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1 Introduction

In this paper we describe some of the modeling possibilities that are now
available in Mplus Version 6 with the Bayesian methodology. This new
methodology offers many new possibilities but also many challenges. The
paper is intended to spur more research rather than to provide complete an-
swers. Recently there have been many papers on Bayesian analysis of latent
variable models. In this paper we do not provide a review of the existing
literature but rather emphasize the issues that have been overlooked up to
now. We use the Bayesian methodology in the frequentist world and com-
pare this methodology with the existing frequentist methods. Here we do not
provide details on the algorithms implemented in Mplus, but such details are
available in Asparouhov and Muthén (2010). We focus instead on simulation
studies that illuminate the advantages and disadvantages of the Bayesian
estimation when compared to the classical estimations methods such as the
maximum-likelihood and weighted least squares estimation methods.

2 Factor Analysis

2.1 Factor Analysis with Continuous Indicators

In this section we evaluate the Bayes estimation of a one factor analysis
model with a relatively large number of indicators P = 30 and a small num-
ber of indicators P = 5. As we will see having a large number of indicators
is more challenging than one would expect in MCMC because it creates a
high correlation between the generated factors and the loadings. We con-
sider three different parameterizations. Denote by parameterization ”L” the
parameterization where all loadings are estimated and the factor variance
is fixed to 1. The parameterization ”V” is the parameterization where the
first factor loading is fixed to 1 and the variance of the factor is estimated.
The parameterization PX is the extended parameter parameterization where
both the variance and the first loadings are estimated. This model is formally
speaking unidentified however the standardized loadings are still identified.
These standardized loadings are obtained by

λs = λ
√
ψ

where λs is the standardized loading, λ is the unstandardized loading and
ψ is the factor variance. The loadings λs are essentially equivalent to the
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loadings in parameterization ”L”. The ”PX” parameterization idea has been
used with the Gibbs sampler for example in van Dyk and Meng (2001) and
Gelman et al. (2008b).

We compare the 3 parameterizations in a simulation study with 30 in-
dicators. We generate the data using the following parameters, all loadings
are 1, all residual variances are 1 and the factor variance is 1. We generate
100 data sets of various sample sizes. The priors used in the Bayes esti-
mation are the Mplus default priors, see Appendix A. For all loadings and
intercepts the prior is uniform on the (−∞,∞) interval. The prior for the
variance parameter is the inverse-gamma. This prior tends to be important
for small sample size models thus we will investigate the various options.
We consider three different priors IG(−1, 0), IG(0, 0), and IG(1, 2). The
first two can be considered non-informative priors, while the last one can be
considered to be a weakly informative prior. We denote the corresponding
parameterizations by ”V1”, ”V2”, and ”V3”. The results are presented in
Table 1. The parameters are presented in standardized scale. The mean
and the residual variance parameters are estimated well in all cases and we
do not include those in the table. The loading parameters are symmetric
for parameterizations ”L” and ”PX” and we include only the first loading
for these parameterizations. For parameterizations ”V” we report the first
and the second loading. All loadings after the second loading are equivalent
essentially to the second loading.

It it is clear from the results in Table 1 that the ”PX” parameterization
is superior for small sample sizes such as N = 50 and N = 100. The ”PX”
parameterization shows no bias with any sample size. The ”L” parameteri-
zation shows biased estimates for small sample sizes but for N = 200 or more
the results are good both in terms of coverage and bias. The parameteriza-
tion ”V” is clearly the worst parameterization for this model. For sample
size N = 50 and N = 100 it showed too many convergence problems in the
case of IG(−1, 0) and IG(0, 0) priors (parameterizations ”V1” and ”V2”).
Among the three different priors the IG(1, 2) prior (parameterization ”V3”)
yields the best results. For sample size of 500 or more the prior has no effect
on the results. For sample sizes N = 200 and even N = 500 the estimates
show significant bias and coverage problems.

In contrast Table 2 shows the corresponding results with 5 indicators.
The results show virtually no problems for all three parameterizations with
the exception of the ”V” parameterization for ”N=50” where there seems to
be some bias. The different variance priors has little effect on the estimates.
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Table 1: Bias(coverage) for one factor model with 30 indicators.

Parameter- Para-
ization meter N=50 N=100 N=200 N=500 N=1000 N=5000

L λ1 0.59(47) 0.17(76) 0.07(87) 0.02(91) 0.01(97) 0.00(90)
PX λ1 0.03(92) 0.00(95) 0.00(96) -0.01(97) 0.00(98) 0.00(91)
V1 λ1 - - -0.26(41) -0.07(76) -0.03(89) -0.01(89)
V1 λ2 - - 0.00(98) 0.00(96) 0.00(96) 0.00(93)
V2 λ1 - - -0.31(34) -0.08(73) -0.03(89) -0.01(88)
V2 λ2 - - 0.00(98) 0.00(96) 0.00(96) 0.00(93)
V3 λ1 -0.59(0) -0.41(17) -0.18(47) -0.07(78) -0.03(90) -0.01(89)
V3 λ2 0.40(64) 0.05(95) 0.01(98) 0.00(97) 0.00(96) 0.00(93)

Thus we conclude that the problems we see in the Bayes estimation are
specific to the large number of indicators. The larger the number of indicators
the bigger the sample size has to be for some of the above parameterizations
to yield good estimates. While the 3 parameterizations use different priors
settings the difference in the results is not due to the priors but it is due
to the different mixing in the MCMC chain. If all chains are run infinitely
long the results would be the same or very close, however running the chain
infinitely long is only an abstract concept and therefore it is important to
know which parameterization is best for which model.

The above simulation shows that the more traditional parameterizations
”V” and ”L” are fine to use unless the number of indicators is large and the
sample size is small. In this special case one needs to use the more advanced
parameterization ”PX”. As the number of indicators increases the minimal
sample size for the ”L” parameterization and the ”V” parametrization will
grow. The simulations also show that the parameterization ”L” is somewhat
better than parameterization ”V” when the sample size is small.
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Table 2: Bias(coverage) for one factor model with 5 indicators.

Parameter- Para-
ization meter N=50 N=100 N=200 N=500 N=1000 N=5000

L λ1 0.04(98) 0.04(95) 0.03(95) 0.02(94) 0.01(93) 0.00(94)
PX λ1 0.00(94) 0.02(98) 0.02(95) 0.01(96) 0.01(94) 0.00(93)
V1 λ1 -0.15(87) -0.03(97) 0.00(96) 0.00(98) 0.00(96) 0.00(95)
V1 λ2 0.02(95) -0.01(96) 0.00(97) 0.00(92) 0.00(91) 0.00(96)
V2 λ1 -0.07(100) -0.07(96) -0.02(97) 0.00(98) 0.00(96) 0.00(95)
V2 λ2 0.04(97) 0.01(97) -0.01(97) 0.00(92) 0.00(92) 0.00(96)
V3 λ1 -0.15(87) -0.03(97) 0.00(96) 0.00(98) 0.00(96) 0.00(95)
V3 λ2 0.02(95) -0.01(96) 0.00(97) 0.00(92) 0.00(91) 0.00(96)

2.2 The Advantages of Improper Priors

In this section we present two examples that demonstrate the advantages of
the improper priors used as defaults in Mplus for the variance parameters.
Basic information regarding priors and the Mplus defaults is available in
Appendix A. If there is one factor in the model Mplus uses by default the
IG(−1, 0) prior for the factor variance and if there are more than one factors
it uses IW (0,−m − 1) where m is the number of factors. Both of these
priors have a uniform density over its domain. In this section we use the
V parameterization in the factor analysis models, i.e., one factor loading is
fixed to 1 for each factor and the variance covariance matrix of the factors
is estimated. In the next two sections we present two examples. The first
example is based on a one factor model. The second example is based on a
two factor model. Both examples use normally distributed variables.

2.2.1 One Factor Model

In this section we consider a factor model with one factor and 3 indicator
variables. The model is given by the following equation

yj = µj + λjη + εj.

We generate 100 data sets of sample size N . To generate the data we set all
parameters to 1, including the loading parameters, the intercept parameters
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Table 3: Absolute bias (percent coverage) for ψ in one factor analysis model.

Prior N=50 N=100 N=200 N=500
IG(0, 0) 0.16(91) 0.12(92) 0.04(93) 0.03(93)
IG(−1, 0) 0.03(94) 0.00(93) 0.01(90) 0.01(93)

and the variance parameters for the factor and the residual variables. We
report the results only for the factor variance parameter ψ as this parameter
appears to be the most sensitive to the choice of the prior but the rest of the
parameters are also affected in a similar way. We estimate the model using
two different priors for the factor variance both of which can be considered
non-informative: IG(−1, 0) and IG(0, 0). Table 3 contains the bias and the
coverage for the factor variance estimates. We can see that the IG(0, 0)
prior yields some bias in the estimates particularly for the small sample size
situations while the IG(−1, 0) prior yields nearly unbiased estimates. This
bias advantage of the IG(−1, 0) prior also results in MSE advantage as well.

The simulation results also show that the effect of the prior on the esti-
mates is negligible as the sample size increases to N = 500 and in that case
both priors perform well.

2.2.2 Two Factor Model

In this section we consider a two factor analysis model where each factor has
3 indicator variables. The model is given by the following two equations. For
j = 1, ..., 3

yj = µj + λjη1 + εj (1)

and for j = 4, ..., 6
yj = µj + λjη2 + εj. (2)

We generate 100 data sets of sample size N . To generate the data we use
the following parameter values. The loading parameters λj are set to 1, the
intercept parameters µj are set to 20, the variance parameter for ηj and εj
are set to 20. The covariance parameter ρ between the two factor variables
η1 and η2 is set to 10. We estimate the model given in equations (1) and (2)
using the V parameterization where the factor loadings λ1 and λ4 are fixed
to 1 and the variance covariance matrix Ψ for the two factors is estimated.

6



Table 4: Absolute bias (percent coverage) for λ2 in two factor analysis model.

Prior N=50 N=100 N=200 N=500
IW (I, 3) 2.09(64) 0.32(85) 0.08(88) 0.03(94)
IW (0, 0) 2.82(91) 0.11(91) 0.04(94) 0.01(94)
IW (0,−3) 0.02(95) 0.01(95) 0.00(96) 0.00(95)

We estimate the model using three different priors for Ψ all of which can
be considered non-informative or weakly informative. The first prior is the
Mplus default prior IW (0,−m−1), where m is the size of the Ψ matrix. For
this model this is the prior IW (0,−3). The other two priors that we use are
IW (0, 0) and IW (I, 3), where I is the identity matrix.

In Table 4 we report the results only for the loading parameter λ2. The
results for the rest of the parameters are similar. We can see that the IW (0, 0)
and IW (I, 3) priors yield bias estimates particularly for the small sample size
situations while the IW (0,−3) prior yields unbiased estimates in all cases.

In these simulation results we see again that the effect of the prior on the
estimates is negligible as the sample size increases to N = 500 and that all
priors perform well for large samples.

2.3 Centered Parameterization

Dunson et al. (2005) recommend the use of the so called centered parame-
terization in structural equation models where not only the factor variance
is a free parameter as in the parameterization ”V” described in the previous
section but also the factor mean is a free parameter as well. In this param-
eterization for identification purposes the intercept of one of the indicator
variables is fixed to 0. We denote this parameterization by ”C”. The con-
clusion in Dunson et al. (2005) is that the centered parameterization offers
better mixing and faster convergence. The purpose of this section is to eval-
uate the need for this parameterization in Mplus. The results in Dunson
et al. (2005) are obtained from an algorithm that differs from the Mplus
algorithm in one important aspect. In Mplus all latent variables are gener-
ated as a block, i.e., they are generated simultaneously from a multivariate
distribution conditional on the observed data and the parameters. This pro-
tects from a potentially poor mixing due to highly correlated draws for the
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latent variables. In Dunson et al. (2005) as well as the WinBugs software
the latent variables are generated one at a time, i.e., from a univariate distri-
bution conditional on the other latent variables, the observed data and the
parameters.

We conduct a simulation study to evaluate the performance of parame-
terizations ”C”, ”V” and ”L”. Parameterizations ”V” and ”L” are the most
commonly used parameterizations with the ML estimator and would be con-
sidered the natural parameterizations for most applications. As an example
we use the model described in Dunson et al. (2005) and the parameter
estimates reported in Appendix B in Dunson et al. (2005). All variables
are generated using a normal distribution. We generate 100 data sets using
samples N = 75 and N = 1000 and analyze the data sets with the three
parameterizations. The small sample size N = 75 is chosen to correspond
to the actual application reported in Dunson et al. (2005). The model has
11 observed variables and 9 factors, i.e., the example does not appear to be
in the realm of the large number of indicators phenomenon reported in the
previous section. The following equations describe the model

Y = ν + Λη + Γξ + ε

η1 = α1 + β13η3 + ζ1

η2 = α2 + β21η1 + β23η3 + ζ2

where Y is the vector 11 observed dependent variables, η is a vector of 3
latent variables and ξ is a vector with 6 latent variables. The variables ε,
ζ1 and ζ2 are independent residuals. The structure of the loading matrix is
described as follows. In the Λ matrix all the entries are 0 with the exception
of λi1 for i = 1, ..., 4, λi2 for i = 5, ..., 8 and λi3 for i = 9, ..., 11, i.e., the first
4 variables are measurements of η1, the next 4 variables are measurements
for η2 and the last 3 variables are measurements for η3. The purpose of the
latent variables ξ is to pick up unaccounted by η residual correlations among
the observed variables. For example, ξ1 gives a residual correlation between
y1 and y5, i.e, the first and the fifth loadings of ξ1 are fixed to 1 and the
rest of the ξ1 loadings are fixed to 0. The remaining 5 residual correlation
included in this model corresponding to the remaining five ξ factor variables
are the residual correlations between y2 and y4; y2 and y6; y3 and y7; y4 and
y8; and y6 and y8.

Using all 3 parameterizations in Mplus we obtained similar estimates and
the coverage of the confidence intervals in all cases were near the 95% nominal
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Table 5: Computational time (in seconds) and convergence rate for different
SEM parameterizations.

Parameter- Comp. Time Comp. Time Conv. Rate Conv. Rate
ization N = 75 N = 1000 N = 75 N = 1000

L 1 4 100% 100%
V 1 3 92% 100%
C 1 5 93% 100%

rate. Here we do not report the parameter estimates but rather the computa-
tional time until convergence which is essentially an indicator for the quality
of the mixing as well as the convergence rate. Table 5 contains the average
computational time for a single replication as well the convergence rate in the
simulation study. The computational time indicates that essentially there is
no difference in the mixing and that regardless of which parameterization is
used the estimation for this model is straight forward. In addition the con-
vergence rate is 100% for the sample size N = 1000 and for the small sample
size of N = 75 the convergence rate is the best for parameterization ”L”.
Therefore we can make the following conclusions. Parameterization choice
is tied to the estimation algorithm and parameterization recommendations
obtained with different algorithms do not necessarily apply to Mplus. In par-
ticular the centered parameterization recommended in Dunson et al. (2005)
does not seem to have any advantages over the standard parameterizations
when used with Mplus. In addition, the choice of the parameterization has
a fairly limited impact when the sample size is large, although ”large” is a
relative term and it is different for different models. When the sample size is
small it appears from the simulation study in this and the previous section
that the ”L” parameterization is more robust.

2.4 Two-Level Factor Models with Continuous Indica-
tors

In this section we investigate the performance of the Bayes estimator for two-
level factor analysis with large and small number of indicators. We generate
a multivariate data set with P variables for M clusters, each of size 30. We
generate data with P = 5 variables and P = 45 variables. In addition we vary
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the size of the data set by varying the number of clusters M = 40, 80, 200
or 500. We use a factor analysis model with one factor on the within level
and one factor on the between level. The model is given by the following
equation

Yjik = νj + λwjηwik + λbjηbk + εbjk + εwjik

where Yjik is the j−th observed variable, j = 1, ..., P , for observation i,
i = 1, ...30 in cluster k, k = 1, ...,M . The latent factor variable ηwik is the
within level factor variable for observation i in cluster k. The latent factor
variable ηbk is the between level factor variable for cluster k. The variables
εwjik and εbjk are the residual variables on the within and the between level
for the j-th variable. To generate the data we use the following parameter
values. The loading parameters λwj and λbj are set to 1. The residual
variances and the factor variances are also set to 1. The intercept parameter
νj is set to 0.

In this section we compare the PX and the L parameterizations. In
this two-level estimation setup the total sample size is large, i.e., the within
level sample size is large. When the sample size is large the choice of the
parameterization is irrelevant. Thus the choice of the parameterization on
the within level is irrelevant. For simplicity in all cases we choose the L
parameterization for the within level factor model. On the between level
however the sample size is small because it equals the number of clusters. In
most practical applications and in this simulation the number of clusters is
relatively small. Therefore we can expect that the parameterization on the
between level is important. In this section we compare only the PX and the
L parameterization where this refers to the between level factor model.

We simulate 100 data sets with varying number of indicators and varying
number of clusters. Tables (6) and (7) contain the results of this simulation.
For all parameters except the between level loading parameters the estimate
and coverage are acceptable in all cases. Therefore in tables (6) and (7) we
only report the results for the first between level loading parameter. The
results for the rest of the between level loading parameters are similar. For
the case of M = 40, P = 45 with the L parameterization the convergence
rate is only 35% and thus we do not report any results for this case. In all
other cases the convergence rate is 100%. It is clear from these results that
as in the single level factor analysis model the L parameterization leads to
biased estimates with poor coverage when the number of indicators is large
and the number of clusters is small (M = 40, 80, 200). When the number
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of indicators is small or the number of clusters is large (M = 500) the L
parameterization works well, the bias is small and the coverage is near the
nominal level. On the other hand the PX parameterization works well in all
cases in terms of both bias and coverage.

The implications of this simulation study are even more important for
practical purposes than those for single level factor analysis model. First in
practical applications the number of clusters is usually small. This occurs
much more frequently than small total sample size applications. Second, due
to the small number of clusters, it is common practice to have few between
level factors. In situations when there are many factor indicator variables a
model is usually estimated with several factors on the within level but one
or two factors on the between level. This is common practice because a good
fit for the within-level variance covariance matrix usually requires several
factors while a good fit for the between-level variance covariance matrix can
be achieved with only one or two factors. This is a simple consequence of
the level specific sample size. The within level sample size (the total sample
size in the data) would be larger and misfits in the factor model are likely
to be significant. The between level sample size (the number of clusters)
would be small and misfits in the factor model are likely to be insignificant.
Thus more factors will be added on the within level and few on the between
level to achieve a good fitting model. The consequence of this modeling rule
is that on the between level large number of indicators per factor would be
quite common, i.e., the use of the PX parameterization for two-level models
is critical.

To compute the PX parameterization we specify a unidentified model
where the factor variance and all factor loadings are free parameters. Con-
sequently we compute the standardized estimates which are identified. The
unidentified estimates however can converge to infinity and cause numerical
problems in the estimation. To avoid this it may be necessary to add vague
but proper priors for the loading parameters. In the above simulation we
used a zero mean normal prior with variance 100. In addition, while com-
puting the PX parameterization, Mplus Version 6 will monitor convergence
only on the unidentified parameters. What is needed however is convergence
for the standardized parameters. To resolve this issue the MCMC chains are
run with a fixed number of iterations such as for example 10000 and then
the standardized trace plots are inspected for convergence.

The above simulation shows that Bayes estimation of two-level factor
analysis is quite similar to the single level estimation with one exception.
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Table 6: Absolute bias( percent coverage) for the first between level loading
in two-level factor model with 45 indicators.

Parameterization M=40 M=80 M=200 M=500
L - 0.53(35) 0.12(74) 0.04(86)

PX 0.06(96) 0.00(93) 0.01(92) 0.00(94)

Table 7: Absolute bias(percent coverage) for the first between level loading
in two-level factor model with 5 indicators.

Parameterization M=40 M=80 M=200 M=500
L 0.08(96) 0.03(95) 0.02(93) 0.00(90)

PX 0.01(94) 0.01(97) 0.01(91) 0.00(92)

While in single level estimation difficulties can arise when the sample size is
close to the number of variables, in two-level estimation we see these diffi-
culties when the number of clusters is close to the number of variables.

2.5 Factor Analysis with Binary Indicators

In this section we consider some of the issues that arise in Bayesian factor
analysis with binary variables. Binary indicators provide more limited in-
formation than continuous variables. If also the sample size is small and
the number of indicators is small there will be more limited information in
the data about the quantities that we are estimating. In this situation the
estimates will depend on the priors. Consider a one factor model with five bi-
nary indicators where all the thresholds are 0, all the loadings are 1, and the
factor variance is 1. We estimate this model with the parameterization ”L”.
The default prior on each loading and threshold is the normal distribution
with zero mean and variance 5. We also consider three other priors: N(0, 1),
N(0, 20) and N(0,∞). All of these priors are to some extent non-informative
and diffuse. Such priors are common in the IRT literature. For example, in
Fox and Glas (2001) the prior for the loadings are N(0,∞) constrained to all
positive values. In Segawa et al. (2008) the prior for the loadings is N(0, 105)
constrained to (-25,5). In Patz and Junker (1999) the prior for the loading
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is log-normal with mean 0 and variance 0.5. In Song et al. (2009) and Lee
et al. (2010) similar but more complicated priors were used. In all of these
papers however the sample size were large and the effect of the priors on the
estimation is very small. Small sample size situations were not investigated.

In Gelman et al. (2008a) weakly informative priors, such as N(0, 1),
N(0, 5) and N(0, 20), are recommended for logistic and probit regression
although preference is given there to priors based on the T-distribution and
the Cauchy distribution.

In this simulation we generate 100 data sets of different sample sizes and
analyze the data sets with each of these 4 prior assumptions for the loadings.
The results are presented in Table 8. The table contains the bias and coverage
only for the first loading parameter. The remaining loading parameters are
similar to the first loading. The threshold parameters are estimated well in
all cases and we do not include these results. It is clear from these results
that the prior choice affects the results quite substantially for sample size
N = 50 and N = 100 while for sample size N = 200 and bigger the effect of
the prior is small or none at all. As the sample size increases the effect of the
prior essentially disappears and the parameter estimates become the same as
the ML estimates. For small sample sizes the point parameter estimates are
affected dramatically by the prior. The best results are obtained with the
N(0, 1) prior. Using N(0,∞) for parameters on the logit scale may actually
be a very poor choice. Consider the implications of such a prior on R2 of
the regression equation for each of the Y . The probability that R2 < 99% is
smaller than R2 > 99%. It is obvious that this prior will be inappropriate for
most situations and given that the priors have an effect on the results when
the sample size is known a more thoughtful choice is needed. If no informative
prior is available, a prior related to the ML or WLSMV estimates for the same
model may be a viable choice.

In Lee (2010) a similar conclusion has been reached. The authors state
that large sample sizes are required to achieve accurate results. Let’s again
iterate and clarify this point. Bayesian estimation of structural models with
categorical variables show prior assumption dependence when the sample
size is small, for example N = 100. The results of the Bayesian estimation
are accurate, however they depend on the prior assumptions. In these models
all priors are informative since they affect the final result substantially. Thus
setting up meaningful priors is very important. Setting up priors in these
models is also challenging because of the fact that the parameter are on
probit scale. It would be much easier to setup priors on probability scales
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but that is not always possible.
The prior assumption dependence may be a substantial hurdle in

practice, simply because good and meaningful priors are not easy to specify.
This is particularly problematic when the Bayesian estimation is simply used
to obtain good point estimates and standard errors, because it is not clear
how to select priors that provide estimates with small or no bias. Our exam-
ple shows however that simply avoiding the so called generic non-informative
priors is a good first step. For all parameters that are on probit scale it
seems that specifying priors that have unlimited uniform range is not a good
idea because such priors induce skewed priors on probability scale. Instead,
selecting priors with a reasonable and finite range is likely to yield better
results.

The prior assumption dependence occurs for small sample sizes. Ev-
ery model however will have a model specific sample size range where this
dependence occurs and we can not provide a general sample size range. How-
ever the prior assumption dependence is easy to check. Simply estimat-
ing the model with various different priors will show the degree to which the
estimates depend on the priors.

Finally we are going to provide a frequentist interpretation on the pos-
teriors and explain why priors can affect the results. Suppose that we draw
parameters from the priors and then from those parameters and the model we
draw data sets similar to the observed data. We then remove all such draws
that produce data different from the observed data and we retain all draws
that produced data sets that are the same as the observed. The retained
parameters form the posterior distribution. Thus if two parameter values θ1
and θ2 have been equally likely to produce the data the frequency ratio in
the posterior will be the same as that in the prior, i.e., the prior will have a
tremendous effect on the posterior when the data can not discriminate very
well between the parameters.

Note also that if the number of indicators is large in this factor analysis
model just as in the case of factor analysis model with continuous indicators
the PX parameterization has to be used otherwise the loading parameters
will be overestimated.
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Table 8: Bias (percent coverage) for λ1,1 = 1 in factor analysis with binary
indicators.

Prior N=50 N=100 N=200 N=500
N(0,∞) 3.41(84) 0.56(89) 0.11(92) 0.04(91)
N(0, 20) 0.46(90) 0.34(88) 0.13(92) 0.04(92)
N(0, 5) 0.30(93) 0.19(89) 0.09(92) 0.03(92)
N(0, 1) 0.03(96) 0.07(93) 0.04(94) 0.01(93)

2.6 Factor Analysis with Multiple Factors

In this section we consider confirmatory factor analysis with multiple factors
and continuous indicators. We investigate the performance of the ”V” and
the ”L” parameterizations particularly for small sample size. Simulation
study is conducted based on a factor analysis model with M factors where
each factor is measured by 4 indicators. The model is described by the
following equation

Yj = µj + λjηm + εj

for m = 1, ...,M and j = 4m − 3, ..., 4m. We generate data according to
the above model using the following parameter values: µj = 0, λj = 1, the
residual variance θj = 1, and the factor variance covariance matrix Ψ has
all diagonal elements equal to 1 and all off diagonal elements equal to ρ.
We generate 100 data sets of sample size N using the above model and we
estimate the true model for each data set using both the ”V” and the ”L” pa-
rameterizations. In the ”V” parameterization the first loading for each factor
is fixed to 1, the remaining 3 loadings are estimated as free parameters and
the factor variance covariance matrix is estimated as a variance covariance
matrix. In the ”L” parameterization for each factor all four loadings are
estimated as free parameters but the variance covariance matrix is estimated
as a factor correlation matrix, i.e., the diagonal elements of Ψ are fixed to 1
and all off diagonal elements are estimated. Both of these parameterizations
are frequently utilized for confirmatory factor analysis models with multiple
factors. In the simulation we vary the sample size N , the number of factors
M and the factor correlation ρ. We use sample sizes N = 100, 150 and 200,
i.e., we focus on small sample size situations. The number of factors M is 3,
4, or 5. The factor correlation ρ is 0.5, 0.6 or 0.75.
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The results of this simulation study show that in all cases the param-
eter estimates are unbiased and the coverage is near the nominal level for
all parameters. Here we do not report these results. The main difference
between the ”L” and the ”V” parameterizations that we found in this sim-
ulation study is in the convergence rates. The convergence rate for the ”V”
parameterization is always 100% while the convergence rate for the ”L” pa-
rameterization slightly lower in some extreme cases. In Table 9 we report the
convergence rate for the ”L” parameterization under the various conditions.
The convergence rate drops when the sample size is small and the number of
factors is large and when the factor correlation is large.
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Table 9: Convergence rate for the ”L” parameterization for CFA with mul-
tiple factors. The convergence rate for the ”V” parameterization is 100% in
all cases.

M ρ N Convergence Rate
3 0.5 100 100%
3 0.5 150 100%
3 0.5 200 100%
3 0.6 100 100%
3 0.6 150 100%
3 0.6 200 100%
3 0.75 100 100%
3 0.75 150 100%
3 0.75 200 100%
4 0.5 100 100%
4 0.5 150 100%
4 0.5 200 100%
4 0.6 100 100%
4 0.6 150 100%
4 0.6 200 100%
4 0.75 100 100%
4 0.75 150 100%
4 0.75 200 100%
5 0.5 100 100%
5 0.5 150 100%
5 0.5 200 100%
5 0.6 100 99%
5 0.6 150 100%
5 0.6 200 100%
5 0.75 100 87%
5 0.75 150 98%
5 0.75 200 99%
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3 Estimating Structural Equation Models With

Categorical Variables and Missing Data

The most popular method for estimating structural equation models with cat-
egorical variables is the weighted least squares method (estimator=WLSMV
in Mplus). This method however has certain limitations when dealing with
missing data. The method is based on sequentially estimating the univari-
ate likelihood and then conditional on the univariate estimates the bivariate
model is estimated. The problem with this approach is that when the miss-
ing data is MAR and one dependent variable Y1 affects the missing data
mechanism for another variable Y2, the two variables have to be estimated
simultaneously in all stages of the estimation otherwise the estimates will be
biased.

Consider the following simple example. Let Y1 and Y2 be binary variables
taking values 0 and 1 and let Y ∗

1 and Y ∗
2 be the underlying normal variables.

The relationship between Yi and Y ∗
i is given by

Yi = 0⇔ Y ∗
i < τi

for i = 1, 2 and parameters τi. Let τ1 = τ2 = 0. In that case P (Y1 = 0) =
P (Y2 = 0) = 50%. Suppose also that the tetrachoric correlation between the
two variables is ρ = 0.5. Suppose that the variable Y2 has missing values and
that the missing data mechanism is

P (Y2 is missing|Y1 = 0) = Exp(−2)/(1 + Exp(−2)) ≈ 12% (3)

P (Y2 is missing|Y1 = 1) = Exp(1)/(1 + Exp(1)) ≈ 73%. (4)

This missing data mechanism is MAR (missing at random). We simulate
100 data sets according to this bivariate probit model of size 1000 and gen-
erate the missing data according to (3) and (4). We then estimate the unre-
stricted bivariate probit model with both the WLSMV and Bayes estimators
in Mplus.

The results of the simulation study are given in Table 10. It is clear
from these results that the WLSMV estimates are biased while the Bayes
estimates are unbiased. The bias in the WLSMV estimates results in poor
coverage for that estimator, while the coverage for the Bayes estimator is
near the nominal 95% level.
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Table 10: Comparing the WLSMV and Bayes estimators on bivariate MAR
dichotomous data.

True WLSMV Bayes WLSMV Bayes
Parameter Value Estimates Estimates Coverage Coverage

ρ 0.50 0.35 0.51 0.14 0.88
τ1 0.00 0.01 0.01 0.96 0.94
τ2 0.00 0.23 -0.01 0.00 0.95

The same problem occurs for two-level models. Suppose that we have
500 clusters of size 10 and two observed binary variables. The corresponding
basic bivariate two-level probit model for the two binary variables is given
by

Yi = 0⇔ Y ∗
i < τi

Y ∗
i = Yiw + Yib

for i=1,2. Here Yiw is a standard normal variable, i.e., Yiw has mean zero and
variance 1. The variable Yib has zero mean and variance vi. Both Yiw and
Yib are unobserved. There are two types of tetrachoric parameters in this
model. On the within level we have the within level tetrachoric correlation
ρw between Y1w and Y2w. On the between level we have the between level
tetrachoric covariance ρb between Y1b and Y2b. We generate 100 data sets
and we generate missing data using the missing data mechanism (3) and (4).
We then analyze the data with the Bayes and WLSMV estimators in Mplus.
The results of the simulation study are given in Table 11. We see that for
two-level models the WLSMV estimates are again biased while the Bayes
estimates are unbiased. The tetrachoric WLSMV estimates on both levels
are biased as well as the threshold WLSMV estimates.

The weighted least squares estimator relies on unbiased estimates of tetra-
choric, polychoric and polyserial correlations to build estimates for any struc-
tural model. If these correlation estimates are biased the structural parame-
ters estimates will also be biased. Consider for example the growth model of
5 binary variables observed at times t = 0, 1, 2, 3, 4. The model is described
by the following equation

P (Yit = 1) = Φ(η1i + tη2i).
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Table 11: Comparing the WLSMV and Bayes estimators on bivariate two-
level MAR dichotomous data.

True WLSMV Bayes WLSMV Bayes
Parameter Value Estimates Estimates Coverage Coverage

ρw 0.50 0.40 0.51 0.08 0.91
ρb 0.20 0.17 0.19 0.70 0.94
v1 0.30 0.30 0.30 0.94 0.96
v2 0.30 0.28 0.31 0.93 0.94
τ1 0.00 0.00 0.00 0.95 0.93
τ2 0.00 0.24 0.00 0.00 0.96

where Φ is the standard normal distribution function. The model has 5
parameters: the mean µ1 of the random intercept η1i and the mean µ2 of the
random slope η2i as well as the variance covariance Ψ of these two random
effects which has 3 more parameters. We generate 100 data sets of size
1000 and we generate missing data for y2, y3, y4 and y5 via the missing
data mechanism described in (3) and (4), i.e., y1 affects the missing data
mechanism for y2, ..., y4.

The results of this simulation study can be found in Table 12. We analyze
the data using the true model with several different estimators. We analyze
the data again with the WLSMV estimator directly and with the Bayes es-
timators directly. The Bayes estimator we use two different priors for the Ψ,
the uniform improper prior for all positive definite matrices IW (0,−3) and
the default proper prior IW (I, 3) which implies a more reasonable range for
the variance parameters as well as a uniform prior on (−1, 1) for the corre-
lation parameter, see Appendix A. In addition to these estimators we also
analyze the data with the following estimators. Using the Mplus imputation
method we analyze the data with the WLSMV estimator with 5 imputed
data sets as well as 50 imputed data sets. The multiple imputation method
is based on a Bayesian estimation of an unrestricted model which is then used
to impute the missing values. Multiple and independent imputations are cre-
ated which are then analyzed using Rubin (1987) method. The unrestricted
model used for imputation is the the sequential regression with observed me-
diators model which is the default method in Mplus for this kind of data.
This approach was pioneered by Raghunathan et al. (2001). In addition, this
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model can be analyzed with the ML estimator. The ML estimator is guar-
anteed to provide consistent estimates since the missing data is MAR. Note
again however that the ML estimator has some shortcomings that can not be
overcome in general but for this particular model do not apply. The short-
comings of the ML estimators is that it can only be used with no more than
3 or 4 latent variables, otherwise the computational burden is so large that
it becomes impractical. Another shortcoming of the ML estimator is that it
can not be used with residual correlations between the categorical variables
because that would lead to the use of the multivariate probit function that
requires computationally demanding numerical integration. Finally the ML
estimator does not provide a model fit based on an unrestricted multivariate
probit model. The WLSMV estimator and the Bayes estimator both avoid
the above mentioned shortcomings. The parameter values used in this simu-
lation study are as follows µ1 = 0.00, µ2 = 0.20, ψ11 = 0.50, ψ22 = 0.50, and
ψ12 = 0.30.

As expected again we see that the WLSMV estimates are biased while
the Bayes estimates are close to the true values. In particular the mean of
the random slope is underestimated dramatically by the WLSMV estimator
while the Bayes estimator is consistent. Also the coverage for the WLSMV
estimator is unacceptable. In addition we see that the results between the
Bayes estimators with the two different priors are different and thus we have
prior assumption dependence for this model. Even though we have a sample
size of 1000, the growth model is somewhat difficult to identify because it
uses only 5 binary variables. In this example again we see a clear advan-
tage of using proper prior with bounded range rather than uniform improper
prior. The proper prior leads to a decrease in the bias and improved cover-
age. Overall the four estimators, the Bayes estimator with IW (I, 3) prior,
the ML estimator, the WLSMV estimator with 5 imputed data sets, and
the WLSMV estimator with 50 imputed data sets performed very well and
there doesn’t appear to be a substantial difference between these estimators.
Increasing the number of imputed data sets from 5 to 50 does not seem to
improve the results, i.e., 5 imputed data sets are sufficient. All of these 4 es-
timators are computationally fast and while they are more involved than the
traditional WLSMV estimator, the improvement in the results is substantial.
We conclude that in the presence of missing data the Bayes estimator offers a
valuable alternative to the WLSMV estimator, both as a direct estimator or
as an imputation method followed by the WLSMV estimator. The imputa-
tion method followed by the WLSMV estimator however has the advantage
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Table 12: Bias(Coverage) for MAR dichotomous growth model.

Estimator µ1 µ2 ψ11 ψ22 ψ12

WLSMV -0.03(.92) -0.16(.02) -0.23(.62) 0.09(.96) -0.08(.68)
Bayes IW (0,−3) 0.00(.93) 0.00(.92) 0.15(.73) 0.07(.82) -0.02(.89)
Bayes IW (I, 3) 0.00(.92) 0.00(.93) 0.06(.97) 0.03(.89) -0.02(.92)

ML 0.00(.95) -0.01(.93) 0.05(.89) 0.01(.96) -0.01(.97)
WLSMV (5 Imput.) -0.01(.95) -0.01(.92) 0.07(.90) 0.04(.91) 0.00(.94)
WLSMV (50 Imput.) -0.01(.94) -0.01(.92) 0.06(.94) 0.03(.93) 0.00(.95)

that is does not depend on priors selection and therefore can be considered
as the most straight forward approach.

4 Small Sample Size

In this section we will show how to use the Bayesian estimator to overcome
small sample size shortcomings of the maximum likelihood estimator. The
ML estimates are consistent and when the sample size is sufficiently large the
point estimates will be essentially unbiased and the asymptotic estimates for
the standard errors can be used to provide a 95% confidence intervals. For
small sample size however there is no guarantee that the point estimates will
be unbiased nor that the confidence intervals have the desired coverage. In
this section we provide a simple example that shows these shortcomings and
also shows how the Bayesian estimator can be used to resolve this problems.
We consider a two-level regression with a random intercept. In two-level
models the parameters on the between level are essentially estimated by as
many observations as there are clusters in the data, i.e., for the asymptotic to
hold the number of clusters has to be sufficiently large. In practice however
the number of clusters is often small, i.e., the ML asymptotic formulas are
often unreliable. The model that we investigate in this section is given by

Yij = α + βXij + ηj + εij

where Yij is the i−th observation in cluster j, Xij is a standard normal
covariate, ηj is zero mean normally distributed random effect, and εij is a zero
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mean normal residual. The model has 4 parameters α, β, ψ = V ar(ηj), and
θ = V ar(εij). We generate data according to this model using the following
parameter values α = 0, β = 1, ψ = 1, and θ = 2. We generate 100 data sets
with M clusters each with 50 observations, i.e., the total sample size in each
data set is 50M . We analyze the generated data with the ML estimator as
well as 3 different Bayes estimators. The Bayes estimators differ in the choice
of prior distribution for the parameter ψ. The Mplus default prior is the
improper prior IG(−1, 0) which is equivalent to a uniform prior on [0,∞).
We also estimate the model with the priors IG(0, 0) and IG(0.001, 0.001)
which have been considered in two-level models, see Browne and Draper
(2006) and Gelman (2006).

The results for the parameter ψ are presented in Table 13. The best
results in terms of bias and coverage are obtained with the Bayes estimator
and priors IG(0, 0) and IG(0.001, 0.001). The difference between the two
priors are essentially non-existent. The ML estimator shows low coverage
even for M = 20 and bigger bias even for M = 60. The Bayes estimator
with default prior also performs poorly in terms of bias. Similar advantage of
the Bayes estimator also occurs for the α parameter. This simulation shows
that when the number of clusters is smaller than 50 the Bayes estimator can
be used to obtain better estimates and more accurate confidence intervals in
two-level models particularly when the between level variance components
use priors such as IG(0, 0).

In Mplus the default for the variance on the between level random effects
is set to IG(−1, 0). Even though this prior yields less accurate results than
IG(0, 0), it is preferred in general as it has a greater chance for convergence.
The prior IG(0, 0) has the tendency to pull small variance components, which
are common in two-level modeling, towards zero. This eventually leads to
singularity problems in the MCMC generation.
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Table 13: Bias(Coverage) for ψ in two-level regression.

Estimator M=5 M=10 M=20 M=40 M=60
ML -.22(.64) -.13(.82) -.09(.86) -.04(.91) -.03(.93)

Bayes IG(0.001,0.001) .13(.96) .01(.94) .03(.91) .01(.93) .01(.95)
Bayes IG(0,0) .13(.96) .01(.94) .03(.93) .01(.93) .01(.95)
Bayes IG(-1,0) 1.88( .89) .35(.95) .16(.88) .07(.91) .04(.93)

5 Bayesian Estimation as the Computation-

ally Most Efficient Method

In this section we describe models that are computationally challenging for
traditional estimation methods such as maximum-likelihood but are now
doable with the Bayesian estimation.

5.1 Multilevel Random Slopes Models With Categor-
ical Variables

Random effect models with categorical variables are usually estimated with
the ML estimator however each random effect accounts for one dimension of
numerical integration. The ML estimator is not feasible when the dimension
of numerical integration is more than 3. Thus the maximum number of ran-
dom effect the ML estimator can estimate in a two-level probit regression is
3 (one intercept and 2 random slopes). It is possible to use Montecarlo inte-
gration method with more than 3 random effects, however, such an approach
usually require careful monitoring of the estimation. In particular the con-
vergence in a maximum-likelihood estimation with Montecarlo integration is
somewhat tricky because the usual methods that are based on monitoring
the log-likelihood value or the log-likelihood derivatives will be difficult to
use due to larger numerical integration error.

In this section we will evaluate the performance of the Bayes estimator
for q random effects for q = 1, ...6. The estimation time for the ML esti-
mator grows exponentially as a function of the number of random effects.
This however is not the case for the Bayesian estimation where the compu-
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tational time grows linearly as a function of the number of random effects,
i.e., increasing the number of random effects is not an obstacle for the Bayes
estimation.

We conduct simulations with different number of random effects starting
from 1 effect to 6 random effects. Let the number of random effects be q.
To generate data for our simulation studies we first generate q covariates Xk

for k = 1, ..., q. We set X1 = 1 so that we include the random intercept
in this model. For k = 2, ..., q we generate Xk as independent normally
distributed covariate with mean zero and variance 1. We also generate a
normally distributed between level covariate W with mean 0 and variance 1.
Let the binary dependent variable be U and denote by Uij the observation i
in cluster j. The two-level binary probit regression is given by

P (Uij = 1) = Φ
( q∑
k=1

skjXkij

)
skj = αk + βkWj + εkj

where εkj is a zero mean residual with variance covariance matrix Ψ of size
q, i.e., the random effects are assumed to be correlated. We generate data
using these parameter αk = 0, Ψ = diag(0.5), βk = 0.7.

Using the Bayes estimator we analyze the generated data using each of
these 3 different priors for Ψ: IW (0,−q−1), IW (I, q+1), and IW (2I, q+1),
where I is the identity matrix, see Appendix A. The prior IW (0,−q−1) has
a constant density function over the definition domain, i.e., it is an improper
uniform prior. The default IW (I, q+ 1) prior is usually selected as a proper
prior that has non-informative marginal distributions for the correlation pa-
rameters, i.e., the marginal prior distribution for the correlations between
the random effects is uniform on [−1, 1]. The marginal distribution for the
diagonal elements is IG(1, 0.5) which has mode at 0.25. The only difference
between the prior IW (2I, q + 1) and IW (I, q + 1) is that the marginal prior
distribution for the diagonal element of Ψ is IG(1, 1) which has a mode of 0.5.
If we have a good reason to believe that the variances of the random effects
are near 0.5 (which is the true value here) then we can choose IW (2I, q+ 1)
instead of IW (I, q+1) as a proper prior. In these simulations studies we gen-
erate 200 clusters with 20 observations each for a total sample size of 4000.
Note however that for the purpose of estimating the between level random
effects distribution the sample size is 200, i.e., this sample size is within a
range where the the prior assumptions can potentially affect the posterior.
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The results of the simulations are presented in Table 14. We provide the
results only for the parameter ψ1,1. The quality of the estimation of the rest of
the parameters is similar to that of ψ1,1. Since we are holding the sample size
constant here the ”prior dependence issue” is arising as the model becomes
more and more complicated. As we increase the number of random effects in
the model there is less and less information about these random effects in the
data which in turn results in bigger dependence on the prior assumptions.
The ”prior dependence” is visible for q = 4, 5, 6 and it increases as q increases.
The results obtained with the uniform improper prior IW (0,−q− 1) appear
to be the worst, both in terms of bias and coverage. Similar to the results we
obtained in Section 2.5 we have the problem that the uniform improper prior
puts too much weight on out of reasonable range values. In contrast the two
proper priors seem to yield a small bias and good coverage. In particular the
bias obtained with the prior IW (2I, q + 1) is close to 0 in all cases.

How do we in practice choose priors that are appropriate and are likely
to give minimal bias in the point estimates? The first step in this process
is to choose several different priors that are quite vague such as the three
priors used above and to compare the results. If the results are similar then
we can conclude that the sample size is big enough and that choosing among
different vague priors will not change the results. If however the results are
not similar then we can conclude that we have ”prior dependence” in the
Bayes estimation and that we need to carefully consider the appropriateness
of the different priors. In most cases improper uniform priors for categor-
ical data should be considered unreliable. We can also choose among the
different priors the prior that appears to be most in agreement with the var-
ious posteriors that we have obtained. In our example, both IW (I, q + 1)
and IW (2I, q + 1) show that the variance point estimates are near 0.5 and
thus the prior IW (2I, q + 1) can be considered more appropriate as it has
a marginal distribution for ψ1,1 with a mode of 0.5. When we are unable to
provide a meaningful prior for parameters but we are forced to do so by the
small sample size there is nothing wrong in choosing a prior that agrees to
some extent with the posterior and this is exactly the strategy we followed
in this example. We used a prior dependent posterior to make a more in-
formative choice on the prior. The differences between the various posterior
distributions are much smaller than those in the prior, and thus selecting a
prior that does not contradict any of the posterior distributions is a valid
choice.
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Table 14: Bias (percent coverage) for ψ1,1 = 0.5 in two-level probit regression
with q random effects.

Prior q = 1 q = 2 q = 3 q = 4 q = 5 q = 6
IW (0,−q − 1) 0.03(90) 0.04(92) 0.04(96) 0.08(81) 0.10(79) 0.19(60)
IW (I, q + 1) 0.03(89) 0.02(93) -0.01(97) -0.01(95) -0.04(97) -0.05(92)
IW (2I, q + 1) 0.03(89) 0.03(93) 0.01(97) 0.02(97) -0.01(97) -0.01(96)

5.2 Small Random Effect Variance

When the variance of a random effect is very small the EM algorithm has
a very slow rate of convergence even when aided by acceleration methods.
On the other hand the Bayes estimator can take advantage of a prior spec-
ification that avoids the variances collapsing to zero problem. The inverse
gamma prior will generally work well for this purpose, see Appendix A. The
near zero variance for the random effect is a common problem in two-level
regression models. Once it is known that the variance is near 0 the correct
modeling approach is to replace the random effect coefficient with a standard
regression coefficient. With such a specification the model will be much easier
to estimate, however, typically we do not know that the variance is near zero
and thus estimate the effect as a random effect and frequently the ML estima-
tion method will produce either very slow convergence or non-convergence.
To illustrate this we conduct the following simulation study. Consider again
the two-level binary regression model as in the previous section

P (Uij = 1) = Φ
( q∑
k=1

skjXkij

)
skj = αk + βkWj + εkj

where q = 3 and again the first covariate is set to the constant 1 to include
the random intercept in the model. Here we have one random intercept
and two random slopes, i.e., the ML estimation will use only 3 dimensional
integration which usually is not computationally heavy. We generate the
data using the following parameters α1 = 0, α2 = 0.2 and α3 = 0.2, βk = 0.7
for k = 1, 2, 3. The two covariates on the within level X2 and X3 and the
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between level covariate W are generated as standard normal variables. The
εk variables are generated as independent with variance ψ11 = ψ22 = 0.5 and
ψ33 = 0. The last parameter is the key parameter, i.e., the second random
slope has a zero variance. We generate 100 data sets each with 200 clusters of
size 20 and analyze them with both the ML and the Bayes estimator. For the
Bayes estimation we use the Inverse-Wishart prior IW (I, 4) for the random
effects variance covariance parameters, see Appendix A. For the αk and βk
parameters we use uniform prior on (−∞,∞) interval, i.e., a non-informative
improper prior.

The ML estimator took on average 19 minutes to complete each replica-
tion while the Bayes estimator used only 5 seconds, i.e., the Bayes estimator
is about 200 times faster than the ML estimator. The results are presented in
Table 15. The bias for both methods is near 0 and the coverage near the 95%
nominal rate with one exception. The Bayes estimator does not ever include
the 0 value in the confidence interval for the variance parameter ψ33, i.e., the
coverage here is 0. This is always going to be the case. The posterior dis-
tribution for a variance parameter consists only of positive values and since
the inverse-gamma prior (which is the marginal distribution obtained from
the inverse-wishart prior, see Appendix A) has low prior for near zero values
than even small positive values are not included in the posterior. Thus we see
that the Bayes estimator will necessarily estimate zero variances to small but
positive values, which essentially leads to the bias of 0.06 seen in Table 15.
The Bayes estimator can not be used to test significance of the random effect
variance. The same is true for the standard LRT test because of borderline
issues that distort the LRT distribution. Instead DIC and BIC can be used
to evaluate the need for a random effect. Finally we conclude that the Bayes
estimator avoids the collapse at zero of the variance parameter which in turn
results in mush faster estimation. However when the Bayes estimator gives a
small positive value for a variance parameter we should always suspect that
the true value is actually zero.
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Table 15: Bias (percent coverage) for small random effect variance estima-
tion.

Parameter ML Bayes
α1 0.01(90) 0.00(91)
α2 0.01(95) 0.00(91)
α3 0.00(96) 0.01(97)
β1 0.01(96) 0.00(94)
β2 0.00(98) 0.01(93)
β3 0.00(95) 0.03(91)
ψ11 0.01(96) 0.03(94)
ψ22 0.01(93) 0.03(94)
ψ33 0.01(99) 0.06(0)
ψ12 0.00(97) 0.00(94)
ψ13 0.00(97) 0.00(98)
ψ23 0.00(97) 0.01(97)

6 Posterior Predictive P-value

Several discrepancy functions have been implemented in Mplus to obtain
posterior predictive P-values (PPP). The main one is the likelihood ratio chi-
square test of fit discrepancy function, see Asparouhov and Muthén (2010).
This discrepancy function can be used to detect structural misspecifications
in the model, i.e., the PPP method based on the classical test of fit discrep-
ancy function can be used to test the structural model for misspecifications.
Note also that the PPP method uses the estimated posterior distribution
and evaluates how that posterior distribution and the model fits the data.
Therefore the PPP method can be used also as a check for the posterior
distribution of the parameter estimates. Since the posterior distribution de-
pends on the prior distribution, the PPP method is also a test for the prior
specifications for the parameters estimates.

In this section we illustrate the advantages and disadvantages of the PPP
method. Four models are considered below: SEM with continuous variables,
SEM with categorical variables, mixture with continuous variables and mix-
ture with categorical variables.
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6.1 Posterior Predictive P-value in SEM with Contin-
uous Variables

In this section we study the power and the type I error for the PPP method
and compare it to the classical likelihood ratio test (LRT) of fit, based on the
ML estimator, and also the weighted least squares (WLSMV) test of fit. For
the ML estimator we include the various robust LRT statistics given with
the MLR, MLM and MLMV estimators. All of these tests are available in
Mplus.

We begin by conducting a power analysis for a structural equation model
with 15 indicator variables y1, ..., y15 measuring 3 latent factors η1, η2, and
η3. The following equation describes the model

y = µ+ Λη + ε

where y is the vector of 15 variables, η is the vector of the 3 latent factors with
variance Ψ, and ε is the vector of 15 independent residuals with a variance
covariance Θ, which is assumed to be a diagonal matrix. In this simulation
we will study the ability of the tests of fit to reject the model when some small
loadings in Λ are misspecified. We vary the sample size in the simulation to
obtain approximate power curves for the three tests. Data is generated using
the following parameters θi = 0.5, µi = 0, Ψ is the identity matrix of size 3
and

Λ =



1 0 0
1 0 0
1 0 0
1 0 0.2
1 0 0.2
0 1 0
0 1 0
0 1 0

0.3 1 0
0.3 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1



.
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We estimate a misspecified model where the two loadings of size 0.2 are
omitted from the model while all other non-zero loadings are estimated with
one exception. For identification purposes we fix λ1,1 = λ6,1 = λ11,1 = 1. We
also estimate the matrix Ψ. Since the model is misspecified we expect the
tests of fit to reject the model for sufficiently large sample size. Table 16
contain the results from this simulation for various sample sizes. It is clear
that the LRT test is the most powerful and it would in general reject the
incorrect model more often than both the PPP and the WLSMV. All tests
however will reject the incorrect model with sufficient sample size.

We now conduct a different simulation study designed to check the type I
error of the tests, i.e., to determine how often the correct model is incorrectly
rejected. We generate the data using the same Λ matrix but with λ4,3 =
λ5,3 = 0 and analyze the model using the correct specification. The rejection
rates are presented in Table 17. The LRT rejects incorrectly the correct
model much more often than both PPP and WLSMV. The rejection rates
for LRT are much higher than the nominal 5% level for sample size 50 and
100. Among the four versions of the LRT test the MLMV performs best
however the type I error for sample size 50 is still too high.

The conclusion of the above simulation study is that the LRT appears
to be more powerful than the PPP and WLSMV but this is at the cost of
incorrect type I error for small sample size cases, i.e., the use of LRT is only
reliable when the sample size is sufficiently large. On the other hand the
PPP is always reliable and for sufficiently large sample size has the same
performance as the LRT, i.e., the PPP test is just as capable of rejecting
incorrect models as LRT. Overall however the WLSMV test seems to perform
better than both PPP and LRT. The WLSMV type I error is near the nominal
level even when the sample size is small and for certain sample size values it
appears to be more powerful than PPP. However the WLSMV would not be
a possibility when there is missing MAR data. Thus the PPP seems to be
the only universal test that works well in all cases.

Using simulation studies Savalei (2010) found that the MLMV estimator
performs best in small sample sizes, however in our simulation we found a dif-
ferent result. The WLSMV estimator performed better than MLMV and in
fact in the absence of missing data the WLSMV test statistic outperforms all
other statistics. This exposes the problems with frequentist inference. Both
MLMV and WLSMV methods are based on and designed for large sample
size and have no guarantee to work well in small sample size. Simulation
studies can favor one method over another however there is no guarantee
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Table 16: Rejection rates of LRT, PPP and WLSMV for a misspecified CFA.

Sample Size 50 100 200 300 500 1000 5000
LRT-ML 0.54 0.42 0.46 0.58 0.94 1.00 1.00

LRT-MLM 0.64 0.43 0.47 0.61 0.94 1.00 1.00
LRT-MLMV 0.25 0.20 0.36 0.49 0.91 1.00 1.00
LRT-MLR 0.67 0.44 0.48 0.61 0.94 1.00 1.00

PPP 0.04 0.16 0.29 0.47 0.77 0.99 1.00
WLSMV 0.09 0.18 0.44 0.69 0.95 1.00 1.00

Table 17: Rejection rates of LRT, PPP and WLSMV for a correctly specified
CFA model.

Sample Size 50 100 200 300 500 1000 5000
LRT-ML 0.37 0.21 0.11 0.08 0.07 0.02 0.04

LRT-MLM 0.46 0.21 0.11 0.08 0.07 0.02 0.04
LRT-MLMV 0.20 0.08 0.07 0.08 0.05 0.02 0.04
LRT-MLR 0.47 0.24 0.11 0.08 0.07 0.02 0.04

PPP 0.01 0.05 0.02 0.00 0.02 0.01 0.01
WLSMV 0.04 0.05 0.05 0.04 0.03 0.03 0.06

that such a simulation result would be replicated in different settings. On
the other hand the PPP method is designed so that it works independently
of the sample size.

Note however that the PPP test appears to show a bias of some sort.
Typical tests of fit will reach the nominal 5% rejection rate when the model
is correct. Here we see however that the PPP is below the 5% rejection rate
even for large sample size cases. This discrepancy is due to the fact that the
PPP value is not uniformly distributed as the P-value in classical likelihood
ratio tests, see Hjort et al. (2006).
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Table 18: Rejection rates of LRT-ML and PPP of 0.1 misspecified loadings.

Sample Size 300 500 1000
LRT-ML 0.19 0.21 0.44

PPP 0.06 0.12 0.29

Table 19: Rejection rates of LRT-ML and PPP of 0.3 misspecified loadings.

Sample Size 300 500 1000
LRT-ML 0.96 1.00 1.00

PPP 0.87 0.99 1.00

6.2 Posterior Predictive P-value as an Approximate
Fit

From the previous section we see that the PPP rejects less often than the
LRT-ML test. In practice this can be viewed as a positive contribution rather
than as a lack of power. It is often the case that the LRT-ML chi-square test
of fit rejects a model because of misspecifications that are too small from a
practical point of view. In this section we explore the possibility to use PPP
instead of the LRT-ML as a test that is less sensitive to misspecifications.
Using the same example as in the previous section we consider the rejection
rates when omitting the cross loadings λ4,1 and λ5,1. When the true values
of these loadings are less than 0.1 on standardized scale we would want
the test not to reject the model and if the true values are above 0.3 on
standardized scale we would want the test to reject the model. We construct
two simulation studies. In the first we generate the data using crossloadings
λ4,1 = λ5,1 = 0.1 and analyze it without these loadings, i.e., assuming that
they are zero. In the second simulation study we generate the data using
crossloadings λ4,1 = λ5,1 = 0.3 and analyze it without these loadings. The
rejection rates are presented in Tables 18 and 19. From these results it seems
that to some extent the PPP fulfills this role. For a small loss of power to
reject the big misspecifications we reduce the ”type I error” of rejecting the
model because of small misspecifications.
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Table 20: Rejection rates of PPP and WLSMV for a misspecified CFA with
categorical variables.

Sample Size 200 300 500 1000 2000 5000
PPP 0.00 0.00 0.00 0.05 0.42 1.00

WLSMV 0.56 0.86 0.99 1.00 1.00 1.00

6.3 Posterior Predictive P-value in SEM with Cate-
gorical Variables

When the variables are categorical we generate the underlying continuous
variables Y ∗. Using Y ∗ we can compute the LRT test of fit function just
as we do for the models with continuous variables. Using this function as a
discrepancy function we compute the PPP value to evaluate the model.

In this section we will conduct a simulation study to evaluate the perfor-
mance of the PPP test and to compare it to the WLSMV test of fit. Both
the type I error and the power of the tests are considered.

We evaluate the power of the two tests on a factor model with 15 binary
variables and 3 factors. We use the same parameter setup as in Section 6.1,
with the exception of the Θ matrix which for identification purposes is fixed
to the identity matrix. All the thresholds are zero. We generate the data
according to this model but analyze the data according to the model which
does not include the small cross loadings λ9,1, λ10,1, λ4,3, λ5,3. The rejection
rates for the two tests are presented in Table 20. The results suggest that
the WLSMV chi-square is much more powerful than PPP. Unlike in the
continuous case the difference between the power is quite dramatic. One
reason for why this may be the case is because the Y ∗ are generated from
the estimated model, i.e., it will be difficult to detect misspecification that
way. In contrast the WLSMV chi-square test is directly related to the data
via the polychoric matrix. Nevertheless we see from the results in Table
20 that given sufficient sample size the PPP will reject the incorrect model
with certainty. Smaller sample size cases were not included in the above
comparison because the Bayes estimator had convergence problems with the
default non-informative priors.

Next we consider the type I error for the two tests. We generate the data
using a loading matrix as above but without the small cross loadings, i.e.,
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Table 21: Rejection rates of PPP and WLSMV for a correctly specified CFA
with categorical variables.

Sample Size 200 300 500 1000 2000 5000
PPP 0.00 0.00 0.00 0.00 0.00 0.00

WLSMV 0.03 0.03 0.05 0.03 0.06 0.05

λ9,1 = λ10,1 = λ4,3 = λ5,3 = 0 and we analyze the data according to the
correct model. The rejection rates are presented in Table 21. Both tests
do not exceed the nominal 5% rate and therefore have an acceptable type I
error. The fact that all rejection rates for PPP are zero also suggests that
there is a conservative bias in the PPP procedure.

With the exception of binary variables the above PPP method does not
address the model fit when it comes to thresholds and mean structures for
categorical variables. The Mplus technical output 10 will provide PPP val-
ues that address this part of the model using discrepancy functions such as
univariate likelihoods and the observed proportion for each category.

We conclude that the WLSMV test of fit is more powerful than the PPP
test. The PPP test however is useful in situations where the WLSMV test
can not be used. For example situations where there is missing MAR data
or when there are informative priors in the Bayes estimation.

6.4 Using Posterior Predictive P-value to Determine
the Number of Factors

In this section we consider the power of PPP to determine the number of
factors in a factor analysis model with binary indicators. Data is generated
according to a two factor analysis model

Y ∗ = Λη + ε

where Y ∗ is a vector of 20 normally distributed variables, η is a vector of
2 normally distributed factors and ε is a vector of 20 normally distributed
residuals with mean zero and variance one. The observed binary variables
are obtained by

Yi = 0⇔ Y ∗
i < τi
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Table 22: Rejection rates of PPP and WLSMV for a two factor model spec-
ified as one factor model.

Sample Size 50 100 200 300 500
PPP 0.00 0.02 0.40 0.93 1.00

WLSMV 0.66 0.96 1.00 1.00 1.00

for i = 1, ..., 20. The loading matrix is such that the first 10 observed variables
load on the first factor and the second 10 load on the second factor, i.e.,
λi,1 = 1 for i = 1, ..., 10 and λi,2 = 1 for i = 11, ..., 20. All other entries are 0
in the loading matrix. The τ parameters are τi = 0 for i ≤ 10 and τi = −0.5
for i > 10. The variance covariance matrix for η is

Ψ =

(
1 0.5

0.5 0.8

)
.

We generate 100 data sets of various sample sizes and analyze it as a one
factor model with the Bayes and the WLSMV estimators. Table 22 shows the
rejection rates for the PPP and the WLSMV tests. The results here again
confirm that WLSMV is more powerful than PPP however we can also see
here that the power of PPP is quite good as well. For sample size of 300 and
more the rejection rate is near 100%. The results from a separate simulation
study, not reported here, using data generated and analyzed according to
a 20 binary indicators and one factor model showed that both tests have
acceptable type I error and the correct model was rejected below or near the
5% nominal rate.

6.5 Posterior Predictive P-value in Mixture Analysis

In mixture analysis there is no natural unrestricted model that can be used
to test against and thus the LRT is not available as a test of fit. On the other
hand the PPP based on the chi-square test of fit is available because at each
MCMC iteration the C variable is generated and thus the chi-square test of
fit is simply computed as it would be computed in a multiple group analysis.
In this section we evaluate the performance of the PPP test in latent class
analysis (LCA) and latent profile analysis (LPA).
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6.5.1 PPP in LCA

Consider a two class LCA model with 10 binary indicators. Using the probit
link in class 1 all thresholds are -1 and in class 2 all thresholds are 1. The two
classes are of equal size. The most common assumption in Mixture models
is that the class indicators are conditionally independent, i.e., conditional
on the latent class variable the indicators are independent. In this section
we study the ability of the PPP method to detect such misspecifications.
We consider three simulation studies. In simulation A we generate data so
that all indicators are conditionally independent and analyze it that way.
In simulation B we generate data so that all indicators are conditionally
independent with the exception of [Corr(Y ∗

1 , Y
∗
2 )|C = 1] = 0.7, but analyze

it as if the indicators are independent, i.e., this model is misspecified. In
simulation C we generate data as in simulation B but analyze it using the
correct model specification, i.e., this model is correctly specified. Note that
simulation C can be analyzed in Mplus only with the Bayes estimator, but
not with the ML estimator because it requires a multivariate probit function.
Simulations A and B can be analyzed with the Bayes and the ML estimators,
however the ML estimator does not provide a test of fit.

The results of the simulation study are presented in Table 23. The re-
jection rates for the correctly specified models are all 0. In addition, the
incorrectly specified model is rejected nearly with a certainty as the sample
size increases.

It is also seen in this table as well as in the previous simulation study
that the power of the PPP is low and large sample sizes are needed for the
test to reject misspecified models.

It is interesting to note here that there are no other well-established re-
liable tests of fit for this LCA model. The Pearson and the log-likelihood
ration chi-square tests have more than 1000 degrees of freedom and when the
degrees of freedom are so large it is well known that the tests are unreliable.

Note also that in this estimation process the mixture latent variable can
absorb some of the model misspecifications when the number of indicators is
smaller. With 10 indicators however the classes are quite well separated and
the misspecifications remain in the model.
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Table 23: Rejection rates of PPP in LCA models. In simulation A and C
the model is correctly specified while in simulation B it is misspecified.

Sample Size 500 1000 2000 5000
A 0.00 0.00 0.00 0.00
B 0.01 0.03 0.28 0.95
C 0.00 0.00 0.00 0.00

6.5.2 PPP in LPA

Latent profile analysis (LPA) is similar to LCA except that here all class
indicator variables are continuous. In the simulations we use 10 continuous
indicators with means -1 in class one and 1 in class two. The variance of the
variables is the same across the classes and it is set to 1. As in the previous
section we study the ability of PPP to detect within class dependence. The
simulation A, B and C are constructed as in the previous section. The
results are presented in Table 24. As expected in simulation studies A and
C the models are rejected near the 5% nominal rate while in simulation B
the model is rejected almost with certainty even when the sample is small.
This indicates that the PPP test is fairly powerful for Mixture models with
continuous variables. In this case there is no alternative test of fit also.

Table 24: Rejection rates of PPP in LPA models. In simulation A and C the
model is correctly specified while in simulation B it is misspecified.

Sample Size 50 100 200 300 500 1000 5000
A 0.05 0.05 0.03 0.01 0.02 0.02 0.07
B 0.17 0.55 0.90 0.99 1.00 1.00 1.00
C 0.07 0.02 0.06 0.03 0.03 0.02 0.02
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6.5.3 Using PPP to Determine the Number of Classes in Mixture
Models

In certain mixture models, such as growth mixture models, the within class
model is usually not modified, but rather, the number of classes is increased
until a satisfactory fit to the data is obtained. Thus the main modelling ques-
tion boils down to determining the number of classes needed in the model
to fit the data well. Several techniques have been proposed and are widely
used in practice, see Nylund et al. (2007). None of these however has been
universally accepted because of various shortcomings which will not be dis-
cussed here. In this section we illustrate how to use the PPP method as a
class enumeration technique. Consider a quadratic growth mixture model

Yit = η0i + η1it+ η2it
2 + εit

where Yit is a normally distributed outcome for observation i at time t and
the distribution of the random effects ηji is given by

[ηji|Ci = k] = αjk + ζji

where Ci is the latent class variable. The residual variable

ζi = (ζ0i, ζ1i, ζ2i)

has a variance covariance Ψ that is the same across the classes, i.e., the
three random effects have means varying across the classes but their variance
covariance is the same across the classes. The residuals εit have a diagonal
variance covariance Θ which is also independent of the class variable.

We generate data according to a 4 class model and estimate it according to
a 4 class model and a 3 class model. We expect the PPP method to reject the
3 class model and accept the 4 class model. We use the parameter estimates
obtained for the 4-class model estimated for the STAR*D antidepressant
data, see Muthén et. al. (2010). The size of the smallest class for this model
contains only 3% of the observations and thus the power for any test to detect
this small class can be expected to be low. Table 25 contains the rejection
rates for the estimated models. It is clear from these results that the PPP
works correctly and it can be used to determine the number of classes. For
sample size of 1000 or more the test has substantial power to reject the model
with insufficient number of classes.
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Table 25: Using PPP as a class enumeration method. Rejection rates for the
3-class and 4-class models.

Sample Size 500 1000 2000 4000
3-class model 0.13 0.66 0.99 1.00
4-class model 0.00 0.00 0.00 0.01

Note that there are certain similarity between PPP and the Bootstrap
LRT test for testing between k class model and a k − 1 class model (imple-
mented in Mplus technical 14 output). Both are based on simulating the
LRT values. The difference is however that the Bootstrap LRT is based on
the LRT between the k class model and a k − 1 class model, while the PPP
is based on the k class model and the unrestricted k class model. A full
comparisons between these methods is beyond the scope if this article.

7 Two-Part Growth Modeling

Two-part modeling is used to model distributions that have a large percent-
age of zero values. Consider as an example the outcome of heavy drinking,
measured by the question: How often have you had 6 or more drinks on one
occasion during the last 30 days? The answer to this question essentially
has two separate pieces that can be modeled separately. The first piece is
if the value is positive or not, i.e., if the subject engages in heavy drinking.
The second piece is if the subject engages in the heavy drinking activity, how
often it happens. If for example 75% of the observations have a 0 value it
would not be appropriate to fit a normal distribution to this data. Instead
modeling the two separate pieces of information would lead to a better model
fit for this kind of data. To formalize this suppose Z is the observed variable.
We define two new variables a binary variable U to indicate activity engage-
ment and the second variable Y is the actual value when such an activity
exist.

U =

{
0 if Z = 0

1 if Z > 0
(5)
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Y =

{
missing if Z = 0

Z if Z > 0
(6)

At this point one can use standard models such as logistic or probit regres-
sion for U and linear regression for Y to construct elaborate models. For
more information on two-part modeling see Olsen and Schafer (2001). In
longitudinal settings we have multiple observations for the same individual
and thus we can estimate a growth model for the U variables as well as the
Y variables. Typically the random effects in the two growth models are cor-
related and therefore we estimate a joint model for U and Y . Because the
missing values for Y are directly predicted by the U variables we have a MAR
situation, that is, not MCAR. This means that the WLSMV estimator is not
appropriate. The WLSMV estimates for this model are usually very biased
and thus we will not include the WLSMV estimator in this discussion. The
ML estimates are unbiased however numerical integration is required. In the
example that we describe below we use a quadratic growth model for the U
variables which means that the numerical integration is 3 dimensional, which
is feasible but can be quite slow. Thus the Bayes estimator is of interest as a
potentially more computationally efficient estimator. Another reason to use
the Bayes estimator for this model is the fact that it provides a model fit
through the PPP value. Such model fit is not available for the ML estimator.
The PPP value essentially will compare the two-part model against an unre-
stricted variance covariance matrix for all Y and U∗ variables thus it will be
useful in evaluating the fit of the growth curves. It is not possible to estimate
the same unrestricted model with the ML estimator because it typically leads
to high dimensional numerical integration which is not feasible.

In this section we conduct a simulation study based on the two-part
growth example presented in Muthén (2010). There are 5 repeated measures
for each individual and there are 1192 individuals in the sample. Both the
U part of the model and the Y part of the model are fitted to a quadratic
growth curve. The model can be described as follows.

P (Uij = 1) = Φ(η1i + η2itj + η3it
2
j)

Yij = η4i + η5itj + η6it
2
j + εij

The random effects η1i, ..., η6i are estimated as correlated random effects with
mean α and variance covariance Ψ. These parameters amount to 27 param-
eters, in addition we have the 5 residual variance parameters θj for εij so in
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total the model has 32 parameters. To generate data we use the parameter
values reported in Muthén (2010) with one exception. The variance param-
eter ψ66 was estimated as 0.02. As it was explained in Section 5.2 such a
value should be interpreted as 0 in Bayes estimation. Thus we generate the
data using ψ6k = 0 for k = 1, .., 6 and analyze the data with the same model,
where these parameters are fixed to 0, i.e., the quadratic effect is a fixed
effect for the Y part of the model. Eliminating the 6 Ψ parameters we get
a model with 26 parameters. Here we describe the simulation study based
on this model. We also conducted a simulation study with the small ψ6k

values however the Bayes estimator will always push the values away from
zero and that creates bias not just for the variance parameter but also for
other parameters in the model. The most appropriate approach is to elimi-
nate small variance random effects and convert them into fixed effects. If the
small variance random effect is considered important the time score variables
tj can be rescaled (for example they can be divided by a factor of 2) so that
variance parameter is estimated to a larger value.

In the simulation study we use the Mplus default Inverse-Wishart prior
IW(I,6) for the variance covariance matrix Ψ, see Appendix A. Using this
prior is important. As we have seen previously for models that are somewhat
difficult to identify the priors can have an effect on the results even when the
sample size is large. For this example using for example the prior of IW(0,-
6) leads to worse estimates and coverage. The prior for the α parameters
is uniform on (−∞,∞), with the exception of α1 which is estimated as a
threshold parameter with prior N(0, 5). The prior for the θ parameters is
IG(−1, 0). These priors are all Mplus defaults and they have little influence
on the estimates because the sample size is not small. The results of the
simulation study for the Bayes and the ML estimator are presented in Table
26. The computational time for the ML estimator is 6 times as much as
that for the Bayes estimator (2 minutes per replication v.s. 20 seconds per
replication). The convergence rate for the Bayes estimator is 100% while for
ML it is 95%. Both the Bayes estimator and the ML estimator produce small
bias and good coverage. The bias of the Bayes estimates is slightly bigger and
for some of the parameter the coverage drops down to 77% however. Since the
model is somewhat difficult to identify (for example here 3 random effects
are identified from 5 binary variables) we can assume that if the MCMC
sequence is run longer the results will improve. The PPP value did not reject
the model, i.e., the model was accepted in every replication in the simulation
study. On the other hand when we analyze the same data but using only a
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linear growth model rather than a quadratic in both the U and the Y parts
of the model then the model is rejected 100% of the time. Therefore the PPP
can indeed be used as a test of fit for the two-part model. This feature is
very valuable alone in the absence of any other alternatives.
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Table 26: Absolute bias(percent coverage) for two-part model

Parameter True Value ML Bayes
α1 -0.81 0.01(93) 0.00(96)
α2 -0.68 0.00(95) 0.11(89)
α3 -0.31 0.00(96) 0.06(77)
α4 0.42 0.00(95) 0.00(95)
α5 -0.16 0.00(92) 0.02(91)
α6 -0.09 0.00(94) 0.00(92)
ψ11 4.11 0.06(98) 0.02(96)
ψ22 3.03 0.09(96) 0.26(91)
ψ33 0.33 0.01(96) 0.08(83)
ψ44 0.22 0.00(98) 0.00(97)
ψ55 0.18 0.00(93) 0.00(96)
ψ21 1.96 0.03(97) 0.15(96)
ψ31 0.54 0.01(97) 0.10(92)
ψ32 0.94 0.03(97) 0.13(90)
ψ41 0.72 0.02(97) 0.01(96)
ψ42 0.31 0.00(97) 0.04(97)
ψ43 0.09 0.00(98) 0.02(92)
ψ51 -0.01 0.01(95) 0.02(93)
ψ52 0.33 0.00(97) 0.00(94)
ψ53 0.10 0.00(99) 0.00(95)
ψ54 0.06 0.00(94) 0.00(95)
θ1 0.10 0.00(92) 0.00(91)
θ2 0.20 0.00(94) 0.00(97)
θ3 0.21 0.00(95) 0.00(94)
θ4 0.19 0.00(98) 0.00(96)
θ5 0.18 0.00(91) 0.00(92)
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8 Multiple Indicator Growth Modeling for Cat-

egorical Variables. Comparing the Efficiency

of the Bayes and the WSLMV Estimators.

In this section we simply demonstrate the quality of the Bayes estimation
when there is a large number of factors and a large number of categorical
indicators. If there is missing data the WLSMV estimator could be inap-
propriate because the missing data could be MAR and only full information
estimation methods such as the Bayes and the ML estimators are appropri-
ate. Another reason for preferring a full information method is the fact that
full information methods are asymptotically the most efficient, i.e., yield the
minimal mean squared error MSE. When the number of indicators is large
however the ML estimator is not computationally feasible if the factors are
measured by categorical variables because that leads to numerical integra-
tion that is extremely heavy computationally with 4 or more factors. It is
possible to use Montecarlo integration methods for such models to obtain the
ML estimates however that method is somewhat more difficult to conduct.
It suffers from frequent non-convergence problems due to the fact that esti-
mates for the log-likelihood can contain substantial error which will leads to
difficulty in maximizing the log-likelihood. Typically the EM algorithm used
for the ML estimation produces monotonically increasing likelihood which
enables us to easily monitor convergence. With the Montecarlo integration
however that happens only for certain parameterizations. In general the in-
tegration error will results in a non-monotonic log-likelihood which becomes
a problem in evaluating the convergence.

In this section we use as an example the multiple indicator growth model
described in Muthén (2010). This example combines IRT and growth mod-
eling using nine binary indicators of a factor measured at eight time points.
The ML estimation requires eight dimensions of integration and thus it is
not feasible. We use the parameter values reported in Muthén (2010) to
construct a simulation study. We generate 100 data sets and analyze them
with the Bayes and the WLSMV estimators. The sample size in the original
example is 1174 and we generate all data sets to be of that size. The model
can be described as follows. For t = 1, ..., 8; j = 1, ..., 9; k = 0, 1, 2 and
i = 1, ..., 1174

P (Uijt = 1) = Φ(νj + λjηit)
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ηit = ζ0i + ζ1it+ ζ2it
2 + εit.

ζki = αk + βkWi + ξik.

where all of the latent variables ηit, ζki, εit, and ξik are normally distributed
and Wi is a binary covariate. For identification λ1 = 1 and α0 = 0. The
free parameters in the model are the 9 parameters νj, the 8 parameters λj
, the 8 residual variances θt of εit, the 2 parameters αk, the 3 parameters
βk, and the 6 parameters in the multivariate N(0,Ψ) distribution of ξik for
a total of 36 parameters. The variance ψ22 is estimated to a value near 0
in the original example so we are going to again fix the quadratic random
effect to 0, essentially eliminating the 3 parameters ψk2, i.e., the model has
33 parameters and this is the model we use for generating the data and the
model we estimate. As described in the above equations the time of the
observations are 1,...,8, however, that is not quite accurate. The actual 8
times of observations that are used for this model are 0, .5, 1.5, 2.5, 3.5,
4.5, 5.5, 6.5. To avoid having decimal point in the indices we abuse the
notation here. For the Bayes estimation we use the following priors. For
the Ψ matrix we use the inverse-wishart prior IW (I, 3), for the parameters
θt we use the inverse-gamma prior IG(−1, 0), for the νj and λj parameters
we use the normal N(0, 5) prior and for αk and βk we use the uniform prior
on (−∞,∞). The results of the simulation study are presented in Table
27. Both estimators yield unbiased estimates and confidence interval cov-
erage near the 95% nominal level. The Bayes estimates yield smaller MSE
than the WLSMV estimates for most parameters, i.e., the Bayes estimates
can be considered more accurate than the WLSMV estimates. This con-
firms the well known theoretical results that full information methods are
asymptotically most efficient. Note that the Bayes and the ML estimator are
asymptotically equivalent. In addition the PPP value accepted the model
100% of the time while the WLSMV estimator accepted the model 93% of
the time. The computational time for the Bayes estimator is about 1.5 times
the computational time for the WLSMV estimator (2.5 v.s. 3.5 minutes per
replication). The convergence criteria used with the Bayes estimator is the
automated PSR convergence criterion implemented in Mplus. We conclude
that the Bayes estimator provides a valid full-information alternative to the
WLSMV estimator and can be used for example to ensure that missing data
is properly accounted for or to ensure that the most efficient estimates are
obtained.
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Table 27: Absolute bias(percent coverage) for multiple indicator growth
model

Parameter True Value WLSMV Bayes WLSMV-MSE / Bayes-MSE
ν1 0.39 0.00(94) 0.01(86) 1.21
ν2 0.2 0.00(94) 0.00(85) 1.32
ν3 -1.66 0.02(92) 0.00(89) 1.38
ν4 -1.81 0.02(96) 0.01(92) 1.63
ν5 -0.39 0.00(92) 0.00(88) 1.43
ν6 -1.35 0.01(93) 0.00(90) 1.78
ν7 -0.83 0.00(92) 0.00(88) 1.38
ν8 -0.67 0.01(98) 0.00(85) 1.33
ν9 -0.05 0.00(92) 0.00(89) 1.19
λ2 1.40 0.00(97) 0.02(88) 1.22
λ3 1.89 0.01(95) 0.03(85) 1.69
λ4 1.34 0.01(96) 0.02(90) 1.62
λ5 1.18 0.00(94) 0.02(84) 1.23
λ6 1.42 0.01(92) 0.02(92) 1.94
λ7 1.42 0.00(96) 0.02(89) 1.26
λ8 1.32 0.01(93) 0.02(91) 1.67
λ9 1.29 0.01(96) 0.01(91) 1.24
θ1 0.15 0.01(96) 0.02(92) 1.36
θ2 0.49 0.02(94) 0.02(93) 1.82
θ3 1.72 0.04(97) 0.06(94) 1.97
θ4 0.87 0.02(97) 0.01(94) 1.66
θ5 0.69 0.00(94) 0.01(95) 2.22
θ6 0.75 0.01(92) 0.04(90) 1.67
θ7 0.96 0.01(98) 0.09(87) 0.81
θ8 0.53 0.02(94) 0.07(84) 1.20
α1 0.00 0.00(97) 0.00(92) 0.91
α2 0.00 0.00(92) 0.00(94) 1.00
β0 0.62 0.01(97) 0.00(88) 0.88
β1 0.11 0.00(100) 0.00(90) 0.75
β2 -0.02 0.00(96) 0.00(91) 1.00
ψ11 1.77 0.05(93) 0.05(93) 1.81
ψ22 0.25 0.01(93) 0.01(93) 1.25
ψ21 -0.41 0.01(92) 0.01(91) 1.83

47



9 Multiple Indicator Two-level Growth Mod-

eling for Categorical Variables

In this section we present the two-level version of the multiple indicator
growth model described in the previous section. Our goal is to demonstrate
the quality of the Bayes estimation for such complex models and to describe
a PX parameterization that can be useful for the estimation of these growth
models. We describe a simulation study based on a model similar to the
multiple indicator growth model example described in Muthén (2010). In
this simulation there 100 clusters with 30 observations in each cluster. The
observed variables are ordered polytomous variables with 6 observed values
rather than binary indicators. The dependent variables are again observed
at 8 different time points. At each time point three ordered polytomous vari-
ables are observed. At each time point the three observed variables measure
a single continuous factor. The eight continuous factors are decomposed as
between-within variables and a linear growth model is fitted separately for
the within and the between parts. Let Uijkt be the j−th observed variable for
observation i in cluster k at time t. The model is described by the following
equations

Uijkt = l⇔ τj,l−1 < U∗
ijkt ≤ τj,l

U∗
ijkt = λjηikt + εijkt

ηikt = ηikt,w + ηkt,b

ηikt,w = ζ0ik,w + ζ1ik,wt+ εikt,w

ηkt,b = ζ0k,b + ζ1k,bt+ εkt,b

ζrik,w = βr,wWik + ξrik,w

ζrk,b = αr,b + ξrk,b

where the indices vary as follows k = 1, ..., 100, i = 1, ...30, j = 1, ..., 3, r =
0, 1, t = 1, ..., 8, and l = 1, ..., 6. In addition the index w indicates that the
variable is defined on the within/individual level while the index b indicates
that the variable is defined on the between/cluster level. The variable Wik is
an observed covariate on the individual level. All other variables are latent
normally distributed variables in this model.

Let’s now identify all the parameters in this model. There are 15 thresh-
old parameters τj,l, for j = 1, ...3 and l = 1, ..., 5; two loading parameters
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λj where j = 2, 3. Note that the first loading parameter is fixed to 1 for
identification purposes. There are two parameters βr,w for r = 0, 1. For iden-
tification purposes α0,b is fixed to 0 but the parameter α1,b is estimated. For
identification purposes the residual variance of εijkt is fixed to 1. There are
8 within level residual variance parameters θw,t = V ar(εikt,w) and 8 between
level residual variance parameters θb,t = V ar(εkt,b). Finally we have 3 pa-
rameters Ψw describing the variance covariance of the within level intercept
and slope ξ0ik,w and ξ1ik,w and also 3 parameters Ψb describing the variance
covariance of the between level intercept and slope ξ0k,b and ξ1k,b. In total
we have 42 parameters.

The parameter extended (PX) parameterization estimates just one more
parameter, that is the parameter α0,b. Adding this parameter to the model
we essentially make all threshold parameters unidentified. To be able to
interpret the estimated model with this parameterization we have to use the
standardized threshold parameters τ sj,l in place of the threshold parameters
τj,l, where the standardized parameters are obtained from

τ sj,l = τj,l − α0,b.

The goal of this simulation study is to demonstrate the advantage of the
PX parameterization with the Bayes estimator. In principle this model can
be estimated with the WLSMV estimator in Mplus, however that estimator
has the same disadvantages that were demonstrated in the previous sections.
It does not support optimal treatment of missing data, i.e., it doesn’t sup-
port MAR. In addition the WLSMV estimator is less efficient than the full
information Bayes estimator. The ML estimator is not feasible for this model
as it would require 16 dimensions of integration.

In this simulation study we generate 50 samples and analyze them with
both the standard parameterization and with the PX parameterization. In
all analysis 40000 MCMC iterations have been performed. The results are
presented in Table 28. Both estimation procedures perform well however
with the regular parameterization some of the parameters have low coverage
and somewhat bigger bias. From these simulation results we conclude that
the PX parameterization is useful in improving the mixing in the Bayes
estimation. It is worth noting also that when we used binary indicators the
PX procedure was not needed. This is because for binary items the threshold
parameters are estimated as means for the underlying latent variables. This
way one of several highly correlated components in the Gibbs sampler is
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eliminated. When the indicator variables however are not binary but ordered
polythomous this is not possible. The PX parameterizations appears to be
successfully resolving the problem of highly correlated components in the
Gibbs sampler. Using the regular parameterization it is possible to obtain
the same quality results as the PX parameterization but it will simply require
a much larger number of MCMC iterations.
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Table 28: Absolute bias(coverage) for two-level growth model

Parameter True Value Bayes Bayes-PX
τ1,1 1.88 0.07(0.84) 0.02(0.96)
τ1,2 3.33 0.06(0.86) 0.03(0.94)
τ1,3 4.36 0.06(0.84) 0.03(0.92)
τ1,4 4.91 0.05(0.88) 0.04(0.94)
τ1,5 5.62 0.05(0.86) 0.04(0.94)
τ2,1 1.10 0.08(0.80) 0.00(0.96)
τ2,2 2.38 0.08(0.82) 0.00(0.96)
τ2,3 3.40 0.08(0.82) 0.00(0.96)
τ2,4 3.97 0.09(0.86) 0.00(0.92)
τ2,5 4.85 0.08(0.88) 0.00(0.96)
τ3,1 1.13 0.08(0.82) 0.00(0.96)
τ3,2 2.40 0.08(0.78) 0.00(0.96)
τ3,3 3.32 0.09(0.78) 0.00(0.94)
τ3,4 3.85 0.08(0.86) 0.00(0.96)
τ3,5 4.58 0.09(0.84) 0.00(0.94)
θw,1 0.78 0.02(0.94) 0.02(0.94)
θw,2 0.28 0.01(0.98) 0.01(0.98)
θw,3 1.48 0.01(0.94) 0.01(0.94)
θw,4 2.48 0.05(0.90) 0.06(0.90)
θw,5 2.07 0.06(0.90) 0.06(0.94)
θw,6 1.69 0.03(0.98) 0.03(0.98)
θw,7 1.80 0.04(0.92) 0.04(0.90)
θw,8 2.13 0.08(1.00) 0.06(0.98)
θb,1 1.04 0.06(0.92) 0.06(0.92)
θb,2 0.92 0.08(0.92) 0.08(0.92)
θb,3 1.30 0.08(0.94) 0.08(0.94)
θb,4 0.28 0.02(0.98) 0.02(0.98)
θb,5 0.16 0.01(0.92) 0.01(0.92)
θb,6 0.18 0.00(0.94) 0.00(0.94)
θb,7 0.36 0.01(0.92) 0.01(0.94)
θb,8 0.07 0.03(0.94) 0.03(0.94)
ψw,1,1 2.08 0.02(0.94) 0.03(0.96)
ψw,2,2 0.05 0.00(0.94) 0.00(0.96)
ψw,1,2 -0.17 0.00(1.00) 0.00(1.00)
ψb,1,1 0.50 0.08(0.96) 0.06(0.96)
ψb,2,2 0.02 0.00(0.94) 0.00(0.98)
ψb,1,2 -0.05 0.01(0.94) 0.00(0.92)
β0,w 1.18 0.02(0.94) 0.00(0.92)
β1,w 0.03 0.00(0.96) 0.00(0.98)
α1,b -0.10 0.02(0.86) 0.00(0.94)
λ2 0.90 0.01(0.92) 0.01(0.90)
λ3 0.88 0.01(0.96) 0.01(0.88)
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10 Appendix A. Priors

Choosing meaningful priors is important when the estimates and the pos-
terior distribution show ”prior dependence”. In addition when informative
priors are available it is important to specify these priors correctly. In this
section we provide a brief tutorial for how to set up the Inverse Gamma and
Inverse Wishart priors.

10.1 Inverse Gamma Prior

The inverse gamma prior IG(α, β) has a positive density on (0,∞). Figures
1-6 show some examples of inverse gamma density function. The density
function is given by

βα

Γ(α)
x−α−1Exp(−β/X)

where Γ is the gamma function. The mean of the distribution is

β

α− 1

when α > 1, otherwise it is infinity. The variance of the distribution is

β2

(α− 1)2(α− 2)

when α > 2, otherwise it infinity. To set up an informative conjugate inverse
gamma prior for a variance parameter one can simply solve the system of
equations for α and β

m =
β

α− 1

v =
β2

(α− 1)2(α− 2)

where m and v are the mean and the variance of the informative prior.
Fortunately this system is very easy to solve.

α = 2 +
m2

v

β = m+
m3

v
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Figure 1: IG(1, 1) density
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When α is small and the variance or the mean is infinity it is useful to
consider the mode of the distribution

β

α + 1
.

The parameter β is a scale parameter for the inverse gamma distribution.
Thus if X ∼ IG(α, 1) then βX ∼ IG(α, β). For this distribution to be
proper both parameters α and β should be positive. The Mplus default of
IG(−1, 0) is basically the uniform prior on (0,∞). Another prior that is
frequently used as uninformative prior is the IG(0, 0). This is an improper
prior with density 1/x and for practical purposes it can be thought as IG(ε, ε)
where ε is very small positive number. The density curve of IG(0, 0) can be
visualized by approximating it with the density of IG(0.001, 0.001).
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Figure 2: IG(2, 1) density
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Figure 3: IG(3, 1) density
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Figure 4: IG(1, 2) density
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Figure 5: IG(0.001, 0.001) density
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Figure 6: IG(0.5, 1) density
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10.2 Inverse Wishart Distribution

The domain of the Inverse Wishart distribution IW (Ψ,m) is all positive
definite matrices of size p. The density is given by

|Ψ|m/2|X|−(m+p+1)/2Exp(−Tr(ΨX−1)/2)

2mp/2Γp(m/2)

where Γp is the multivariate gamma function and the argument X of the
density is a positive density function. To set informative prior with certain
expected value we can use the fact that the mean of the distribution is

Ψ

m− p− 1
.

The mean exists and is finite only if m > p + 1. If m ≤ p + 1 then we can
use the fact that the mode of the distribution is

Ψ

m+ p+ 1
.

The variance, i.e., the level of informativeness is controlled exclusively by the
parameter m. The larger the value of m the more informative the prior is.
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To evaluate the informativeness of the prior one should consider the marginal
distribution of the diagonal elements. The marginal distribution of the i−th
diagonal entry is

IG((m− p+ 1)/2, ψii/2).

Thus the marginal mean is
ψjj

m− p− 1

if m > p+ 1 and the marginal variance is

2ψ2
jj

(m− p− 1)2(m− p− 3)

if m > p + 3. To set informative prior with certain variance we can use the
approach described in the previous section for this marginal prior which will
determine the value of m. Then we multiply the desired expected value by
(m− p− 1) to get Ψ.

The marginal distribution of the off-diagonal elements can not be ex-
pressed in closed form however the marginal mean for the (i, j) off-diagonal
element is

ψij
m− p− 1

if m > p+ 1 and the marginal variance is

(m− p+ 1)ψ2
ij + (m− p− 1)ψiiψjj

(m− p)(m− p− 1)2(m− p− 3)

if m > p+ 3.
It is clear that in this process the level of informativeness of Inverse

Wishart priors is rigid and the informativeness of one parameter in the ma-
trix determines the informativeness of all other parameters. This shows that
the Inverse Wishart prior may be insufficiently flexible for some applications.

Let’s describe also a special case of a prior that is particularly useful. If
you set the prior to IW (D, p + 1) where D is a diagonal matrix then the
marginal distribution for all correlations is uniform on the interval (−1, 1)
while the marginal distributions of the variance is IG(1, dii/2). The values of
the diagonal elements dii can be set to match the mode of the desired prior
with the mode of IG(1, dii/2) which is dii/4. Note however that the mean
can not be used for this purpose since the mean of IG(1, dii/2) is infinity.
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Only the mode is defined for this distribution. In this case the marginal
distribution of the diagonal elements has infinite mean and variance. The
marginal for the covariance elements has mean zero by symmetry but also
has an infinite variance. The marginal mean for the correlation parameter is
zero and the marginal variance for the correlation parameter is 1/3.

More generally setting the prior to IW (D,m) where D is a diagonal
matrix, the marginal distribution for all correlations is the beta distribution
B((m− p + 1)/2, (m− p + 1)/2) on the interval (-1,1), if m ≥ p with mean
0 and variance

1

m− p+ 2
.

Note also that the posterior distribution in the MCMC generation for the
variance covariance parameter with prior IW (Ψ,m) is a weighted average
of Ψ/m and the sample variance where the weights are m/(n + m) and
n/(n + m) respectively, where n is the sample size. Thus one can interpret
the degrees of freedom parameter m as the number of observations added
to the sample with the prior variance covariance matrix. Naturally as the
sample size increases the weight m/(n+m) will converge to 0 and the effect
of the prior matrix Ψ will diminish. The maintain the same effect of the prior
on the estimation for larger sample sizes the degrees of freedom parameter
should be chosen proportionally larger.

More information on the Inverse Wishart distribution and the marginal
distributions of all the entries in the matrix can be found in Barnard et al.
(2000).

10.3 Default Priors

In this section we describe the default priors used in Mplus. The default
prior for intercepts, regression slopes, and loading parameters is N(0,∞),
unless these parameters are directly in a probit regression and in that case
the default is N(0, 5). The default for variance parameters, i.e., variance
covariance blocks of size 1 is IG(0,−1). The default for variance covariance
blocks of size bigger than 1 is IW (0,−p−1), where p is the size of the matrix,
unless the variance covariance matrix also includes parameters from a probit
regression, and in that case the default is IW (I, p + 1). For unrestricted
model imputation even when all variables are continuous the default prior is
IW (I, p + 1). The default priors for threshold parameters is N(0,∞). The
default prior for all class proportions is the Dirichlet prior D(10, 10, ..., 10).
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