronger tendency to 

disagree with negatively worded personality items than to agree with positively worded personality items 

(Kam, 2017). As a result, personality scores measured by negatively worded items generally have higher 

means than those measured by positively worded ones. 

The higher BIC and AIC values in the variance equality model also suggest that job 

dissatisfaction has significantly higher variance than job satisfaction (0.79 vs. 0.56). Finally, the 

confidence interval for the latent correlation between satisfaction and dissatisfaction does not include 1 

(estimated 95% C.I. = .87 [.82, .92]). Results thus suggest that job satisfaction-dissatisfaction is not a 
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strictly unidimensional construct. Later, we will test whether job satisfaction-dissatisfaction was an 

essentially unidimensional construct in the majority class. Due to the exceptionally large standard errors 

in the minority class, again it would not be meaningful to test measurement invariance and equality of 

mean and variance in this class.  

 The final parameter estimates in the two-class strict invariance solution are shown in Table 2. The 

factor loadings of the majority class were all sizeable, and the correlation between job satisfaction and 

dissatisfaction was strong. In the minority class, in contrast, both the factor loadings and the construct 

correlation suffer from large standard errors. The large standard errors imply that there is possible 

problem in participants’ response patterns, and thus we proceed with this analysis. 

Testing Essential Unidimensionality 

According to the recent discussion by some methodologists (e.g., Reise et al., 2016; Rodriguez, 

Reise, & Haviland, 2016), it is often unrealistic to assume strict unidimensionality (e.g., perfect 

correlation between job satisfaction and dissatisfaction items). Items are supposed to measure a wide 

domain of a construct, and restricting item content to a specific aspect of the construct potentially hinders 

validity (Kam & Meyer, 2015b). For example, including the positive items of a construct (e.g., emotional 

stability items) may lead to insufficient sampling on the negative end of the same construct (neuroticism 

items). In addition, measuring a construct with only one particular method (e.g., regular-keyed items 

only) conflicts with the idea of multimethod measurement (MTMM; Campbell & Fiske, 1959).  

Therefore, instead of pursuing strict unidimensionality, researchers recently suggested that the 

goal should be ‘essential’ (Gu, Wen, & Fan, 2017; Reise et al., 2016) or ‘approximate’ unidimensionality 

(Raykov & Marcoulides, 2016). The idea is that a construct can be considered unidimensional if the 

common trait factor among all items accounts for most of the construct variance. Gu et al. (2017) 

suggested calculating an ECV index to examine the strength of the common factor in a bifactor model. 

Unfortunately, FMM does not allow the specification of a bifactor model to measure ECV while keeping 

the class membership of the respondents to be the same in our previous analysis. Therefore, to calculate 
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ECV, we extracted participants’ class membership and specified a different multitrait-multimethod 

(MTMM) model for the majority class (i.e., class 1).  

 We set up a bifactor model in which all items load on an overall factor and negatively worded 

items load on a method-specific factor. The calculation of explained common variance (ECV) is as 

follows: 

ECV =
∑ 𝜆𝑔𝑖

210
𝑖=1

∑ 𝜆𝑔𝑖
210

𝑖=1 + ∑ 𝜆𝑠𝑖
210

𝑖=6

 

where λg
2 = factor loading of the common latent factor, λs

2 = factor loading of the method-specific factor, 

i = specific item number, with positively worded items ranging from 1 to 5 and negatively worded items 

ranging from 6 to 10. Gu et al. (2017) suggested that if the common factor (e.g., overall job satisfaction) 

explains more than 75% of the trait variance (i.e., ECV ≥ .75), researchers could assume essential 

unidimensionality even though the construct is not strictly unidimensional. 

 We therefore extracted class memberships from FMM and fit a bifactor model. First, we 

continued to find metric equivalence between satisfaction and dissatisfaction items under the common 

trait factor in this bifactor model. Second, results showed that ECV is .87 in the majority class, meaning 

that the common trait factor explains about 87% of the variance while the method-specific factor explains 

about 13% of the variance.3 Given the large trait variance as compared to the method variance in the 

majority class, the job satisfaction construct is not strictly unidimensional but can be regarded as 

essentially unidimensional. We did not examine ECV in the minority class because the problematic item 

response patterns in this class render the examination not meaningful. 

                                                           
3 Note that these ECV estimates do not include variances from residual correlation, because the 

purpose is to compare trait variance and the negative-wording method variance. The ECV cutoff 

value recommended by Gu et al.’s (2017) simulation was also based on the comparison between 

trait variance and method variance without correlated residuals.  
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Examining Response Patterns 

We examined the response pattern with two indices. The first index is the difference (d) between 

the maximum response value and the minimum response value within items of the same wording 

direction for each respondent j’s responses. We calculated one value (djs) for job satisfaction items and 

another (djd) for job dissatisfaction items. A higher d value implies more inconsistency even among items 

with the same wording direction across an individual’s responses. The second index is the inconsistency 

index (denoted as ijs for job satisfaction and ijd for job dissatisfaction) for each respondent. Respondents 

have the value of 1 for ijs when they answer ‘agree’ or ‘strongly agree’ to a job satisfaction item but 

‘disagree’ or ‘strongly disagree’ to another job satisfaction item. Otherwise, the respondent will have the 

value of 0. We conducted the same calculation for the ijd value with job dissatisfaction items. The i 

indices help us evaluate the extent to which respondents give consistent answers to items with the same 

wording direction. 

We compared the d indices between the majority and minority classes. Results showed a 

nonsignificant difference for djs, 0.77 (SD = 0.81) vs. 0.71 (SD = 0.84), t(197.04) = 0.74, p = .46, Cohen’s 

d = 0.075, effect size r = .038. For djd, however, the majority group had significantly smaller value than 

the minority group, 0.89 (SD = 0.92) vs. 2.73 (SD = 0.74), t(247.31) = -23.74, p < .001, Cohen’s d = -

2.197, effect size r = -.739. In other words, the difference between the two classes in response consistency 

mostly involves job dissatisfaction items. When we further analyzed the i indices for both classes (Table 

3), again we discovered that the minority class has the most trouble in providing consistent responses to 

dissatisfaction items. In contrast, the percentage of respondents giving consistent responses to both 

satisfaction and dissatisfaction items appears to be much larger for the majority class. These results 

suggest that an obvious difference between the two classes was participants’ ability to provide consistent 

responses among dissatisfaction items: respondents in the minority class do not provide consistent 

answers to dissatisfaction items. 

Discussion 
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The current study applied FMM to examine the possibility of population heterogeneity in 

responses to positively worded and negatively worded items. We included only careful respondents 

because careless ones have been shown to bias construct correlation in the direction of favoring 

bidimensionality (Kam & Meyer, 2015a). Whereas previous researchers have tended to examine construct 

dimensionality with simple factor analytic models, we have empirically demonstrated that FMM was able 

to meaningfully identify two distinct groups of respondents. Each group shows distinct response 

behaviors to positively and negatively worded items. Most interestingly, measurement invariance between 

methods was found for the group that apparently has no major problem answering positively and 

negatively worded items. A flow diagram delineates the process of data analysis (Figure 1), and two 

syntaxes with detailed explanations are provided for applied researchers who are interested in conducting 

similar analyses (please refer to Supplementary Material S1 and S2). In the present article, we have 

illustrated the utility of this method to help resolve the dimensionality debate of a popular construct (job 

satisfaction).  

The debate regarding the dimensionality of job satisfaction started decades ago (Herzberg et al., 

1957) and has not been entirely resolved. Employing exploratory factor analysis, researchers have found 

that a two-dimensional solution fits the data better than a unidimensional one (Credé et al., 2009). At the 

same time—and given that job satisfaction has an affective component—theorists have recently suggested 

that satisfaction possibly differs from dissatisfaction, mirroring the distinction between positive and 

negative affect in the emotion literature (Judge, Weiss, Kammeyer-Mueller, & Hulin, 2017). Our results, 

however, do not show strong support for the two-dimensional interpretation. Instead, we discovered a 

class of respondents, a little over 20% of them, who mostly give inconsistent answers to dissatisfaction 

items. As a result, FMM was unable to accurately estimate the correlation between satisfaction and 

dissatisfaction for this group, as shown by the large standard error in the correlation estimate. The 

implication is that when researchers assume population homogeneity without testing for it, inconsistent 

responses may lower the correlation between satisfaction and dissatisfaction, thus exaggerating the 

distinction between the two. We suspect that similar results may have been obtained for other constructs 
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embroiled in dimensionality debates. Therefore, we propose a procedure for testing population 

heterogeneity in the context of examining construct dimensionality (Figure 1), which we hope may shed 

light on these decades-old debates. 

In addition to construct dimensionality, our procedure may contribute to the discussion regarding 

the psychometric distinction between positively and negatively worded items. Psychometricians often 

claim that negatively worded items are psychometrically inferior to positively worded ones, and thus it 

has been suggested that negatively worded items be excluded from surveys (Lindwall et al., 2012; 

Magazine et al., 1996; Schriesheim et al., 1991; Schriesheim & Eisenbach, 1995; van Sonderen et al., 

2013). Our results are consistent with this interpretation: participants experienced more difficulty giving 

consistent answers to the dissatisfaction items than to the satisfaction items. Fortunately, however, this 

appeared to be true only for a minority of the respondents. For the majority, not only did they have no 

problem answering job dissatisfaction items, but metric equivalence was found between satisfaction and 

dissatisfaction items, meaning that the two types are highly comparable. Rather than prolonging the 

unfruitful debate on whether to include negatively worded items (Lindwall et al., 2012), our method helps 

break the impasse by directing future effort to understanding why some respondents (around 20% in the 

current study) have trouble answering negatively worded items.   

Using FMM to examine construct dimensionality is similar to Litson et al.’s (2017) use of FMM 

to study trait-method interaction. Their approach was originally intended for a general MTMM model, 

and thus may not apply specifically in the case of testing construct dimensionality. As a result, there are 

substantial differences between the two approaches. First, there are procedural differences. Their strategy 

was to first confirm the best between-method measurement invariance model among all the single-class 

solutions, and then assume the validity of this measurement invariance model in a higher-class solution. 

The rationale behind their strategy was perhaps practical: the number of estimated parameters can 

substantially diminish when some level of measurement invariance is assumed, thus alleviating 

computational difficulties. However, our results show that measurement invariance in a lower-class 

solution does not necessarily extend to higher-class solutions. When there is no substantial theoretical 
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reason to assume that between-method measurement invariance holds across classes, the best strategy 

would appear to be to test invariance within each class.  

The second difference from Litson et al.’s (2017) approach is that our approach encourages 

response pattern analysis within each class, whereas their general approach does not. Although simulation 

research (Schmitt & Stuits, 1985) has considered the results of data quality on construct dimensionality, 

few studies, with the notable exception of Reise et al. (2016), have studied the impact of problematic 

response pattern in real data, as well as the influence of response pattern on factor correlations. Reise et 

al. (2016) examined the data pattern of respondents who fit well in a bifactor model but not in a 

unidimensional model. They found that many such respondents gave implausible responses to regular- 

and reverse-keyed self-esteem items. The current study went beyond Reise et al. (2016) by conducting 

detailed item response pattern analysis. Whereas they found that some respondents have trouble 

answering positively worded items, negatively worded items, or both, we found that a large group of 

respondents have trouble answering negatively worded items in the current study. Using data provided by 

web surfers on an online site, Reise et al. (2016) could not consider the factor of careless responding in 

their study; as a result, their data could be severely degraded by careless responding.  

Researchers, even psychometricians, often overlook the simple but important step of examining 

and possibly excluding careless respondents. A possible motive is researchers’ reluctance to analyze 

smaller datasets with less power to find an effect. However, as the literature shows, careless responding 

can severely bias construct correlations (Kam & Meyer, 2015b; Huang et al., 2012). In a construct 

dimensionality study, a dataset with a substantial number of careless respondents may show attenuated 

relationships between positively and negatively worded items, causing a unidimensional construct to 

appear two-dimensional (Kam & Meyer, 2015b). After excluding careless respondents, the current study 

showed that even some careful respondents, who are generally able to give consistent answers to the 

satisfaction items, do not give consistent responses to the dissatisfaction items. To our knowledge, this is 

a novel finding. 
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Including careless respondents can also make the results difficult to interpret. For example, is an 

aberrant response pattern (e.g., 11434 among job dissatisfaction items) caused by participants’ genuinely 

inconsistent response style or by inattentive responding? (Reise et al., 2016). To exclude careless 

respondents, we recommend the use of instructed response items (e.g., ‘Please answer Strongly Agree to 

this item), which are simple but effective (Kam & Meyer, 2015b; Meade & Craig, 2012). When an a 

priori method to identify careless responding is not possible, various post-hoc methods (e.g., Mehalanobis 

distance combined with consecutive repeated responses) can be used (Kam & Meyer, 2015b; Meade & 

Craig, 2012). 

As a helpful reminder, to investigate response incongruity, raw data responses instead of parceled 

data (as in Litson et al., 2017) should be used. Litson et al. were mainly concerned with method 

correlations at different levels of trait scores (i.e., trait-method interactions), whereas our purpose was in 

response incongruity among raw items. The use of parceled data would tend to obscure inconsistency 

among items. 

There is a technical issue in using FMM to study population heterogeneity in construct 

dimensionality. Litson et al. (2017) suggest a maximum of 100,000 start values for a single-trait model. 

However, their recommendation is probably based on the assumption that a between-method 

measurement invariance model in a single-class solution can reasonably extend to a higher-class model, 

and thus many fewer estimators would need to be obtained in a higher-class solution. However, we did 

not find this assumption tenable in our data. Further, Litson et al. assigned a large number of items to 

three manageable parcels for their FMM analysis; this procedure drastically reduces the number of 

parameters to be estimated and may produce indicators with more amenable distributional properties. 

When item-level (as opposed to parcel-level) parameters are allowed to be freely estimated both between 

methods and between classes, we suspect that the number of iterations will need to increase substantially. 

Without systematic study, our experience suggests that 200,000 to 400,000 start values may be required 

when the number of parameter estimates is large.  

Limitations and Future Research 
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 Despite the substantial potential of the proposed procedure to test construct dimensionality, there 

are certain limitations. First, FMM is a probabilistic model that does not confirm the membership of each 

respondent to a particular class.  When respondents’ class membership was extracted for further bifactor 

CFA analysis, parameter estimates based on a standard CFA model will inevitably differ to some degree 

from those estimates given by a probabilistic model. Therefore, it is important to compare parameter 

estimates between an FMM and a CFA model to ensure their comparability. The present results showed 

that the estimates were highly similar. Nevertheless, it is currently impossible to conduct bifactor analysis 

while retaining the probabilistic nature of an FMM analysis: after extracting respondents’ membership, 

their class is treated as confirmed rather than probabilistic. To the best of our knowledge, at this time 

there are no other methods to circumvent this issue, but we hope that future researchers can find a 

solution.   

Second, it must be acknowledged that the present procedure is computationally intensive, 

involving many model comparisons and much data fitting. Each FMM model requires many start values 

to ensure that the best likelihood is replicable. Previous research on FMM simulations tends to fit a much 

simpler model and requires fewer start values. Litson et al. (2017) fit a large number of FMM models 

with fewer start values, but the number of parameter estimates in their investigation was smaller than in 

the current study. Therefore, previous studies provide little information on the optimal number of start 

values needed for arriving at the optimal solution. One would expect a larger number of start values when 

the model becomes more complex and when the number of parameter estimates (e.g., free factor loadings 

and residual variances) increases. We recommend future simulation research to investigate this issue.  

Third, although the current study has discovered individual differences in answering positively 

and negatively worded items, it has not examined which individual difference variables are involved. As 

reviewed earlier, several potential predictors, including personality traits, cognitive ability, reading 

ability, and trait anxiety have been identified (Corwyn, 2000; de Jonge & Slaets, 2005; Gnambs, & 

Schroeders, 2017; Michaelides et al., 2015; Marsh, 1996; Quilty et al., 2006; Roszkowski & Soven, 2010; 

Tomás et al., 2013). Future researchers could incorporate such candidate variables in FMM analysis to 
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determine which ones best predict response inconsistency between positively and negatively worded 

items.  
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Table 1 

 Model comparison 

 BIC AIC Entropy 

Single-class    

 CMI1: Configural invariance 13300.84 13143.10  

Two-class    

 CMI2: Configural invariance 12567.84 12247.97 .953 

 WMI2: Weak invariance between methods in class 1 12548.24 12245.89 .953 

 SMI2: Strong invariance between methods in class 1 12525.96 12241.14 .951 

 StMI2: Strict invariance between methods in class 1 improper solution 

Three-class    

 CMI3: Configural invariance improper solution 

Structural parameters examination    

 SMI2 + Equal variances between methods in class 1 12550.39 12269.95 .952 

 SMI2 + Equal means between methods in class 1 12539.90 12259.46 .957 

Note. BIC = Bayesian information criterion; AIC = Akaike’s information criterion; CMI = configural 

measurement invariance; WMI = weak (factor loading) measurement invariance; SMI = strong (factor 

loading + item intercept) measurement invariance; StMI = Strict (factor loading + item intercept + item 

residuals) measurement invariance.  The best model has been bolded. 

Table 2 

Parameter estimates in the final solution (SMI2) 

 Majority class (SE) 

(n = 463 or 78.34%) 
 Minority class (SE) 

(n = 128 or 21.66%) 

Factor loadings    

js1 .84***   (.02)  .38*   (.16) 

js2 .69***   (.04)  .86***   (.16) 

js3 .84***   (.02)  .22   (.27) 

js4 .86***   (.02)  .40***   (.11) 

js5 .88***   (.02)  .44***   (.14) 

jd1 .84***   (.03)  .25   (.18) 

jd2 .72***   (.04)  .75   (.41) 

jd3 .84***   (.02)  -.23   (.47) 

jd4 .77***   (.02)  .11   (.17) 

jd5 .84***   (.03)  .18   (.15) 

Factor correlation      

js ~~ jd .87***   (.03)  .95**   (.35) 

Residual covariances (correlation)      

js1 ~~ jd1 .17*   (.08)  -.01   (.09) 

js2 ~~ jd2 .32***   (.09)  .64**   (.25) 

js3 ~~ jd3 .07   (.09)  .10   (.12) 

js4 ~~ jd4 .003   (.08)  -.07   (.09) 

js5 ~~ jd5 .12   (.08)  .04   (.10) 

Item intercepts      

js1  --   --  

js2 0.59**   (0.22)  -1.30   (3.28) 

js3 0.18   (0.12)  -0.39   (3.54) 

js4 0.10   (0.14)  -1.37   (1.59) 
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js5 0.40**   (0.16)  -1.33   (1.54) 

jd1  --    --  

jd2 0.59**   (0.22)  -4.10   (7.45) 

jd3 0.18   (0.12)  6.44   (6.56) 

jd4 0.10   (0.14)  4.68   (2.26) 

jd5 0.40**   (0.16)  0.82   (2.27) 

Factor means      

Js 3.91**   (0.04)  4.11***   (0.04) 

Jd 4.03**   (0.05)  3.36***   (0.13) 

Factor variances      

Js 0.56**   (0.07)  0.03   (0.02) 

Jd 0.79**   (0.07)  0.11   (0.16) 

Note. Results for item intercepts, factor means and factor variances are unstandardized estimates, while 

results for factor loadings, residual covariance, and factor correlation were standardized estimates. 

 

Table 3 

Response pattern analysis 

Response patterns Sample 

Responses 

% respondents in the 

minority class (frequency) 

% respondents in the 

majority class (frequency) 

Consistent response for both js 

and jd items (ijs = 0; ijd = 0) 

54544 32323 

55554 11222 

4.69% (6) 81.20% (376) 

Inconsistent response only for js 

items (ijs = 1; ijd = 0) 

32444 22222 

23334 32322 

0% (0) 3.67% (17) 

Inconsistent response only for jd 

items (ijs = 0; ijd = 1) 

54544 12224 

44444 44411 

87.50% (112) 9.94% (46) 

Inconsistent response for both js 

and jd items (ijs = 1; ijd = 1) 

44144 14114 

53254 14322 

7.81% (10) 5.18% (24) 
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Figure 1. Flow chart for examining population heterogeneity in participants’ responses to positively and negatively worded items. MI = 

measurement invariance; CMI = configural measurement invariance; WMI = weak (factor loading) measurement invariance; SMI = strong (factor 

loading + item intercept) measurement invariance; StMI = Strict (factor loading + item intercept + item residuals) measurement invariance; ECV = 

explained common variance.  
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With the best-fitting model from the 

previous procedure, proceed to test equal 

between-method factor correlations across 

classes. Does the model fit better after 

equality constraint is set between classes? A 

class with between-method factor 

correlation not deviating from -1 can be 

assumed strict construct unidimensionality. 

Even if strict construct unidimensionality is 

not found, essential construct 

unidimensionality can also be assumed 

when ECV index is high enough (e.g., ECV 

≥ .75). With the best-fitting model, proceed 

to Step 5 (if necessary). 

Yes or No 

Note: Equality may only be found only in a 

subset of classes. 

Step 5. Examine response inconsistency. If a method or a class is characterized by abnormally large standard errors in its factor loadings, it potentially implies that respondents may have trouble 

answering items associated with a particular method, or that respondents in a particular class have problems answering items in general. It is useful to examine respondents’ raw item responses. 

Step 1. Examine single-class models Step 2. Select the best multi-class model, with 

possible MI between methods 
Step 3. Examine possible MI across 

classes 
Step 4. Test equality of factor variances, 

factor means, and factor correlations 

Note: If a method or a class is 

characterized by abnormally large standard 

errors in its factor loadings, it may not be 

meaningful to examine MI with the 

particular method or class. See Step 5. 

Note: Between-

method MI may be 

found in only 

some but not all 

classes. Testing of 

between-method 

MI within each 

class is necessary.     

No 

No 

No 
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Figure 2.  Factor mixture modeling for a c-class model in the current study. The correlation between 

methods can differ across classes. c = the cth class; τ1 = true score measured by job satisfaction items; τ2 = 

true score measured by job dissatisfaction items.  Circles represent residual variances. Items with parallel 

wording are allowed to covary with each other with the specification of residual covariances. 
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SUPPLEMENTARY MATERIAL S1 

Mplus Syntax for Two-Class Configural Invariance Model  

TITLE: CMI2 model 

! Specifying names of your datafile here 

DATA: FILE = "data.dat"; 

 

VARIABLE: 

! Specifying names of the variables in your datafile 

NAMES = id js1 js2 js3 js4 js5 jd1 jd2 jd3 jd4 jd5; 

 

! Specifying the number of classes here 

! with the class variable named ‘c’ 

CLASSES = c(2); 

 

! Specifying names of the variables in your analysis 

USEVARIABLE = 

js1 js2 js3 js4 js5 

jd1 jd2 jd3 jd4 jd5; 

 

! Specifying a dot as the coding for missing data 

MISSING=.; 

 

ANALYSIS: 

! Specifying mixture model as the type of analytic model. 

! By default, the estimator is robust maximum likelihood 

TYPE = mixture; 

 

! Specifying the initial number of random sets of starting values and  

! the number of final sets for optimization. 

! A large number of start value sets could avoid the problem of  

! non-optimal solution (i.e., local maxima). 

STARTS = 200000 20000; 

 

! Specifying the maximum of iterations at the initial stage 

! A large number of initial iterations may help to avoid the problem of  

! non-optimal solution. 

STITERATIONS = 200; 

 

MODEL: 

 

! Overall model specifications 

! Input general model specifications that are applicable to all classes here 

%OVERALL% 

 

! Factor loading specifications 

js by js1@1  

js2 js3 js4 js5; 

 

jd by jd1@1  
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jd2 jd3 jd4 jd5;  

 

! Factor variance specifications 

js jd; 

 

! Item residual variance specifications 

js1 js2 js3 js4 js5; 

jd1 jd2 jd3 jd4 jd5;   

 

! Item intercept specifications 

[js1@0]  

[js2 js3 js4 js5]; 

[jd1@0]  

[jd2 jd3 jd4 jd5]; 

 

! Item residual covariance specifications 

js1 WITH jd1; 

js2 WITH jd2; 

js3 WITH jd3; 

js4 WITH jd4; 

js5 WITH jd5; 

 

! Factor covariance specification 

js with jd; 

 

! Factor mean specifications 

[js jd]; 

 

 

! Specifications in Class 1 

%c#1% 

 

! Factor loadings freely estimated between methods,  

! with the factor loading of the reference items fixed as 1 for model identification 

js by js1@1  

js2 js3 js4 js5 (a2-a5); 

 

jd by jd1@1  

jd2 jd3 jd4 jd5 (a7-a10); ! Notice that the labels are different between job  

! satisfaction items (a2-a5) and job dissatisfaction items (a7-a10). When the labels differ,  

! Mplus does not constrain factor loadings to be equal between satisfaction items and  

! dissatisfaction items. When a researcher wants to constrain factor loadings to  

! be equal between satisfaction and dissatisfaction items, (as in the case of  

! SM2/weak invariance between methods in class 1), change ‘a7-a10’ to ‘a2-a5’ here.  

 

! Factor variance freely estimated between methods 

js jd (a11-a12); 

 

! Item residual variance freely estimated between methods 

js1 js2 js3 js4 js5 (a21-a25); 

jd1 jd2 jd3 jd4 jd5 (a26-a30);  ! Also notice the labels are different between  
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! satisfaction items and dissatisfaction items. 

 

! Item intercepts freely estimated between methods, with item intercepts of the reference  

! items fixed as 0, so that factor means can be freely estimated. 

[js1@0]  

[js2 js3 js4 js5] (a32-a35); 

[jd1@0]  

[jd2 jd3 jd4 jd5] (a37-a40);  ! Also notice the labels are different between satisfaction items  

! and dissatisfaction items (except for the reference items). When a researcher wants to  

! constrain item intercepts to be equal between satisfaction and dissatisfaction items, 

! change ‘a37-a40’ to ‘a32-a35’ here.  

 

! Item residual covariance freely estimated 

js1 WITH jd1 (a41); 

js2 WITH jd2 (a42); 

js3 WITH jd3 (a43); 

js4 WITH jd4 (a44); 

js5 WITH jd5 (a45); 

 

! Factor covariance freely estimated 

js with jd (a51); 

 

! Factor means freely estimated between methods 

[js jd] (a61-a62); 

 

! Specifications in Class 2 

! Notice that all labels differ between class 1 (starting with ‘a’ such as ‘a2’)  

! and class 2 (starting with ‘b’ such as ‘b2’). When labels differ between two parameters,  

! Mplus does not constrain two parameter estimates to be identical. 

%c#2% 

 

! Factor loadings freely estimated between methods,  

! with the factor loading of the reference items fixed as 1 for model identification 

js by js1@1  

js2 js3 js4 js5 (b2-b5); 

 

jd by jd1@1  

jd2 jd3 jd4 jd5 (b7-b10); ! Notice that the labels are different between  

! job satisfaction items (b2-b5) and job dissatisfaction items (b7-b10). When the labels  

! differ, Mplus does not constrain factor loadings to be equal between satisfaction items and  

! dissatisfaction items. 

 

! Factor variance freely estimated between methods 

js jd (b11-b12); 

 

! Item residual variance freely estimated between methods 

js1 js2 js3 js4 js5 (b21-b25); 

jd1 jd2 jd3 jd4 jd5 (b26-b30);  ! Also notice the labels are different  

! between satisfaction items and dissatisfaction items. 

 

! Item intercepts freely estimated between methods, with item intercepts of the reference  
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! items fixed as 0, so that factor means can be freely estimated. 

[js1@0]  

[js2 js3 js4 js5] (b32-b35); 

[jd1@0]  

[jd2 jd3 jd4 jd5] (b37-b40);  ! Also notice the labels are different between  

! satisfaction items and dissatisfaction items (except for the reference items which have  

! no label). 

 

! Item residual covariance freely estimated 

js1 WITH jd1 (b41); 

js2 WITH jd2 (b42); 

js3 WITH jd3 (b43); 

js4 WITH jd4 (b44); 

js5 WITH jd5 (b45); 

 

! Factor covariance freely estimated 

js with jd (b51); 

 

! Factor means freely estimated between methods 

[js jd] (b61-b62); 

 

! Request standardized estimates and confidence interval in output 

OUTPUT: 

standardized cinterval svalues; 

 

###################################################################### 

 

Note: To ensure that the weak invariance model (i.e., equal factor loadings) is based on the prior model 

(i.e., the 2-class configual invariance model), copy those starting values from the output of the configural 

invariance model and use them in the weak invariance model.  

 

For example, the following syntax is part of the starting value output in the configural invariance model:  

 

! Numbers below are only for illustrative purpose 

 

%OVERALL% 

 

<syntax skipped> 

 

%C#1% 

 

js BY js1@1; 

js BY js2*0.92 (a2); 

js BY js3*0.80 (a3); 

js BY js4*0.82 (a4); 

js BY js5*0.78 (a5); 

jd BY jd1@1; 

jd BY jd2*0.89 (a7); 

jd BY jd3*0.84 (a8); 

jd BY jd4*0.85 (a9); 

jd BY jd5*0.80 (a10); 
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<syntax skipped> 

 

! Copy the entire syntax output, change ‘a7’, ‘a8’, ‘a9’ and ‘a10’ to ‘a2’, ‘a3’, ‘a4’ and ‘a5’, and then 

! use the modified syntax for weak invariance model. 

 

! Do the same for the strong invariance and strict invariance model. 
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SUPPLEMENTARY MATERIAL S2 

Overall Job Satisfaction items 

js1. Considering everything, I am satisfied with my job. 

js2. To me, my job is meaningful overall. 

js3. All things considered, I consider my job to be pleasant. 

js4. Overall, I like my job. 

js5. On the whole, my job is good.  

jd1. Considering everything, I am dissatisfied with my job. 

jd2. To me, my job is meaningless overall. 

jd3. All things considered, I consider my job to be unpleasant. 

jd4. Overall, I dislike my job. 

jd5. On the whole, my job is bad. 

Note. js = job satisfaction items; jd = job dissatisfaction items.  

 


