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This article describes the general time-intensive longitudinal latent class modeling frame-
work implemented in Mplus. For each individual a latent class variable is measured at each
time point and the latent class changes across time follow a Markov process (i.e., a hidden or
latent Markov model), with subject-specific transition probabilities that are estimated as
random effects. Such a model for single-subject data has been referred to as the regime-
switching state-space model. The latent class variable can be measured by continuous or
categorical indicators, under the local independence condition, or more generally by a class-
specific structural equation model or a dynamic structural equation model. We discuss the
Bayesian estimation based on Markov chain Monto Carlo, which allows modeling with
arbitrary long time series data and many random effects. The modeling framework is

illustrated with several simulation studies.

INTRODUCTION

Latent class analysis is primarily used in cross-sectional
studies where subjects are observed at one occasion only.
In longitudinal studies where observations are obtained at
several occasions and the number of occasions is small we
can use classic latent transition models to conduct latent
class analysis at each time point and study the changes in
latent class membership across time. This has been a pop-
ular approach for panel data (i.e., a small number, say <6,
of repeated measurements obtained from a relatively large
sample of individuals or cases). In the last several years,
however, intensive longitudinal data with many repeated
measurements (say >20) from a large number of individuals
or cases, have become much more common. These data are
often collected using smart phones or other electronic
devices, such that a latent construct can be measured
weekly, daily, or even hourly for extended periods of
time. This type of data is referred to as ambulatory assess-
ments (AA), daily diary data, ecological momentary
assessment (EMA) data, or experience sampling methods
(ESM) data (cf. Trull & Ebner-Priemer, 2014). The accu-
mulation of these types of data naturally leads to an
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increasing demand for statistical methods that allow us to
model the dynamics over time as well as individual differ-
ences therein using intensive longitudinal data.

The goal of the novel modeling framework we describe
here is to allow for the study of (a) a latent (or hidden)
Markov model that accounts for the switching between
different states (also referred to as latent classes or
regimes), with (b) individual differences in transition prob-
abilities modeled as random effects, and (c) the option of
dynamic relationships within each state through time series
analysis and multilevel extensions of this. Although there
have been combinations of some of these three elements
before (e.g., the regime-switching state-space model pro-
posed by Kim and Nelson (1999) combines a hidden Markov
model with dynamic relationships for single-subject data,
and Altman (2007) combined a hidden Markov model with
random transition probabilities to allow for individual differ-
ences in the switching process across individuals), to date
there has not been a framework that combines all three of
these elements simultaneously. The new framework pre-
sented here is based on combining two other frameworks:
dynamic structural equation modeling (DSEM, see
Asparouhov, Hamaker and Muthén (2016), which is one of
the major innovations of Mplus Version 8, and an extension
of the existing general multilevel mixture framework devel-
oped by Asparouhov and Muthén (2008). Both are briefly
discussed next.



258  ASPAROUHOV, HAMAKER, MUTHEN

The DSEM framework that is implemented in Mplus
Version 8 uses time series models for observed and latent
variables to account for the dependencies between obser-
vations over time. Such models date back to Kalman
(1960) and are applied extensively in engineering and
econometrics. In most such applications, however, multi-
variate time series data of a single case (i.e., N = 1) is
analyzed. In contrast, the intensive longitudinal data that
are currently gathered in the social sciences typically
come from a relatively large sample of individuals,
which gives rise to a need for statistical techniques that
allow us to analyze the time series data from multiple
independent individuals simultaneously; such an approach
is based on borrowing information from other cases,
while keeping the model flexible enough to allow for
subject-specific model parameters. The DSEM framework
implemented in Mplus accommodates this more complex
modeling need.

The other development that is fundamental for this pre-
sentation consists of an extension of the existing multilevel
mixture framework in Mplus. This framework is general-
ized in three ways. The first generalization is formed by
Bayesian estimation of multilevel mixture models, which
makes it possible to have much larger numbers of random
effects. This on its own is an important advantage because a
number of models that previously were unavailable or were
mostly theoretical due to extremely large computational
times are now possible using Bayes estimation. We illus-
trate this with several simulation examples.

The second generalization that we describe here is the
combination of the hidden Markov model (HMM) with the
multilevel mixture model. In the Asparouhov and Muthén
(2008) multilevel mixture framework it is possible to model
latent class intensive longitudinal data by estimating a two-
level mixture model where the cluster consists of all the
observations for one individual across time, but this model
does not allow us to study the correlation in the latent class
variable during consecutive periods (i.e., the autocorrela-
tion). In that multilevel framework latent class variables are
correlated due to being nested within the same individual
but not due to being in consecutive periods. The HMM with
subject-specific transition probabilities fills this gap. One of
the goals of intensive longitudinal analysis is to model
these two distinct sources of correlation: the within-indivi-
dual correlations due to the subject-specific effect (two-
level modeling) and the autocorrelation, that is, the correla-
tion due to proximity of observations (time series model-
ing). These two types of correlations are easy to parse out
from the data in sufficiently long longitudinal data.

The third generalization is the combination of DSEM
with the multilevel HMM, which implies that observed or
latent continuous variables can be autocorrelated both
through the latent class autocorrelation (i.e., the HMM),
and directly (i.e., through the dependencies over time in

the form of, for instance, autoregressive relationships using
DSEM). The latter appears to be essential if the observa-
tions are quite frequent; in the extreme, if the time between
observations converges to 0, we should expect not only that
the latent class variable will remain the same as in the
previous period, but also that the observed or latent vari-
ables that are used as class indicators remain almost
unchanged from one measurement moment to the next
(which means the autocorrelation within each class will
also be high). In practical applications we cannot determine
a priori if the observations are taken frequently enough to
warrant within-class autocorrelation and therefore one
should always consider the possibility for that.

The combination of DSEM with the multilevel mixture
model also implies that DSEM can be generalized to
nonhomogeneous populations, the same way finite mixture
structrural equation modeling (SEM) models generalize
cross-sectional SEM models to non homogeneous popula-
tions. Thus we can refer to this framework also as mix-
ture-DSEM. Most of the issues that arise in finite-mixture
models also arise in mixture-DSEM, such as how to
decide on the number of classes, how to avoid label
switching in Markov Chain Monk Carlo (MCMC) estima-
tion, what happens when the distribution of the variables
is nonnormal within a class, how to choose starting values
for the estimation, and so on. One can draw a parallel to
cross-sectional mixture modeling, and use that as a guid-
ing principle for what to expect in the mixture-DSEM
framework. The framework we present can also be
thought of as the merger of time series, structural equa-
tion, multilevel, and mixture modeling concepts in a gen-
eralized modeling framework.

Consider the following hypothetical example. A group
of patients answer daily a brief survey to evaluate their
current state. Based on current observations, past history,
most recent history, and similar behavior from other
patients we classify the patient into one of three states:
State 1: healthy, State 2: increased risk of relapse, State 3:
relapse. The model needed for this kind of classification is
included in this framework. If such an automatic diagnosis
program is implemented, it can potentially reduce cost of
care and improve outcome by identifying the critical needs
of the patient. Although this example is purely hypothetical
it certainly highlights the wvast potential of this
methodology.

The remainder of the article is organized as follows.
First, we present the DSEM framework, which can be
used to do single-subject time series analysis, as well as
multilevel extensions of this. The latter has also been
referred to as dynamic multilevel modeling. Second, we
extend the DSEM framework to a mixture model, thus
combining the (single or multilevel) time series models
with a within level latent class modeling. We then consider
some implications the Bayesian estimation has on the



general multilevel mixture modeling, unrelated to time
series modeling. Simulation studies are presented on three
multilevel mixture models that are now possible because of
the Bayesian estimation: multilevel latent class analysis
with measurement noninvariance, the unrestricted two-
level mixture model, and multilevel latent transition analy-
sis (MLTA) with cluster specific transition probabilities. We
then introduce the HMM for single-level models and illus-
trate the model with a simulation study. Finally we combine
the previously discussed modeling techniques to formulate
the general dynamic latent class analysis (DLCA) model
and illustrate the model with three simulation studies: a
simple two-class DLCA model, the multilevel markov
switching autoregressive model (MMSAR), and DLCA
model with regime switching for the latent factor. We
conclude with a discussion for future research.

DYNAMIC STRUCTURAL EQUATION MODEL

Here we present an overview of the DSEM framework
implemented in Mplus. This is a general modeling frame-
work intended to encompass diverse DSEM models that
have already appeared in the literature, including many
time series models. DSEM can be used to estimate struc-
tural models with intensive longitudinal data. A more com-
plete discussion is available in Asparouhov et al. (2016).
Consider the DSEM model of lag L. Let Y}, be an observed
vector of measurements for individual 7 at time . We begin
with the usual within-between decomposition

Yit = Yl,iz + Yz,i (1)

where Y, ; is the individual-specific random effect and Y ; is
the individual i deviation at time ¢. The two components are
assumed to be normally distributed random vectors and are
used to form two separate sets of structural equations—one
on each level. The Level 2 structural equation model takes
the usual form

Y27,- =vy + A27]2,i + €, 2)
N =02+ Bany; +Toxai + &2, 3)

where x,; is a vector of individual-specific time-invariant
covariates and 7, ; is a vector of individual-specific time-
invariant latent variables. The variables ¢, ; and &, ; are zero
mean residuals as usual and the remaining vectors and
matrices in these equations are nonrandom model
parameters.

The within-level structural equation model consists of
two equations that are used to model the contemporaneous
and lagged relationships; that is,
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L
Yl,it = ZAIJ,I’/L[.FZ + &1t “4)
=0

L
Mis =01+ 231,1‘,1771‘,-‘,71 + e + & 5)
=0

Here x; ; is a vector of observed covariates for individual i
at time 7 and 7, ;, is a vector of latent variables for indivi-
dual i at time z. The difference between the standard struc-
tural model and the model in Equations 4 and 5 is that all
the elements in the observed and the latent vectors on the
left side have the same time index, where as the latent
variables on the right side are associated with both the
same occasion, but also times t—1,...,# — L, showing
that these preceding latent variables can now be used as
predictors for the observed and latent variables at time ¢.

In the proceding equations we allow random loadings (in
the As), random structural coefficients (in the Bs), random
slopes for the exogenous variables (in I'), and random
factor intercepts (in @) on the within level. Thus, every
within-level parameter can be random or nonrandom; that
is, invariant across individuals. All of the random effects
parameters are modeled at the between level as latent
variables, meaning they are part of the vector #,, and are
modeled in Equation (3). For identification purposes
restrictions need to be imposed on the proceding model
along the lines of standard structural equation models.
The model is the time-series generalization of the time-
intensive model described in Section 8.3 of Asparouhov
and Muthén (2016).

Categorical variables can easily be accommodated in
this model through the probit link function. For each cate-
gorical variable Yj; in the model, j = 1,...,p, taking the
values from 1 to m;, we assume that there is a latent

variable Y;t and threshold parameters tij,...,T,—1; such
that

Yjp=m < tuoyj < Yj<tyy (6)
where we assume 1y, = —o0 and 1,,; = oo. This definition

essentially converts a categorical variable Y, into an unob-
served continuous variable Y. The model is then defined
using Y, instead of Yy, in Equation (1).

The DSEM model just described is a two-level model,
where the individual is the clustering variable, and can be
used to estimate structural models for data sets with multi-
ple individuals over an unlimited time period. This model is
the two-level extension of the dynamic factor model
described in Molenaar (1985), Zhang and Nesselroade
(2007) and Zhang, Hamaker, and Nesselroade (2008).

Note that for # = 1, ..., L, the latent variables 7, ,,_, used
as predictors in Equations 4 and 5 have a zero or negative time
index variable. This is a well-known problem in the time
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series literature and various solutions have been proposed. To
this end, we treat these as auxiliary parameters that have a
prior distribution. Two different methods are implemented in
Mplus. The first one requires the prior distribution to be
specified before the estimation of the model. The second
option starts assuming that these initial variables are zero for
the first MCMC iteration and in the next 100 MCMC itera-
tions the prior for these auxiliary variables are updated to be
the normal distribution with mean and variance equal to the
sample mean and the sample variance of the corresponding
imputed latent variables with a positive time index. After the
first 100 iterations the priors are no longer updated to retain
proper MCMC estimation. Note here that in general the influ-
ence of the initial values, or more accurately stated, the
influence of the priors for these initial conditions is minimal
when the time series length is sufficiently long. For practical
purposes a length of 50 is sufficiently large to eliminate almost
entirely the effect of the initial value priors (but note that this
is not necessarily the case for the effect of the other priors used
for the model when the number of individuals in the sample is
small).

The estimation of the DSEM is a combination of the
Bayes estimation method described in Zhang and
Nesselroade (2007) and Zhang et al. (2008) for single-
level DSEM and the two-level estimation described in
Asparouhov and Muthén (2010); when [Y, ;]| is generated
in the MCMC, the latent variables are conditioned on, thus
the two procedures can easily be combined. That is, once
the between-level parts have been generated [Y»;|*], then
Y1 = Yy — Y5, can be computed, and for Y; ;; the model is
a single-level DSEM model such that the Zhang and
Nesselroade (2007) procedure can be applied to it. The
latter includes the generation of the latent variables 7, ,
which are then multiplied by the corresponding loadings
and subtracted from Yj. At that point the Asparouhov and
Muthén (2010) two-level algorithm applies because the
within-cluster data are no longer correlated.

DSEM MIXTURE MODEL

Let S;; be a categorical latent variable for individual i at
time ¢; that is, S;; is a within-level latent class. In the time
series literature such a latent class variable is more often
referred to as a latent state variable; therefore, we use S as
the variable name rather than the traditional C. Suppose
that S;; takes values 1,2,...,K where K is the number of
classes in (or states of) the model. The DSEM mixture
model consists of Equations 1 through 5, however
Equations 4 and 5 now depend on §;; as follows:

L
[Yl.it|Sit = S] =Vis+ ZAI,Ls’?i,;f] + & @)
=0

L
[’7[,:|Sit = S] =as+ ZBI-,I,S’]L[—I + Iy oxie + e (8)
=0

The residual covariance matrices of g; and of &, are also
state specific, meaning they depend on s. If the model
includes categorical variables, then Equation 6 also
becomes state specific:

[Yie = m|Sie = 5] & Ty < YTy )
The distribution of S, is given by

Exp(as)
- ) (10)

Z: Exp(aj)

s=1

P(Siy = s)

where o;;, are normally distributed random effects. For
identification purposes a;x = 0. These random effects a;,
are included as part of the between-level latent variable
vector 7, ;. This implies also that individual-level predictors
X2, can be used to predict P(S; = s) through the structural
Equation 3.

To estimate this model we can utilize the single-level
mixture model estimation described in Section 8 of
Asparouhov and Muthén (2010). Conditional on o;, and
the rest of the between-level random effects, the updating
of Sj; is the same as in single-level mixture models. To
update a;; we use a Metropolis step with a multivariate
normal symmetric jumping distribution. Given the current
estimates a;,, the proposed ‘o;; values are selected from the
following distribution:

Qs NN(aisw 2)

where X is proportional to the identity matrix. The parameter
in X is updated within a burn-in period to maintain proper
accept-reject ratios, and after the burn-in period the para-
meter is no longer updated to ensure proper MCMC estima-
tion. The burn-in period is not used for parameter inference,
but only to stabilize the estimate for the jumping distribution.
In Mplus by default 1,000 burn-in iterations are used.
The new draw oy is accepted with probability

Prior(os)Likelihood (S| dis)
" Prior(ays) Likelihood (Sy|as)

)

Acceptance ratio = min(1

where Prior(a;) is the density function implied by the
between-level model and is conditional on all other
between-level variables including other between-level ran-
dom effects, and the Likelihood(S;|a;s) is simply the like-
lihood for the nominal variables S; given the implied
distribution based on Equation 10:



Exp( aun
K

! Z Exp(a,s)

s=

Likelihood (Si|as) =

Note here that the Metropolis step is performed for each
cluster separately and that the jumping distribution is iden-
tical in all clusters. This Metropolis step can be further fine-
tuned to improve the mixing. Possible avenues for improve-
ment are to have cluster-specific jumping distributions, and
jumping distributions with Xs that are proportional to the
sample covariance matrix of a; rather than the current
diagonal matrix.

This above model is suitable for modeling intensive
longitudinal data but not completely. Within each class
DSEM allows us to model autocorrelation directly on
the observed variables via the time series model for the
latent continuous variables. The model in Equation 10
implies that the latent class distribution changes across
individuals, but it does not allow us to model the auto-
correlation of this latent class variable. Put differently,
the model in Equation 10 implies that the values of the
latent class variable at two consecutive time points for
the same individual are conditionally independent (con-
ditional on the random effects o). For intensive long-
itudinal modeling applications, this would be an
unrealistic assumption. We address this issue later by
including the HMM, but first we focus on exploring the
proceding modeling framework as a two-level mixture
modeling framework.

MULTILEVEL MIXTURE EXAMPLES

In this section we consider several examples that are now
feasible due to the fact that we are using the Bayesian
estimation and can estimate models with an unlimited
number of random effects. Although such models were
theoretically feasible even with the maxumum likelihood
ML estimation, using Monte Carlo integration for example,
the heavy computational demand has made these impracti-
cal. Consider, for example, a model that has no other
between-level random effect except a;;. The ML estimation
uses K — 1 dimensions of numerical integration, making
this model computationally demanding for models with
more than three classes. To reduce the dimensions of
numerical integration we can assume that o, are propor-
tional, but this is not a realistic assumption. With the
Bayesian estimation we avoid this problem and can esti-
mate completely unrestricted variance covariance for o
with no substantial increase in the computational time.

We temporarily depart from the framework of intensive
longitudinal data and focus on the standard two-level setup
instead. Although the observations are nested within clus-
ters, they are naturally unordered within each cluster (i.e.,
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there is no time ordering of the within-cluster observa-
tions), and they are conditionally independent given the
cluster-level random effects. The indexes i and ¢ are thus
replaced by j and i, where i refers to the individual and j
refers to the cluster.

Example 1: Latent Class Analysis with Clustered Data
and Measurement Noninvariance

The most common approach for estimating a latent class
analysis model with clustered data is to use robust ML
estimation. The point estimates essentially ignore the
clustering, and the standard errors are adjusted upward
to account for the dependence of the observations within
the clusters using the sandwich estimator or the jackknife
estimator (see Patterson, Dayton, & Graubard, 2002).
There are several problems with this approach. First, the
approach does not allow cluster-specific class distribu-
tion; that is, information from other members of the
same cluster cannot contribute to the estimation of class
membership for an individual. Class membership is esti-
mated using the point estimates only, which ignore the
clustering. Second, the approach is based on full mea-
surement invariance; that is, it is assumed that item
thresholds are identical across clusters. For continuous
latent variables accommodating measurement noninvar-
iance in, for instance, cross-cultural studies is essential
(e.g., Davidov, Dulmer, Schluter, & Schmidt, 2012; De
Jong, Steenkamp, & Fox 2007). A similar issue arises
also in latent class analysis. For example, if a market
segmentation study uses a sample from multiple countries,
it will be unrealistic to assume latent class analysis invar-
iance across the countries. If measurement invariance does
not hold, assuming it will likely yield spurious classes.
Furthermore, when the number of groups is more than a
few, the differences across groups should be modeled as
random effects rather than as fixed effects to preserve the
parsimonious nature of the model.

In this section we consider a latent class analysis mea-
surement noninvariance model that resolves these pro-
blems. A similar model is also considered in De Jong and
Steenkamp (2009), who also used Bayesian estimation. The
model is included here as it is encompassed by the general
framework that we propose.

We illustrate the latent class analysis measurement
noninvariance model with a simple example and a small
simulation study. Consider a model with K =3 latent
classes measured by eight binary indicators. Let U,
represent the score on indicators p for individual i in
cluster j. The conditional probability for scoring 1 on
such a binary indicator can be expressed as

P(Upyj = 1|Cyj = k) = O(1p1 + )
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where T, is a nonrandom parameter (the usual threshold
parameter) and g, is a measurement noninvariance zero
mean random effect that allows certain indicators to have
larger or smaller probability in cluster j than the population
values, beyond what the latent class distribution explains.
For example, certain measurement instruments might not
be universally accurate, or might not be universally good at
separating the classes. Note that this probability is condi-
tional on the individual being in the kth class. The prob-
ability that individual 7 from cluster j is a member of the kth
class is expressed as

_ Exp(ax + o)

= )
>~ Exp(os + ajs)

s=1

The parameters oy are nonrandom effects that fit the popu-
lation-level class distribution and aj; are zero mean random
effects that allow cluster-specific class distribution. As
usual for identification purposes ax = ajx = 0.

Using this model we generate 100 clusters of size 50 for
a total sample size of 5,000 using the following parameter
values 1,1 = 1, 10 = —1, 1,3 = —1 for p < 4, 1,3 = 1 for
p>4, Var(ey) =02, Var(ox) =03, a; =0.8, and
a; = 0.4. The ML estimation for this model will use 10-
dimensional numerical integration (i.e., 8 noninvariance
random effects ¢, and 2 latent class distribution random
effects a;) and will be very computationally demanding.
With the newly developed option of Bayesian estimation it
takes only 40 seconds for each replication. We generate and
analyze 100 samples. Table 1 contains the results from this
simulation for a sample of the parameters. From these
results we see that the parameter estimates are unbiased
and the coverage is near the nominal levels.

Example 2: Unrestricted Two-Level Mixture Model

Another example of a model that is now easy to estimate,
because of the use of Bayesian estimation, is the unrest-
ricted two-level mixture model. Let Yj; be a vector of
observed continuous variables for individual 7 in cluster j.
The model we are interested in is given by the following
equations:

TABLE 1

Simulation Results for a Noninvariant Latent Class Analysis
Parameter True Value Abs. Bias Coverage
T11 1 .00 92
Ti2 -1 .01 97
T3 -1 .01 .96
Var(ey) 0.2 .00 98
o 0.8 .01 95
Var(aj;) 0.3 .01 .93

Yy = Ypj+ Yy
YbJNN(Oa Zb)
[YW-,ij|Cij = Kk|~N (1, Zur)

Exp(ay + aji)
K
>~ Exp(og + ajs)

s=1

where Cj; is a latent class variable, Y, is the cluster-level
random effect, and , X, and X, are unconstrained mean
and variance covariance parameters.

One simple reason to be interested in this model is that
the model is the saturated two-level mixture model. Thus
any two-level mixture model is nested within this model
and can be compared to this model to detect misfit. The
model is also of interest in the case of observed latent
classes; that is, the two-level multiple group model when
the grouping variable is a within-level grouping variable.
Such a model would require numerical integration if esti-
mated with ML in Mplus (although theoretically it is not
needed), making the estimation prohibitive in multivariate
settings.

This model is one of the seven multiple group multilevel
models discussed in Asparouhov and Muthén (2012)
intended to explore the various possible relationships
between cluster and group effects, which can be used to
determine, for example, if cluster effects are equal or
unequal in the different groups. Several other models
from Asparouhov and Muthén (2012) that were difficult
to estimate in multivariate settings will also be easily
accessible within this multilevel mixture framework based
on the Bayesian estimation. With the Bayesian estimation
this unrestricted model can also easily include categorical
variables and thus two-level LCA with conditional depen-
dence can be estimated similar to the single-level model
described in Asparouhov and Muthén (2011).

We illustrate the unrestricted two-level mixture model
with a small simulated example. Consider a two-class mix-
ture model where the latent class variable is measured by (3)
continuous indicators. The entries of the within-level var-
iance covariance matrix for class k are denoted by 6, and
the mean of the ith variable in class & by p;,. We generate data
using the following parameters: p,; = —1 and p, = 1; the
within-level variances in Class 1 are 1 and the three covar-
iance values are 0.2, 0.3, 0.3; the within-level variances in
Class 2 are 0.6 and the covariance vaues are 0.3, 0.4, 0.2; and
the between-level variances are 1 and the covariances are 0.3,
0.4, 0.1. The class distribution parameters are a; = 0.8 and
Var(oj;) = 0.5. The sample consists of 200 clusters of size
50. We generate and analyze 100 data sets. Table 2 contains
the results of the simulation for a selection of the parameters.
Each replication takes about 14 seconds to complete. It is



TABLE 2
Simulation Results for an Unrestricted Two-Level Mixture Model
Parameter True Value Abs. Bias Coverage
o111 1 .00 94
G121 0.2 .00 93
T -1 .00 .96
0112 0.6 .00 .96
G122 0.3 .00 95
U 1 .00 97
(3] 0.8 .01 95
Var(a;;) 0.5 .01 .90

clear from the results that the parameter estimates are
unbiased and the coverage is near the nominal level of 95%.

Example 3: Multilevel Latent Transition Analysis with
Cluster-Specific Transition Probabilities

Our primary interest in multilevel latent transition analysis
stems from the idea that to be able to model latent class
autocorrelation across time, we have to develop as a build-
ing block the relationship between two latent class vari-
ables in multilevel settings. Once such a building block is
established, we can use it in the intensive longitudinal
setting as the model relating two consecutive latent class
variables, thus accounting for the sequential dependency
there might be between the states (i.e., classes) a person
is in at consecutive time points. In this section, however,
we still postpone the discussion of intensive longitudinal
data and we shall consider the multilevel level taltent
transition analysis model in its own right, focusing on
more traditional panel data (consisting of a small number
of repeated measures).

In Asparouhov and Muthén (2008) a two-level latent
transitional model is discussed and estimated with the ML
estimation method. The latent transition analysis is based
on the following example: Students are nested within
schools and are classified in (2) classes at two separate
occasions. We are interested in how the transition probabil-
ity P(C,|Cy) varies across schools, where C; and C, repre-
sent the latent class variables at these separate occasions.
Figure 1 gives a graphical representation of this model, but
the precise model used in Asparouhov and Muthén (2008)
is given by the following equations:

P(Cl,zz:C):M an

> Exp(a)
k=1

E. . ]
P(CZ-,I'J' = d|C1,lj = c) == xp(azfd +ycd) (12)

> Exp(ooje + Yo
k=1
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Un, Us, U

FIGURE 1 Two-level latent transition model.

where for identification purposes ajx = Gk = Y.k =
Yxa = 0, as usual.

Consider the simple case of K =2 classes. The para-
meter y;, represents the regression effect from C; to C, and
gives a way for C; to affect the distribution of C,. Because
that is a fixed coefficient, however, the model has just two
random effects a;;; and ay;;, which implies that the ML
estimator would use two-dimensional numerical integration
to estimate this model. In contrast, the joint distribution of
the two binary latent variables has 3 df and to be able to fit
that distribution for every cluster there should really be
three random effects.

Here we propose a new two-level multilevel latent tran-
sition analysis model that resolves this problem. The
Bayesian framework can easily accommodate any number
of random effects and thus we can easily estimate the full
(3) random effects model that is needed for the two-class
situation. The new model is given by the following
equations:

Exp(a;.
P(Cy; =c) :# (13)
1;1 Exp(oyi)
Exp(o,
P(szl.'f:d|clﬁij:C):Kp#d) (14)
1;1 Exp(ajck)

where again for identification purposes a;x = ajcx = 0. In
the 2-class example the three random effects are a;;, a;;;,
and a;; and they can be reformulated as follows

a1 = log{P(C1 = 1]j)/P(C1 = 2|j)} (15)
Qi1 = lOg{P(Cz = 1|jv C = 1)/P(C2 = lev C = 1)}
(16)

021 = lOg{P(CZ = llj, C1 = 2)/P(C2 = 2|j, C1 = 2)}
)

This new multilevel latent transition analysis model is
sufficiently flexible to be able to fit any cluster-specific
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TABLE 3

Simulation Results for a Multilevel Latent Transition Analysis
Parameter True Value Abs. Bias Coverage
E(Y1|C =1) 1 .01 .98
E(Y,|Cy =2) -1 01 99
Var,, (Y1) 1 .00 96
Varb(Yl) 1 .04 94
E(ayj) 5 .00 .95
Var(a) .05 .00 .92
E((X”j) -5 .00 94
Var(a;;) .05 .02 .89

transition model. The model defined in Equations 11 and 12
is equivalent to the model defined in Equations 13 and 14,
if and only if Var(aj2; — a;1;) = 0; that is, if the difference
between these two random effects is a constant (equal to
v1;) independent of the cluster j. Note also that, as with any
other between-level effects, the random effects of the tran-
sition probabilities can be regressed on between-level
predictors.

The estimation algorithm for the multilevel ltaent transi-
tion analysis model is again the MCMC algorithm. For the
update of the random effects aj; and @, we use a
Metropolis step similar to the one latent class variable
case. Note here that if cluster sizes are smal, the joint latent
class distribution tables will have empty cells that will lead
to logits of infinity; that is, the random effects will have
arbitrary large values that in turn will result in biases and
overestimation for Var(a;.;). We recommend cluster sizes
with at least 50 observations to avoid this problem.

We illustrate the multilevel latent transition analysis
model with the following simulation study. Each of the
two latent class variables are measured by (4) continuous
indicators with means in Class 1 set to 1, means in Class 2
set to —1, and within-level and between-level variances for
the indicators all set to 1. The means of the random effects
from Equations (15 through 17) are 0.5, 0.5, 1, and the
variances are set to 0.05. We generate and analyze 100 data
sets using 100 clusters of size 50. Table 3 shows the results
of the simulation study for a subset of the parameters. The
parameter estimates show almost no bias and the coverage
is near the nominal level of 95%.

THE HIDDEN MARKOV MODEL

In this section we discuss the single-level HMM. We use a
single-level model to simplify the discussion. From a prac-
tical point of view, the single-level HMM™ can be used to
analyze time series data from a single person; see, for
example, Hamaker and Grasman (2012) and Hamaker,
Grasman and Kamphuis (2016). Analyzing data from a

single person, or analyzing data separately for each indivi-
dual in a replicated time series design, has the advantage
that different models can be used for different individuals,
that is, the best fitting model can be different for different
individuals and can be used to identify person-specific
dynamics that might be characteristic of, for instance, a
psychological disorder. Such an idiographic approach has
been advocated for decades in psychology (cf. Molenaar,
2004). The advantage of analyzing a sample of individuals
from the entire population, rather than a single person, is
that information is accumulated and borrowed to obtain
more stable estimates. In addition, when we analyze a
sample of the population, we can make inference for the
entire population, wehereas when we analyze a single per-
son we can make inference only about the future behavior
of that one person. In this section we focus on the time
series data for a single person and in particular the single-
level HMM.

The HMM has two parts: a measurement part and a
Markov switching part. The measurement part is like any
other mixture model. It is defined by P(Y;|C;), where Y; is a
vector of observed variables and C; is the latent class or state
variable at time ¢, which takes on values 1,...,K. The
Markov switching (or regime switching) part is given by
the transition matrix P(C;|C;_;), which allows us to correlate
the latent class variable over time with itself. In single-level
models we use the transition matrix directly as model para-
meters so that we can use the Dirichlet conjugate priors for
these parameters and avoid the Metropolis step in MCMC.
The size of the transition matrix Q = P(C,|C,_1) is K by K,
but because the columns add up to 1, the number of indepen-
dent parameters in the Markov part of the model is K (K — 1).

In the HMM model p-P(C;) is not a model parameter.
These marginal probabilities are implicitly modeled and
represent the stationary distribution of C;, that is, the dis-
tribution of C; as ¢ increases to infinity. It can be obtained
implicitly from the stationary assumption that P(C;) is
independent of ¢, that is, from the equation QOp =p.
Because the first K — 1 equations in this linear system
added up give the last equation, the rank of the matrix Q
is K — 1 and thus the linear system Op = p alone cannot be
used to solve for p. The most common way to solve for p is
to replace the last equation in that linear system with the
equation p; + ... +px = 1.

The HMM we consider here is essentially an autoregres-
sive model of order 1, meaning that the state variable C;
affects the state variable in the next period C;; but it does
not have a direct effect on C;5; that is, C; only affects C;.,
indirectly through the value of C,;.

To estimate the HMM we modify the latent class updat-
ing step of the MCMC mixture estimation algorithm given in
Asparouhov and Muthén (2010). In the HMM estimation the
latent class variables are updated sequentially. We first
update C; given the conditional distribution P[C||«],



conditional on everything else, including the latent class
variable at all other times. We then update C, from the
conditional distribution P[C;|%], and so on. It turns out that
the conditional distribution of C; depends only on C;_;, C;1
and the observed class indicators Y, at time ¢. Using the
transition matrix Q = P(C/|C,-) we first compute

P(CH,I‘C[ = k)P(C[ = k|Ct,1)
K
Z P(CH.] |Ct = k)P(Ct = k|Ct_])
k=1

P(Ct = k|Ct—17Cz+1) =

and then we use that to compute the posterior distribution
for C;

P(Ct - k|Cl‘—1)Ct+1a YZ)
P(Y,|C, = k)P(Cz = k‘C,,l, Ct+1)

e .
Z P(Yt|ct = k)P(Ct = k|Ct71, Ct+1)
k=1

For completeness we have to specify how we treat the
initial condition Cy. Just like in DSEM, we treat that as
an auxiliary parameter that can have its own Dirichlet prior
distribution. The prior can be prespecified or it can be
automatically determined by the algorithm based on the
distribution of C; obtained during a burn-in period.

The updating of the transition matrix Q in the MCMC
estimation is straightforward. Let n be the matrix of current
frequencies; that is, n; is the number of time periods ¢ for
which C,_; =i and C; = . Consider the updating of the ith
column of the transition matrix ¢; = P(C;|C,—; = i). If the
prior of g, is the Dirichlet distribution D(r;) then the poster-
ior distribution [¢;|C;] is the Dirichlet distribution D(r; +
n;) where n; is the ith column of n.

We illustrate the HMM with the following simulation
study. Consider a two-class HMM where each class is mea-
sured by three binary variables, P(U,; = 0|C; = 1) = ®(—1)
and P(U, = 0|C; = 2) = ®(1); that is, the threshold para-
meters in Class 1 are t,) = —1 andin Class 2 are 7, = 1. The
transition matrix is specified as follows ¢;; = P(C, =
1|C;_| = 1) =0.9 and qi2 = P(Ct = 1|C;_| = 2) =0.25.
These are all the parameters in this model: three thresholds
in each class and two parameters in the transition matrix,
making for a total of eight parameters. Using the method

TABLE 4
Simulation Results for a Hidden Markov Model
Parameter True Value Abs. Bias Coverage
T11 -1 .00 95
T12 1 .00 91
q1 0.9 .00 94
q12 0.25 .01 97
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described earlier, above one can compute the marginal dis-
tribution of C;, P(C; = 1) = 5/7. We generate and analyze
100 samples of size 1,000. To avoid dependence on the initial
value, we start with the first class being 1, but we discard the
first 10 observations of the sample. It takes 1 second on
average to estimate this model for each sample. The results
of the simulation are presented in Table 4 for several of the
model parameters. The parameter estimates are unbiased and
the coverage is satisfactory.

Various other interesting models can be estimated within
the single-level time series mixture framework in Mplus.
Single-level DSEM models can be combined with a single-
level HMM to obtain a more rich set of examples. Several
such examples are presented in Hamaker et al. (2016).

For the remainder part of this article we return to the
framework of twolevel mixture models where the cluster is
an individual and the observations within the cluster are the
time series data for that individual, because we are now
finally in a position to present a general latent class analysis
models for intensive longitudinal data.

DYNAMIC LATENT CLASS ANALYSIS

In this section we give a complete definition of the
general dynamic latent class analysis DLCA model.
However, this definition is nothing more than a combina-
tion of the ideas presented in the previous sections; that
is, the DSEM mixture model, the single-level HMM, and
the multilevel latent transition model. Figure 2 sum-
marizes how the different modeling ideas are combined
to arrive at the DLCA model.

We begin with the decomposition of the observed vari-
able Y}, of individual i at time ¢ into a within and a between
component; that is,

Y=Y+ Y2, (18)

Let S;; be a latent class or state variable for individual i at
time ¢. The model for Y) ; is a class-specific DSEM model

L
[YI .it|Sit = S] =Vis+ Z Alﬁl,sﬂi,t_z + & (19)
=0
L
idlSi=s] =015+ > Brush+Tisxic+ & (20)
=0

If Y}, that is, the jth variable of the observed vector Yy, is a
categorical variable

Yig =m|Sy =5 & Ty < Y

ljt< ijs (2 1 )

The latent class variable S;; follows a Markov switching
model with subject-specific transition probability
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Exp(aige)
K

> Exp(oue)

k=1

P(S[[ = d|Sl"t71 = C) = (22)

where a;4. are subject-specific random effects. For identifi-
cation purposes a;x. = 0.
Finally, at the between level we have

YVai=va+ Aoy, + 6, (23)

Ny =02+ Bony; +1oxa; + &, 24)
where 7,; contains all subject-specific random effects,
including the random transition probabilities effects ajq4e,
as well as all random intercepts, loadings, and slopes.

We estimate the model with MCMC where the estima-
tion is nothing more than combing the updating steps
described earlier.

DLCA EXAMPLES

In this section we illustrate the DLCA model with three
simulation studies: a simple two-class DLCA model, the
MMSAR, and DLCA model with regime switching for the
latent factor.

Example 1: Two-Class DLCA

In this section we illustrate the DLCA with a simple two-
class simulation example. The sample consists of 200 indi-
viduals, with 100 observation times each, where the latent
class variable at each time point is measured by 4 binary
indicators. We allow the model to be subject specific; that
is, we allow the threshold parameters for the class indica-
tors to vary slightly across individuals

TABLE 5
Simulation Results for the Two-Class Dyniamc Latent Class
Analysis
Parameter True Value Abs. Bias Coverage
T11 1 .00 97
T12 -1 .00 .99
0; 0.1 .00 .92
a; 1 .00 .96
o1 0.05 .01 .89

P(Upir = 0[Sy = k) = O(1pr + &)

where €;,~N(0,0,) is a subject-specific random effect for
each indicator. In this simulation we use 6, = 0.1, 7,; =1,

and 1, = —1. The latent class Markov switching model is
given by
Exp(ayr)
i1 =PS;y=1S1=1)=—+—F"—
P = P = e =) = )
Exp(a;z)
n=PS;y=1|Sy_1=2) = ——"—
R v
a;~N (o, o))
The state transition matrix is
Pi1 P2
l—pi 1—pp
In this simulation a; = 1, a, = —0.5, and 6; = 0.05. This

model has 17 parameters: Each indicator variable has one
threshold in each class and a between-level variance for the
subject-specific threshold deviation, making for a total of 12
parameters, plus the 5 parameters for mean and variance
covariance for the transition matrix random effects «;; and a;;.

LTA

MLTA

Multilevel
Mixture

Mixture

Multilevel
Multilevel
SEM
SEM
DSEM
Time-series /

FIGURE 2 Arriving at the dynamic latent class analysis model.

DSEM

—> DLCA

Note. SEM=structural equation modeling; DSEM=dynamic structural equation modeling; LTA=latent trait analysis; MLTA=multilevel latent trait analysis;

HMM=hidden markov model; DLCA=dynamic latent class analysis.



TABLE 6
Simulation Results for a Multilevel Markov Switching Autoregressive
Model
Parameter True Value Abs. Bias Coverage
W 1 .00 91
B, 0.4 .01 .94
0, 0.9 .01 93
o 1 .02 .92
o} 0.05 .01 .96
c 1 .03 .96

We simulate and analyze 100 samples. It takes about 20
minutes to estimate this model for each data set. The results
of the simulation for a subset of the parameters are given in
Table 5. The estimates are unbiased and the coverage is
near the nominal level of 95%.

Example 2: Multilevel Markov Switching
Autoregressive Model

The markov switching autoregressive model (MSAR) was
used in Hamaker et al. (2016) to analyze bipolar disorder
using data from individual patients. Here we consider the
multilevel version of this model that can be used to analyze
not just a single patient, but an entire sample. The differ-
ence between this model and the model described in the
previous section is that the autoregressive effect can be
estimated not just for the latent state variable, but also
directly for the latent state indicator. An MMSAR model
with two regimes can be summarized with the following
equations

Yit = Yz,; + Yl,it

Yiu= Us, + BS,, Yl,it—l + €irs,

. Exp(a--)
P(S[t == 1|S”71 :J) = H_Eixpl(]a)
ij

a;~N(ay,07), Y2,~N(0,0).

We conduct a simulation study using a sample with 100
individuals and 100 observations for each individual. There
are 11 parameters in this model. For each class we have 1,
B, and O = Var(e;y) for a total of six parameters. The
remaining five parameters are oy and o; for each of the two
classes as well as the between-level variance parameter o.
The following parameter values were used for the data
generation: state-specific means pu; = 1 and p, = —1, auto-
regressive parameters ; = 0.4 and , = 0.2, residual var-
iances 8; = 0.9 and 0, = 0.7, mean logits a; =1 and
a; = —0.5, between variance ¢ = 1, and variance of logits
random effects o; = 0.05. We generate and analyze 100
samples. It takes about 15 minutes on average to estimate
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one replication. The results for some of the parameters are
presented in Table 6. The point estimates show almost no
bias and the coverage is near the nominal level.

It is interesting to note in this model that the latent class
variable appears to have just one indicator. However, due to
the time series nature of the model, the latent class variable
stays the same in time segments (i.e., for several consecutive
time points), and thus one can assume that the latent class
variable is measured not just by the observation at that point,
but also, albeit to a smaller extent, by measurements at the
neighboring time points.

The model in this section illustrates a time series
model for one continuous variable. As time progresses
the variable switches between two regimes (also referred
to as states or classes); one of these regimes is character-
ized by a high average, and the other is characterized by
a low average over time. Sometimes such models are
referred to as regime switching models (cf. Kim &
Nelson, 1999). Consider the distribution of Y, for a
fixed i. This distribution is bimodal due to the two
classes. The observed sequence Y, Yp, Y3, ... is a
nonindependent sample from that distribution, a sample
where consecutive observations are correlated but never-
theless the sample will reliably reproduce the bimodal
distribution of Y, as ¢ increases. Using this point of
view, a bimodal distribution for a variable Y;; can be
considered indisputable evidence for regime switching
behavior. We should note here also that this line of
argument goes beyond bimodal distributions. Many mix-
tures of normals do not result in bimodal distributions but
simply in nonnormal or heavy tail distributions. Thus just
like with cross-sectional Mixture models (cf. Bauer &
Curran, 2003), nonnormality in the distribution can be
viewed and interpreted as evidence for a regime switch-
ing model and vice versa. Regime switching models can
be nothing more than nonnormality in the distribution.
Proper substantive interpretation is imperative for regime
switching models, and pure statistical evidence should not
be used without substantive interpretation.

Example 3: Regime Switching for the Latent Factor

The regime switching model described in the previous
section for an observed variable can also be estimated for
a latent factor. In psychological studies often the main
variable of interest is a latent variable measured through a
factor analysis model. Consider again the hypothetical
example from the introduction section where we monitor/
measure a latent variable, and classify patients into one of 3
regimes: healthy, increased risk of relapse, and relapse. The
regime switching can occur directly on the latent variable.
In this section we present such a simulation example.
Consider the following model where Y,; is an observed
variable p = 1,...,4 for individual 7 at time ¢ measuring a
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TABLE 7
Simulation Results for the Regime Switching for the Latent Factor
Model
Parameter True Value Abs. Bias Coverage
Vi 0 .01 .96
0,1 1 .00 .95
051 1 .04 .93
A2 1.2 .00 .95
Wy 2.5 .01 .94
By 0.2 .00 .92
6, 0.8 .02 .88
o 1 .00 .90
o] 0.05 .02 .94

latent variable #,,, which follows a two-class regime switch-
ing model

Ypir = Vpi + Mol + €pig

Ny = W, + B, Mi—1 + &is,

. Exp(a)
P = Ui =1) = T )
ij

a;~N (0, 07)
Vpi~N(Vp, Op)

&in~N (0, y;)
Epit NN(Ov Hw,p) .

This model has six random effects, four random intercepts
vp; for the four observed variables and two random effects
a; used in the latent transition matrix. The model we
consider here has 24 parameters; for each observed variable
we have the within-level residual variance 0,,, = Var (),
the between-level residual variance 0p,, the nonrandom
intercept v,, and the loading parameter A,, for a total of
15 parameters, as the first variable loading is fixed to 1. The
remaining nine parameters are as follows: a; and o; account
for four parameters, vy, = Var(&y), By, W for the two
classes give another six parameters, but for identification
purposes we fix pu; = 0. We generate data using 100 indi-
viduals observed at 100 time points, using the following
parameter values: 0,, =1, 0, =1, v, =0, A =12,
A=0821=08 a;=1,a =-056,=0.05 y, =1,
v, = 0.8, u, =2.5, B, = 0.4, B, = 0.2. The entropy of the
model is 0.8. We generate and analyze 100 replications.
Each replication takes about 15 minutes to complete. The
results of the simulation for a selection of the parameters is

presented in Table 7. The parameter estimates show little or
no bias and the coverage of the parameters is satisfactory.

DISCUSSION

DLCA modeling presented in this article is a broad and
flexible framework that allows for a wide variety of single
and multilevel models for intensive longitudinal data. It is
based on combining three innovations in Mplus Version 8§:
(a) DSEM, which allows for multilevel modeling based on
time series analysis; (b) Bayesian estimation of multilevel
mixture models, which makes it possible to have large
numbers of random effects; and (c) the multilevel HMM,
which allows for person-specific switches between different
classes (also referred to as states or regimes in time series).
By combining these features into one framework, we can
now specify a random effects model that allows for indivi-
dual differences in the transition probabilities of the HMM
as well as in the parameters of the different time series
models that describe the within-person dynamics within
each of the regimes. In addition to these new modeling
features for intensive longitudinal data, we have also pre-
sented a number of other new latent class modeling options
for cross-sectional and panel data; these latter options have
resulted from the innovations that were needed to develop
DLCA.

DSEM modeling in Mplus is somewhat more general than
what is described earlier; see Asparouhov et al. (2016). For
example, lag variable modeling can be done not just for the
latent continuous variables but also for the observed variables.
Other modeling features incorporated in the DSEM frame-
work are log-normal modeling distribution for within-level
variances, cross-sectional modeling where time-specific
effects are modeled as well, and unequal and subject speci-
fic-times of observations. All of these features apply also to the
mixture modeling framework and can improve the feasibility
of the models in practical settings. Missing data can easily be
handled in the MCMC estimation framework. This is impor-
tant also because when observations are taken at different
times for different individuals, missing data are used to align
the times of observations between individuals. Factor scores
for all random effects and latent variables are easily obtained
because these are naturally generated within the MCMC esti-
mation. Inputs and outputs for all of the simulation studies
presented here are available online at statmodel.com.

Further work is needed in the area of model comparison.
One possibility is to compute deviance information criterion
(DIC) for these models; however, due to the nonindependence
on the within-level latent variables the marginal likelihood is
difficult to compute. It is possible to integrate out all within-
level latent variables, but this leads to a large number of model
parameters, which would require a large number of MCMC



iterations to produce accurate results. It is not unusual that
when trying to use DIC for such models that the values of
competing models are too close and the precision of DIC too
low to be able to meaningfully use DIC for comparison. The
most straightforward way to compare models is via the cred-
ibility intervals for parameter estimates.

Many of the time series models we discussed earlier are
considered stationary models; that is, models that stabilize
over time. In many practical settings this is not realistic. For
example we might be interested in models where the transi-
tion probabilities change over time while still remaining
subject specific. The easiest way to break through the statio-
narity assumption is to introduce predictors in the model that
change over time. With the change in the predictors the
model can accommodate nonstationary models. The covari-
ates and predictors can be as simple as the time variable
itself; in fact, standard growth modeling essentially uses only
the time variable as the main predictor for modeling change
over time. Other nonstationary covariates can also be uti-
lized. In fact for many covariates, the stationarity assumption
is just as unrealistic to assume as it is for the dependent
variables. An alternative approach is to utilize time-varying
effects models or cross-classified modeling where time-spe-
cific random effects are utilized, as in the DSEM framework.

The models we discussed in this article use a latent class
variable that changes over time; however, time-invariant
latent class variables are also of interest. The combination
of two latent class variables, a time-invariant latent class
variable and a time-varying latent class variable, are also of
interest. In Asparouhov and Muthén (2008) it is shown that
the time-invariant latent class variables are a special case of
the time-varying latent class variables. As the variance of
the logits random effects increases to infinity the latent
class variable becomes time invariant. Thus this framework
can be used to estimate such models as well. For example,
estimating a model with a binary time-invariant latent class
variable and a binary time-varying latent class variable is
equivalent to estimating a four-class model with two of the
logits random effects having large variances.
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