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CHAPTER 6

Growth mixture modeling:
Analysis with non-Gaussian random effects

Bengt Muthén and Tihomir Asparouhov
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6.1 Introduction

This chapter gives an overview of non-Gaussian random-effects modeling in the context of
finite-mixture growth modeling developed in Muthén and Shedden (1999), Muthén (2001a,
2001b, 2004), and Muthén et al. (2002), and extended to cluster samples and cluster-
level mixtures in Asparouhov and Muthén (2008). Growth mixture modeling represents
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unobserved heterogeneity between the subjects in their development using both random
effects (e.g., Laird and Ware, 1982) and finite mixtures (e.g., McLachlan and Peel, 2000).
This allows different sets of parameter values for mixture components corresponding to dif-
ferent unobserved subgroups of individuals, capturing latent trajectory classes with different
growth curve shapes. This chapter discusses examples motivating modeling with such tra-
jectory classes. A general latent-variable modeling framework is presented together with its
maximum likelihood estimation. Examples from criminology, mental health, and education
are analyzed. The choice of a normal or a non-parametric distribution for the random effects
is discussed and investigated using a simulation study. The discussion will refer to growth
mixture modeling techniques as implemented in the Mplus program (Muthén and Muthén,
1998–2006) and input scripts for the analyses are available at http://www.statmodel.com.

The outline of this chapter is as follows. Section 6.2 presents examples with substantive
questions that motivate growth mixture analysis. Section 6.3 describes the general model.
Section 6.4 discusses estimation and model assessment. Section 6.5 illustrates the modeling
with a series of examples. Section 6.6 compares the parametric and non-parametric versions
of the random-effect model. Section 6.7 concludes.

6.2 Examples

The following examples show the breadth of longitudinal studies that may be approached
by growth mixture modeling.

6.2.1 Example 1: Clinical trials with placebo response

The first example concerns analysis of data from a double-blind 8-week randomized trial
on depression medication (Leuchter et al., 2002). Of particular interest is how to assess
medication effects in the presence of placebo response. Placebo response is an improvement
in depression ratings that is unrelated to medication. The improvement is often seen as an
early steep drop in depression, often followed by a later upswing. Figure 6.1 shows results
for a two-class growth mixture model for the sample of 45 placebo group subjects using
the Hamilton depression scale (Ham-D). The first two time points are before randomization
and the next nine time points are after randomization. The responder class is shown in the
left panel and the non-responder class in the right panel. The solid curve is the estimated
mean curve, whereas the broken curves are observed individual trajectories for individuals
classified as most likely belonging to this class.

Placebo response confounds the estimation of the true effect of medication and is an
important phenomenon, given its high prevalence of 25–60%. Because placebo response is
pervasive, the statistical modeling should account for this when estimating medication ef-
fects. This can be done by acknowledging the qualitative heterogeneity in trajectory shapes
for responders and non-responders using growth mixture modeling. The estimation of med-
ication effects using growth mixture modeling is described in Muthén et al. (2007). The
medication effect is estimated in line with the approach of the next example.

6.2.2 Example 2: Randomized interventions with treatment effects varying across latent
classes

The second example concerns a randomized preventive field trial conducted in Baltimore
public schools (Dolan et al., 1993; Ialongo et al., 1999). The study applied a universal
intervention aimed at reducing aggressive-disruptive behavior during first and second grade
to improve reading and reduce aggression with outcomes assessed through middle school
and beyond (Kellam et al., 1994). Children were followed from first to seventh grade with



January 9, 2008 17:39 C6587 C6587˙C006

EXAMPLES 145

36
34
32
30
28
26
24
22
20
18
16
14
12
10

8
6
4
2
0

H
am

D

B
as

el
in

e

W
ee

k
 1

W
ee

k
 4

W
ee

k
 8

36
34
32
30
28
26
24
22
20
18
16
14
12
10

8
6
4
2
0

H
am

D

B
as

el
in

e

W
ee

k
 1

W
ee

k
 4

W
ee

k
 8

Figure 6.1 Two-class growth mixture model for depression in a placebo group.

respect to the course of aggressive behavior, and a follow-up to age 18 also allowed for the
assessment of intervention impact on more distal events, such as the probability of juvenile
delinquency as indicated by juvenile court records. The intervention was administered after
one pre-intervention time point in fall of first grade.

Key scientific questions addressed whether the intervention reduced the slope of the ag-
gression trajectory across the grades, whether the intervention was different in impact for
children who initially display higher levels of aggression, and whether the intervention im-
pacted distal outcomes. Analyses of these hypotheses were presented in Muthén et al. (2002).
Allowing for multiple trajectory classes in the growth model gave a flexible way to assess
differential effects of the intervention. The analyses focused on boys and intervention status
as defined by classroom assignment in fall of first grade, resulting in a sample of 119 boys
in the intervention group and 80 boys in the control group. Figure 6.2 shows results from a
four-class growth mixture model for the 119 boys. For each combination of latent-trajectory
class and intervention condition, the estimated mean growth curve is shown together with
observed individual trajectories for individuals estimated to be most likely a member of the
class. An intervention effect in terms of reducing aggressive behavior is seen for the high
class and perhaps also for the low starting (“LS”) class, whereas the other two classes show
no effects.

6.2.3 Example 3: High school dropout predicted by failing math achievement development

The third example concerns growth mixture modeling of mathematics achievement devel-
opment in US schools. Muthén (2004) analyzed longitudinal math scores for students in
grades 7–10 from the Longitudinal Study of American Youth (LSAY) and found a prob-
lematic trajectory class with an exceptionally low starting point in grade 7 as well as a
low growth rate; see Figure 6.3. The class membership was strongly related to covariates
such as grade 7 measures of having low schooling expectations and dropout thoughts. Taken
together with the poor math development, this suggests that the class consists of students
who are disengaged from school. Class membership was also highly predictive of dropping
out by grade 12, a binary “distal” outcome. In a further analysis, Muthén (2004) carried
out a growth mixture analysis where the clustering of students within schools was taken
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Figure 6.2 Four-class growth mixture model for aggressive behavior in control and intervention
groups.
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Figure 6.3 Three-class growth mixture model for math achievement related to high school
dropout.

into account by allowing random-effect variation across schools. The school variation was
represented in the random effects for the growth, the random intercept in the logistic regres-
sion for dropping out, and the random intercept in the multinomial regression predicting
latent-class membership as a function of student-level covariates. Furthermore, school-level
covariates corresponding to poverty of the school neighborhood and teaching quality in the
school were used to predict across-school variation in the random coefficients.

6.2.4 Example 4: Age–crime curves

The fourth example concerns criminal activity of 13,160 males born in Philadelphia, Penn-
sylvania in 1958 (D’Unger et al., 1998; D’Unger, Land, and McCall, 2002; Loughran and
Nagin, 2006). Annual counts of police contacts are available from age 4 to 26 of this birth
cohort. The aggregate age–crime curve follows the well-known pattern of increasing an-
nual convictions throughout the subjects’ teenage years and decreasing annual convictions
thereafter. The criminology literature has focused extensively on identifying groups of in-
dividuals with similar patterns or careers of delinquent and criminal offending. To quote
D’Unger et al. (1998, p. 1595): “This question of how many latent classes of criminal careers
are optimal, and why the number of categories itself is important, has gained salience for
criminological theory in light of recent theoretical debates”. The authors go on to mention
Moffit (1993) as a key contributor to the notion of different trajectory classes, proposing a
distinction between the trajectory of “life-course persistents” versus “adolescence limiteds”
depending on the behaviors persisting over the life course or seen only during adolescence.
The debate continues, as seen in Sampson and Laub (2005) discussing the “group-based”
analysis approach of Nagin (1999, 2005), Nagin and Land (1993), and Roeder, Lynch, and
Nagin (1999). The Philadelphia crime data will be analyzed in a new way in this chapter.
The analyses to be presented have two special features. First, the outcome variable is a count
variable that is very skewed, with a large number of zeros at each point in time. Second, it
is of interest to contrast the “group-based” approach with random-effects models.

6.2.5 Example 5: Classification of schools based on achievement development

The fifth example extends the achievement analyses discussed in Example 3 by using a
school-level latent-class variable, enabling a classification of schools as more or less suc-
cessful. The LSAY data discussed in Example 3 are from a limited number of schools and
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analyses are instead performed on data from grades 8, 10, and 12 of the National Education
Longitudinal Study (NELS). NELS surveyed 913 schools and a total of 14,217 students.
In the analyses to be presented, student growth rate is regressed on the growth intercept
in grade 8 and allows this relationship to vary across the school-level latent classes. It has
been argued in the education literature that a weak relationship is an indicator of a school
being egalitarian (e.g., Choi and Seltzer, 2006). The means of the random intercept and the
intercept of the random growth rate are also allowed to vary across the school-level latent
classes. Both types of school-level latent-class features are useful for determining school
quality.

6.2.6 Other applications

Other applications of growth mixture modeling found in the literature include Verbeke and
Lesaffre (1996), see also Pearson et al. (1994), who considered different groups of males
with linear or exponential growth in prostate-specific antigen (PSA); Muthén and Shedden
(1999) and Muthén and Muthén (2000), with application to the development of heavy drink-
ing and alcohol dependence; Lin et al. (2002), with application to PSA and prostate cancer,
combining growth mixture modeling with survival analysis; Croudace et al. (2003), with
application to bladder control; Muthén et al. (2003), with application to reading failure,
including the modeling of a kindergarten process for phonemic awareness linked to a later
process of word recognition; and Muthén and Masyn (2005), with application to aggres-
sive behavior and juvenile delinquency, combining growth mixture modeling and discrete
time survival analysis. Related applications to latent-class membership representing non-
participation (non-compliance) and complier-average causal effect estimation in intervention
studies (Angrist, Imbens, and Rubin, 1996) are given in Jo (2002), Jo and Muthén (2003),
and are also generalizable to longitudinal studies (see Yau and Little, 2001; Dunn et al.,
2003; Muthén, Jo, and Brown, 2003), including time-varying compliance (Lin, Ten Have,
and Elliott, 2006).

6.3 Growth mixture modeling

This section describes the general growth mixture modeling framework (see also Asparouhov
and Muthén, 2008). The description is closely related to the implementation in the Mplus
software version 4.2 and higher (Muthén and Muthén, 1998–2006). To familiarize readers
with the general Mplus modeling framework, the section starts with a simple growth ex-
ample put into the conventional linear mixed-effects model as well as the Mplus modeling
framework.

6.3.1 Specification of a simple growth model

Consider a single growth process with no latent-trajectory classes, no clustering, linear
growth for a continuous outcome y, a time-invariant covariate x and a time-varying covari-
ate w,

Yij = η0i + η1iaij + κiwij + εij , (6.1)

where aij are time scores (j = 1, 2, . . . , T ), the random intercept η0i and the random slope
η1i represent the growth process, κi is a random slope, and ε is a normally distributed
residual. The random intercepts and slopes are expressed as

η0i = α0 + γ0xi + ζ0i, (6.2)
η1i = α1 + γ1xi + ζ1i, (6.3)
κi = α2 + γ2wij + ζ2i, (6.4)
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where the αs and γs are parameters and the ζs are normally distributed residuals. In
multilevel terms, equation (6.1) represents level-1 variation across time and (6.2)–(6.4)
represent level-2 variation across individuals. Consider the mixed linear model formulation
for Yi = (Yi1, . . . , YiT )′,

Y i = Xiβ + Zibi + ei, (6.5)

where some individuals may not be observed at all occasions T , leading to missing data. In
this example, let

Λi =




1 ai1
1 ai2
1 ai3
...

...
1 aiT



,

so that in (6.5) we have

Xi =
(
Λi wi Λixi wixi

)
,

β = (α0, α1, α2, γ0, γ1, γ2)′,
Zi =

(
Λi wi

)
,

bi = (ζ0i, ζ1i, ζ2i)′,
ei = (εi1, . . . , εiT )′.

The Mplus framework uses the general model expression for observed vectors Y i and Xi,

Y i = ν + Ληi + KXi + εi, (6.6)

ηi = α + Bηi + ΓXi + ζi, (6.7)

implying

Y i = ν + Λ (I −B)−1 α + Λ (I −B)−1 Γ Xi + K Xi + Λ (I −B)−1 ζi + εi,

where the first row refers to fixed effects and the second row to random effects. The re-
gression parameter arrays Λ, K, B, and Γ are allowed to vary across i as a function of
observed variables or they can be unobserved random slopes. The model equations (6.6)
and (6.7) capture the level-1 and level-2 expressions for the linear growth example in (6.1)
and (6.2)–(6.4). The notation of (6.6) and (6.7) follows that of the linear growth exam-
ple with B = 0 and with the vector Xi containing both the time-varying covariate wij

and the time-invariant covariate xi. The model of (6.6) and (6.7) includes the mixed linear
model of (6.5) as a special case. In latent-variable modeling terms, (6.6) is referred to as
the measurement part of the model, where the latent-variable vector ηi is measured by the
indicators Y i. Here, Λ may contain parameters. A frequent example is when ait = at, so
that at can be treated as parameters, for example capturing deviations from linear growth
shape (fixing two at values for identification, typically a1 = 0, a2 = 1). Another example is
where multiple indicators of a factor are available at each time point, where different indi-
cators have different factor loadings λ. With Λi = Λ, (6.6) also covers factor analysis with
covariates. Furthermore, (6.7) is referred to as the structural part, containing regressions
among the latent variables. The regression matrix B has zero diagonal elements, but the
off-diagonal elements may be used to regress random effects on each other. For example,
the growth slope (growth rate) η1i, or the random slope κi may be expressed as a function
of the intercept (initial status) η0i. More generally, (6.7) also covers structural equation
modeling. In this way, the extensions of (6.6) and (6.7) to finite mixtures and cluster sam-
ples presented in this chapter pertain to not only growth models but also factor analysis
and structural equation models, as well as combinations of such models and growth models
(Muthén, 2002).
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6.3.2 A general multilevel mixture model

Let Ykij be the jth observed dependent variable for individual i in cluster k. Three types
of variables are considered in the analyses to be presented: binary and ordered categorical
variables, continuous normally distributed variables, and counts following the Poisson or
zero-inflated Poisson distribution. Let Cki be a latent categorical variable for individual i
in cluster k which takes values 1, . . . , L. Let Dk be a cluster-level latent categorical variable
for cluster k which takes values 1, . . . ,M. The choice of L and M will be discussed in
Section 6.4.1. To construct a model for observed binary and ordered categorical variables
we proceed in line with Muthén (1984) by defining an underlying continuous, normally
distributed latent variable Y ∗

kij such that, for a set of threshold parameters τcdsj ,

Ykij = s|Cki=c,Dk=d ⇔ τcdsj < Y ∗
kij < τcd,s+1,j .

For continuous normally distributed variables we define Y ∗
kij = Ykij . For counts Y ∗

kij =
log(λkij), where λkij is the rate of the Poisson distribution. Let Y ∗

ki be the J-dimensional
vector of all dependent variables and Xki be the Q-dimensional vector of all individual-level
covariates. Using latent-variable terms, the “measurement” part of the model is defined by

Y ∗
ki|Cki=c,Dk=d = νcdk + Λcdk ηki + Kcdk Xki + εki, (6.8)

where νcdk is a J-dimensional vector of intercepts, Λcdk is a J × m slope matrix for the
m-dimensional random-effect vector ηki, Kcdk is a J × Q slope matrix for the covariates,
and εki is a J-dimensional vector of residuals with mean zero and covariance matrix Θcd.
For a categorical variable Ykij a normality assumption for εkij is thus equivalent to a probit
regression for Ykij on ηkij and Xkij . Alternatively, εkij can have a logistic distribution,
resulting in a logistic regression. For a count variable Ykij the residual εkij is assumed to be
zero. For normally distributed continuous variables Ykij the residual variable εkij is assumed
normally distributed.

The “structural” part of the model is defined by

ηki|Cki=c,Dk=d = αcdk + Bcdkηki + ΓcdkXki + ζki, (6.9)

where αcdk is an m-dimensional vector of intercepts, Bcdk is an m×m structural regression
parameter matrix, Γcdk is a m × Q slope parameter matrix, and ζki is an m-dimensional
vector of normally distributed residuals with covariance matrix Ψcd. The model for the
latent categorical variable Cki is a multinomial logit model

Pr(Cki = c|Dk = d) =
exp(acdk + b′cdkXki)∑
s exp(asdk + b′sdkXki)

. (6.10)

Some parameters have to be restricted for identification purposes. For example, the variance
of εkij should be 1 for categorical variables Ykij under probit and π2/

√
3 under logit. Also

aLdk = bLdk = 0.
The multilevel part of the model is introduced as follows. Each of the intercepts, slopes

or loading parameters in equations (6.8)–(6.10) can be either a fixed coefficient or a random
effect that varies across clusters k. Let ηk be the vector of all such random effects and let
Xk be the vector of all cluster-level covariates. The between-level model for ηk is then

ηk|Dk=d = µd + Bdηk + ΓdXk + ζk, (6.11)

where µd, Bd and Γd are fixed parameters and ζk is a normally distributed residual with
covariance Ψd. The model for the between level categorical variable D is also a multinomial
logit regression

Pr(Dk = d) =
exp(ad + b′dXk)∑
s exp(as + b′sXk)

. (6.12)
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Equations (6.8)–(6.12) comprise the definition of a multilevel latent-variable mixture model.
There are many extensions of this model that are possible in the Mplus framework. For
example, observed dependent variables can be incorporated on the between level. Other
extensions arise from the fact that a regression equation can be constructed between any
two variables in the model. Such equations can be fixed- or random-effect regressions. The
model can also accommodate multiple latent-class variables on the within and the between
level. Other types of dependent variables can also be incorporated in this model such as
censored, nominal, semi-continuous, and time-to-event survival variables; see Olsen and
Schafer (2001) and Asparouhov, Masyn, and Muthén (2006).

6.4 Estimation

The above model is estimated by the maximum likelihood estimator using the EM algorithm
where the latent variables Cki, ηki, Dk and ηk are treated as missing data. The observed-
data likelihood is given by

∏
k

∑
d

Pr(Dk = d)
∫

ψk(ηk)
∏
i

(∑
c

Pr(Cki = c)
∫

fki(Y ki)ψki(ηki)dηki

)
dηk, (6.13)

where fki, ψki and ψk are the likelihood functions for Y ki, ηki and ηk, respectively. Nu-
merical integration is utilized in the evaluation of the above likelihood using both adaptive
and non-adaptive quadrature (see Schilling and Bock, 2005). The method can be described
as follows. Suppose that η is a continuously distributed random-effect variable with density
function ψ. Then ∫

f(η)ψ(η)dη ≈
Q∑

q=1

wqf(nq), (6.14)

where nq are the nodes of the numerical integration and wq are the weights. The weights
are computed as wq = ψ(nq)/

∑Q
i=1 ψ(ni). The numerical integration method approximates

the continuous distribution for η with a categorical distribution, that is, we can assume that
the variable η takes the values nq with probabilities wq. Using this method the likelihood
(6.13) is approximated by

∏
k

∑
d

Pr(Dk = d)
∑
q

Pr(ηk = nqk)
∏
i

(∑
c

Pr(Cki = c)
∑
r

Pr(ηki = nrki)fki(Y ki)
)

=
∏
k

∑
d,q

Pr(Dk = d, ηk = nqk)
∏
i

(∑
c,r

Pr(Cki = c, ηki = nrki)fki(Y ki)
)
, (6.15)

where nqk and nrki are the nodes of the numerical integration.
The EM algorithm is as follows. First compute the posterior distribution for the latent

variables. The posterior joint distribution for Dk and ηk is computed as follows:

pdqk = Pr(Dk = d,ηk = nqk|∗)

=
Pr(Dk = d,ηk = nqk)

∏
i

(∑
c,r Pr(Cki = c,ηki = nrki)fki(Y ki)

)

∑
d,q Pr(Dk = d,ηk = nqk)

∏
i

(∑
c,r Pr(Cki = c,ηki = nrki)fki(Y ki)

) .

The posterior conditional joint distribution for Cki and ηki is computed as follows:

pcrki|dq = Pr(Cki = c,ηki = nrki|∗, Dk = d,ηk = nqk)

=
Pr(Cki = c,ηki = nrki)fki(Yki)∑
c,r Pr(Cki = c,ηki = nrki)fki(Yki)

.
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The expected complete-data log-likelihood is now given by
∑
dqk

pdqk log(Pr(Dk = d,ηk = nqk)) +
∑

dcqrki

pdqk pcrki|dq log(Pr(Cki = c,ηki = nrki))

+pdqk pcrki|dq
∑

dcqrki

log(fki(Yki)),

which is maximized with respect to the model parameters.
An alternative algorithm for obtaining the maximum likelihood estimates can be con-

structed by directly optimizing (6.15) with a standard maximization algorithms such as
the Fisher scoring and the quasi-Newton algorithms. Such alternative algorithms can be
used in combination with the EM algorithm to achieve faster convergence, an approach
known as the accelerated EM algorithm (AEM). The AEM algorithm is implemented in
Mplus.

A number of different integration methods can be used in (6.14). Mplus implements
three different integration methods: rectangular, Gauss–Hermite and Monte Carlo inte-
gration. In addition, adaptive integration can be used. With this method, the integration
nodes are concentrated in the area where the posterior distribution of the random effects is
non-zero.

The estimation implemented in Mplus allows missing at random data for all dependent
variables (Little and Rubin, 2002). Non-ignorable missing data is discussed in Muthén et al.
(2003). It should be noted that mixture models in general are prone to have multiple lo-
cal maxima of the likelihood and the use of many different sets of starting values in the
interactive maximization procedure is strongly recommended. An automatic random starts
procedure is implemented in the Mplus program, where starting values given by the user or
produced automatically by the program are randomly perturbed.

6.4.1 Model assessment

For comparison of fit of models that have the same number of classes and are nested, the
usual likelihood ratio chi-square difference test can be used, as long as the requirement is
fulfilled of not having parameters on the border of the admissible parameter space in the
more restricted model. Comparison of models with different numbers of classes violates this
requirement with zero probability parameters. Deciding on the number of classes is instead
typically accomplished by a Bayesian information criterion (BIC: Schwartz, 1978; Kass and
Raftery, 1993),

BIC = −2 logL + r log n,

where r is the number of free parameters in the model and n is the sample size. The
lower the BIC value, the better the model. The number of classes is increased until a
BIC minimum is found. Although not chi-square distributed, the usual likelihood ratio
statistic for comparing models with different number of classes can still be used, assessing the
distribution of the statistic by bootstrap techniques. McLachlan and Peel (2000, Chapter 6)
discuss a parametric bootstrapped likelihood ratio approach proposed by Aitkin, Anderson,
and Hinde (1981). Although computationally intensive, it has been found to perform well
in simulation studies using latent-class and growth mixture models, outperforming BIC in
some instances (Nylund, Asparouhov, and Muthén, 2007).

The fit of the model to data for continuous variables can be studied by comparing for
each class estimated moments with moments created by weighting the individual data by
the estimated conditional probabilities (Roeder, Lynch and Nagin, 1999). To check how
closely the estimated average curve within each class matches the data, it is also useful
to randomly assign individuals to classes based on individual estimated conditional class
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probabilities. Plots of the observed individual trajectories together with the model-estimated
average trajectory can be used to check assumptions using class membership determined
by “pseudo-class” draws (Bandeen-Roche et al., 1997). Wang, Brown, and Bandeen-Roche
(2005) present methods for residual checking based on these ideas. With categorical and
count outcomes, model fit may be investigated with respect to univariate and bivariate fre-
quency tables, as well as frequencies for response patterns that do not have too small
expected counts. Finally, it is important to note that the need for latent classes may
be due to non-normality of the outcomes rather than substantively meaningful subgroups
(see McLachlan and Peel, 2000, pp. 14–17; Bauer and Curran, 2003). To support a substan-
tive interpretation of the latent classes, the researcher should consider not only the outcome
variable in question, but also antecedents (covariates predicting latent-class membership),
concurrent outcomes, and distal outcomes (predictive validity); see also related arguments
in Muthén (2004).

6.5 Examples

This section presents analyses of the crime data of Example 4, the aggressive behavior data
of Example 2, and the math achievement data of Example 5. The Example 4 analysis uses
a growth mixture model for crime counts. Examples 2 and 5 consider multilevel growth
mixture modeling of cluster data. Example 2 examines intervention effects that vary across
both student-level and classroom-level latent-class variables. Example 5 considers students
within school where student growth characteristics vary across a school-level latent-class
variable.

6.5.1 Analysis of Example 4: Age–crime curves

The analysis of the Philadelphia data with counts of criminal activity for 13,160 males
aged 4–26 will compare two different approaches, a “group-based” approach and growth
mixture analysis (for more extended comparisons, see Kreuter and Muthén, 2007, 2008).
The group-based analysis is associated with the work of of Nagin and Land (1993), Nagin
(1999, 2005), Roeder, Lynch, and Nagin (1999), and Jones, Nagin, and Roeder (2001). This
approach is commonly seen in the criminology literature and was used by D’Unger et al.
(1998), D’Unger, Land, and McCall (2002), and Loughran and Nagin (2006) for these data.
The group-based analysis does not cover cluster sampling and has the further restrictions
of zero within-class variances Ψc = 0, as well as Θc = θI. The group-based approach is
further discussed in Muthén (2004) where it is referred to as latent-class growth analysis
(LCGA), given its similarity to latent-class analysis (LCA). Both LCGA and LCA search
for classes of individuals defined by conditional independence of the repeated measures
given class. In contrast, a growth mixture model (GMM) allows for within-class correla-
tions between repeated measures. Such correlation may, for example, be due to omitted
time-varying covariates. If within-class correlation is ignored, a distorted class formation
is obtained. Within-class correlation is obtained in GMMs by allowing for random effects
with non-zero within-class variances. Both LCGA and GMMs use a zero-inflated Poisson
model in line with Roeder, Lynch, and Nagin (1999). For time point j, individual i, and
cluster k,

Ykij |Cki=c =
{

0 with probability πkij ,

Poisson(λckij) with probability 1 − πkij

where λ is the Poisson rate. In line with previous modeling of the Philadelphia data,
a quadratic growth curve is used. Drawing on (6.8) and (6.9) of the general model in
Section 6.3.2, the growth mixture zero-inflated Poisson model for these data is expressed in
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terms of the log rate as

log λij|Ci=c
= η0i + η1i aij + η2i a

2
ij ,

η0i|Ci=c
= α0c + ζ0i,

η1i|Ci=c
= α1c + ζ1i,

η2i|Ci=c
= α2c + ζ2i.

To make analysis results comparable to the LCGA of Loughran and Nagin (2006), a minority
of individuals with more than 10 criminal offenses in any given year are deleted, reducing
the sample size only from 13,160 to 13,126, and combining the data into two-year inter-
vals. Loughran and Nagin (2006) settled on a four-class solution: non-offenders, adolescent-
limited, and high and low chronic (persisting criminal activity at age 26). D’Unger et al.
(1998) and D’Unger, Land, and McCall (2002) used a random subset (n = 1000) of the
data and concluded based on BIC that a five-class LCGA solution was preferred. Their
five classes were labeled: non-offenders, high and low adolescent-peaked, and high and low
chronic.

Table 6.1 gives results for 1–4 classes of GMM and 4–8 classes for LCGA. In addition to
log-likelihood values, number of parameters, and BIC, the table shows fit to the data in terms
of the number of standardized residuals that are significant at the 5% level for the 10 most
frequent response patterns across time (comprising 78% of the data and eliminating only
patterns with observed frequency less than 100). The one-class GMM is the conventional
random-effects model. Here, 5 of the 10 residuals show significant misfit, illustrating the
need for a more flexible model. The two- and the three-class GMMs obtain considerably
improved BIC values. The three-class GMM reduces the number of significant residuals
from 5 to 1, indicating the appropriateness of the mixture modeling. The four-class GMM
adds relatively little improvement. The three-class GMM displays the three themes of non-
offenders, adolescent-limited, and chronic. Figure 6.4 shows the mean trajectories for the
three-class GMM. The four-class GMM splits the adolescent-limited class into two, where
the total percentage for those two classes is about the same as for the adolescent-limited
class of the three-class GMM.

The four-class LCGA is the same as presented in Loughran and Nagin (2006) and the five-
class LCGA shows the same types of trajectory classes as in D’Unger et al.’s analysis. Neither
of these two models fit the data well. An eight-class LCGA is needed to get a reduction to
one significant residual. In contrast, the three-class GMM has only one significant residual
and the four-class GMM has none. With three classes the GMM gives a better BIC value
than any of the LCGA models shown in Table 6.1. The BIC values for the four-class LCGA

Table 6.1 Age–crime curves: Log-likelihood and BIC comparisons for GMM
and LCGA

Model Log-Likelihood # Parameters BIC # Significant Residuals

1-class GMM −40,606 17 81,373 5
2-class GMM −40,422 21 81,044 4
3-class GMM −40,283 25 80,803 1
4-class GMM −40,237 29 80,748 0

4-class LCGA −40,643 23 81,503 4
5-class LCGA −40,483 27 81,222 3
6-class LCGA −40,410 31 81,114 3
7-class LCGA −40,335 35 81,003 2
8-class LCGA −40,263 39 80,896 1
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used in Loughran and Nagin (2006) and the five-class model used in D’Unger et al. (1998)
and D’Unger, Land, and McCall (2002) are considerably worse than the BIC value for the
three-class GMM. Furthermore, the three-class GMM uses two parameters less than the five-
class LCGA, but has a better log-likelihood by 200 points. This illustrates the importance
of using random effects to allow for variations on the themes of the trajectory shapes of the
classes. The LCGA approach leads to a proliferation of classes, all of which may not have
substantive salience.

6.5.2 Analysis of Example 2: Varying intervention effects on classroom aggressive behavior

The Baltimore randomized field trial discussed in Section 6.2.2 was repeated for several
cohorts of students. The Section 6.2.2 analysis considered cohort 1 data, whereas data from
cohort 3 (Ialongo et al., 1999) are analyzed here. A total of 362 boys in 27 classrooms
are considered over four time points: fall of first grade, spring of first grade, spring of
second grade, and spring of third grade. The average number of boys per classroom is 13.4.
It is of interest to study if teachers in classrooms with higher aggressiveness levels have a
more difficult time successfully implementing the intervention aimed at reducing aggressive-
disruptive behavior. For the first grade, there is substantial variation across classrooms in
the aggressiveness scores as evidenced by the intraclass correlations at the four time points:
0.11, 0.16, 0.04, 0.00. In addition to student-level trajectory classes, the use of latent classes
on the classroom level makes it possible to more fully explore variation in intervention
effects.

Drawing on the Section 6.3.2 general model, the two-level GMM is expressed as follows
using a quadratic curve shape,

Ykij|Cki=c,Dk=d
= η0ki + η1ki aij + η2ki a

2
ij + εkij ,
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Figure 6.4 Estimated mean trajectories from a three-class growth mixture model for criminal
activities.
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for j = 1, 2, 3, 4, with variation across students within classrooms expressed as

η0ki|Cki=c,Dk=d
= αcdk0 + ζ0ki,

η1ki|Cki=c,Dk=d
= αcdk1 + ζ1ki,

η2ki|Cki=c,Dk=d
= αcdk2 + ζ2ki,

and variation across classrooms expressed as

αcdk0|Cki=c,Dk=d
= αcd0 + ζ30k,

αcdk1|Cki=c,Dk=d
= αcd1 + γcd1 Zk + ζ31k,

αcdk2|Cki=c,Dk=d
= αcd2 + γcd2 Zk + ζ32k.

Here, ai1 = 0 to center the intercept η0 at the pre-intervention time point. Z is a treatment-
control dummy variable on the classroom level. For reasons of parsimony, the student-level
latent-class variable C and the classroom-level latent-class variable D are taken to have an
additive effect on the means αcd0, αcd1, and αcd2. The γ intervention effects are, however,
allowed to vary across combinations of C and D classes. The linear and quadratic slopes
were found to have zero variance across classrooms. The intraclass correlation is captured
by the classroom variation in the random intercept of the growth model, αcdk0.

The latent categorical variable Cki follows the multinomial logistic regression

Pr(Cki = c|Dk = d) =
exp(acdk)∑
s exp(asdk)

,

where in this application
acdk|Dk=d

= ac + ζck. (6.16)

The analyses indicate that V (ζck) = 0, that is, the random intercepts for the latent-class
variable C do not vary across classrooms. In other applications, however, this variance can
be substantial.

As a first step, a model without the classroom-level latent-class variable D was explored.
As judged by BIC, the conventional single-class random-effects growth model is clearly
outperformed by growth mixture modeling, with a three-class model giving the lowest BIC.
The log-likelihood for the conventional model is −4157.98 with 14 parameters and a BIC
of 8398, while the three-class GMM has a log-likelihood of −4048.84 with 26 parameters
and a BIC of 8251. The three-class model has a significant classroom variance for the
random intercept. Second, two latent classes for D were added to the model resulting in
latent classes with low versus high classroom-level aggression (51% versus 49%). The log-
likelihood is −4041.42 with 34 parameters and a BIC of 8283. This BIC is not as good as
for the previous model with no classroom-level latent-class variable, but it is not known
how BIC performs in settings with multilevel latent-class variables. The three student-level
latent-trajectory classes show a low-increasing class of 68%, a medium-increasing class of
19%, and a high-decreasing class of 12%. The mean curves for these three latent classes
are shown in Figure 6.5 as pairs of control and intervention curves. Results for the latent
class consisting of classrooms with low aggression level are given in the left plot and results
for the latent class consisting of classrooms with high aggression level are given in the
right plot. The plots suggest that in classrooms with a low level of aggression, students
who are in the two highest trajectory classes benefit from the intervention. In classrooms
with a high level of aggression, however, only students who are in the lowest trajectory
class benefit from the intervention. This suggests that the intervention may be harder for
teachers to implement well in high-aggressive classrooms. The results should be interpreted
with caution, however, given the sample of only 27 classrooms and other competing models.
An alternative model lets the C and D latent-class variables have an interactive effect on the
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Figure 6.5 Estimated mean trajectories from a growth mixture model of classroom aggressive
behavior.

random-effect growth means and lets the random-effect means of acdk in (6.16) be influenced
by the latent classes of D. This significantly improves the log-likelihood, but the increased
number of parameters on the classroom level results in a less stable solution. The resulting
split into 7 and 20 classrooms for the latent classes of D causes estimated outcome mean
differences with high variability.

6.5.3 Analysis of Example 5: Classification of schools based on achievement development

The NELS math achievement data from grades 8, 10, and 12 discussed in Section 6.2.5
are analyzed here. NELS surveyed 913 schools and a total of 14,217 students. The NELS
analysis illustrates two features of the Section 6.3.2 model, taking into account the school
clusters and using a school-level latent-class variable.

In the NELS analysis, student growth rate is regressed on the growth intercept in grade
8 using a random slope that varies across schools. This random slope and the means of the
random intercept and the intercept of the random growth rate are allowed to vary across the
school-level latent classes. Letting school-level latent classes influence student-level relations
helps identify the school-level latent classes. Extending the example of Section 6.2.3 to
clusters k and a cluster-level latent-class variable Dk, variation across grades is expressed as

Ykij|Dk=d
= η0ki + η1ki aij + εkij ,

for j = 1, 2, 3, with variation across students expressed as

η0ki|Dk=d
= αd0 + ζ0ki,

η1ki|Dk=d
= αd1 + βdk η0ki + ζ1ki,

where the variation across schools is accomplished by the variation of αd0, αd1, and βdk

across the classes of D. A single-class growth model, that is, a conventional three-level
analysis, obtains a log-likelihood of −31,791 with 10 parameters and a BIC of 63,678. A
two-class GMM obtains a log-likelihood of −31,545 with 16 parameters and a BIC of 63,243.
A three-class GMM obtains a log-likelihood of −31,434 with 22 parameters and a BIC of
63,079. A four-class model does not improve the log-likelihood further. The three-class model
shows that the growth rate is significantly positively related to the growth intercept defined
at grade 8 only for a class of 52% of the schools who have average growth over grades
8–12. A higher developing class of 25% and a lower developing class of 23% have small and
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insignificant relationships. This illustrates the possibility of finding clusters of schools with
different achievement profiles. School-level covariates predicting school class membership
can give further understanding of the school classes.

6.6 Parametric versus non-parametric random-effect models

Titterington, Smith, and Makov (1985) make a distinction in the use of finite-mixture mod-
eling in terms of direct and indirect applications. A direct application uses mixtures to
represent “the underlying physical phenomenon,” whereas with the indirect application the
mixture components “do not necessarily have a direct physical interpretation.” The exam-
ples discussed so far can be seen as attempts at direct application, where trajectory classes
are given substantive interpretation and results are presented for each mixture component
rather than mixing over the classes. Examples of indirect applications include outlier de-
tection and representation of non-normal distributions. Mixture modeling of non-normal
distributions is the focus of this section. A growth model with a non-parametric represen-
tation of the random-effects distribution is presented and a simulation study compares the
use of such a model to the conventional random-effect growth model assuming normality.

It has been argued that with categorical and count outcomes, the typical normality as-
sumption for random effects in repeated-measurement modeling may be less well supported
by data (see also Aitkin, 1999). Deviations from normality may strongly affect the results.
With categorical and count outcomes, maximum likelihood leads to the use of numerical
integration which is computationally heavy and intractable when the number of random ef-
fects is large. Numerical integration uses fixed quadrature points and weights according to a
normal distribution. A non-parametric approach instead considers a discretized distribution,
estimating the points and the weights using a finite-mixture model. The latent class means
are the points and the class probabilities are the weights. In this way, the non-parametric
approach both avoids the normality specification and is computationally less demanding.

In this section we describe and compare the general parametric and non-parametric
random-effect models. Both of these models are special cases of the general model described
in equations (6.8)–(6.12). Both of these modeling alternatives attempt to capture cluster-
specific effects. The difference between the two models is the underlying assumption for the
distributions of the cluster-specific random effects. In the parametric model the random
effects are assumed to a have conditionally normal distribution, that is, the conditional
distribution of the random effects, given all covariates, is assumed to be normal. In the
non-parametric model the random effect are assumed to have a non-parametric conditional
distribution.

The parametric random-effect model is well established and frequently used in practice.
Butler and Louis (1992) show that the normality assumption in the parametric model does
not affect the fixed slopes in the model. Verbeke and Lesaffre (1996) show that more accurate
estimates can be obtained for the random effects if a non-normal distribution is estimated.
Aitkin (1999) gives the general modeling approach to the non-parametric random-effect
models that we follow here. First we give the complete description of the two modeling
alternatives and show how they fit in the general modeling framework (6.8)–(6.12).

6.6.1 Parametric random-effect model

This model is a special case of model (6.8)–(6.12) for the case of no categorical latent
variables. The within-level model is given by

Y ∗
ki = νk + Λkηki + KkXki + εki, (6.17)

ηki = α + Bkηki + ΓkXki + ζki. (6.18)



January 9, 2008 17:39 C6587 C6587˙C006

PARAMETRIC VERSUS NON-PARAMETRIC RANDOM-EFFECT MODELS 159

The coefficients νk, Λk, Kk, Bk, and Γk can be either fixed coefficients that are the same
across cluster or random effects that vary across cluster. Let ηk represent the vector of all
such random effects. The between-level model is described by

ηk = µ + Bηk + Γ Xk + ζk. (6.19)

The random-effect residuals ζki and ζk are assumed normally distributed. This assumption
is the difference between the parametric and the non-parametric model. Note that the
distributional assumption for εki is determined by the type of observed variable we model.

6.6.2 Non-parametric random-effect model

This model is a special case of model (6.8)–(6.12) where the random effects ηki and ηk do
not have normally distributed residuals ζki and ζk. The within-level model is given by

Y ∗
ki = νk + Λkηki + KkXki + εki,

ηki|Cki=c = αc + Bkηki + ΓkXki, (6.20)

Pr(Cki = c) = pc, (6.21)

where pc are parameters to be estimated. The coefficients νk, Λk, Kk, Bk, and Γk can again
be either fixed coefficients or random effects. Let ηk represent the vector of all random
effects. The between-level model is given by

ηk|Dk=d = µd + Bηk + ΓXk, (6.22)

Pr(Dk = d) = qd, (6.23)

where qd are parameters to be estimated. The random-effect model (6.20)–(6.23) can alter-
natively be presented as in equations (6.18)–(6.19), considering the mixture across classes

ηki = α + Bkηki + ΓkXki + ζki,

ηk = µ + Bηk + ΓXk + ζk,

where α =
∑

c αcpc, µ =
∑

d µdqd, and ζki and ζk are non-parametric zero-mean residuals
that are freely estimated. The residual ζki takes the values αc − α with probability pc
and the residual ζk takes values µd − µ with probability qd. The variance and covariance
for the non-parametric effects can also be computed; for example, the variance of ζki is∑

c pc(αc −α)(αc −α)′.

6.6.3 Simulation study

A simulation study is conducted to compare the performance of the parametric and non-
parametric random-effect models for data generated with non-normal random effects. Con-
sider a logistic growth model with 10 binary items U1, . . . , U10,

log
[
Pr(Uij = 1)
Pr(Uij = 0)

]
= η0i + η1i aij , (6.24)

where the time scores aij = (j − 1)/2, and η0 and η1 are non-normal random effects.
Generation of η0 and η1 used the following finite mixture of normal distributions:

0.67 ·N(µ1, σ
2) + 0.09 ·N(µ2, σ

2) + 0.24 ·N(µ3, σ
3).

To generate η0, the following parameters were used: µ1 = 2, µ2 = 1, µ3 = 0, and σ = 0.4.
To generate η1, the following parameters were used: µ1 = −0.3, µ2 = −0.4, µ3 = −1,
and σ = 0.1. From these values, 100 samples of size 2000 were generated according to
the model (6.24). The data were analyzed using the parametric linear model (PM) and
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Table 6.2 Comparing the parametric (PM) and non-parametric
(NPM) random-effect models

Parameter True value PM bias NPM bias PM MSE NPM MSE

m0 1.421 0.004 −0.010 0.0018 0.0018
m1 −0.480 0.073 0.004 0.0056 0.0003
v0 0.733 0.563 0.080 0.3302 0.0122
v1 0.088 −0.033 −0.004 0.0012 0.0001
ρ 0.247 −0.006 0.003 0.0008 0.0002

the non-parametric linear model (NPM). PM is a conventional single-class growth model
with random normal effects as in (6.17)–(6.18). Drawing on (6.20) and (6.22), the NPM is
expressed as

Y ∗
ij = η0i + η1i aij + εij ,

η0i|Ci=c
= α0c,

η1i|Ci=c
= α1c,

so that the random effects are represented by a mixture distribution. A more general form
would allow within-class variation for residuals ζ as in (6.9).

The parameter estimates are summarized in Table 6.2. The means of η0 and η1 are denoted
by m0 and m1 and the variances by v0 and v1. The covariance of η0 and η1 is denoted by ρ.
The results are presented for the non-parametric model with three nodes, since three nodes
were determined to be sufficient for most replications using the McLachlan and Peel (2000)
parametric likelihood ratio test. The estimates on which Table 6.2 is based are computed
for the mixture over the three classes in line with (6.20) and (6.22). The results in Table 6.2
clearly indicate the advantages of the NPM method. The NPM parameter estimates have
substantially smaller bias and smaller mean squared error (MSE) for several parameters.

In general it is difficult to evaluate model fit for random-effect models. There is no general
unrestricted model which can be used for comparison. In this simulated example, however,
there is such a model, namely, the completely unrestricted contingency table for the binary
items. In addition, the Pearson chi-square test can be used to test the fit of the model. The
data were generated according to a linear growth model with non-normal random effects;
that is, the true model is a linear random-effect growth model. Both the PM and NPM mod-
els are linear random-effect growth models but are based on different assumptions on the
distribution of the random effects; neither assumption specifies the true random-effect distri-
bution. This situation is typical in practical applications, where the true random-effect dis-
tribution is unknown and the modeling assumptions are likely to deviate from the true distri-
bution to some extent. It is assumed that the distributional misspecification will not interfere
with the basic structure of the model and that the estimated model will provide a good fit for
the data despite the distributional misspecifications. The Pearson test of fit can be used to
directly compare the sensitivity of the PM and NPM models. If the Pearson test rejects the
model, one concludes that the model fit is poor. In practical applications the lack of model
fit could incorrectly be interpreted as evidence for deficiency in the linear growth structure
of the model rather than as possible misspecification in the random-effect distribution.

In the current simulated example one wants the Pearson test to reject the model no
more than the nominal 5% of the time. Table 6.3 contains the Pearson test of fit results
for the PM linear growth model as well as the NPM linear growth model using 3, 4, 5,
and 6 nodes. The rejection rate in Table 6.3 is the percentage of times the linear growth
model was rejected incorrectly. Also presented are the average test statistic value and the
degrees of freedom. These two values should generally be close because the expected value
of the chi-square distribution is equal to the degrees of freedom. The parametric approach
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Table 6.3 Pearson test of fit for the binary linear growth model

Model PM NPM(3) NPM(4) NPM(5) NPM(6)

Rejection rate 100% 22% 15% 8% 4%
Average test statistic 1252 1038 1025 1007 997
Degrees of freedom 1018 1015 1012 1009 1006

rejected the correct model 100% of the time. There is a large difference between the degrees
of freedom and the average test value for the parametric model. On the other hand, the non-
parametric approach leads to the correct conclusion. The Pearson rejection rate converges
to the nominal 5% value as the number of nodes is increased from 3 to 6. The average test
statistic value also converges towards its expected value.

As yet another test of model fit, the estimated parametric and non-parametric models are
used to compute response pattern frequencies. Table 6.4 shows the top five most frequent
patterns in one of the generated data sets as well as the predicted frequency for these pat-
terns, using both the parametric and the non-parametric random-effect models. For the non-
parametric model three-node estimation is used. In this comparison as well one can clearly
see the advantage of the non-parametric approach. The non-parametric pattern frequencies
are more closely matching the observed values than the parametric pattern frequencies.

The simulation study clearly demonstrates the fact that model estimation with normal
random effects is not robust to the distributional assumptions. If the random effects are truly
non-normal the parametric model can actually have a poor fit to the data. This phenomenon
is exacerbated by the fact that in general random-effect models have no test of model fit.
Thus researchers can easily be mislead into believing that a random-effect model is a useful
model. Violations of the normality assumptions can lead to poor estimates and inference. In
addition, a comparison between the non-parametric model and the parametric model that
is limited to the fixed-effect parameters can be misleading, because even when the fixed
parameter estimates as well as the random-effect parameter estimates are identical the
models implied by the two approaches are quite different. Even when the parametric model
fits the first- and second-order moments of the data, the model could have a much worse
fit to the data than the non-parametric model, simply because it will not fit higher-order
moments. The non-parametric model described in this section overcomes these shortcomings
and should be used more frequently in practice.

6.7 Conclusions

The range of growth mixture analyses described in this chapter shows the usefulness of
extending the conventional random-effects repeated-measures model (mixed linear model)
to include different latent classes of development. Growth mixture modeling is a powerful
analytic tool when applied to randomized trials as well as to non-experimental research. The
idea of detecting different treatment effects for individuals belonging to different trajectory
classes has important implications for designing future intervention studies. It is possible to

Table 6.4 Observed and estimated pattern frequencies
for the top five most frequent patterns

Pattern Observed PM-Estimated NPM-Estimated

1111111111 141 246 135
0000000000 83 66 74
1000000000 61 39 69
1111111110 55 36 54
1111111101 49 33 47
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select different interventions for individuals belonging to different trajectory classes using
longitudinal screening procedures. One may attempt to classify individuals into their most
likely trajectory class based on a set of initial repeated measurements before the intervention
starts. Alternatively, one may administer a universal intervention and follow up with a
targeted intervention for individuals who show little or no intervention effect.

In non-experimental research, the exploration of different trajectory classes provides a
more nuanced picture of development, where different classes can have different antecedents
and consequences. As a form of cluster analysis, both the use of individual-level and cluster-
level latent-class variables defined from longitudinal data have great promise.

This chapter also studied non-parametric representation of random-effect distributions in
growth models. It was shown that mixture modeling with latent classes can provide a good
representation of non-normal effects in cases where the conventional approach drawing on
normality gives misleading results. In this connection, it is interesting to consider the age–
crime analysis of Example 4 in Section 6.5.1. Here, three substantively meaningful trajectory
classes were found using growth mixture analysis, each showing within-class variation on
the theme of the trajectory shape. The variation was captured by normally distributed ran-
dom effects. The latent-class growth analysis that was presented may be seen as represent-
ing the random effects non-parametrically. In this example, the non-parametric approach
leads to a proliferation of latent classes. An alternative is to postulate three substantive
classes and allow for within-class variation by a non-parametric approach. The estimates
would be mixed together across the non-parametric classes, but not across the substantive
classes.

The statistical developments behind growth mixture modeling are still relatively recent
and much statistical research remains to be done. For example, the quality of parameter
recovery under different conditions needs to be more fully understood. The Monte Carlo
simulation facility in Mplus is useful in this regard. Tests need to be further developed
to compare models differing not only in the number of latent classes, but also in their
random-effect specification. Residual checking of model fit needs to be further developed.
Furthermore, much more practical experience is needed with these analyses to create guide-
lines for how to build models. Hopefully this chapter will stimulate such statistical work.
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