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Abstract

A limiting feature of previous work on growth mixture modeling is the

assumption of normally distributed variables within each latent class. With

strongly non-normal outcomes this means that several latent classes are required to

capture the observed variable distributions. Being able to relax the assumption of

within-class normality has the advantage that a non-normal observed distribution

does not necessitate using more than one class to fit the distribution. It would

be valuable to add parameters representing the skewness and the thickness of the

tails. A new growth mixture model of this kind is proposed drawing on recent work

in a series of papers using the skew-t distribution; see, for example, [1]. The new

method is illustrated using the longitudinal development of BMI in two data sets.

The first data set is from the National Longitudinal Survey of Youth covering

ages 12 to 23. Here, the development is related to an antecedent measuring

socioeconomic background. The second data set is from the Framingham Heart

Study covering ages 25 to 65. Here, the development is related to the concurrent

event of treatment for hypertension using a joint growth mixture-survival model.
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1 Introduction

Growth mixture modeling combines the conventional [2] random effects modeling

with latent trajectory classes as in finite mixture modeling (see, e.g. [3]). Growth

mixture modeling was introduced in [4] and [5] with related developments in [6]

and [7]. Following this, many extensions and applications have been presented

such as [8] considering PSA biomarker trajectories with irregularly scheduled

observations, [9] adding joint estimation of survival with prostate cancer, [10]

considering causal inference in randomized trials of antidepressants with placebo

effects, [11] adding general multilevel growth mixture modeling, and [12] modeling

non-ignorable dropout in antidepressant trials. For overviews of methods with

illustrations by a variety of applications, see [11] and [13].

A limiting feature of the above approaches is the assumption of normally

distributed variables within each latent class. With strongly non-normal outcomes

this means that several latent classes are required to capture the observed variable

distributions. Consider a typical example involving body mass index (BMI)

development over age. BMI is defined as kg/m2, where the normal range is

18 < BMI < 25; overweight 25 < BMI < 30; and obese > 30. The distribution

of BMI at age 15 for males is given in Figure 1 using data from the National

Longitudinal Survey of Youth (NLSY) with n = 3194 showing skewness of 1.5

and kurtosis of 3.1. The figure also shows the fitting of a mixture of normal

distributions. The left part of Table 1 shows the loglikelihood and Bayesian

Information Criterion (BIC) values for 1-4 classes using a normal distribution.

Although the four-class solution has a smaller (better) BIC than three classes,

one class has less than 1% and a three-class solution is therefore chosen. The
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mixture of the three classes is shown by the black curve in Figure 1 and is seen

to fit the observed distribution well.

[Figure 1 about here.]

[Table 1 about here.]

Being able to relax the assumption of within-class normality has the advantage

that a non-normal observed distribution does not require using more than one

class to fit the distribution. For example, with a strongly skewed distribution it

is generally not of interest to interpret classes that are formed simply to match

the long tail. This relates to the classic debate of whether or not the classes in

Figure 1 have substantive meaning or should merely be seen as a curve-fitting

device, which started with [14], continued with the Platt-Pickering hypertension

debate in the 60s ([3]), and is still a topic of interest (see, e.g., [15] and [16]).

From this perspective it is valuable to have the option of fitting a model that

allows within-class non-normality, adding parameters representing the skewness

and the thickness of the tails. The results of fitting such a model to the BMI

data are shown in the right part of Table 1, where it is seen that a single-class

model obtains the best BIC. Although having a somewhat lower loglikelihood value

than the three-class normal model, this single-class model is more parsimonious

using only four parameters instead of eight (a three-class normal model with

equal variances has a worse BIC): a mean, a variance, a skew parameter, and a

degrees of freedom parameter. This model is discussed in Section 2. The model

draws on recent work in a series of papers that use the skew-t distribution for

”mixtures of factor analyzers”, that is, mixture models where an exploratory
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factor analysis model is applied to reduce the number of parameters in the class-

specific covariance matrices; see for example [17] and [1]. In contrast, the skew-

t growth mixture model proposed here is more closely related to confirmatory

factor analysis modeling, where the class-specific covariance matrices are more

parsimonious in line with conventional random effects growth modeling.

This paper illustrates the new method using the longitudinal development of

BMI using two data sets. First, the NLSY data shown in Table 2 is used, spanning

ages 12 to 23. Here, the BMI development is related to an antecedent measuring

socioeconomic background. Second, data from the Framingham Heart Study is

used for ages 25 to 65. Here, the BMI development is related to concurrent

treatment for hypertension. For these age ranges a quadratic growth shape has

been found suitable and Section 2 describes such a growth mixture model. The

model is subsequently expanded to jointly estimate survival related to the latent

trajectory classes.

[Table 2 about here.]

2 Growth mixture modeling with non-normal

random effects

Consider the quadratic random effect growth mixture model with outcome Yit for

individual i at time t in latent class c of the latent class variable C,

Yit|Ci=c = η0i + η1i (at − a0) + η2i (at − a0)2 + εit, (1)

5



where at are age-related time scores (t = 1, 2, . . . T ) centered at age a0, the random

intercepts and random slopes are expressed as

ηji|Ci=c = αjc + γ ′jc X i + ζji, (2)

where j = 0, 1, 2, X i is a q-dimensional vector of time-invariant covariates, and

the latent class probability is expressed as the multinomial logistic regression

P (Ci = c|X i) =
exp(ac + b′c X i)∑
s exp(as + b′s X i)

. (3)

The residuals ε and ζ have zero means and within-class covariance matrices to

be defined later. So far, the literature on growth mixture modeling has been

using a normal within-class distribution for both ε and ζ, a specification that has

limitations as mentioned in the introduction. For reasons to be described, it is

desirable with growth modeling to let the non-normality in the observed outcomes

be a function of the non-normality of the random effect distribution. In this paper,

a normal distribution is therefore maintained for ε while a skew-t distribution is

applied to ζ = (ζ0 ζ1 ζ2)
′. Using the notation for the restricted multivariate skew-t

distribution given in [1],

ζCi=c
∼ rMST (0,Ψc, δc, νc), (4)

where in this application 0 is the 3× 1 vector of zero means for ζ, Ψc is the 3× 3

within-class covariance matrix for ζ, δc is the 3× 1 vector of skew parameters for

latent class c, and νc is a degree of freedom parameter. The restricted multivariate

skew-t distribution can be characterized as follows.
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Considering a p-dimensional vector V , the restricted multivariate skew t-

distribution rMST (µ,Σ, δ, ν) has the stochastic representation

V = µ+ δ |U0|+U 1, (5)

where U 1 is p-dimensional vector with a multivariate t-distribution with zero

mean, covariance matrix Σ, and degree of freedom parameter ν. Here, U0 is a

one-dimensional variable with a standard t-distribution with mean 0, variance

parameter 1 and degrees of freedom parameter ν, where |U0| gives rise to a half-t

distribution. The term δ |U0| can be thought of as a univariate skewness factor

with factor loadings represented by the skew parameters of δ where the skewness

is identified as that part of the V distribution not captured by the symmetric part

U 1. The mean and variance of V for the skew t-distribution rMST (µ,Σ, δ, ν)

can be computed as follows

E(V ) = µ+ δ
Γ(ν−1

2
)

Γ(ν
2
)

√
ν

π
, (6)

V ar(V ) =
ν

ν − 2
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(
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2
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2
)
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ν

π
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The univariate skewness for a single V variable can be computed as follows

Skew(V ) = v−3/2δ

√
ν

π

(
(2δ2 + 3σ)

ν

ν − 2
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2

)
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2

)
− δ2 ν
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(
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2
)
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2
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− 3
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2
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(8)

where v = V ar(V ) is given in the previous formula and the σ parameter is the

diagonal element of Σ corresponding to the univariate variable. These formulas

show that the δ and ν parameters affect all three quantities: the mean, the variance
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and the skew. The parameter µ affects only the mean and the σ parameters affect

the variance covariance and the skew.

It can be shown (see [18]) that this specification gives the distribution

of the vector of observations for individual i at the T time points Y i =

(Yi1, . . . , Yit, . . . , YiT )′ conditional on X and latent class c

Y |X ∼ rMST (µc,Σc, δY c, νc), (9)

where

µc = Λ (αc + Γc X), (10)

Σc = Λ Ψc Λ′ + Θc, (11)

δY c = Λ δc, (12)

where for the quadratic growth model of (1)

Λ =



1 a1 − a0 (a1 − a0)2

1 a2 − a0 (a2 − a0)2
...

...

1 aT−1 − a0 (aT−1 − a0)2


, (13)

the elements of αc and Γc are shown in (2), and Θc is the within-class covariance

matrix for ε = (ε1 ε2, . . . , εT )′, typically specified as diagonal. With this skew-

t growth mixture model specification the non-normality of the outcomes Y is

generated by the non-normality of the random effects. The outcome means are a

function of the means of the random effects, which as as shown in (6) involves the
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skew and degrees of freedom parameters.

An alternative specification of a non-normal growth mixture model is to let

ε assume a skew-t distribution while keeping ζ normal (skew-t for both is not

identified). This type of model was recently proposed in [19]. In this case,

however, the skew parameters of δ would have to be held equal across time

because otherwise the means for Y would not follow the structure imposed by

the random effect means but vary also as a function of the skew and degrees of

freedom parameters for ε. This time-invariance of the skewness is specified in

the analysis of [19]. Time-invariant skewness in the residuals is a special case of

the model proposed above as it is the same as applying the skewness only to the

random intercept. In the BMI data to be analyzed here, however, it is necessary

to allow skewness also in the random slopes to capture increasing skewness in BMI

over time.

2.1 Estimation

The models are estimated by maximum likelihood. As shown in [18], the log-

likelihood can be written explicitly and maximized with a general maximization

algorithm such as the Quasi-Newton optimization method as long as the

derivatives of the log-likelihood can be computed. The only derivative that is

more complex is T1(x, ν) with respect to ν, where T1 is the standard t-distribution

function. For this derivative the method developed in [20] is used. Direct

maximization appears to work well and is relatively fast. The standard error

estimates are based on the inverse of the information matrix as usual with the

ML estimator and robust standard errors can also be computed using the sandwich
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estimator. All computation in this paper are carried out by Mplus Version 7.2

([21]).1

3 Growth mixture modeling of BMI from the

NLSY

This section applies the skew-t growth mixture model to the BMI development

over the ages 12 to 23 using the NLSY data shown in Table 2. As discussed in e.g.

[22], large differences in BMI are observed across gender and ethnicity subgroups

and the current analysis is restricted to black females (n = 1160). Table 3 shows

the results of fitting both normal and skew-t growth mixtures. It is seen from

the BIC values that four classes are needed in the normal case, whereas only two

classes are needed using skew-t. The best skew-t BIC value is considerably better

than the best normal BIC value.

[Table 3 about here.]

The estimated mean growth curves for the two classes of the skew-t solution

are shown at the top of in Figure 2. While starting at the same BMI level at age

12, one class of 54% shows a normal development whereas the other class of 46%

shows an escalating development into the overweight and obese range. The four-

class normal solution at the bottom shows the need for extra classes to capture

the strong skewness when within-class normality is specified. The top two classes

sum to 40% which is similar to the 46% of the escalating class of the two-class

1The Mplus software implementation is quite general, also in the sense that every parameter
can be fixed, free, held equal to other parameters, or constrained in specific ways. Complex
survey features of stratification, weights, and clustering are also handled in Mplus.
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skew-t solution. Combining the top two and bottom two classes, however, does

not produce two classes with the same starting point at age 12 as is seen for the

skew-t solution.

[Figure 2 about here.]

Due to the skewness of the observed BMI distribution it is of interest to present

not only the estimated mean at each age but also different estimated percentiles.

Figure 3 uses the percentiles of the estimated skew-t density to show that the

skewness increases with age.

[Figure 3 about here.]

Figure 4 shows the estimated random intercept distribution for the normally

developing class (see top figure) and the escalating class (bottom figure) of the

skew-t solution. Given the choice of time scores, the random intercept corresponds

to the systematic part of the development at age 17. It is seen that the intercept

distribution for the escalating class is characterized as an approximate half-t

distribution with a low frequency for BMI values less than 22. Recalling the

stochastic representation in (5), this is achieved by the symmetric part of the

random intercept distribution having zero variance. In contrast, the normal class

has a large number with BMI less than 22, while still showing a long right tail.

[Figure 4 about here.]

The estimated skew and degrees of freedom parameters for the intercept (i),

linear slope (s), and quadratic slope (q) are shown in Table 4. It is seen that all

three random effects have significant skew parameters in each of the classes. The
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bottom of the table also gives the estimated skewness in each of the classes for

these three random effects using (8).

[Table 4 about here.]

3.1 Adding a covariate and comparing with the normal

solution

To gain further understanding of the growth mixture solution, covariates that

predict class membership can be added in line with (3). Such covariates may also

have a direct influence on the random effects as in (2). Mother’s education is

an especially powerful predictor of BMI, presumably reflecting both economic

circumstances and eating habits (mother’s education is scored as 1:none, 2:

GED, 3: high school diploma, 4: associate/junior college, 5: bachelor’s degree,

6:master’s degree, 7: Ph.D,, 8: professional degree). Adding this covariate to

the growth mixture model, it is also of interest to compare the two-class skew-t

solution with a normal solution using the four classes considered earlier. Figure 5

shows the estimated multinomial logistic regression curves for the two-class skew-

t solution (top) and the four-class normal solution (bottom). The corresponding

mean curves for the two solutions were given in Figure 2. For the two-class

skew-t solution the probability of membership in the escalating class is strongly

decreased by increasing mother’s education. The four-class normal solution shows

two classes giving such a decrease while one class shows no relationship with

mother’s education (in a three-class normal solution the class with no relationship

disappears while the curves for the other three classes remain the same). It is the

highest class at the bottom of Figure 2 for which Figure 5 shows the less steep

12



decrease in membership probability with increasing mother’s education. Further

studies using additional information would be needed to understand if this class

is merely a function of the strong skewness or has a substantive interpretation for

example in terms of reflecting genetic susceptibility where mother’s education is

a weaker predictor. The two-class skew-t solution is, however, clearly the more

parsimonious model.

[Figure 5 about here.]

4 Growth mixture modeling of BMI in the

Framingham data

The classic Framingham Heart Study ([23]) provides a second longitudinal data

set with which to explore growth mixture modeling of BMI. With its focus on

cardiovascular disease, the Framingham data contains information on treatment

for hypertension and it is of interest to relate this to the BMI trajectories. The

current analyses uses a subset of the data for females ages 25-65, resulting in a

sample size of n = 854. Four repeated measures are available with individually-

varying ages of observation.

To capture the individually-varying ages of observation, (1) in the Section 2

model is modified as

Yit|Ci=c = η0i + η1 (ait − a0) + η2 (ait − a0)2 + εit, (14)

where the random effects specification in (2) is applied to the random intercept

η0i, but for simplicity zero within-class variation is specified for η1 and η2. In
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this way, the time scores ait − a0 and (ait − a0)
2 are no longer treated as fixed

parameters of Λ but as variables.

Table 5 shows the results of fitting both normal and skew-t growth mixture

models. For the normal case, BIC does not provide a guide in selecting the number

of classes, but decreases for 1 - 5 classes. For skew-t, BIC points to three classes.

[Table 5 about here.]

The estimated mean curves for the three-class skew-t growth mixture model

are shown in Figure 6. In this age range, two escalating classes are found with

13% and 33% of the subjects, respectively.

[Figure 6 about here.]

4.1 Framingham trajectory classes related to hypertension

treatment: Joint growth mixture and survival analysis

Elevated BMI is associated with increased risk of developing heart disease, high

blood pressure, stroke, and diabetes. Framingham data contains data on blood

pressure treatment at each measurement occasion. A survival component for the

first treatment can be added to the growth mixture model with survival as a

function of trajectory class. A continuous-time survival approach is used here

based on Cox regression where the latent class variable C is used as a predictor

for the survival variable; see [24] and [25].

Define the time variable T as the age when blood pressure treatment is

administered for the first time. If no such treatment is observed by the end
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of the forth wave of the survey the variable T is considered censored at the time

the last observation is recorded.

Using the standard Cox proportional hazard model, the hazard function in

class c is given by

hc(t) = h(t)Exp(αc), (15)

where h(t) is the baseline hazard function, and Exp(αc) represents the level of

proportionality for the hazard functions between the classes and also captures

the effect of the latent class variable C on the survival variable. The larger the

coefficient αc is the larger the hazard and the worse the survival is. The baseline

hazard function h(t) is a non-parametric function as in the standard Cox regression

model. The baseline hazard function is invariant across the classes and thus the

class effect is captured entirely by the coefficients αc. For identification purposes

αc = 0 in the last class.

The cumulative hazard Hc(t) function at time t represents the total hazard an

individual is exposed to up to time t, given that the individual is in class c

Hc(t) =
∫ t

0
hc(x)dx = Exp(αc)H(t), (16)

where H(t) is the cumulative baseline hazard

H(t) =
∫ t

0
h(x)dx. (17)

The survival function in class c is the probability that the survival variable T
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is greater than t, given the individual belongs to class c,

S(t|c) = P (T > t|C = c) = Exp(−Hc(t)) = Exp(−Exp(αc)H(t)). (18)

The likelihood for the survival variable T is

P (T |C = c) = (h(T )Exp(αc))
(1−δ)S(T ),

where δ = 1 if the variable T is censored and zero otherwise.

The likelihood for the joint model for Y and T can be expressed as

P (Y, T |C) =
∑
c

P (C = c)P (Y |C = c)P (T |C = c),

where equation (14) provides the model for P (Y |C = c). The latent class variable

C explains the correlation between the BMI developmental trajectory and the

blood pressure treatment variable and can be used to evaluate the effect of the

BMI trajectory on the risk of developing high blood pressure.

The skew-t growth mixture model including the survival variable gives almost

the same class percentages as in the previous growth mixture analysis: 12%,

35%, and 53% for the high, middle, and low BMI trajectory class, respectively.

The estimated values of αc in the survival model of (15) are significantly larger

for the two highest BMI trajectory classes than the zero value of the reference

class of normal development and the αc estimates of the two highest classes are

significantly different from each other. The estimated survival curves for the three

BMI trajectory classes are plotted in Figure 7 as a function of age ranging from

25 to 65. It is seen that the three survival curves are ordered in the same way
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as the BMI trajectory classes, with lowest hypertension treatment survival rate

for the highest BMI trajectory class. The age of median survival is estimated as

about six years lower for subjects in the middle BMI trajectory class as compared

to subjects in the lowest BMI trajectory class.

[Figure 7 about here.]

5 Conclusions

The skew-t growth mixture model has several advantages over normal growth

mixture modeling. It can fit the data considerably better than normal mixtures.

It can use a more parsimonious model. It can reduce the risk of extracting latent

classes that are merely due to non-normality of the outcomes. It can check

the stability/reproducibility of a normal mixture solution. It can describe the

percentiles of skewed distributions.

There are, however, several disadvantages with skew-t growth mixture model-

ing. It provides much slower computations than normal mixtures, especially for

large sample sizes, given that computations need to handle raw data in every

step as opposed to using sufficient statistics. It needs larger samples, where

small class sizes can create problems, although successful analyses can be done at

n = 100 − 200. It needs more random starts than normal mixtures to replicate

the best loglikelihood given a typically less smooth likelihood function. It leads

to classification with lower entropy. Furthermore, it needs continuous variables to

provide enough information for the skew and degrees of freedom parameters.

In this paper the skew-t growth mixture model was extended to continuous-

time survival analysis. Due to the general implementation in the Mplus software,
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other extensions are possible as well. For example a survival part can be used

to model non-ignorable dropout as in [12] and categorical and count variables

can be included in the model with parameters varying as a function of the latent

trajectory classes for the continuous repeated measures.
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Figure 1: Observed and 3-class normal fitted distribution of BMI among 15-year
old males in the NLSY
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Figure 2: Estimated mean curves for two-class skew-t (top) and four-class normal
(bottom) growth mixture modeling of BMI in the NLSY ages 12 to 23 for black
females
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Figure 3: Estimated percentiles for the escalating class of BMI in the NLSY ages
12 to 23 for black females
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Figure 4: Random effect distributions for the normal and escalating trajectory
classes using a skew-t growth mixture model of BMI in the NLSY ages 12 to 23
for black females
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Figure 5: Relating latent class membership to mother’s education for two-class
skew-t (top) and four-class normal (bottom) solutions for BMI in the NLSY ages
12 to 23 for black females
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Figure 6: Estimated mean curves for the three-class skew-t growth mixture model
for BMI in the Framingham data
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Figure 7: Estimated hypertension survival curves for the joint three-class skew-t
growth mixture-survival model for BMI in the Framingham data
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Table 1: Results of fitting mixtures of normal and non-normals for BMI among
15-year old males in the NLSY

Normal Skew-t

No. Classes Loglikelihood No. Par’s BIC Loglikelihood No. Par’s BIC

1 -9321 2 18,658 -8795 4 17,623

2 -8828 5 17,697 -8783 9 17,638

3 -8786 8 17,638

4 -8774 11 17,637
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Table 2: NLSY data on BMI for ages 12 to 23

Accelerated longitudinal design - NLSY97

12 13 14 15 16 17 18 19 20 21 22 23

1997 1,165 1,715 1,847 1,868 1,709 613

1998 104 1,592 1,671 1,727 1,739 1,400 106

1999 108 1,659 1,625 1,721 1,614 1,370 65

2000 57 1,553 1,656 1,649 1,597 1,390 132

2001 66 1,543 1,615 1,602 1,582 1,324 109

2002 1,614 1,587 1,643 1,582 1,324 106

2003 112 1,497 1,600 1,582 1,564 1,283

Totals 1,165 1,819 3,547 5,255 6,680 7,272 8,004 7,759 6,280 4,620 2,997 1,389

NLSY, National Longitudinal Survey of Youth

Source: Nonnemaker et al. (2009). Youth BMI trajectories: Evidence from the NLSY97, Obesity
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Table 3: Results of fitting normal and skew-t growth mixture models for BMI in
the NLSY ages 12 to 23 for black females

Normal Skew-t

No. Classes Loglikelihood No. Par’s BIC Loglikelihood No. Par’s BIC

1 -17,049 10 34,168 -15,617 25 31,411

2 -15,768 21 31,684 -15,510 29 31,225

3 -15,580 32 31,386 -15,480 44 31,270

4 -15,505 43 31,314

5 -15,479 54 31,338
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Table 4: Estimated skew and degrees of freedom parameters for the i, s, and q
random effects of the 2-class skew-t growth mixture model for BMI in the NLSY
ages 12 to 23 for black females

Skew and Df Parameters

Normal Class

Estimate S.E. Est/S.E.

I 4.020 0.279 14.408

S -0.875 0.381 -2.296

Q 3.399 1.281 2.653

DF 3.855 0.562 6.859

Escalating Class

Estimate S.E. Est/S.E.

I 6.236 0.343 18.175

S 3.361 0.542 6.204

Q -2.746 1.399 -1.963

DF 3.516 0.403 8.732

Estimated Skewness for the Random Effects

I S Q

Normal Class 3.967 -0.989 1.422

Escalating Class 6.653 3.437 -1.588
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Table 5: Results of fitting normal and skew-t growth mixture models for BMI in
the Framingham data

Normal Skew-t

No. Classes Loglikelihood No. Par’s BIC Loglikelihood No. Par’s BIC

1 -8,252 8 16,557 -7,771 10 15,611

2 -7,954 13 15,995 -7,606 17 15,327

3 -7,875 18 15,871 -7,567 24 15,296

4 -7,787 23 15,730 -7,547 31 15,304

5 -7,743 28 15,674
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