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Abstract 

The factor mixture model (FMM) uses a hybrid of both categorical and continuous latent 

variables. The FMM is a good model for the underlying structure of psychopathology because 

the use of both categorical and continuous latent variables allows the structure to be 

simultaneously categorical and dimensional. While the conceptualization of the FMM has been 

explained in the literature, the use of the FMM is still not prevalent. One reason is that there is 

little research about how such models should be applied in practice and, once a well fitting 

model is obtained, how it should be interpreted. In this paper, the FMM will be explored by 

studying two real data examples: conduct disorder and attention-deficit hyperactivity disorder. 

By exploring these examples, this paper aims to explain the different formulations of the FMM, 

the various steps in building a FMM, as well as how to decide between a FMM and alternative 

models. 
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Models and strategies for factor mixture analysis: 

Two examples concerning the structure underlying psychological disorders 
 

In recent years there has been a debate in the psychological literature about whether the 

underlying structure of psychological disorders, such as conduct disorder and attention-deficit 

hyperactivity disorder, is categorical or dimensional. In the categorical view, psychological 

disorders are represented by diagnostic categories that indicate whether a person is affected or 

unaffected by a disorder or whether a person has a specific subtype. This has been the 

predominant view of psychopathology because it has the advantage of meeting clinical needs and 

the needs of reporting for health care planners and insurance companies (Muthén, 2006). 

Alternatively, psychological disorders are considered dimensional in nature and are represented 

as a continuous distribution, with each individual having some amount of the disorder. The 

advantage of the dimensional view is that each disorder can be represented as a quantitative 

score, or scores, which provides a more precise measure of functioning and more power for 

further statistical analyses than categorical outcomes (Muthén, 2006).  

 In the psychometric literature, each of these views has a counterpart. The categorical 

view can be represented by latent class analysis, which models unobserved heterogeneity in a 

sample through the use of categorical latent variables called latent classes. In this analysis, 

individuals are grouped into their most likely class based on their observed symptoms so that 

latent classes can then be interpreted as diagnostic categories or subtypes. The problem with 

latent class analysis, and the categorical approach to psychopathology, is that the categories do 

not consider the range in severity and impairment within and across diagnostic classes. 

 The dimensional view of psychological disorders has its counterpart in factor analysis. 

Here, continuous latent variables, called factors, are used to model the correlations among the 
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symptoms. Each of these factors represents an underlying dimension of the disorder. One 

drawback of this approach is that there is, generally, no easy way to classify individuals into 

groups, which, as stated earlier, is a clinical necessity and required by insurance companies and 

other reporting agencies. 

One solution to the debate, proposed by Muthén (2006), is the factor mixture model 

(FMM). The FMM is a hybrid of both categorical and continuous latent variables, which allows 

the underlying structure to be simultaneously categorical and dimensional. The structure is 

considered categorical because the model allows for the classification of individuals into 

diagnostic groups through the use of latent class variables. The structure is also considered 

dimensional because once individuals are classified into groups, the FMM allows for variation in 

the severity of the disorder through the use of continuous latent variables. This approach is useful 

because it does not have the limitations of the two conventional representations of 

psychopathology. 

While the studies that have introduced the factor mixture model to the psychological 

literature have explained the conceptualization of the FMM, the use of the FMM is still not 

prevalent. One reason for this is that even though the concept of the model has been explained, 

there is little research about how these models should be applied in practice and, once a well 

fitting model is obtained, how it should be interpreted. This paper seeks to remedy these 

shortcomings. 

This paper aims to explain the different variations of the FMM. Also, this paper will 

elucidate the various steps in building a FMM, as well as, how to decide between a FMM and 

alternative models. The FMM will be explored in detail by studying two real data examples: 

conduct disorder and attention-deficit hyperactivity disorder. 
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 The first section of this paper explains the latent class, factor analytic, and factor mixture 

model in more technical detail. The second section focuses on the model building process and on 

how to compare among the different types of models. The third section presents the real data 

examples. The final section discusses the utility and feasibility of the factor mixture model in 

practical settings. All analyses in this paper were carried out using Mplus V5.1 (Muthén & 

Muthén, 1998-2008). In order to elucidate the factor mixture model, sample inputs for each 

model variation are available in the Appendix. 

Background 

Latent Class Analysis 

 The latent class analysis (LCA) model, introduced by Lazarsfeld and Henry (1968), is 

used to identify subgroups, or classes, of a study population. A diagram of an example of a latent 

class analysis model is shown in Figure 1. There are two major concepts depicted in Figure 1, the 

observed outcomes or items that define the class and latent class itself. These can be seen in 

Figure 1 as u1-ur, and c, respectively. The boxes, u1 to ur, represent the observed response items 

or outcomes. The outcomes in an LCA model can be categorical, continuous, count, censored, or 

nominal, though this paper will specifically focus on dichotomous, categorical items. The circle 

with the letter c in the middle is the unordered, categorical latent class variable with K classes. 

The arrows pointing from the latent class variable to the boxes above indicate that those items 

are measuring the latent class variable. This means that class membership is based on the 

observed response pattern of items. An important assumption, called the conditional or local 

independence assumption, implies that the correlation among the observed outcomes is explained 

by the latent class variable, c. Because of this, there is no residual correlation between the items.  
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For an LCA model with categorical outcomes, there are two types of model parameters: 

conditional item probabilities and class probabilities. The conditional item probabilities are 

specific to a given class and provide information about the probability that an individual in that 

class will endorse a specific item. The class probabilities specify the relative size of each class, 

or the proportion of the population that is in a particular class.  

Consider an LCA model with r observed binary items, u, and a categorical latent variable 

c with K classes (c = k; k = 1, 2, . . ., K). The marginal item probability for item uj = 1 is  

∑
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A product of LCA is the estimated class probabilities for each individual, called posterior 

probabilities, which are analogous to factor scores in a factor analysis (Muthén, 2001). These are 

estimates of 
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Note that each individual is allowed fractional class membership and may have non-zero values 

for many classes. It is from these probabilities that class membership is assigned. An individual 

is assigned to be a member of a class based on their highest probability of being in a given class, 

even though an individual may have several classes to which they are a partial member. Once 

assigned to a class, an individual is assumed to be a part of that class 100%.  

 One potential shortcoming to using LCA to represent psychological disorders is the 

assumption of conditional independence. This implies that all the symptom items are statistically 
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independent within a latent class. One way to satisfy the conditional independence assumption is 

to add additional latent classes until the assumption is met. There are two possible scenarios that 

can occur as a result of adding more classes. The first is that the added latent classes are 

reflecting only residual correlations between a small number of items, beyond what the latent 

classes explain. In this sense, the added latent classes are not genuine subgroups. FMM is a good 

alternative for this situation because the addition of a factor would account for the residual item 

correlations and reduce the need for a larger number of classes. Using the FMM in this scenario 

may lead to the factor not having all loadings be non-zero. For instance, if there is an extra 

correlation, beyond what the classes explain, between only two items, then only those two item’s 

loadings would be non-zero. This highlights the flexibility of the factor approach. The second 

scenario is that the additional classes are genuine subgroups. FMM might be useful in reducing 

the number of classes in this scenario if the classes are modeling differences in severity.  In this 

case the factor will account for this variation in severity. 

Another implication of the conditional independence assumption is that for each item in a 

class, individuals have the same conditional item probability. This implies that all individuals in 

a class will have the same probability of symptom presence. This is problematic because there is 

often within-class heterogeneity in the form of variation in severity which violates the 

conditional independence assumption (Muthén & Asparouhov, 2006). This implies that 

individuals do not have the same conditional item probability in a class. The FMM avoids this 

through the use of the latent factor. Within-class, individuals have different factor values which 

allows for people to vary in their conditional item probabilities. 

Class enumeration in mixture models. A well-known problem with mixture models is 

that they tend to converge on local solutions, rather than a global solution (McLachlan & Peel, 
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2000). This is problematic because a local solution may differ dramatically from the global 

solution. The use of multiple sets of randomly generated starting values is one way to avoid 

converging on a local solution (McLachlan & Peel, 2000). Observing the same maximum 

likelihood for multiple sets of starting values makes it more likely that a global solution has been 

found. One of the advantages of using Mplus V5.1 (Muthén & Muthén, 1998-2008) is that it has 

a random starts feature that generates a different number of random starting value sets to 

facilitate in finding the global solution.   

 Another known issue with mixture models is the difficulty in deciding on the appropriate 

number of classes, called class enumeration. Despite the various suggestions, there is no 

commonly accepted methodology on how to compare models with differing numbers of classes 

(Nylund, et al. 2007). When considering a plausible set of models it is wise to utilize a 

combination of statistical and substantive model checking (Muthén, 2003), which is the strategy 

that is used in this paper. There are two common ways to compare models. One is statistical tests 

of model fit, such as the likelihood ratio test of neighboring models. Another is using statistical 

indicators, such as information criteria. The standard chi-square difference test (likelihood ratio 

test, LRT) cannot be used with mixture models because the more restrictive model has its 

probability parameter for one class at zero, which is on the border of the admissible parameter 

space (Machlan & Peel, 2000). Two alternatives to using the chi-square difference test are the 

Vuong-Lo-Mendell-Rubin test (LMR-LRT; Lo, Mendell, & Rubin, 2001) and the parametric 

bootstrapped LRT (BLRT; McLachlan, 1987). Both of these tests approximate the difference in 

likelihood values between a k- and (k-1)-class model. Each of these tests provides a p-value, 

which indicates whether a (k-1)-class model can be rejected in favor of a k-class model. When 
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comparing the p-values of a plausible set of models, one is looking for the first time the p-value 

is non-significant, or greater than 0.05. 

 Another way of choosing the number of classes is to use information criteria. Information 

criteria, such as the Bayesian Information Criterion (BIC; Schwarz, 1978), are based on the best 

maximum likelihood of a model and different criteria apply different penalties for the number of 

parameters and sample size. Because of the different penalties that are applied by each 

information criterion, they will often point to differing numbers of classes. For mixture models 

with different numbers of classes, the model with lowest value of an information criterion is 

deemed the best fitting model. Nylund et al. (2007), which considers the performance of 

statistics and indices described here, recommend using the BIC and LMR to narrow the number 

of models under consideration and then include the BLRT for a smaller set of model 

comparisons due to the computational demands of the BLRT. 

 Besides looking at the statistical comparisons of the models, it is important to also 

understand whether the models make substantive sense and to examine the residuals. One way to 

explore the interpretation of the models is to examine the mean class profile for different models. 

It is also worthwhile to examine the class size and proportion since an over-extraction of classes 

can result in small and non-distinct classes (Masyn et al., in press). Another way to explore the 

interpretation of an FMM is through a pattern response table that displays the item response 

pattern, its frequency, the total number of items endorsed, class probabilities, and factor scores 

broken down by each class. The residuals, or the difference between the observed and estimated 

values, provide further insight into whether the model fits the data well. A large number of 

significant residuals indicates that the model does not fit the data well. 

Factor Analysis 
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 In factor analysis (FA), the goal is to investigate common content among the items 

(Lubke & Muthén, 2005) by seeing if items group together on continuous latent variables called 

factors. An example of an FA model can be seen in Figure 2. As with the latent class model, 

there is a circle, this time with the letter f in the middle, representing the factor. But, the circle in 

an FA is not an unordered, categorical latent variable like in LCA, but instead, a continuous one. 

Because the latent variable is continuous, there is no assumption of different subpopulations of 

individuals, like in LCA. Instead, it is assumed that all individuals in the sample are from the 

same homogenous population and that differences among individuals arise because of 

differences on the factor. Similar to LCA, there are arrows emanating from the factor that point 

towards the items. This indicates that the factors are measured by those combinations of items 

that people tend to endorse together. For example, in the context of ADHD diagnosis, one factor 

might be measured by those symptom items relating Inattentiveness and another might be 

measured by those symptom items relating to Hyperactivity. 

 The factor analytic model with dichotomous items y takes on the following form for 

individual i: 

y*i = τ + Λ ηi + εi ,  

                                        ηi = α + ζi ,          

and             

         (4) 

where yi are individual i’s responses, which is a p vector of observed outcomes; y*i  is individual 

i’s latent response vector; j is one of the items in a p vector; τ is a p vector of measurement 

yij =  { 1     if y*ij > 0 
0     otherwise. 
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thresholds; Λ is a p × m matrix of factor loadings, where m is the number of factors; ηi is an m 

vector of factor scores; ε is p vector of residuals; α is an m vector of the intercepts of the factors; 

ζi is a p vector of residuals which is assumed to be normally distributed with mean zero and 

variance Ψ.  

An important piece of information that results from a factor analysis is the estimated 

factor scores, ηi. The factor scores are estimated from the factor analysis equation given above, 

after the analysis has been conducted. The factor scores of all the individuals in a sample can be 

thought of as forming an approximation to the sample distribution of the factor. The factor score 

of an individual can be used as indication of where that individual is located on the factor, 

relative to the other individuals in the sample. 

One disadvantage of FA is that it does not give a model-based classification of 

individuals, which can be problematic if this is the goal of the analysis. One option would be to 

plot the factor scores and see if there are any natural cut points or thresholds for classification. 

Natural cut points, however, can be hard to find in practice (Muthén, 2006), especially if there is 

more than one factor. 

One advantage of using FA is that it is a widely used technique and so, there are many 

guidelines for how to do factor analysis in practice. For a technical description of FA with 

continuous items see Joreskog (1969) and for a more applied description and a guideline for how 

to do FA in practice see Brown (2006). For information on FA with categorical items see 

Bartholomew and Knott (1999) and Muthén (1989).  

Factor Mixture Model 

 The factor mixture model (FMM) is a hybrid of latent class and factor analysis (Muthén, 

2008) and an example of an FMM can be seen in Figure 3. The figure shows that the FMM is a 
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combination of LCA and FA because there is both a latent class variable, the circle with the c in 

the middle, and a latent continuous factor, the circle with the f in the middle. Through the use of 

these two types of latent variables the FMM simultaneously provides both a categorical and 

dimensional view of psychology. The latent class variable allows for the classification of 

individuals into groups while the factor models the severity of the disorder. The factor also yields 

quantitative scores of the disorder in the form of the factor scores. 

 Figure 3 shows an added flexibility of the FMM. The solid lines starting from the latent 

variables and ending at the symptom items indicate that the latent variables are measured by 

those symptoms. Additionally, there are dashed lines coming from the latent class variable and 

ending on the line that goes from the factor to the symptom items. This indicates that the factor 

structure of the model can be different in each class. 

 The formulation of the factor mixture model is similar to what was seen in the factor 

analytic model except that all the parameters have the potential to be different across the classes. 

A factor mixture model for k = 1, 2, . . ., K latent classes with dichotomous items can be 

specified as follows: 

y*ik = τk + Λk ηik + ε ik ,   

ηik = αk + ζik , 

where, 

ζik ~ N(0, Ψk) 

and 

                                                                                (5) 
yij =  { 1     if y*ij > 0 

0     otherwise. 
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All of the parameters in the equation above have the same interpretation as the factor analytic 

model presented in equation 4, but now they can be class specific as indicated by the subscript k. 

By allowing all of the parameters to have the potential to be class-specific, the model becomes 

more flexible and allows for several variations that differ in the amount of measurement 

invariance. These variations will be discussed in more detail in the next section.  

 The FMM has distinct advantages over LCA and FA that may make it a better model to 

represent psychological disorders. Unlike LCA, the FMM does not need a conditional 

independence assumption given latent class. This suggests that individual differences in the 

severity of a disorder can be explored within a given class. These variations within a class are 

represented by the continuous factors and can be quantified by using the factor score for each 

individual (Lubke & Muthén, 2005; Muthén et al., 2006). One disadvantage to factor analysis is 

that there is no model-based classification of individuals. In an FMM, classification is obtained 

through the latent class variable. 

The latent class and factor analytic models can be seen as special cases of the FMM. 

LCA is a special case of FMM in which the factor covariance matrix is zero. The factor analytic 

model can be thought of as an FMM with one latent class to which every individual in the 

sample belongs.  

 While there has been little research on how to do the FMM in practice, several authors 

have made contributions toward the development of this model. One of the first articles is by 

Yung (1997), which considers a FMM where all of the parameters were class-varying. 

McLachlan and Peel (2000) discuss a FMM where the factor structure is exploratory rather than 

confirmatory. Muthén (2006) and Muthén and Asparouhov (2006) consider an FMM using 

dichotomous outcomes. Muthén (2008) provides an overview of the different types factor 
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mixture models and breaks them down into four branches depending on the amount of 

measurement invariance present and whether the factor in each model is parametric or not. This 

paper shows how the FMM variations presented map onto the branches presented in the Muthén 

(2008) article. Muthén (2008) and Masyn et al. (in press) discuss longitudinal extensions of 

FMM. Masyn et al. also position the FMM in their dimensional-categorical spectrum which 

organizes latent variable models based on the types and combinations of latent variables used. 

Kim and Muthén (2008) explain how to do two-part FMM to be able to model data with strong 

floor effects. 

  There have been additional applications of FMMs in genetics and IRT analysis. FMM 

has been applied to genetic contexts by McLachlan, Do, and Ambroise (2004) to micro-array 

gene expression data and by Muthén, Asparouhov, and Rebollo (2006) to a twin heritability 

study. Mislevy and Verhelst (1990), Mislevy and Wilson (1996), Wilson (1998), and Boeck, 

Wilson, and Acton (2005) applied FMM to IRT studies.  

FMM: Model Variations 

 In this paper, several different variations of the FMM and their interpretations are 

presented. Model presentation will start with the more restrictive models, since the 

interpretations tend to be simpler, and move to less restrictive models, where the interpretation 

can be more complex. The formulas in this section have no link function relating y* to y in order 

to save space. The link function is the same as the one presented in the preceding section. 

 The first model variation is the latent class factor analytic (LCFA) model. It is referred to 

as FMM-1 and can be formulated as: 

y*ik = τ + Λ ηik+ ε ik,  

                                             ηik = αk ,         (6) 
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In this model, the only parameter that changes across classes is the factor mean, which is 

indicated by the subscript k on α. The item thresholds and factor loadings are held invariant 

across classes, suggesting that the disorder is being measured the same way across all classes. 

The factor covariance matrix, Ψ, is fixed at zero, indicating that there is no severity in the 

disorder. Figure 4 shows a diagram of this model on the left and on the right, an example plot of 

the factor means versus the frequency of each class. On the right, bars are used to mark the factor 

means instead of a distribution because the factors have no variance, which suggests that this 

model has a non-parametric factor distribution. The height of the bars in the plot represents the 

percentage of the sample in that class. This plot suggests that the only difference between 

individuals arises due to having different amounts of the disorder and that there are only a set 

number of amounts that individuals can have, which are the number of classes. In the model 

diagram on the left, the latent class variable points to the factor, and not directly to the items, 

indicating that class membership is based on each individual’s location on the factor. Because 

this variation has measurement invariance and non-parametric factor distributions, FMM-1 is 

representative of Branch 2 in Muthén (2008). 

 The second model variation is the FMM-2, also called a mixture factor analysis. The 

FMM-2 is similar to the FMM-1 except that instead of setting the factor variances and 

covariances to zero, they are now freely estimated in each of the classes. The formulation for the 

second model is: 

y*ik = τ + Λ ηik + ε ik, 

ηik = αk + ζik , 

where, 

                                      ζik ~ N(0, Ψk).                                    (7) 
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Figure 5, similar to Figure 4, shows a model diagram on the left and a plot of the factor means 

versus the frequency on the right. On the right, the classes are now represented as distributions, 

rather than bars as in FMM-1, because the factors have variance. This indicates that there are 

many possible amounts of the disorder an individual can have. The model diagram on the left is 

almost the same as for the FMM-1 except that there is now an arrow pointing into the latent 

factor which indicates a residual so that the within-class factor variance is now being modeled. 

One variation of the FMM-2 is to allow the factor variances to be freely estimated, but held equal 

across classes. Because this model variation has measurement invariance and parametric factor 

distributions, FMM-2 is representative of Branch 1 in Muthén (2008). 

 In the third model variation, FMM-3, the factor loadings and factor covariance matrix are 

invariant, while the item thresholds are allowed to change across classes. The formulation for the 

FMM-3 is: 

y*ik = τk + Λ ηik + ε ik , 

ηik = ζi , 

where, 

       ζik ~ N(0, Ψ).                 (8) 

 Also, the factor mean is set to zero for identification purposes and so does not appear in the 

equations above. The factor mean will be set to zero in the remaining model variations. Figure 6, 

which shows the model diagram for the FMM-3, is different than the previous two model 

diagrams because the arrows starting from the latent class variable now point to the items rather 

than the factor. This shows that the item thresholds are changing across classes, which implies 

that the classes are now based on the responses to those items rather than the factor, as was seen 

in the previous two models. In FMM-3, and the remaining FMM variations, some or all the 
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measurement parameters are non-invariant and the factor distribution is parametric, so FMM-3 

through -5 fit into Branch 3 in the Muthén (2008) paper. 

 The fourth model variation, FMM-4, is the same as the third model except that the factor 

covariance matrix is now allowed to change across the classes. Having different factor variation 

across the classes implies that there are different amounts of severity within each class. For 

example, a class that can be thought of as “Unaffected” might have less variance because 

individuals are showing none to almost no symptoms while a class that is “Affected” might have 

more variation because individuals might have a greater range of symptoms. The formulation for 

the fourth model is: 

y*ik = τk + Λ ηik+ ε ik ,  

ηik = ζik , 

where, 

       ζik ~ N(0, Ψk).     (9) 

 The fifth model, FMM-5, is the least restrictive model in terms of invariance of the 

parameters. The item thresholds, factor loadings, and factor covariance matrix are all allowed to 

vary across classes. The formulation for the fifth model is:  

y*ik = τk + Λk ηik + ε ik ,  

ηik = ζik , 

where, 

ζik ~ N(0, Ψk).    (10) 

 

FMM and Measurement Invariance (MI) 
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 The FMM variations presented above differ in terms of how much measurement 

invariance (MI) is present. The amount of MI can have important implications for how an FMM 

is interpreted, specifically whether or not the same factors are being measured in each latent 

class. There are many definitions of MI, but this paper will use Meredith’s (1993) definition of 

strong factorial invariance which requires equality of factor loadings, λ, and thresholds, τ, across 

classes because strong factorial invariance is often considered to be sufficient for the comparison 

of subpopulations (Little, 1997; Widaman & Reise, 1997). For a further discussion about 

different definitions of MI and how they apply to FMMs see Lubke and Muthén (2005). 

 In strong factorial invariance, the factor loadings and thresholds of an item must be held 

equal across latent classes. If the factor loadings, which are slopes in the regression of the 

observed variable on the factors, are non-invariant in the latent classes, then a unit increase in the 

factor score does not result in the same increase of the dependent variable in the different classes. 

This differential increase can suggest one of two things. The first is that if there are many items 

with large differences in their factor loadings between classes, then each class has a different 

underlying factor. The second is if there are relatively few items with differences in their factor 

loadings between classes, then those items with differential loadings function differently in each 

class. If the item thresholds, which are negative intercepts in the regression of observed variables 

on the factor, are not equal across latent classes then one latent class scores consistently higher or 

lower than the others, independent of scores on the factor. This suggests that observed 

differences between classes are not entirely due to differences in the factor. 

 In FMM-1 and -2, the factor loadings and item thresholds are invariant across classes, 

suggesting that the interpretation of the factor remains the same in each class or, put another 

way, the  factor retains the same meaning at both the low and high values in the population. In 
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these two variations, the latent classes are used to model the non-normality of the factor in the 

population. For FMM-1, Figure 4, which plots the factor distribution on the right side of the 

figure, shows that the factor is categorical with each latent class representing a category. For 

FMM-2, Figure 5, which also plots the factor distribution, shows that the factor is continuous, 

but non-normal. The factor in an FMM-2 is a mixture of normal distributions located at different 

points on the factor distribution, and each normal distribution is a latent class. 

 In FMM-3 and -4, the item thresholds are non-invariant, while in FMM-5 both the item 

thresholds and the factor loadings are non-invariant. In these model variations, because there is a 

violation of strong factorial invariance, the same factor does not apply to the whole population.  

Instead, there is a different factor, with a different interpretation, in each latent class. The 

implication of this is that there are several populations, represented by the latent classes, each 

with their own distributions.    

 In practice, FMM-1 and -2 often do not fit real data well because the specification of 

invariant factor loadings and thresholds are likely to be too restrictive for certain items. In these 

two models, the factor loadings influence both the item mean, which changes over classes for an 

item j as a function of  τj+ λj*αk , and the item correlation between item j and item l within class 

which is λj*ψ* λl. Item means are not likely to change over classes as function of τj+ λj*αk, but 

instead change as a function of τjk. It is unlikely that αk is the only parameter that creates 

changes across classes in item means for these two models. Furthermore, it is because the factor 

loading has a connection between both the item mean changes over classes and the item 

correlation within-class that FMM-1 and -2 seldom fit real data well. 

  Even though FMM-1 and -2 may not fit real data well, partial MI is possible. Items 

which violate measurement invariance may be pinpointed using one of three possible methods. 
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To demonstrate these methods, a simulated data set with six continuous items, y1-y6, is used. 

The data generating model was specified so that one item’s thresholds, y5, were non-invariant 

across classes. The remaining thresholds for the other five items were invariant. This data was 

specified so that an FMM-2 was the data generating model, but with the factor variance structure 

equal across classes. One way to possibly identify a non-invariant item is to compare the 

estimated and observed item means. If an item was non-invariant then the observed and 

estimated means would be different from one another. In Table 1, which shows the observed and 

estimated means for each item from an FMM-2 in the top two rows of the table, the observed and 

estimated means are equivalent for each item. This is because mixture models, like FMMs, do a 

good job of fitting first and second order moments (means and variances), making the 

comparison of observed and estimated means an unsuitable method for detecting threshold non-

invariance. A second way to identify these items is to examine the within-class residuals for each 

item’s mean from an FMM-1 or -2. An item that is non-invariant may have a larger residual than 

items that are invariant. In Table 1, all of the items have small residuals which are close to zero, 

including y5. This suggests that examining the within-class residuals for each item’s mean is not 

the best method for identifying threshold non-invariance. 

 A third way to detect non-invariance is to conduct a series of analyses in which one 

item’s thresholds are held invariant and the thresholds for the rest of the items freely vary across 

the classes1. Using the model constraint feature in Mplus, a test of whether the difference 

between the items whose thresholds are allowed to vary is significantly different from zero can 

be conducted (See Appendix for example Mplus code). If the test is significant, those item 

thresholds should be considered non-invariant and if the test is non-significant, the item 

thresholds should be invariant. Once this is performed with each item’s thresholds being held 
                                                 
1 We thank Tihomir Asparouhov for suggesting this approach. 
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equal across classes, a tally can be made of the number of times each item’s threshold difference 

test is significant. The more times an item has a significant difference test, the more likely it is 

that item should have freely varying item thresholds. For the simulated data, y5 had 5 significant 

difference tests while the remaining items had zero significant difference tests suggesting that 

item y5 should be non-invariant across classes and the other items should be invariant. Based on 

these results, a partial MI model with y5 non-invariant and the remaining items invariant should 

be compared to the original model, FMM-2. This strategy will be demonstrated in the attention-

deficit hyperactivity disorder example. 

FMM: Factor Measurement Structure 

 Similar to factor analysis, FMMs can have two possible factor measurement structures: 

confirmatory and exploratory. As in confirmatory factor analysis, confirmatory FMMs utilize 

substantive theory to define factors that are measured only by specific symptom items, with the 

factor having no influence on the remaining items. This results in what is referred to in the factor 

analysis literature as a simple measurement structure. Confirmatory FMM has the advantage of 

encouraging researchers to formalize their measurement hypothesis by having latent variables 

that are grounded in substantive theory, which can often lead to more parsimonious models 

(Asparouhov & Muthén, 2009). There are, however, disadvantages to using a simple 

measurement structure including fixing small cross-loadings to zero when a simple structure is 

used. Ignoring these cross-loadings may force a researcher to specify a more parsimonious model 

for the data than is necessary, which can lead to poor model fit (Asparouhov & Muthén, 2009). 

An alternative to a confirmatory factor structure is an exploratory structure, where the 

number of factors and the relationships between the factors and the symptom items do not need 

to be specified a priori. Asparouhov & Muthén (2009) suggest using an exploratory structure in 
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structural equation models when limited measurement knowledge is available or a more complex 

measurement structure is needed. An exploratory structure can be applied to an FMM using the 

Type = Mixture EFA option in Mplus V5.1 (Muthén & Muthén, 1998-2008). Using this option 

not only provides rotated factor solutions, but also standard errors for all rotated parameters and 

overall tests of model fit.  

In this paper, all of the FMMs presented used a confirmatory structure that was guided by 

a priori substantive reasoning as to the number of factors and relationships between the factors 

and the symptom items. Given that a mixture was found to be a reasonable fit to the data in the 

examples, an exploratory structure was also fit to the data to examine if the presence of mixtures 

would change the number of factors or the factor structure since the presence of mixtures may 

call for a simpler factor measurement structure. In the examples presented in this paper, the 

presence of mixtures did not change the factor structure or the number of factors. In order to 

demonstrate the use of the exploratory structure in FMMs, however, it was applied to the second 

example. 

FMM Model Building and Comparison 

 Because factor mixture models are relatively new to the literature there is a dearth of 

writing about the steps to build an FMM, but general guidelines for how do them are offered in 

several papers (Muthén, 2006; Muthén & Asparouhov, 2006; Muthén, Asparouhov, & Rebollo, 

2006). In each of these articles, the authors analyze their data using latent class, factor analytic, 

and factor mixture models and then compare the fit among these three types. None of these 

articles provide instruction on how to construct the factor mixture models. Specifically, no 

information is given on how to decide on the number of classes and factors or how to pick 

among the different variations of the FMM. 
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 A suggested strategy is to first fit LCA models with increasing number of classes and FA 

models with increasing number of factors. The next step is to fit an FMM with two classes and 

one factor, and in subsequent models increase the number of classes. After this, the number of 

factors would be increased to two, and the classes would once again be increased in subsequent 

models. This pattern of increasing the number of classes and then the number of factors would be 

repeated. The question arises: at what point does one stop increasing the number of classes and 

factors? In several papers we have reviewed, the strategy to decide on the number of classes and 

factors has been to take the best fitting number of classes from an LCA and the best fitting 

number of factors from an FA and combine them to form an FMM. After this is complete, no 

further investigation is conducted to see if there is a need for a smaller number of classes and 

factors. This practice is highly discouraged because having both factors and classes in the model 

may reduce the need for a greater number of classes and factors. For example, if an LCA 

solution has many classes that are parallel to one another, which is thought to model severity, 

then adding one factor will likely reduce the need for the same number of classes because the 

factor will now model the severity. Instead, it is suggested that the number of classes from the 

best fitting LCA model and the number of factors from the best fitting FA model be the end point 

of combinations of classes and factors in model building. The strategy described above should be 

applied to all of the FMM variations. Once this is complete, the best FMM model for the data 

will be selected. Each of the examples will apply the strategy outlined above for model building. 

 Once a best fitting FMM has been selected, it is important to compare this model to the 

best fitting LCA and FA models to see if a more parsimonious solution can provide a better fit 

and explanation of the data. This is similar to the “best” candidate approach outlined for the 

Dimensional-Categorical spectrum in Masyn et al. (in press). Similar to deciding on the number 
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of classes in a mixture analysis, the LLRT cannot be used for comparing among the different 

model types. Model comparison will be based on information criteria, with the lowest value 

indicating the best fitting model type, and substantive interpretation.  

Examples 

 In the following section, two examples are explored to illustrate the model building and 

comparison strategies described above and to aid in understanding the substantive interpretation 

of the factor mixture model. Each example will begin with a brief description of the data, 

followed by model building and comparison of latent class, factor analytic, and factor mixture 

models.  

Example One: Conduct Disorder 

The first example examines the underlying structure of conduct disorder (CD) in 

interview data from a population-based sample of Finnish twins modestly enriched for familial 

alcoholism risk. The study, called FinnTwin12 (FT12; Rose et al. 2004), is longitudinal, but data 

for this illustration are from the first follow-up at age 14. In total, there were 1786 children in the 

study with about an equal number of boys and girls. The analysis focused on interview reports of 

thirteen dichotomous symptom items measuring CD that are from the Child Semi-Structured 

Assessment for the Genetics of Alcoholism, Adolescent version (C-SSAGA-A). The C-SSAGA-

A is a polydiagnostic instrument that was developed by the Collaborative Study on the Genetics 

of Alcoholism (COGA; Kuperman et al., 2001). Because data from co-twins cannot be 

considered independent observations, the relatedness of the twins was handled by correcting the 

standard errors using the Type = Complex option in Mplus. The Type = Complex option use a 

sandwich estimator to obtain standard errors which take into account the non-independence of 

the twins.  
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In order to obtain a diagnosis of CD, three or more symptoms must be present. In this 

sample, 56% of children reported no symptom presence while 12% of the sample reported 

having three or more symptoms present and, therefore, met criteria for a CD diagnosis. Symptom 

presence ranged from 0.1% (Has ever been suspended from school) to 25% of the sample (Is 

physically cruel to animals). For a more extensive description of the interviewed sample and 

analysis of CD in these 14 year-old Finnish twins see Rose et al. (2004). 

According to Table 2, which displays model fit and comparison statistics for this 

example, the LCA model with the lowest BIC was the two-class model, followed by the three-

class model. The first time the LMR p-value was non-significant, or greater than 0.05, was for 

the four-class model, which suggested that the three-class model was the best fitting model. 

Since, the BIC and LMR p-value have indicated that the two- and three-class models 

were potential candidates for the “best” LCA model, the BLRT p-value and substantive 

interpretation of these two solutions were examined to help decide between them. The zero p-

value of the BLRT for the three-class model indicated that a three-class model should be chosen 

over a two-class model. Figure 7 shows the item profile plot for the two-class solution. Class 

One, 78% of the sample, has low symptom presence as indicated by low item endorsement 

probabilities. Because of the large size of the class and low symptom presence, this can be 

considered the “unaffected” or non-symptomatic class. Class Two, 22% of the sample, is defined 

by the items relating to suspension, lying, and truancy, with the other items have relatively low 

probabilities of symptom endorsement, 0.30 or lower.  

Figure 8 shows the item profile plot for the three-class solution. As in two-class solution, 

there is one class that has low item endorsement across all items. This class is slightly smaller 

than the non-symptomatic class from the two-class solution, 69%, because some of the 
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individuals were absorbed into the two remaining classes. Supporting this idea are the lower 

endorsement probabilities of the suspension and truancy symptom items in the unaffected class. 

The class that was defined by the suspension, lying and truancy items in the two-class solution 

has now been split into two classes in the three-class solution. The first of these classes is similar 

to the one in the two-class solution with high probabilities of endorsing the suspension and lying 

items, but the probability of endorsing truancy item has drastically decreased. The probability of 

endorsing other symptoms items is relatively low in this class. Potentially, some individuals in 

this class may meet criteria for a CD diagnosis. The second of these classes, 5% of the sample, 

still has high probabilities of suspension and lying, but also has high probabilities of running 

away, property destruction, forcing someone to participate in sexual activities, and starting 

fights. This class can be thought of as those individuals that are likely to meet criteria for CD. 

Given that there is a substantive interpretation and reasoning for each of the three classes and the 

BLRT p-value points toward the three-class model, it was selected as the “best” LCA model for 

this data. 

 For the factor analytic models, an exploratory factor analysis was first conducted, then 

based on the results, a series of confirmatory factor analytic models were explored. The results of 

the exploratory factor analysis suggested two possible factor solutions. The first is a one-factor 

solution in which the factor is defined by all thirteen CD items. The second is a two-factor 

solution with one factor being defined by the symptom items relating to expulsion from school, 

cruelty to animals, and use of a weapon when fighting and the second factor being defined by the 

remaining items. Potential solutions with more than two factors had the additional factors being 

solely defined by one symptom item which lead to the solution being deemed not appropriate. 

When comparing the fit results of the one-and two-factor confirmatory models in Table 2, the 
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log-likelihood is identical, but the one-factor model has one less parameter than the two-factor 

model, making it more parsimonious. This means that the BIC is lower for the one-factor model 

than the two-factor model. The factor solution for the two-factor model had that several items on 

the second factor did not load highly suggesting that there was no need for an additional factor. 

Since the one-factor model is more parsimonious, has a lower BIC value, and there are low 

loadings on the second factor in the two-factor solution, the one-factor solution was chosen as 

the “best” factor analytic model for the data. 

 The bottom part of Table 2 presents results for the factor mixture models. Models with 

one factor and one to three classes were fit to the data, based on the results of FA and LCA. In 

Table 2, the FMM with the lowest BIC value is the two-class, one-factor FMM-2, with a value of 

9284. But, for this model the LMR p-value is greater than 0.05, which indicates that a one-class, 

one-factor model should be chosen over this model. The next lowest BIC value in the table is 

9374, which is 90 points higher than the lowest BIC value. This BIC value occurs for two 

models, with additional models having BIC values that are not much higher. For these FMMs, 

the LMR p-value is less than 0.05, which indicated that the two-class FMM should be chosen 

over the one-class model. Because there was no agreement of which model was the “best” FMM 

based on the BIC and the LMR p-value, the BLRT p-value was examined in the four models 

with the lowest BICs. In these four FMMs, the BLRT p-value was lower than 0.05 indicating 

that a two-class FMM should be chosen over a one-class solution. Based on these results, the 

two-class, one-factor FMM-2 is chosen as the “best” candidate FMM. It has the lowest BIC and 

the substantive interpretation of the model made the most sense.  

In Figure 9, which shows the item profile plot of the two-class, one-factor FMM-2 at the 

mean of the factor, there are two classes. The first and largest class, 57% of the sample, is the 
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lowest line on the profile plot, with almost all items having low probabilities of symptom 

endorsement. Individuals in this class are likely to never have any symptoms of CD. While this 

class is similar in its interpretation to the lowest class in the three-class LCA, the percentage of 

individuals in the low class differs between the two solutions suggesting that the latent classes 

from a LCA and a FMM are not the same. Also, the probabilities of item endorsement are lower, 

almost zero, in the FMM than the LCA and the class proportion in the FMM is similar to the 

proportion of individuals in the sample that do not endorse any items, which suggests that the 

low class in the FMM solution may be a true asymptomatic class. The second class, 43% of the 

sample, has slightly elevated probabilities of endorsing the symptom items related to suspension, 

lying, and truancy, but these probabilities are still small. This class is similar to the second class 

in the three-class LCA solution, but with smaller item endorsement probabilities and a larger 

class proportion. Notice that there are bands around the second class showing what the item 

endorsement probabilities are if an individual is one standard deviation away from the factor 

mean. The first class does not have bands around the item profile because the factor variance in 

this class was non-significant. The bands around the factor mean of the second class give an idea 

of the variability within each class. For example, for the symptom item relating to suspension 

there is a great range of endorsement (0.20 to 0.70) once an individual is one standard deviation 

away from the factor mean. But, for the symptom item relating to expulsion, there is little 

variation in this item’s probability of endorsement as evidence by the bands being very close to 

the factor mean for that item.  

Comparing the factor loadings of the FMM and FA solutions, shown in Table 3, suggests 

that while the factors are similar in interpretation, they are not equivalent. Table 3, presents the 

unstandardized and standardized factor loadings. The factor loadings were standardized to take 



Running Head: MODELS AND STRATEGIES FOR FMA                
 

 

29

into account differences in the factor variance across models in order to to able to compare the 

loadings. The FMM-2 had class invariant factor loadings, hence the unstandardized factor 

loadings are the same in each class. But, the factor variances are non-invariant in a FMM-2, so 

the standardized factor loadings are also different in each class. Comparing the loadings from 

each class in the FMM-2 to the loadings from the FA solution, the loadings in class two are 

lower than the loadings in the FA solution while the class one loadings are higher. This suggests 

that the factor, which is considered the severity, has more influence in class one, the 

asymptomatic class. The higher loadings in class one also indicate that the with-in class 

correlation among the items is higher in class one. Note also that the items relating to suspension 

from school, fire starting, and truancy have the highest loadings in both solutions suggesting that 

these items are important in both solutions. 

 Now that the “best” candidate model has been selected for each of the three model types, 

LCA, FA, and FMA, a comparison can be made among these “best” candidate models to see 

which one best describes the data. One way to decide between the models is to examine the BIC 

for the lowest value. For this data, the two-class, one-factor FMM-2 has the lowest BIC. Another 

way to decide between the models is to examine what each model implies about the underlying 

structure of CD in this population. The three-class LCA model implies that the underlying 

structure of CD is categorical with three categories, which are the three-classes in the solution. 

The one-factor FA solution implies that the underlying distribution of CD is continuous 

and normally distributed. The two-class, one-factor FMM-2 also implies that there is one 

underlying continuous factor of CD because of the class invariant item thresholds and factor 

loadings. But, unlike the one-factor FA, the distribution of the factor in FMM-2 is non-normal. 

The distribution of the factor in the FMM-2, shown in Figure 10, is a bi-modal distribution with 
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a small peak at about 0 and a taller peak at about 6.5. It is these peaks and the distributions 

around them that form the mixtures in the FMM-2 solution. The first latent class is the small 

peak at the bottom of the plot with the wide distribution around it. The second class is the normal 

distribution further up in the plot. By having two latent classes, the FMM can model the non-

normality of the factor more precisely than a FA can. Based on the results of the BIC and 

comparing what each model implies about the underlying structure of CD, the “best” model for 

this data is the two-class, one-factor FMM-2 because it models the non-normality of CD better 

than the other models.  

Example Two: Attention-Deficit Hyperactivity Disorder (ADHD) 

  The second data set originated from the Los Angeles ADHD study (Smalley et al., 2000). 

Unlike the previous example, which was a population sample, the LA ADHD data contain only 

children who have been diagnosed as being affected with ADHD. In total, there were 994 

individuals in the sample, with about seventy percent of the sample being male. Ages in the 

sample ranged from 4 to 18 with a mean age of 10.47 (SD = 3.18). Many of the children in the 

study had an affected sibling who also participated; the relatedness of the siblings was handled 

by correcting the standard errors using the Type = Complex option in Mplus, as described in the 

previous example.  

In this sample, ADHD was measured using the Schedule for Affective Disorders and 

Schizophrenia for School-Age Children – Present and Lifetime version (K-SADS-PL; Kaufman 

et al., 1997). This diagnostic instrument has 18 symptom items measuring ADHD, with nine 

symptom items measuring Inattention and nine symptom items measuring 

Hyperactivity\Impulsivity. Symptom presence ranged from 54.3% (Difficulty playing quietly) to 

96.2% (Difficulty sustaining attention on tasks\play). There were three possible diagnoses of 
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ADHD: predominantly Inattentive, predominantly Hyperactive, or Combination (both Inattentive 

and Hyperactive). A diagnosis of predominantly Inattentive, was given to individuals having six 

or more symptoms from the Inattentive scale. A diagnosis of predominantly Hyperactive, was 

given to individuals having six or more symptoms from the Hyperactive scale. An individual was 

considered to have Combination ADHD if he/she met criteria for both the predominantly 

Inattentive and predominantly Hyperactive. In this sample, 31% of individuals were 

predominantly Inattentive, 5% were predominantly Hyperactive, and 64% were Combination. 

The latent class analysis of this example was conducted by fitting one- through five-class 

models to the data. The results for this example can be seen in Table 4. The lowest value of the 

BIC occurred for the four-class model. Because the LMR p-values for the all of the models were 

less than 0.05, that LMR was inconclusive as to which is the best LCA model. 

 Since, the BIC indicated that the four-class model was the best model and the LMR was 

inconclusive, the BLRT p-values were examined for the three- through five-class solutions. In 

Table 4, the first time the BLRT p-value was non-significant, or greater than 0.05, was for the 

five-class model which suggested that a four-class model should be chosen. Since both the BIC 

and BLRT have indicated that the four-class solution is the best LCA model for the data, it was 

chosen as the best LCA model. The four-class model profile plot is presented in Figure 11. Class 

one had high probabilities of item endorsement for the inattentive items and low probabilities of 

endorsement for the hyperactivity items, suggesting that this class can be considered a 

predominantly inattentive class. The second and smallest class, 15% of the sample, had a high 

probability of endorsement for the Hyperactivity and Inattention items with the exception of 

items that were related to working memory. The second class can be considered a hyperactive 

class with good working memory. The third class, which comprised 44% of the sample and had a 
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high probability of endorsement for both the Inattention and Hyperactivity items, can be 

considered a combination class. The fourth class also had high probabilities of item endorsement 

for all the Inattention items, but had moderate to high endorsement probabilities for those items 

that measure Impulsiveness.  

 For the factor analytic models, an exploratory factor analysis was first conducted, then 

based on the results, a series of confirmatory factor analytic models were explored. The results of 

the exploratory factor analysis suggested two possible solutions, which are shown in Table 5. 

The first was a two-factor solution with one factor defined by all nine symptom items on the 

Inattention scale and the second factor defined by all nine items of the Hyperactivity scale. The 

second potential solution had four factors, with the first being defined by five items on the 

Inattention scale related to dreaminess or not paying attention. The second was defined by three 

symptom items on the Inattention scale relating to working memory (ex: “Often loses things”, 

“Forgetful in daily activities”). The third factor was defined by five symptom items on the 

Hyperactivity scale and the fourth factor was defined by the remaining four symptom items on 

the Hyperactivity scale that were related to Impulsivity (ex: “Blurts out answers”). The model 

statics for the two- and four-factor confirmatory solutions are found in Table 4. When comparing 

the two models, the four-factor model had the lowest BIC by 172 points. A LLRT also suggested 

that the four-factor model fit the data better than a two-factor model, χ2(5) = 206,  p < .0001. The 

results of the BIC and the LLRT both suggested that a four-factor model fit the data better than a 

two-factor model, so the four-factor model was chosen as the “best” candidate model for the FA 

model. 

 For the FMM, the results of the LCA and FA suggested that FMMs with a maximum of 

four-classes and four-factors should be fit to the data. Because a large number of factors are 
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computationally intensive to fit with the already complicated FMMs, the fitting of models 

stopped at models with two factors. For this example, FMMs with both a confirmatory and 

exploratory measurement structure of the factors were explored. The confirmatory FMMs are at 

the top of Table 4 and the exploratory FMMs are at the bottom of the table. 

In Table 4, when comparing the FMMs with confirmatory measurement structures to 

those with exploratory ones, the models with a confirmatory structure outperformed those with 

an exploratory one. This occurred for two possible reasons. The first is that in Mplus, models 

with an exploratory structure are assumed to have non-invariant factor loadings and item 

thresholds, and a non-invariant factor covariance structure, like the FMM-5. In this example, the 

best fitting model was a FMM-3 which has invariant factor loadings. By forcing an FMM-5 onto 

data which has FMM-3 as the best fitting model, there were a large number of unnecessary 

parameters which were non-significant, including a large number of non-significant cross 

loadings on the factors. The second reason why the exploratory FMMs did not perform as well in 

this example is that there was a clean, simple structure in these particular items.  

The results of the FMMs in Table 4 suggested that a two-class, one-factor, FMM-4 fit the 

data the best. This model had the lowest BIC value by 100 points and the LMR p-value and 

BLRT p-value were both close to zero, which indicated that a two-class model should be chosen 

over a one-class model. While this model fit the data “best” according to statistical indicators, a 

closer inspection of the model revealed that it was not appropriate. Even though the factors in the 

two classes do not have the same interpretation due to class-varying threshold values, the factor 

loadings, shown in Table 5, for the inattention items are small and non-significant when 

compared with the hyperactivity item loadings. This suggested that the model was only 

measuring the hyperactivity construct and not inattention, which is a vital part of ADHD.  
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Further inspection of all the one-factor FMMs revealed this limitation. Because of this, the next 

“best” fitting model, the two-class, two-factor FMM-3, was explored. In this model, the first 

factor was defined by the inattention items only and second factor was defined by the 

hyperactivity items only. All of the item loadings were significant, see Table 5. In Figure 12, 

which shows the item profile plot for this solution, the first class, 33% of the sample, had a high 

probability of endorsing the inattention items, and high probability of endorsing the hyperactivity 

items related to impulsiveness. The second class, 67% of the sample, is similar to a Combination 

class because of the high probability of endorsing both hyperactivity and inattention items.  

One way to help ease the interpretation of FMMs is to use a pattern response table where 

the symptom response pattern, symptom endorsement total, factor scores, and class probabilities 

are displayed by latent class. In Table 6, which displays the pattern response table for the ten 

most frequent response patterns in each class for the two-class, two-factor FMM-3, both classes 

have a high symptom endorsement totals for the inattention items as indicated by the column 

labeled Inat. total, but class one generally has lower hyperactivity symptom endorsement than 

class two as indicated by the Hyperactivity symptom endorsement column. This supports the 

interpretation that the second class is similar to a Combination ADHD class because individuals 

in the second class have high endorsement of the both the inattentive and hyperactivity items. 

 In the two-class, two-factor FMM-3, the thresholds are non-invariant, but there is a 

possibility for partial invariance. This example demonstrates the strategy, which was outlined in 

a previous section, of how to explore if there is a need partial invariance. A series of analyses 

were performed, one for each of the 18 items, in which one item’s thresholds were constrained to 

be equal across classes and the rest free. A tally was then made of the number of times each 

item’s difference test was significant. The items with the highest number of times their threshold 
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difference test was significant are: Motor (9), Seated (8), Fidgets (8), Runs (8), Attention (7), and 

Instruct (7). Based on the results of the tally, a new model was run where the items mentioned 

above had freely estimated thresholds in each class and the remaining items had thresholds that 

were held invariant. Table 4 shows the model fits results for this model in the last line of the 

table. The BIC for this partially invariant model is only one point lower than the non-invariant 

two-class, two-factor FMM-3, but the partially invariant model has 12 fewer parameters making 

it a more parsimonious model.  

Comparing the BIC values of the “best” fitting LCA, FA, and FMM located in Table 4, 

the four-factor FA has the lowest BIC value by 100 points. This example highlights that though 

the FMM is a powerful and flexible model, it does not always provide the best fit for the data.  

One possible reason the FMM did not fit as well as the four-factor FA model is that this is a 

sample of only affected children so there was not much variation in symptom endorsement 

because the individuals had to endorse a high number of symptoms to be included in this sample. 

This is contrary to what was seen in the previous example where the FMM was the “best” model 

for the data. Lubke et al. (2007) applied LCA, FA, and FMM to a population sample in order to 

investigate the structure of ADHD and found that a FMM fit the data the best. 

Discussion 

 This paper builds upon the work of previous research on factor mixture models in order 

to explicate how to conduct a factor mixture analysis in practice. This paper discusses several 

different variations of the FMM and what each suggests about the structure underlying 

psychological disorders. Steps for building a factor mixture model, including how to decide on 

the number of classes and factors, and how to compare the factor mixture to other appropriate 

models, are also discussed. 
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 The two examples examining the underlying structure of conduct disorder and attention-

deficit hyperactivity disorder shed light on some issues and challenges that arise when 

conducting a factor mixture analysis. The first example, which investigated the underlying 

structure of conduct disorder in a sample of Finnish twins, showed how difficult it can be to 

decide between a factor mixture model and other appropriate models, such as the factor analytic 

and latent class models. There is often no clear “winner” based on statistical tests and indicators. 

The decision between different types of models must be made based on what each model implies 

about the underlying structure and whether that can be justified substantively. This example also 

highlights how FMM can be used to model a non-normal, continuous factor. 

 In the second example, which explored the underlying structure of ADHD in a sample of 

affected children and adolescents, several issues arose. First, the “best” fitting FMM according to 

statistical tests and indicators may not always make substantive sense, which suggests models 

should always be checked for their interpretability. Second, despite the flexibility of the FMM, it 

is not always the best fitting or most appropriate model for the data. Researchers need to 

consider whether the FMM is appropriate for their data and what the FMM they are using 

implies about the underlying structure. Third, despite the advances in computational technology 

in recent years, more complicated factor mixture models with large numbers of classes and 

factors can still be difficult to process. In this example, the results of the factor analysis 

suggested that factor mixture models should be fit with up to four factors. But once the FMMS 

were increased to four factors, the computational demands of the model were too heavy to run 

the models. This example also demonstrated how to investigate if there is a need for partial 

measurement invariance in a factor mixture model. 
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 The two examples have shown that despite the work that has been done with the FMM, 

there are still avenues for further study. One area for further study is how and when to 

incorporate covariates or other auxiliary variables into a FMM. Lubke and Muthén (2005) 

describe different ways that a covariate can influence the latent classes and factors, but not at 

what point in the analysis covariates should be included or what method should be used to 

incorporate them. Another area for the further study is the performance of statistical tests and 

indicators in correctly identifying the correct combination of latent classes and factors. Nylund et 

al. (2007) have begun this work by investigating a single case with dichotomous items, but this 

paper only focused on the correct identification of the number of classes with no focus on 

identifying the number of factors. Lubke and Neale (2006, in press) have conducted simulation 

studies exploring the use of statistical indicators to identify the presence of measurement 

invariance in FMMs. 

 Even though there are some areas that need to be explored further, the factor mixture 

model is still an important analytic tool for conceptualizing the structure underlying 

psychological disorders. Using the factor mixture model, does not force the conceptualization to 

be either categorical or continuous, as previous notions have suggested. Instead the factor 

mixture model allows for the underlying structure to be modeled as both so that one can 

simultaneously classify individuals into groups and have an estimate of the severity within those 

groups. 
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Appendix 
Example Mplus Input and Model Statements for Factor Mixture Model Variations 

 
Input 1a: Factor Mixture Model 1 (FMM-1) 

- Estimating both factor means in each class. 
- Two-classes, two-factors. 
- Class invariant thresholds (τ), class invariant factor loadings (λ), factor covariance 

matrix is equal to zero (ψ = 0), class varying factor means (αk). 
  
 
Data: File is example.dat; 
 ! This is how to comment out text. 
Variable: 

Names are u1-u6; !List of variables in dataset. 
Usevariables are u1-u6;  

! Specifies which variables are to be used in the analysis. 
Categorical = u1-u6;  

! Specifies which dependent variable is categorical. 
      Classes = c(2); 
  ! Defines a latent class variable called c with two classes. 
 
Analysis: 

Type = Mixture; !Specifies doing a mixture analysis. 
      Starts = 100 10;  

! Specifies total number of random starts and number of 
! final stage iterations. 

 Process = 2 (STARTS);  
! Specifies that 2 processors are to be used in analysis 
! and that random starts are to be spread out on the  
! multiple processors. 

 
Model: 
 %Overall% ! Specifies that model below will be applied to both  

    ! latent classes. 
f1 by u1-u3; ! Defining a factor called f1 which is measured by  

     ! items u1 to u3. 
f2 by u4-u6; 
f1-f2@0; ! Fixing factor variance at zero. 
f1 with f2 @0; ! Fixing covariance between f1 and f2 at zero; 

  
%c#1% ! Indicates statements below apply to class 1 only. 
 [u1$1-u6$1] (1-6); 

  
%c#2%  

  [u1$1-u6$1] (1-6);  ! Number in parentheses indicates fixing the  
! threshold of this item to be the same in           
! class 1 and class 2. 

 
- By default, the last class will have the factor mean fixed to zero, and because there is a 
factor loading fixed at one, a factor mean for a different class can be estimated as well. 

 
Input 1b: Factor Mixture Model 1 (FMM-1) 

- Three-classes, one-factor. 
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- Estimating all factor loadings. 
- Class invariant thresholds (τ), class invariant factor loadings (λ), factor covariance 

matrix is equal to zero (ψ = 0), class varying factor means (αk). 
  
Model: 

%Overall% 
f1 by u1-u3*;  !* indicates that all factor loadings are to 

       ! be freely estimated. 
f1@0; 
 

 %c#1% 
       [f1*]; !* indicates the factor mean is freely estimated. 
       [u1$1-u6$1] (1-6); 
 %c#2% 
  [f1@1]; !Fixing factor mean at one. 
  [u1$1-u6$1] (1-6); 

%c#3% 
 [u1$1-u6$1] (1-6); 

 
- By default the last class will have the factor mean fixed to zero. Because all of the factor 
loadings are freely estimated, at least one of the factor means must be fixed for model 
identification. Here, class 2 has the factor mean set to one. 
 
Input 2: Factor Mixture Model 2 (FMM-2) 

- Two-classes, two-factors. 
- Class invariant thresholds (τ), class invariant factor loadings (λ), class varying factor 

covariance matrix (ψk), class varying factor means (αk). 
 
Model: 
 %Overall% 

f1 by u1-u3; 
f2 by u4-u6; 
f1-f2@0;  
f1 with f2 @0; 

%c#1% 
f1-f2; 
[f1-f2@0]; 
[u1$1-u6$1] (1-6);  

%c#2% 
f1-f2; 
[f1-f2*]; 
[u1$1-u6$1] (1-6); 
 

 
 Input 3: Factor Mixture Model 3 (FMM-3) 

- Two-classes, two-factors. 
- Class varying thresholds (τk), class invariant factor loadings (λ), class invariant factor 

covariance matrix (ψ), factor means fixed at zero (αk = 0). 
 
Model: 

%Overall% 
f1 by u1-u3; 
f2 by u4-u6; 
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    f1 - f2; 
       f1 with f2; 
      [f1-f2@0]; 
   %c#1% 
       [u1$1-u6$1]; 
      %c#2% 
       [u1$1-u6$1]; 
 
 Input 4: Factor Mixture Model 4 (FMM-4) 

- Two-classes, two-factors. 
- Class varying thresholds (τk), class invariant factor loadings (λ), class varying factor 

covariance matrix (ψk), factor means fixed at zero (αk = 0). 
 
Model: 

%Overall% 
f1 by u1-u3; 
f2 by u4-u6; 
[f1-f2@0]; 

%c#1% 
f1-f2; 
f1 with f2; 
[u1$1-u6$1]; 

%c#2% 
f1-f2*; 
f1 with f2; 
[u1$1-u6$1]; 

 
Input 5: Factor Mixture Model 5 (FMM-5) 

- Two-classes, two-factors. 
- Class varying thresholds (τk), class varying factor loadings (λk), class varying factor 

covariance matrix (ψk), factor means fixed at zero (αk = 0). 
 
Model: 

%Overall% 
f1 by u1-u3; 
f2 by u4-u6; 
[f1-f2@0]; 

%c#1% 
f1 by u2-u3; 
f2 by u3-u6; 
f1-f2; 
f1 with f2; 
[u1$1-u6$1]; 

%c#2% 
f1 by u2-u3; 
f2 by u5-u6; 
f1-f2; 
f1 with f2; 
[u1$1-u6$1]; 

 
-The overall statement (%Overall%) defines the factors and in the class specific statements 
(%c#1%, %c#2%) there is what looks like another definition of the factor, but this is not defining 
the factors. This allows the loadings to be freely estimated in both classes. Note that the in the 
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class specific statement, the factor definition starts with the second item and not the first. This is 
because in the overall statement where the factor is first defined Mplus defaults to fixing the 
loading of the first item to one. Since the loading of the first item is already fixed, it does not 
need to be set to be freely estimated in the class specific statement so the class specific 
statements begins with the second item. 
 
Input 6: MI Investigation Example 

- Two-classes, one-factor. 
- Class invariant threshold anchor item: u1. 

 
Model: 
    %Overall% 
      f1 by u1 – u6; 
      f1; 
      [f1@0]; 

%c#1% 
[u1$1]  (1); 
[u2$1]  (p1_2); 
[u3$1]  (p1_3); 
[u4$1]  (p1_4); 
[u5$1]  (p1_5); 
[u6$1]  (p1_6); 

%c#2% 
[u1$1]  (1); 
[u2$1]  (p2_2); 
[u3$1]  (p2_3); 
[u4$1]  (p2_4); 
[u5$1]  (p2_5); 
[u6$1]  (p2_6); 

 
Model Constraint: 
 

New(difi1 difi2 difi3 difi4 difi5 difi6); 
difi1= p2_1 - p1_1; 
difi2= p2_2 - p1_2; 
difi3= p2_3 - p1_3; 
difi4= p2_4 - p1_4; 
difi5= p2_5 - p1_5; 
difi6= p2_6 - p1_6; 

 
 
 
Note: All of the example inputs and model statements above used dichotomous items, but factor 
mixture modeling can be conducted with other types of items as well with slight adjustments to 
the code above. Taking Input 4 as an example, the code can be adjusted for polytomous item by 
mentioning all the thresholds in the items. In the example below, the code has been adjusted for 
use with trichotomous items. 
 
Model: 

%Overall% 
f1 by u1-u3; 
f2 by u4-u6; 
[f1-f2@0]; 
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%c#1% 
f1-f2; 
f1 with f2; 
[u1$1-u6$1]; 
[u1$2-u6$2]; ! Mentioning second threshold of trichotomous item. 

  %c#2% 
f1-f2*; 
f1 with f2; 
[u1$1-u6$1]; 
[u1$2-u6$2]; 

 
Also using Input 4 as an example, the code can be adjusted for continuous items by mentioning 
the mean of the items, rather than threshold. 
 
Model: 

%Overall% 
f1 by u1-u3; 
f2 by u4-u6; 
[f1-f2@0]; 

%c#1% 
f1-f2; 
f1 with f2; 
[u1-u6]; ! Setting mean of items to be different across classes. 

  %c#2% 
f1-f2*; 
f1 with f2; 
[u1-u6]; 
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Table 1  
 
Simulated MI Data: Observed vs. Estimated Mean and Within-Class Residuals 
 
   Item y1 y2 y3 y4 y5 y6 
Observed Mean 0.948 0.784 0.755 0.729 1.721 0.74 
Estimated Mean 0.948 0.784 0.755 0.729 1.721 0.74 
Class 1 Residual 0.00 -0.01 -0.02 -0.01 0.04 -0.01 
Class 2 Residual 0.00 0.01 0.02 0.01 -0.04 0.02 
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Table 2 
 
Conduct Disorder Example: Model Comparison Results (n =1758) 
            

LMR  
Model 

Log-
likelihood  Par. BIC p-value 

BLRT    
p-value 

Latent Class Analysis 
One-Class -5018 13 10062   
Two-Class -4586 27 9374 0 0 
Three-Class -4540 41 9387 0.033 0 
Four-Class -4524 55 9460 0.095  
Five-Class -4513 69 9543 0.132  

Factor Analysis 
One-Factor -4561 26 9317   
Two-Factors -4561 27 9324   

Factor Mixture Analysis 
2-Class, 1-Factor      
  FMM-1 -4586 27 9374 0 0 
  FMM-2 -4537 28 9284 0.235 0.04 
  FMM-3 -4357 40 9374 0.006 0 
  FMM-4 -4536 41 9379 0.029 0 
  FMM-5 -4526 53 9449 1  
3-Class, 1-Factor      
  FMM-1 -4540 41 9387 0.034  
  FMM-2 *     
  FMM-3 -4524 54 9452 0.527  
  FMM-4 -4523 55 9481 0  
  FMM-5 -4496* 81 9600 1   

Note. * Log-likelihood not replicated. 
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Table 3 
 
Conduct Disorder Example: Unstandardized and Standardized Factor Loadings  
 
Loadings Unstandardized  Standardized 
Model FA FMM  FA FMM 
Number of Factors 1 Factor 2-Class, 1-Factor FMM-2  1 Factor 2-Class, 1-Factor FMM-2 
  Class 1 Class 2   Class 1 Class 2 
Items              
Suspend 0.90 0.90 0.90  1.81 4.41 1.07 
Expelled 0.68 0.47 0.47  1.36 2.31 0.56 
Stolen 0.49 0.36 0.36  0.99 1.75 0.42 
Runaway 0.61 0.47 0.47  1.22 2.31 0.56 
Lie 0.72 0.64 0.64  1.45 3.13 0.76 
Fire 0.96 0.81 0.81  1.92 3.95 0.96 
Truant 1.00 1.00 1.00  2.01 4.88 1.18 
Property 0.59 0.44 0.44  1.18 2.17 0.53 
Animal 0.67 0.42 0.42  1.34 2.06 0.50 
Sexual 0.53 0.4 0.4  1.07 1.97 0.48 
Fights 0.61 0.5 0.5  1.23 2.44 0.59 
Weapon 0.36 0.26 0.26  0.72 1.25 0.30 
Stolen 0.72 0.57 0.57  1.45 2.79 0.68 
Factor Variance 4.03 23.8* 1.40        

Note. * p > 0.05. 
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Table 4 
 
ADHD Example: Model Comparison Results (n = 994) 
 

LMR  

Model 
Log-

likelihood  Par. BIC p-value 

BLRT  
p-

value 
Latent Class Analysis 

One-Class -8378 18 16879   
Two-Class -7534 37 15323 0  
Three-Class -7320 56 15025 0 0 
Four-Class -7214 75 14944 0.016 0 
Five-Class -7155 94 14956 0.026 1 

Factor Analysis 
One-Factor -7448 36 15143   
Two-Factors -7232 37 14719   
Four-Factors -7129 42 14547   

Factor Mixture Analysis - Confirmatory 
2-Class, 1-Factor      
  FMM-1 -7534 37 15323 0  
  FMM-2 -7423 39 15115 0  
  FMM-3 -7217 55 14813 0  
  FMM-4 -7217 56 14547 0 0 
  FMM-5 -7161 73 14823 0  
3-Class, 1-Factor      
  FMM-1 -7451 39 15170 0  
  FMM-2 -7417 42 15123 0.002  
  FMM-3 -7135 74 14780 0.083  
  FMM-4 -7135 76 14792 0.164  
  FMM-5 -7072 110 14901 0.461   
2-Class, 2-Factor      
  FMM-1 -7534 38 15330 0  
  FMM-2 -7191 45 14691 0.339  
  FMM-3 -7131 56 14647 0.015  
  FMM-4 -7124 59 14655 0.535  
  FMM-5 -7090 75 14695 0.004  
3-Class, 2-Factor      
  FMM-1 -7338 40 14952 0  
  FMM-2 -7211 49 14659 0.004  
  FMM-3 -7080 75 14675 1  
  FMM-4 -7067 81 14691 0.015  
  FMM-5 -7038 113 14852 0.011  
2-Class, 2-Factor 
 Partial MI -7171 44 14646     

Factor Mixture Analysis - Exploratory 
2-Class,1-Factor -7165 73 14833   
2-Class, 2-Factor -7044 107 14824   
2-Class, 3-Factor -7001 139 14958   
2-Class, 4-Factor  **      
3-Class, 1-Factor -7065 110 14886   
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3-Class, 2-Factor -6979 161 15064   
3-Class, 3-Factor **     
3-Class, 4-Factor **         

 
Note. **  Heywood case. 
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Table 5 
 
ADHD Example: Factor Loadings  
 

Model FA 
FMM-4:  
2-Class 

FMM-3: 
 2-Class 

Number of 
Factors 2 4 1 2 

  
Factor 

1 
Factor 

2 
Factor 

1 
Factor 

2 
Factor 

3 
Factor 

4 
Factor 

 1 
Factor 

1 
Factor 

2 
Items                   
Attention 0.98*  1.00    -0.02 0.97*  
Distract 0.65*  0.68*    0.021 0.62*  
Mistake 0.53*  0.36*    -0.13 0.40*  
Listen 0.65*  0.52*    0.08 0.52*  
Instruct 0.86*  0.71*    -0.06 0.75*  
Organization 0.73*   0.34*   -0.12 0.61*  
Avoid 0.41*  0.27*    -0.01 0.32*  
Loses 1.00   1.00   -0.19 1.00  
Forget 0.95*     0.46*     -0.22 0.76*   
Seated  0.63*   0.58*  0.61*  0.61* 
Fidget  0.66*   0.62*  0.63*  0.65* 
Runs  0.91*   0.84*  0.91*  0.88* 
Quiet  0.46*   0.38*  0.45*  0.48* 
Blurt  0.53*    0.80* 0.50*  0.73* 
Turn  0.59*    0.78* 0.57*  0.67* 
Interrupt  0.59*    1.00 0.55*  0.95* 
Talk  0.38*    0.51* 0.37*  0.50* 
Motor   1.00     1.00   1.00   1.00 

Note. * p-value  < 0.05. 
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Table 6 
 
ADHD Example: Pattern Response Table for Two-class, Two-factor FMM-3. 
 

Freq. Inattention Items Hyperactivity Items   Factor Score Class Probs. 
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Class
1 

Class 
2 

Class One 
14 1 1 1 1 1 1 1 1 1 9 0 0 0 0 0 0 0 0 0 0 9 1.22 -5.13 0.58 0.42 
9 1 1 1 1 1 1 1 1 1 9 1 1 0 0 1 1 1 1 0 6 15 1.50 0.38 0.85 0.15 
6 1 1 1 1 1 1 1 1 1 9 1 1 1 1 1 1 1 1 0 8 17 1.59 2.08 0.62 0.38 
5 1 1 1 1 1 1 1 1 1 9 1 1 1 0 1 1 1 1 0 7 16 1.55 1.43 0.61 0.39 
5 1 1 1 1 1 1 1 1 1 9 0 1 0 0 0 0 1 1 0 3 12 1.38 -1.91 0.77 0.23 
4 1 1 1 1 1 1 1 1 1 9 1 1 0 1 1 1 1 1 0 7 16 1.53 0.94 0.85 0.15 
4 1 1 1 1 1 1 1 1 1 9 0 0 0 0 0 0 1 0 0 1 10 1.30 -3.39 0.90 0.10 
4 1 1 1 1 1 1 1 1 1 9 0 0 0 0 0 0 0 1 0 1 10 1.27 -4.10 0.77 0.23 
4 1 1 1 1 1 1 1 1 1 9 0 0 0 0 1 0 1 0 0 2 11 1.35 -2.41 0.97 0.03 
4 1 1 1 1 1 1 1 1 1 9 1 1 0 1 1 0 1 1 0 6 15 1.48 0.16 0.76 0.25 

Class Two 
122 1 1 1 1 1 1 1 1 1 9 1 1 1 1 1 1 1 1 1 9 18 1.65 2.84 0.18 0.82 
22 1 1 1 1 1 1 1 1 1 9 1 1 1 0 1 1 1 1 1 8 17 1.57 1.40 0.20 0.80 
18 1 1 1 1 1 1 0 1 1 8 1 1 1 1 1 1 1 1 1 9 18 0.65 2.78 0.23 0.78 
16 1 1 1 1 1 1 1 1 1 9 1 1 1 1 1 0 1 1 1 8 17 1.55 0.96 0.12 0.88 
15 1 1 1 1 1 1 1 1 1 9 1 1 1 0 1 1 1 0 1 7 16 1.52 0.39 0.07 0.93 
11 1 1 1 1 1 1 1 1 1 9 1 1 1 1 1 1 1 0 1 8 17 1.57 1.35 0.07 0.93 
8 1 1 1 1 1 1 1 1 1 9 1 1 1 1 0 1 1 1 1 8 17 1.54 0.84 0.05 0.95 
8 1 1 1 1 1 1 1 0 1 8 1 1 1 1 1 1 1 1 1 9 18 -.92 2.7 0.03 0.97 
7 1 1 1 1 1 1 1 1 1 9 1 1 1 0 0 1 1 1 1 7 16 1.5 0.02 0.05 0.95 
7 1 1 1 1 1 0 1 1 1 8 1 1 1 1 1 1 1 1 1 9 17 -.11 2.74 0.05 0.95 
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Figure 1. Latent Class Analysis Model Diagram. 
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Figure 2. Factor Analysis Model Diagram. 
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Figure 3. General Factor Mixture Model Diagram. 
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Figure 4. Factor Mixture Model-1: Diagram and Factor Distribution Plot. 
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Figure 5. Factor Mixture Model-2: Diagram and Factor Distribution Plot. 
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Figure 6. Factor Mixture Model-3: Diagram. 
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Figure 7. Conduct Disorder Example: Two-class Latent Class Analysis Profile Plot. 
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Figure 8. Conduct Disorder Example: Three-class Latent Class Analysis Profile Plot. 
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Figure 9. Conduct Disorder Example: Two-class, One-Factor FMM-2 Profile Plot. 
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Figure 10. CD Example: Two-class, One-factor FMM-2 Factor Distribution Plot. 
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Figure 11. ADHD Example: Four-class Latent Class Analysis Profile Plot. 
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Figure 12. ADHD Example: Two-class, Two-factor FMM-3 Profile Plot. 

 
 


