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This article proposes a new approach to factor analysis and structural equation modeling using Bayesian
analysis. The new approach replaces parameter specifications of exact zeros with approximate zeros
based on informative, small-variance priors. It is argued that this produces an analysis that better reflects
substantive theories. The proposed Bayesian approach is particularly beneficial in applications where
parameters are added to a conventional model such that a nonidentified model is obtained if maximum-
likelihood estimation is applied. This approach is useful for measurement aspects of latent variable
modeling, such as with confirmatory factor analysis, and the measurement part of structural equation
modeling. Two application areas are studied, cross-loadings and residual correlations in confirmatory
factor analysis. An example using a full structural equation model is also presented, showing an efficient
way to find model misspecification. The approach encompasses 3 elements: model testing using posterior
predictive checking, model estimation, and model modification. Monte Carlo simulations and real data
are analyzed using Mplus. The real-data analyses use data from Holzinger and Swineford’s (1939) classic
mental abilities study, Big Five personality factor data from a British survey, and science achievement
data from the National Educational Longitudinal Study of 1988.
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This article proposes a new approach to factor analysis and
structural equation modeling (SEM) using Bayesian analysis (i.e.,
Bayesian structural equation modeling [BSEM]). It is argued that
current analyses using maximum-likelihood (ML) and likelihood-
ratio chi-square testing apply unnecessarily strict models to repre-
sent hypotheses derived from substantive theory. This often leads
to rejection of the model (see, e.g., Marsh et al., 2009) and a series
of model modifications that may capitalize on chance (see, e.g.,
MacCallum, Roznowski, & Necowitz, 1992). The hypotheses are
reflected in parameters fixed at zero. Examples include zero cross-
loadings and zero residual correlations in factor analysis.

The new approach is intended to produce an analysis that
better reflects substantive theories. It does so by replacing the
parameter specification of exact zeros with approximate zeros.
The new approach uses Bayesian analysis to specify informa-
tive priors for such parameters. In key applications, freeing
these parameters in a conventional analysis, the model would
not be identified. The Bayesian analysis, however, identifies the
model by substantively driven small-variance priors. Model
testing is carried out using posterior predictive checking, which
is found to be less sensitive than likelihood-ratio chi-square

testing to ignorable degrees of model misspecification. A side
product of the proposed approach is information to modify the
model in line with the use of modification indices in ML
analysis. ML modification indices inform about model im-
provement when a single parameter is freed and can lead to a
long series of modifications. In contrast, the proposed approach
informs about model modification when all parameters are
freed and does so in a single-step analysis.

The next section presents a brief overview of the Bayesian
analysis framework that is used. Following this, two studies are
presented that illustrate the new approach. Each study consists of
a real-data example showing the problem, the proposed Bayesian
solution for the real-data problem, and simulations showing how
well the method works. Study 1 considers factor analysis where
cross-loadings make simple structure confirmatory factor analysis
(CFA) inadequate. As an example, we reanalyze Holzinger and
Swineford’s (1939) classic mental abilities data, where a simple
structure does not fit well by ML CFA standards. Study 2 consid-
ers residual correlations in factor analysis, which make a factor
model inadequate. As an example, the Big Five factor model is
analyzed using an instrument administered in the British House-
hold Panel Survey, where the hypothesized five-factor pattern is
not well recovered by ML CFA or exploratory factor analysis
(EFA) because of many minor factors. The two studies are fol-
lowed by an SEM example that illustrates the use of priors for both
structural and measurement parameters. All analyses are carried
out by Bayesian analysis in Mplus (Muthén & Muthén, 1998–
2010), and scripts are available at www.statmodel.com. The article
ends with a discussion of related approaches, extensions, reflec-
tions on analysis strategies, and caveats.
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Bayesian Analysis

There are many books on Bayesian analysis, and most are quite
technical. Gelman, Carlin, Stern, and Rubin (2004) provided a
good general statistical description, whereas Kruschke (2010) and
Lynch (2010) gave somewhat more introductory accounts. Press
(2003) discussed Bayesian factor analysis. Lee (2007) gave a
discussion from an SEM perspective. Schafer (1997) gave a sta-
tistical discussion from a missing data and multiple imputation
perspective, whereas Enders (2010) gave an applied discussion of
these same topics. Statistical overview articles include Gelfand,
Hills, Racine-Poon, and Smith (1990) and Casella and George
(1992). Overview articles of an applied nature and with a latent
variable focus include Scheines, Hoijtink, and Boomsma (1999);
Rupp, Dey, and Zumbo (2004); Yuan and MacKinnon (2009); and
Kaplan and Depaoli (in press).

Bayesian analysis is firmly established in mainstream statistics,
and its popularity is growing. Part of the reason for the increased
use of Bayesian analysis is the success of new computational
algorithms referred to as Markov chain Monte Carlo (MCMC)
methods.

Outside of statistics, however, applications of Bayesian analysis
lag behind. One possible reason is that Bayesian analysis is per-
ceived as difficult to do, requiring complex statistical specifica-
tions, such as those used in the flexible but technically oriented
general Bayes program WinBUGS (Spiegelhalter, Thomas, Best,
& Lunn, 2003). These observations were the background for
developing Bayesian analysis in Mplus (Muthén & Muthén, 1998–
2010). In Mplus, simple analysis specifications with convenient
defaults allow easy access to a rich set of analysis possibilities. For
a technical description of the Mplus implementation, see Asp-
arouhov and Muthén (2010b).

Four key points motivate taking an interest in Bayesian analysis:

1. More can be learned about parameter estimates and
model fit.

2. Better small-sample performance can be obtained and
large-sample theory is not needed.

3. Analyses can be made less computationally demanding.

4. New types of models can be analyzed.

Point 1 is illustrated by parameter estimates that do not have a
normal distribution. An example is an indirect effect a � b in a
mediation model (MacKinnon, 2008). ML gives a parameter esti-
mate and its standard error and assumes that the distribution of the
parameter estimate is normal on the basis of asymptotic (large-
sample) theory. In contrast, Bayes does not rely on large-sample
theory and provides the whole distribution, referred to as the
posterior distribution, not assuming that it is normal. The ML
confidence interval Estimate � 1.96 � SE assumes a symmetric
distribution, whereas the Bayesian credibility interval based on the
percentiles of the posterior allows for a strongly skewed distribu-
tion. Bayesian exploration of model fit can be done in a flexible
way using posterior predictive checking (see, e.g., Gelman et al.,
2004, chapter 6; Gelman, Meng, Stern, & Rubin, 1996; Lee, 2007,
chapter 5; Scheines et al., 1999). Any suitable test statistics for the
observed data can be compared with statistics based on simulated

data obtained through draws of parameter values from the poste-
rior distribution, avoiding statistical assumptions about the distri-
bution of the test statistics.

Point 2 is illustrated by better Bayesian small-sample perfor-
mance for factor analyses prone to Heywood cases and better
performance when a small number of clusters are analyzed in
multilevel models. This, however, requires a judicious choice of
prior. For examples, see Asparouhov and Muthén (2010a).

Point 3 may be of interest for an analyst who is hesitant to move
from ML estimation to Bayesian estimation. Many models are
computationally cumbersome or impossible using ML, such as
with categorical outcomes and many latent variables resulting in
many dimensions of numerical integration. Such an analyst may
view the Bayesian analysis simply as a computational tool for
getting estimates that are analogous to what would have been
obtained by ML had it been feasible. This is obtained with diffuse
priors, in which case ML and Bayesian results are expected to be
close in large samples (W. J. Browne & Draper, 2006, p. 505).

Point 4 is exemplified by models with a very large number of
parameters or where ML does not provide a natural approach.
Examples of the former include image analysis (see, e.g., Green,
1996), and examples of the latter include random change-point
analysis (see, e.g., Dominicus, Ripatti, Pedersen, & Palmgren,
2008). The Bayesian SEM approach proposed in this article is a
further example of the new type of models that can be analyzed.

Bayesian Estimation

Bayesian analysis is a large topic, and this article does not
attempt to give a full, pedagogical introduction to the topic. In-
stead, the article gives a brief outline of the necessary main points,
referring the reader to the literature just mentioned for further
studies. The emphasis is instead on how Bayesian analysis can be
used for SEM.

Frequentist analysis (e.g., ML) and Bayesian analysis differ by
the former viewing parameters as constants and the latter viewing
them as variables. Bayesian analysis uses the term prior to refer to
the parameter distribution. Priors can be diffuse (noninformative)
or informative. Information about priors can be built up from a
sequence of formulating hypotheses from theory, carrying out pilot
studies, and revising hypotheses. An example that is discussed in
detail later on was drawn from Holzinger and Swineford’s (1939)
classic factor analysis study. Using two new samples of subjects,
a set of well-known tests was used to measure factors that had been
derived from several previous factor analyses. A factor loading
matrix was hypothesized where each item had nonzero loadings on
only the factor or factors it was hypothesized to measure and had
zero loadings (cross-loadings) on other factors. Although Holz-
inger and Swineford did not invoke Bayesian analysis, their careful
groundwork could have been used in the analysis of the two new
samples to specify informative priors centered around zero for the
cross-loadings.

ML finds estimates by maximizing a likelihood computed for
the data. In Bayesian analysis, data inform about a parameter and
modify the prior into a posterior that gives the Bayesian estimate.
This is illustrated in Figure 1, which shows distributions for a prior
and a posterior for a parameter, together with the likelihood. The
likelihood can be thought of as the distribution of the data given a
parameter value. In Figure 1, the major portion of the prior

314 MUTHÉN AND ASPAROUHOV



distribution has a lower parameter value than that at the peak of the
likelihood. The posterior is obtained as a compromise between the
prior and the likelihood.

Priors can be noninformative or informative. A noninformative
prior, also called a diffuse prior, can, for example, have a uniform
distribution or have a normal distribution with a large variance. A
large variance reflects large uncertainty in the parameter value.
With a large prior variance, the likelihood contributes relatively
more information to the formation of the posterior, and the esti-
mate is closer to an ML estimate.

Bayes’s Theorem

Formally, the formation of a posterior draws on Bayes’s theo-
rem. Consider the probabilities of events A and B, P(A) and P(B).
By probability theory, the joint event A and B can be expressed in
terms of conditional and marginal probabilities:

P� A, B� � P� A�B� P�B� � P�B�A� P� A�. (1)

Dividing by P(A) it follows that

P�B�A� �
P� A�B� P�B�

P� A�
, (2)

which is Bayes’s theorem. Applied to modeling, let data take the
role of A and the parameter values take the role of B. The posterior
can then be expressed symbolically as

posterior � parameters�data (3)

�
data�parameters � parameters

data
(4)

�
likelihood � prior

data
(5)

� likelihood � prior, (6)

where � means proportional to, not including the data portion of
Equation 5.

The prior distribution is the key element of Bayesian analysis.
Priors reflect prior beliefs in likely parameter values before col-
lecting new data. These beliefs may come from substantive theory
and previous studies of similar populations. The priors modify the
likelihood to obtain the posterior distribution. The Bayesian esti-
mates are obtained as means, modes, or medians of their posterior
distributions. The posterior distribution is obtained with MCMC

algorithms. MCMC is briefly outlined in the Appendix and is not
discussed here. The reader is instead referred to the Bayesian
literature. The Appendix also discusses determination of conver-
gence of the MCMC process. For a technical description of the
Mplus Bayesian implementation, see Asparouhov and Muthén
(2010b).

Model Fit

Model fit assessment is possible using posterior predictive
checking proposed by Gelman et al. (1996). With continuous
outcomes, posterior predictive checking as implemented in Mplus
builds on the standard likelihood-ratio chi-square statistic in mean-
and covariance-structure modeling. This posterior predictive
checking procedure is described in Scheines et al. (1999) and
Asparouhov and Muthén (2010a, 2010b) and is briefly reviewed
here. Gelman et al. (2004) presented a more general discussion of
posterior predictive checking, not tied to likelihood-ratio chi-
square.

A posterior predictive p value of model fit can be obtained with
a fit statistic, f, based on the usual likelihood-ratio chi-square test
of an H0 model against an unrestricted H1 model. A low posterior
predictive p value indicates poor fit. Let f(Y, X, �i) be computed
for the data Y, X using the parameter values at MCMC iteration i.
Here, X denotes covariates that are conditioned on in the analysis.
At iteration i, generate a new data set Y*i of synthetic or replicated
data of the same sample size as the original data. In this generation,
the parameter values at iteration i are used. For these replicated
data, the fit statistic f(Y*i, X, �i) is computed. This data generation
and fit statistic computation is repeated over the n iterations, after
which posterior predictive p value is approximated by the propor-
tion of iterations where

f�Y, X, �i� � f�Y*i, X, �i�. (7)

In the Mplus implementation (Asparouhov & Muthén, 2010b)
posterior predictive p value is computed using every 10th iteration
among the iterations used to describe the posterior distribution of
parameters. A 95% confidence interval is produced for the differ-
ence in the f statistic for the real and replicated data. A positive
lower limit is in line with a low posterior predictive p value and
indicates poor fit. An excellent-fitting model is expected to have a
posterior predictive p value around .5 and an f statistic difference
of zero falling close to the middle of the confidence interval.

It should be noted that the posterior predictive p value does not
behave like a p value for a chi-square test of model fit (see also
Hjort, Dahl, & Steinbakk, 2006). The Type I error is not 5% for a
correct model. There is not a theory for how low the posterior
predictive p value can be before the model is significantly ill fitting
at a certain level. In this sense, posterior predictive p value is more
akin to an SEM fit index rather than a chi-square test. Empirical
experience with different models and data has to be established for
posterior predictive p value, and some simulation studies are
presented here. From these simulations and further ones in Asp-
arouhov and Muthén (2010a), however, using posterior predictive
p value values of .10, .05, or .01 appears reasonable. This warrants
further investigations, however. In the simulations to follow, a
posterior predictive p value of .05 is used.

Figure 1. Prior, likelihood, and posterior for a parameter.
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BSEM: A More Flexible SEM Approach

A new approach to SEM based on Bayesian analysis, BSEM, is
described next. It is intended to produce an analysis that better
reflects the researcher’s theories and prior beliefs. It does so by
systematically using informative priors for parameters that should
not be freely estimated according to the researcher’s theories and
prior beliefs. In a frequentist analysis, such parameters are typi-
cally fixed at zero or are constrained to be equal to other param-
eters. In key applications, freeing these parameters would, in fact,
produce a nonidentified model. The Bayesian analysis, however,
identifies the model by substantively driven small-variance priors.
It should be recognized that BSEM refers to the specific Bayesian
approach proposed here of using informative, small-variance pri-
ors to reflect the researcher’s theories and prior beliefs. Typically,
this would be combined with the use of noninformative priors for
parameters that would not be restricted in a corresponding ML
analysis. For example, major loadings would have a normal prior
with a very large variance.

The BSEM approach of using informative priors is applicable to
any constrained parameter in an SEM. This article focuses on
parameters in the measurement part, but restrictions in the struc-
tural part are also considered. Two types of measurement model
features are considered, cross-loadings in CFA and residual cor-
relations in CFA. Further examples are considered in the Conclu-
sion section.

Informative Priors for Cross-Loadings in CFA

An analyst who is used to frequentist methods, such as ML,
may at first feel uncomfortable specifying informative priors. It
is argued here, however, that a user of CFA is in a sense already
engaged in specifying such priors. Consider the CFA model for
an observed p-dimensional vector yi of factor indicators for
individual i,

yi � � � ��i � εi,

E�yi� � � � �	, (8)

V�yi� � ���
 � �,

where � is an intercept vector, � is a loading matrix, �i is an
m-dimensional factor vector, εi is a residual vector, 	 is a factor
mean vector, � is a factor covariance matrix, and � is a residual
covariance matrix. Here, ε and � are assumed normally distributed
and uncorrelated.

Drawing on substantive theory, zero cross-loadings in � are
specified for the factor indicators that are hypothesized to not be
influenced by certain factors. Table 1 shows one such example
drawing on Holzinger and Swineford’s (1939) study with 19 tests
hypothesized to measure four domains. Here, an X denotes a free
loading to be estimated, and 0 denotes a fixed, zero loading. This
example is further described and analyzed in a later section.

An exact zero loading can be viewed as a prior distribution that
has mean zero and variance zero. A prior that probably more
accurately reflects substantive theory uses a mean of zero and a
normal distribution with small variance. Figure 2 shows an exam-
ple where a loading � � N(0, 0.01) so that 95% of the loading
variation is between 0.2 and 0.2. Using standardized factor

indicators and factors, a loading of 0.2 is considered a small
loading, implying that this prior essentially says that the cross-
loading is close to zero, but not exactly zero. The prior is strongly
informative, but it is not assumed that the parameter is literally
zero.

In frequentist analysis, freeing all cross-loadings in a CFA
model such as Table 1 leads to a nonidentified model because the
m2 restrictions, where m is the number of factors, necessary to
eliminate indeterminacies are not present (see, e.g., Hayashi &
Marcoulides, 2006). Using small-variance priors for all cross-
loadings, however, brings information into the analysis that avoids
the nonidentification problem. The choice of variance for the prior
should correspond to the researcher’s theories and prior beliefs. As
stated earlier, the variance of 0.01 produces a prior where 95% lies
between 0.2 and 0.2. Other choices are shown in Table 2.

A smaller variance may not let cross-loadings escape suffi-
ciently from their zero prior mean, producing a worse posterior
predictive p value. A larger variance may let a cross-loading have
too large a probability of having a substantial value. For example,
a variance of 0.08 corresponds to 95% lying between 0.55 and
0.55, which on a standardized variable scale approaches a major
loading size. When the variance is increased, the prior contributes
less information so that the model gets closer to being nonidenti-
fied, which eventually causes nonconvergence of the MCMC
algorithm. It should be noted that the prior variance should be
determined in relation to the scale of the observed and latent
variables. A prior variance of 0.01 corresponds to small loadings
for variables with unit variance, but it corresponds to a smaller
loading for an observed variable with variance larger than one.
This means that, for convenience, observed variables may be
brought to a common scale either by multiplying them by con-
stants or by standardizing if the model is scale free.

BSEM has an additional advantage. It produces posterior dis-
tributions for cross-loadings that can be used in line with modifi-
cation indices to free parameters for which the credibility interval

Table 1
Holzinger and Swineford’s (1939) Hypothesized Four Domains
Measured by 19 Tests: Factor Loading Pattern

Test Spatial Verbal Speed Memory

Visual perception X 0 0 0
Cubes X 0 0 0
Paper form board X 0 0 0
Flags X 0 0 0
General information 0 X 0 0
Paragraph comprehension 0 X 0 0
Sentence completion 0 X 0 0
Word classification 0 X 0 0
Word meaning 0 X 0 0
Addition 0 0 X 0
Code 0 0 X 0
Counting groups of dots 0 0 X 0
Straight and curved capitals 0 0 X 0
Word recognition 0 0 0 X
Number recognition 0 0 0 X
Figure recognition 0 0 0 X
Object–number 0 0 0 X
Number–figure 0 0 0 X
Figure–word 0 0 0 X
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does not cover zero. Modification indices pertain to freeing only
one parameter at a time, and a long sequence of model modifica-
tion is often needed, running the risk of capitalizing on chance
(see, e.g., MacCallum et al., 1992). In contrast, the small-variance
prior approach provides information on model modification that
considers the fixed parameters jointly in a single analysis. The
relative benefits of the Bayesian approach to modifying the model
compared with the use of modification indices with ML need
further study, however.

Informative Priors for Residual Correlations in CFA

An analogous idea can also be used to study residual correla-
tions among factor indicators. In Equation 8, the residual covari-
ance matrix � is commonly assumed to be diagonal. Some resid-
uals may, however, be correlated because of the omission of
several minor factors. It is difficult to foresee which residuals
should be covaried, and freeing all of them leads to a nonidentified
model in the conventional ML framework. BSEM provides a
possible approach to this problem. The corresponding MCMC
algorithms are, however, more complex and draw on Bayesian
theories that cannot be extensively described here because of lack
of space.

Instead of assuming a diagonal residual covariance matrix, a
more realistic covariance structure model may be expressed as

V�yi� � ���
 � � � ��, (9)

where � is a covariance matrix for the minor factors, not assumed
to be diagonal, and �� is a diagonal covariance matrix. Here, a
freely estimated � is not separately identified from �, �, and ��.
In Bayesian analysis, however, � can be given an informative
prior using the inverse-Wishart distribution so that the posterior
distribution can be obtained. The inverse-Wishart is a standard
prior distribution for covariance matrices in Bayesian analysis.
Although difficult to give an intuitive description, aspects of the
inverse-Wishart are described in the Appendix. The reader is
referred to the further readings suggested in the Appendix. In this
way, the diagonal and off-diagonal elements of � can be restricted
to small values. This implies that the residual covariance matrix
� � �� contains residual covariances that are allowed to deviate
to a small extent from zero means. Sufficiently stringent priors for
the off-diagonal elements are needed so that the essential correla-

tions are channeled through �, �, �
. The sums on the diagonal
of � � �� produce the residual variances.

The BSEM approach for residual covariances outlined in con-
nection with Equation 9 is referred to as Method 1. A more direct
method, Method 2, applies an inverse-Wishart prior directly on �
in Equation 8. This approach has been discussed in Press (2003,
chapter 15). One advantage of Method 1 over Method 2 is that the
prior for the total residual variance is not tied to the prior of the
residual covariances because the residual covariance has two com-
ponents that have different priors. Method 2, however, is simpler
to carry out. A disadvantage of both Method 1 and Method 2 is that
particular residual covariance elements cannot be given their own
priors. For example, an analysis may show that some residual
covariances should be freely estimated with noninformative priors
because they have 95% credibility intervals that do not cover zero.
To this aim, Method 3 makes it possible to specify element-
specific normal priors for the residual covariances. Mplus allows
two different algorithms for Method 3, a random-walk algorithm
(Chib & Greenberg, 1988) and a proposal prior algorithm (Asp-
arouhov & Muthén, 2010b). The difference in performance be-
tween the three methods is studied in simulations described in a
later section. In these simulations, Method 2 appears to be prefer-
able.

The choice of inverse-Wishart prior should be made to reflect
prior beliefs in the potential magnitude of residual covariances.
This is accomplished by using a sufficiently large choice for the
degrees of freedom (df) of the inverse-Wishart distribution. To
obtain a proper posterior where the marginal mean and variance is
defined, df � p � 4 needs to be chosen, where p is the number of
variables y. The prior means for the residual covariances can be
chosen as zero, and the degree of informativeness can be specified
using the df, which affects the marginal prior variance through
df  p. For example, Equation A17 of the Appendix shows that
using the inverse-Wishart prior IW(I, df) with df � p � 6 gives a
prior standard deviation of 0.1, so that two standard deviations
below and above the zero mean correspond to the residual cova-
riance range of 0.2 to 0.2. The effect of priors is relative to the
variances of the ys. For scale-free models, the variables may be
standardized before analysis. For larger sample sizes, the prior
needs to use a larger df to give the same effect.

Methods 1 and 2 both use conjugate priors, that is, the posterior
distribution of the covariance matrices is also of the Wishart

Figure 2. Informative prior for a factor loading parameter.

Table 2
Choice of Variance for a Normal Prior With Mean Zero

Variance 90% limits 95% limits

0.001 �0.05 �0.06
0.005 �0.12 �0.14
0.01 �0.16 �0.20
0.02 �0.23 �0.28
0.03 �0.28 �0.34
0.04 �0.33 �0.39
0.05 �0.37 �0.44
0.06 �0.40 �0.48
0.07 �0.44 �0.52
0.08 �0.47 �0.55
0.09 �0.49 �0.59
0.10 �0.52 �0.62
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family of distributions. This generally produces good convergence
of the MCMC chain. Both versions of Method 3, random walk and
proposal prior algorithm, are instead based on the Metropolis–
Hastings algorithm, and that generally yields somewhat worse
convergence performance. The random walk algorithm has diffi-
culty converging or converges very slowly when the variance–
covariance matrix has a large number of parameters. However,
when a large number of parameters have small prior variance, the
convergence is fast. The proposal prior algorithm generally works
well but not when the prior variance is very small.

When estimating these models all the algorithms are typically
applied under difficult conditions with a nearly unidentified model
and near zero prior variance. The models should be estimated with
a large number of MCMC iterations, for example, I � 50,000 or
I � 100,000. Convergence of the MCMC sequence should be
carefully evaluated, and automated convergence criteria, such as
PSR, are not always reliable. The stability of the parameter values
across the iterations should be studied. This can be done by
comparing estimates from, say, I, 2I, and 4I MCMC iterations.

Study 1: Cross-Loadings in CFA

Holzinger and Swineford’s (1939) Mental Abilities
Example: ML Analysis

The first example uses data from the classic 1939 factor analysis
study by Holzinger and Swineford (1939). Twenty-six tests in-
tended to measure a general factor and five specific factors were
administered to seventh- and eighth-grade students in two schools,
the Grant–White school (n � 145) and the Pasteur school (n �
156). Students from the Grant–White school came from homes
where the parents were mostly American born, whereas students
from the Pasteur school came largely from working-class parents
of whom many were foreign born and used their native language
at home.

Factor analyses of these data have been described, for example,
by Harman (1976, pp. 123–132) and Gustafsson (2002). Of the 26
tests, 19 were intended to measure four domains, five measured
general deduction, and two were revisions/new test versions. Typ-
ically, the last two tests are not analyzed. Excluding the five
general deduction tests, 19 tests measuring four domains are con-
sidered here, where the four domains are spatial ability, verbal
ability, speed, and memory. The design of the measurement of the
four domains by the 19 tests is shown in the factor loading pattern
matrix of Table 1. Here, an X denotes a free loading to be
estimated, and 0 a fixed, zero loading. This corresponds to a simple
structure CFA model with a variable complexity of one, that is,
each variable loads on only one factor.

Using ML estimation, the model fit using both CFA and EFA is
reported in Table 3 for both the Grant–White and Pasteur schools.
It is seen that the CFA model is rejected by the likelihood-ratio
chi-square test in both samples. Given the rather small sample
sizes, one cannot attribute the poor fit to the chi-square test being
overly sensitive to small misspecifications due to a large sample
size as is often done. For completeness, the common fit indices
root-mean-square error of approximation (RMSEA) and compar-
ative fit index (CFI) are also shown. In contrast to the CFA, Table
3 shows that the EFA model fits the data well in both schools.

Table 4 shows the EFA factor solution for both schools using
the Geomin rotation. The Quartimin rotation gives similar results.
For a description of these rotations, see, for example, Asparouhov
and Muthén (2009) and M. W. Browne (2001). The table shows
that the major loadings of the EFA correspond to the hypothesized
four-factor loading pattern (bolded entries). Several of the tests,
however, also have significant cross-loadings on other factors
(significance on the 5% level marked with asterisks). There are six
significant cross-loadings for the Grant–White solution and nine
for the Pasteur solution. This explains the poor fit of the CFA
model.

The question arises of how to go beyond postulating only the
number of factors as in EFA and maintain the essence of the
hypothesized factor loading pattern without resorting to an explor-
atory rotation. Cross-loadings need to be allowed to some degree,
but a model with freely estimated cross-loadings is not identified.
The proposed Bayesian solution to this problem is presented next.
As an intermediate step, however, it is instructive to consider the
EFA alternative of target rotation (Asparouhov & Muthén, 2009;
M. W. Browne, 2001). Here, a rotation is chosen to match certain
zero target loadings using a least-squares fitting function. Target
rotation is similar to BSEM in that it replaces mechanical rotation
with rotation guided by the researcher’s judgment, in this case
using zero targets for cross-loadings. Target rotation is also similar
in that the fitting function can result in nonzero values for the
targets. It is different from BSEM by not allowing user-specified
stringency of closeness to zero by varying the prior variance,
replacing that with least-squares fitting. It is also different from
BSEM because specifying m  1 zeros for each of the m factors
gives the same model fit as specifying more zeros. For Holzinger
and Swineford’s (1939) two data sets, applying target rotation with
zero targets for all cross-loadings gives results similar to EFA
using Geomin or Quartimin rotation. Four more significant cross-
loadings are obtained for Grant–White, adding to 10, whereas
Pasteur obtains six more cross-loadings, adding to 15. The increase
in number of significant loadings is due to smaller standard errors
for target rotation as compared with Geomin rotation. The smaller
standard errors are a function of the more fully specified rotation
criterion. As is shown next, BSEM using small-variance cross-
loading priors gives far simpler loading patterns by shrinking the
cross-loadings toward their zero prior means.

Table 3
Maximum Likelihood Model Testing Results for Holzinger and
Swineford’s (1939) Data for the Grant–White (N � 145) and
Pasteur (N � 156) Schools

School and model �2 df p RMSEA CFI

Grant–White
CFA 216 146 .000 0.057 0.930
EFA 110 101 .248 0.025 0.991

Pasteur
CFA 261 146 .000 0.071 0.882
EFA 128 101 .036 0.041 0.972

Note. RMSEA � root-mean-square error of approximation; CFI � com-
parative fit index; CFA � confirmatory factor analysis; EFA � exploratory
factor analysis.
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Holzinger and Swineford’s (1939) Mental Abilities
Example: Bayesian Analysis

This section uses data from the Grant–White and Pasteur
schools in Holzinger and Swineford’s (1939) study to illustrate the
BSEM approach with informative cross-loading priors. The factor
loading pattern of the four-factor model of Table 1 is used. Table
5 repeats the fit statistics for the ML CFA and EFA and adds the
fit statistics for Bayesian analysis using both the original CFA
model and the proposed CFA model with informative, small-
variance priors for cross-loadings. The cross-loading priors use
variances 0.01. All other parameters have noninformative priors.
Standardized variables are analyzed, and the factor variances are
fixed at one in order for the priors to correspond to standardized
loadings. In all analyses, the reported estimates are the median
values of the parameter posterior (this is the Mplus default).

Table 5 shows that the Bayesian analysis of the CFA model with
exact zero cross-loadings gives almost zero posterior predictive p
values in line with the ML CFA. In contrast, for the proposed
Bayesian CFA with cross-loadings, model fit is acceptable in that
the posterior predictive p value is .361 for Grant–White and .162
for Pasteur. Also given are the 2.5% and 97.5% posterior predic-
tive limits for the difference in the fit statistic for the real and
replicated data described earlier in the Model Fit section. A pos-
itive lower limit is in line with a low posterior predictive p value
and indicates poor fit, whereas an interval with a zero fit statistic

difference falling close to the middle of the interval indicates good
fit.

As an aside, the Bayesian estimates can be used as fixed
parameters in an ML analysis to get the likelihood-ratio test (LRT)
value for the Bayes solution. They can be viewed as a descriptive
measure of fit that can be compared with the ML likelihood-ratio
chi-square values. It is seen in Table 5 that the Bayesian LRT values
for the CFA model are close to those of ML chi-square values. In
contrast, the Bayesian LRT values for the model with cross-loadings
show a great improvement, falling in between the ML CFA and EFA
chi-square values although closer to the EFA values.

The Bayes solutions for the two schools are shown in Table 6.
It is interesting to compare the Bayes solution with the ML EFA
solution of Table 4. The Bayes factor loadings are, on the whole,
somewhat larger than those for ML, and there are far fewer
statistically significant cross-loadings (marked with asterisks). In
the Bayes context, the frequentist term significant should be taken
to mean that the 95% credibility interval does not contain zero. For
ML EFA, there are six significant cross-loadings for Grant–White
and nine for Pasteur, whereof only three appear for both schools.
Because they appear for both schools, a researcher may be tempted
to free these three cross-loadings. For Bayes, the Grant–White
sample has only two cross-loadings that are significant (have a
95% credibility interval that does not cover zero), and Pasteur has
one. These three cross-loadings are also significant in the ML

Table 4
Holzinger and Swineford’s (1939) Maximum Likelihood Exploratory Factor Analysis Using 19 Variables and Geomin Rotation:
Four-Factor Solution

Test

Grant–White school Pasteur school

Spatial Verbal Speed Memory Spatial Verbal Speed Memory

Loadings

Visual perception 0.628� 0.065 0.091 0.085 0.580� 0.307� 0.001 0.053
Cubes 0.485� 0.050 0.007 0.003 0.521� 0.027 0.078 0.059
Paper form board 0.406� 0.107 0.084 0.083 0.484� 0.101 0.016 0.229�

Flags 0.579� 0.160 0.013 0.026 0.687� 0.051 0.067 0.101
General information 0.042 0.752� 0.126 0.051 0.043 0.838� 0.042 0.118
Paragraph comprehension 0.021 0.804� 0.056 0.098 0.026 0.800� 0.006 0.069
Sentence completion 0.039 0.844� 0.085 0.057 0.045 0.911� 0.054 0.029
Word classification 0.094 0.556� 0.197� 0.019 0.098 0.695� 0.008 0.083
Word meaning 0.004 0.852� 0.074 0.069 0.143� 0.793� 0.029 0.023
Addition 0.302� 0.029 0.824� 0.078 0.247� 0.067 0.664� 0.026
Code 0.012 0.050 0.479� 0.279� 0.004 0.262� 0.552� 0.082
Counting groups of dots 0.045 0.159 0.826� 0.014 0.073 0.034 0.656� 0.166
Straight and curved capitals 0.346� 0.043 0.570� 0.055 0.266� 0.034 0.526� 0.056
Word recognition 0.024 0.117 0.020 0.523� 0.005 0.020 0.039 0.726�

Number recognition 0.069 0.021 0.026 0.515� 0.026 0.057 0.057 0.604�

Figure recognition 0.354� 0.033 0.077 0.515� 0.329� 0.042 0.168 0.403�

Object–number 0.195 0.045 0.154 0.685� 0.123 0.005 0.333� 0.469�

Number–figure 0.225 0.127 0.246� 0.450� 0.014 0.092 0.092 0.427�

Figure–word 0.069 0.099 0.058 0.365� 0.139 0.013 0.237� 0.291�

Factor correlations

Spatial — —
Verbal 0.378� — 0.186� —
Speed 0.372� 0.386� — 0.214 0.326� —
Memory 0.307� 0.380� 0.375� — 0.190� 0.100 0.242� —

Note. Values in bold indicate hypothesized major loadings.
� p � .05.
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EFA. In the Bayes analysis, the significant cross-loadings are differ-
ent in the two schools. Because of the lack of agreement, freeing these
three cross-loadings could be capitalizing on chance and is also not
necessary on behalf of model fit. Bayes clearly gives a simpler pattern
than ML EFA for these data. This is achieved by shrinking the
cross-loadings toward their zero prior means. The degree of shrinking
that is possible while still obtaining reasonable model fit is gauged by
the posterior predictive p value.

It should be emphasized that cross-loadings that are found to be
important in BSEM—in the sense that the 95% credibility interval
does not cover zero and the cross-loading has strong substantive
backing—can be freely estimated with noninformative priors
while keeping small-variance priors for other cross-loadings. This
should improve the results because the small-variance prior gives
a too small estimate for such a cross-loading. Monte Carlo simu-
lations show that this gives better estimation.

The ML EFA factor correlations are smaller than the Bayesian
factor correlations as is seen when comparing Table 4 with Table
6. The greater extent of cross-loadings in the EFA may contribute
to the lower factor correlations in that less correlation among
variables needs to go through the factors. The Bayesian factor
correlations are not excessively high, however, because the factors
are expected to correlate to a substantial degree according to
theory. Holzinger and Swineford (1939) hypothesized that the
variables are all influenced by a deductive factor, which in the
current model is not partialed out of the four factors.

The choice of cross-loading prior variance should be linked to
the researcher’s prior beliefs. It could be argued, however, that the
choice of a variance of 0.01 resulting in 95% cross-loading limits
of �0.20 is not substantially different from a variance of, say, 0.02
resulting in 95% limits of �0.28; see Table 2. It is therefore of

interest to vary the prior variance to study sensitivity in the results.
Increasing the prior variance tends to affect the posterior predictive
p value and also increase the variability of the estimates. At a
certain point of increasing the prior variance, the model is not
sufficiently identified, and the MCMC algorithm tends to give
nonconvergence. Table 7 shows the effects of varying the prior
variance for cross-loadings from 0.01 to 0.10 for the data from
both the Grant–White and the Pasteur schools. The table gives the
absolute value of the 95% limit of the prior distribution, the
posterior predictive p value, the largest cross-loading with its
posterior standard deviation, and the range of the factor correla-
tions. For Grant–White, the largest cross-loading is observed for
the straight test loading on the spatial factor, whereas for
Pasteur the largest loading is observed for the figure recognition
test loading on the spatial factor. The change in prior variance
does not affect the hypothesized pattern of major loadings, and
this is not reported. The range of factor correlations is included
given that larger prior variance may lead to larger cross-
loadings, which in turn may have the effect of lowering the
factor correlations because correlations among the tests have to
be channeled through the factors to a lesser degree.

Table 7 suggests that the prior variance of 0.01 may be on the
low side in the sense that for both schools, the posterior predictive
p value peaks at the prior variance 0.03 (95% cross-loading limit
of 0.34). The change in prior variance, however, does not affect the
results in important ways for these two data sets. For all prior
variance choices, the largest cross-loading for Grant–White and for
Pasteur is detected, in the sense that it has its 95% credibility
interval not covering zero. For Pasteur, the three highest prior
variances result in the figurer cross-loading not being detected
(getting a 95% credibility interval that does cover zero; entries
shown as dashes in the table). This is because of the higher
posterior variability at the higher prior variances. In hindsight,
perhaps a prior variance of 0.02 or 0.03 would have been a slightly
better choice, but this may not be true for other examples. On the
other hand, when presenting results, it is useful to give information
on how a range of prior choices affects the results. Although the
factor correlations show smaller values with increasing prior vari-
ance, the decrease is small and of little substantive importance. All
in all, these results are reassuring in that the exact degree of
informativeness does not seem critical. Also, with larger sample
sizes, the choice is less important in that the data provide relatively
more information than the priors.

In summary, BSEM provides a simpler model and a model that
fits the researcher’s prior beliefs better than ML. BSEM provides
an approach that is a compromise between that of EFA and CFA.
The ML CFA rejects the hypothesized model, presumably because
it is too strict. ML EFA does not reject the model, but the model
does not match the researcher’s prior beliefs because it postulates
only the number of factors, not where the large and small loadings
should appear. Furthermore, ML EFA provides a solution through
a mechanical rotation algorithm, whereas BSEM uses priors to
represent the researcher’s beliefs.

Cross-Loading Simulations

This section discusses Monte Carlo simulations of BSEM ap-
plied to factor modeling with cross-loadings. The aim is to dem-

Table 5
Maximum Likelihood Versus Bayes Model Testing Results for
Holzinger and Swineford’s (1939) Data for Grant–White (N �
145) and Pasteur (N � 156) Schools

Model

Maximum likelihood analysis

�2 df p RMSEA CFI

Grant–White
CFA 216 146 0.000 0.057 0.930
EFA 110 101 0.248 0.025 0.991

Pasteur
CFA 261 146 0.000 0.071 0.882
EFA 128 101 0.036 0.041 0.972

Model

Bayesian analysis

Sample
LRT

2.5%
PP limit

97.5%
PP limit PP p

Grant–White
CFA 219 12 112 0.006
CFA with cross-loadings 142 39 61 0.361

Pasteur
CFA 264 56 156 0.000
CFA with cross-loadings 156 28 76 0.162

Note. RMSEA � root-mean-square error of approximation; CFI � com-
parative fit index; CFA � confirmatory factor analysis; EFA � exploratory
factor analysis; LRT � likelihood-ratio test; PP � posterior predictive.
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onstrate that the proposed approach provides good results for data
with known characteristics.

The factor loading pattern of Table 8 is considered where X
denotes a major loading and x denotes cross-loadings. The major
loadings are all 0.8. The sizes of the three cross-loadings are varied
as 0.0, 0.1, 0.2, and 0.3 in different simulations. The observed and
latent variables have unit variances so the loadings are on a
standardized scale. A cross-loading of 0.1 is considered to be of
little importance, a cross-loading of 0.2 is considered to be of some
importance, and a cross-loading of 0.3 is considered to be of
importance (see also Cudeck & O’Dell, 1994). The correlations
among the three factors are all 0.5. The factor metric is determined
by fixing the first loading for each factor at 0.8. Noninformative
priors are used for all parameters except for cross-loadings when
those are included as parameters in the analysis. Informative priors
are used for all cross-loadings, not just the three that have popu-
lation values different from zero. For cross-loading priors, a vari-
ance of 0.01 is chosen. As a first step, cross-loadings are not
included in the analysis, although the data are generated with three
cross-loadings, to compare regular ML CFA with Bayesian CFA
(not using BSEM). Sample sizes of n � 100, n � 200, and n � 500
are studied.

A total of 500 replications are used. The reported parameter esti-
mate is the median in the posterior distribution for each parameter.
The key result is what frequentists would refer to as the 95% cover-
age, that is, the proportion of the replications for which the 95%
Bayesian credibility interval covers the true parameter value used to

generate the data (credibility intervals obtained through percentiles of
the posterior). For cross-loadings, it is also of interest to study what
corresponds to power in a frequentist setting. This is computed as the
proportion of the replications for which the 95% Bayesian credibility
interval does not cover zero. Results are reported only for a represen-
tative set of parameters or functions of parameters: the major loading
of y2, the cross-loading for y6, the variance for the first factor, and the
correlation between the first and second factor. The model rejection
rate is reported using the proportion of replications with a posterior
predictive p value of at least .05.

The results are divided into three categories: Bayesian analysis
using noninformative priors, model fit comparisons between ML
and Bayes with noninformative priors, and Bayesian analysis with
informative priors. Not all results are presented here, but some
tables are instead available on the Web page www.statmodel.com/
examples/penn.shtml#baysem.

Bayes, Noninformative Priors

As a check of the Bayesian analysis procedure, a first analysis is
carried out with noninformative priors and ignoring cross-loadings.
Results can be found in Web Table 1 at www.statmodel
.com/examples/penn.shtml#baysem. Data are generated both with
zero and nonzero cross-loadings. For zero cross-loadings, the analysis
is correctly specified and close to 95% coverage is obtained for all
free parameters. Posterior predictive p value rejection rates for the
model fit assessment are 0.036, 0.032, and 0.024, respectively, for the

Table 6
Bayes for Holzinger and Swineford’s (1939) Example: Four-Factor Solution Using Informative Priors for Cross-Loadings

Test

Grant–White school Pasteur school

Spatial Verbal Speed Memory Spatial Verbal Speed Memory

Loadings

Visual perception 0.640� 0.012 0.050 0.047 0.633� 0.145 0.027 0.039
Cubes 0.521� 0.008 0.010 0.012 0.504� 0.027 0.041 0.030
Paper form board 0.456� 0.040 0.041 0.047 0.515� 0.018 0.024 0.118
Flags 0.672� 0.046 0.020 0.005 0.677� 0.095 0.026 0.093
General information 0.037 0.788� 0.049 0.040 0.056 0.856� 0.027 0.084
Paragraph comprehension 0.001 0.837� 0.053 0.030 0.015 0.801� 0.011 0.050
Sentence completion 0.045 0.885� 0.021 0.055 0.063 0.925� 0.032 0.036
Word classification 0.053 0.612� 0.096 0.029 0.055 0.694� 0.013 0.063
Word meaning 0.012 0.886� 0.086 0.020 0.092 0.803� 0.001 0.012
Addition 0.172� 0.030 0.795� 0.004 0.147 0.004 0.655� 0.010
Code 0.002 0.054 0.560� 0.130 0.004 0.111 0.655� 0.049
Counting groups of dots 0.013 0.092 0.828� 0.049 0.025 0.058 0.616� 0.057
Straight and curved capitals 0.189� 0.043 0.633� 0.035 0.132 0.067 0.558� 0.001
Word recognition 0.040 0.044 0.031 0.556� 0.058 0.006 0.090 0.731�

Number recognition 0.003 0.004 0.038 0.552� 0.006 0.098 0.106 0.634�

Figure recognition 0.132 0.024 0.049 0.573� 0.156� 0.027 0.064 0.517�

Object–number 0.139 0.014 0.029 0.724� 0.097 0.007 0.122 0.545�

Number–figure 0.099 0.071 0.095 0.564� 0.029 0.041 0.003 0.474�

Figure–word 0.012 0.045 0.007 0.445� 0.049 0.018 0.085 0.397�

Factor correlations
Spatial — —
Verbal 0.535� — 0.348� —
Speed 0.471� 0.443� — 0.307 0.457� —
Memory 0.526� 0.515� 0.557� — 0.324� 0.179 0.405� —

Note. Values in bold indicate hypothesized major loadings. Statistically significant cross-loadings (marked with asterisks) have a 95% credibility interval
that does not cover zero.
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three sample sizes of n � 100, n � 200, and n � 500, that is,
reasonably close to the nominal 5% level. Bayesian analysis with
noninformative priors works well in this situation.

With cross-loadings of 0.1, the effects of model misspecification
show up in that the coverage is less good. Posterior predictive p
value rejection rates for the model fit assessment are 0.056, 0.080,
and 0.262, respectively, for the three sample sizes. This shows
limited power to reject the incorrect model. On the other hand, the
misspecification is deemed of little importance given the small size
of the cross-loadings.

With cross-loadings of 0.2 (not shown) the posterior predictive
p value rejection rate is .196 for n � 100, .474 for n � 200, and
.984 for n � 500, showing excellent power at higher sample sizes.
With cross-loadings of 0.3 the posterior predictive p value is .544
for n � 100, .944 for n � 200, and 1.000 for n � 500, showing that
the power is excellent when the cross-loading is of an important
magnitude.

Comparing Model Fit for ML Versus Bayes With
Noninformative Priors

Model fit assessment comparing ML to Bayesian analysis with
noninformative priors is shown in Table 9. The correctly specified
model with zero cross-loadings shows an inflated ML 5% rejection
rate of 0.172 at n � 100. This small-sample bias is well-known for
ML chi-square testing (see, e.g., Scheines et al., 1999). The pos-
terior predictive p value rejection rate of .036 based on the Bayes-
ian analysis does not show the same problem. For the 0.1 size of
the cross-loadings, which is deemed of little substantive impor-
tance, ML rejects the model 46% of the time at n � 500. This
reflects the common notion that the ML LRT chi-square can be
oversensitive to small degrees of model misspecification. For the
important degree of misspecification with cross-loading 0.3, the
ML test is more powerful than Bayes, but the Bayes power is
sufficient for sample sizes of at least n � 200.

Web Table 2 shows ML model estimation results as a compar-
ison with the Bayesian analysis with noninformative priors pre-
sented earlier. For both the correctly specified model with zero
cross-loadings and for the misspecified model with cross-loadings
0.1, the ML coverage is close to that of Bayes. The mean square
error (MSE) is also similar for Bayes and ML. On the basis of this,
there is no reason to prefer one method over the other.

Table 7
Effects of Using Different Variances for the Informative Priors of the Cross-Loadings for Holzinger and Swineford’s (1939) Data

Prior variance 95% cross-loading limit PP p Cross-loading (posterior SD) Factor correlation range

Grant–White school
0.01 0.20 0.361 0.189 (0.078) 0.443–0.557
0.02 0.28 0.441 0.248 (0.096) 0.439–0.542
0.03 0.34 0.457 0.275 (0.109) 0.423–0.530
0.04 0.39 0.455 0.292 (0.120) 0.413–0.521
0.05 0.44 0.453 0.303 (0.130) 0.404–0.513
0.06 0.48 0.447 0.309 (0.139) 0.400–0.510
0.07 0.52 0.439 0.315 (0.148) 0.395–0.508
0.08 0.55 0.439 0.319 (0.156) 0.387–0.508
0.09 0.59 0.435 0.323 (0.163) 0.378–0.506
1.00 0.62 0.427 0.327 (0.171) 0.369–0.504

Pasteur school
0.01 0.20 0.162 0.132 (0.076) 0.179–0.457
0.02 0.28 0.205 0.201 (0.088) 0.184–0.441
0.03 0.34 0.219 0.223 (0.098) 0.188–0.431
0.04 0.39 0.218 0.237 (0.106) 0.189–0.424
0.05 0.44 0.205 0.247 (0.115) 0.175–0.408
0.06 0.48 0.196 0.255 (0.122) 0.175–0.402
0.07 0.52 0.195 0.261 (0.128) 0.176–0.397
0.08 0.55 0.192 — 0.176–0.394
0.09 0.59 0.187 — 0.177–0.391
0.10 0.62 0.185 — 0.177–0.388

Note. Dashes indicate that for the Pasteur school, the three highest prior variances result in the figurer cross-loading not being detected (getting a 95%
credibility interval that does cover zero). PP p � posterior predictive probability.

Table 8
Factor Loading Pattern for Simulation Study of Cross-Loadings:
Factor Loading Pattern

Variable Factor 1 Factor 2 Factor 3

y1 X 0 x
y2 X 0 0
y3 X 0 0
y4 X 0 0
y5 X 0 0
y6 x X 0
y7 0 X 0
y8 0 X 0
y9 0 X 0
y10 0 X 0
y11 0 x X
y12 0 0 X
y13 0 0 X
y14 0 0 X
y15 0 0 X

Note. X denotes a major loading, and x denotes cross-loadings.
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Bayes, Informative Priors

As the next step, the proposed BSEM approach of using Bayes-
ian analysis with informative, small-variance priors for the cross-
loadings is applied. The informative priors are applied not only to
the three cross-loadings used to generate the data but to all cross-
loadings to reflect a real-data analysis situation. The prior variance
is chosen as 0.01. All other parameters are given noninformative
priors. Table 10 shows good coverage, and for the top part of the
table corresponding to the correctly specified analysis with zero
cross-loadings, the coverage remains largely the same as in Web
Table 1. For cross-loadings of 0.1, however, the bottom part of the
table shows that coverage has improved by the introduction of
informative, small-variance priors for the cross-loadings. The cov-
erage is acceptable also for the cross-loading. The power to detect
the cross-loading is, however, small at this low cross-loading
magnitude, 0.038, 0.098, and 0.176, respectively, for the three
sample sizes. The posterior predictive p value is on the low side in
all four cases.

It is interesting to compare the coverage results for the four
parameters in the case of cross-loadings 0.1 given in Table 10 for
BSEM with the results from the ML approach in Web Table 2. ML
is outperformed by BSEM by its use of informative priors.

Table 11 shows the results of BSEM where data have been
generated with larger cross-loadings of 0.2 and 0.3. Here, the
coverage is also good with the exception of the cross-loadings. For
the cross-loadings, however, the focus is on power as shown in the
last columns. For a cross-loading of 0.2, a sample size of n � 500
is needed to obtain power above 0.8. For a cross-loading of 0.3, a
sample size of n � 200 is sufficient to obtain power above 0.8.
This shows that the approach of using informative, small-variance
priors for cross-loadings leads to a successful way to modify the
model, allowing free estimation of the indicated cross-loadings.
When freed and estimated using noninformative priors, these
cross-loadings are well estimated.

The point estimates indicate that the key parameter of factor
correlation is overestimated. Note, however, that given the power
to detect cross-loadings, estimating the cross-loadings freely re-
sults in good point estimates for factor correlations.

For the case of 0.3 cross-loadings in Table 11, the alternative
prior variance of 0.02 was also tried, yielding improved results.
The average estimates for the four entries were 0.8060, 0.2117,
1.0965, and 0.5620, whereas the coverage was 0.956, 0.886, 0.954,
and 0.982.

In summary, the cross-loading simulation study shows that the
Bayesian analysis performs well. It also shows that in terms of
parameter coverage and for the case of small cross-loadings, ML
is inferior to BSEM. In terms of model testing, BSEM avoids the
small-sample inflation of the ML chi-square and also avoids the
ML chi-square sensitivity to rejecting a model with an ignorable
degree of misspecification.

Study 2: Residual Correlations in CFA

British Household Panel Study Big Five Personality
Example: ML Analysis

A second example uses data from the British Household Panel
Study of 2005 and 2006. A 15-item, five-factor instrument uses
three items to measure each of the Big Five personality factors:
Agreeableness, Conscientiousness, Extraversion, Neuroticism, and
Openness. Each item uses the statement, “I see myself as someone
who . . . ,” followed by a statement. There are seven response
categories ranging from 1 (does not apply) to 7 (applies perfectly).
A total of 14,021 subjects are included. The Big Five factors are
expected a priori to have low correlations and are known to be
related to gender and age (see, e.g., Marsh, Nagengast, & Morin,
2010). For simplicity, the current analyses hold age constant by
considering the subgroup of ages 50 to 55. This produces a sample
of n � 691 female and n � 589 male participants.

The item wording and hypothesized loading pattern are shown
in Table 12. For all factors except openness, there are two posi-
tively worded items and one negatively worded item. Marsh et al.
(2010) suggested that the four negatively worded items may a
priori have correlated residuals (correlated uniquenesses) when
applying factor analysis.

Using ML estimation, Table 13 reports model fit using CFA,
CFA with correlated uniquenesses among the negatively worded
items, and EFA. It is seen that the fit is not acceptable for either of
the two CFA models as judged by chi-square or the two model fit
indices. The EFA model is also rejected by chi-square and is
only marginally acceptable for male participants when judged
by RMSEA or CFI.

An interesting finding is that the EFA solutions for female and
male participants do not fully capture the hypothesized factors.
This is the case using the Geomin rotation as well as using
Quartimin and Varimax. The Geomin rotation for each gender is
shown in Table 14. The bolded entries are loadings that are the
largest for the item. When comparing Table 14 with Table 12, it is
seen that only the factors Extraversion, Neuroticism, and Openness
are found, not the Agreeableness and Conscientiousness factors. A
possible reason for this is the existence of correlated residuals
among the items. As the CFA with correlated uniquenesses model
showed, however, allowing residual correlations among the

Table 9
Rejection Rates for ML Confirmatory Factor Analysis and
Bayes’s Confirmatory Factor Analysis With Noninformative
Priors

Cross-loading and
sample size

ML LRT
rejection rate

Bayes PP p
rejection rate

0.0
100 0.172 0.036
200 0.090 0.032
500 0.060 0.024

0.1
100 0.226 0.056
200 0.228 0.080
500 0.460 0.262

0.2
100 0.488 0.196
200 0.726 0.474
500 0.998 0.984

0.3
100 0.830 0.544
200 0.996 0.944
500 1.000 1.000

Note. ML � maximum likelihood; LRT � likelihood-ratio test; PP p �
posterior predictive probability.
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reverse-coded items is not sufficient. It is likely that, in addition to
the Big Five factors, the personality instrument measures many
minor factors.

The question arises of how correlated residuals can be accounted
for while maintaining the hypothesized factor loading pattern. A
model with all residual correlations freely estimated is not identified.
The proposed BSEM solution to this problem is presented next.

British Household Panel Study Big Five Personality
Example: Bayesian Analysis

This section uses the Big Five personality data in the British
Household Panel Study to illustrate the BSEM approach with an
informative prior for the residual covariance matrix. Because of its
relative simplicity, Method 2 is used. The simulation studies to be
presented also favor Method 2. An inverse-Wishart prior, IW(I, df)
with df � p � 6 � 21, is used, corresponding to prior means and
standard deviations for residual covariances of zero and 0.1, re-
spectively (see Appendix, Equation A17). Standardized variables
are analyzed. Because of high auto-correlation among the MCMC
iterations, only every 10th iteration is used with a total of 100,000

iterations to describe the posterior distribution. Informative cross-
loading priors are also used with prior distributions N(0, 0.01).

The posterior predictive p values are .534 and .518, respectively,
for female and male samples, indicating a good match between the
model and the data. For the two samples, 17 and 37 residual
covariances, respectively, were found significant in the sense of
the 95% Bayesian credibility interval not covering zero. The
average absolute residual correlation (range) is 0.329 (0.462 to
0.647) for the female sample and 0.285 (0.484 to 0.590) for the
male sample. For both genders, only one residual correlation
exceeds 0.5 in absolute value. This suggests that many small
residual correlations need to be included in the factor model, as
was expected. The fact that these residual correlations are left out
in the ML analyses may contribute to the poor ML fit and the poor
ML EFA loading pattern recovery.

Table 15 gives the results for the female and male samples.
Standardized loadings are presented so that the results can be
compared with the ML EFA of Table 14. The hypothesized major
loadings are all recovered at substantial values with no significant
cross-loadings. The factor correlations are all small to moderate as

Table 10
Bayesian Analysis Using Informative, Small-Variance Priors for Cross-Loadings 0.0 and 0.1

Parameter Population Estimates average SD SE average MSE 95% cover % sig coeff

Cross-loading � 0.0, n � 100, 5% reject proportion for the PP p � .006

Major loading 0.800 0.8472 0.1212 0.1310 0.0169 0.950 1.000
Cross-loading 0.000 0.0141 0.0455 0.0732 0.0023 0.998 0.002
Factor variance 1.000 0.9864 0.2595 0.2624 0.0674 0.930 1.000
Factor correlation 0.500 0.4967 0.0869 0.1076 0.0075 0.980 0.982

Cross-loading � 0.0, n � 200, 5% reject proportion for the PP p � .002

Major loading 0.800 0.8311 0.0893 0.0894 0.0089 0.942 1.000
Cross-loading 0.000 0.0079 0.0421 0.0633 0.0018 1.000 0.000
Factor variance 1.000 0.9662 0.1799 0.1840 0.0335 0.948 1.000
Factor correlation 0.500 0.4962 0.0605 0.0860 0.0037 0.990 1.000

Cross-loading � 0.0, n � 500, 5% reject proportion for the PP p � .010

Major loading 0.800 0.8161 0.0520 0.0552 0.0030 0.962 1.000
Cross-loading 0.000 0.0033 0.0313 0.0530 0.0010 1.000 0.000
Factor variance 1.000 0.9741 0.1096 0.1293 0.0127 0.958 1.000
Factor correlation 0.500 0.4960 0.0406 0.0708 0.0017 1.000 1.000

Cross-loading � 0.1, n � 100, 5% reject proportion for the PP p � .006

Major loading 0.800 0.8218 0.1177 0.1263 0.0143 0.950 1.000
Cross-loading 0.100 0.0594 0.0449 0.0728 0.0037 0.982 0.038
Factor variance 1.000 1.0600 0.2738 0.2808 0.0784 0.934 1.000
Factor correlation 0.500 0.5206 0.0850 0.1047 0.0076 0.976 0.992

Cross-loading � 0.1, n � 200, 5% reject proportion for the PP p � .006

Major loading 0.800 0.8151 0.0860 0.0882 0.0076 0.950 1.000
Cross-loading 0.000 0.0666 0.0424 0.0636 0.0029 0.978 0.098
Factor variance 1.000 1.0217 0.1895 0.1978 0.0363 0.942 1.000
Factor correlation 0.500 0.5204 0.0602 0.0843 0.0040 0.984 1.000

Cross-loading � 0.1, n � 500, 5% reject proportion for the PP p � .008

Major loading 0.800 0.8089 0.0517 0.0551 0.0027 0.964 1.000
Cross-loading 0.100 0.0732 0.0316 0.0532 0.0017 0.990 0.176
Factor variance 1.000 1.0169 0.1160 0.1371 0.0137 0.972 1.000
Factor correlation 0.500 0.5229 0.0404 0.0688 0.0022 0.998 1.000

Note. sig � significant; coeff � coefficient; PP p � posterior predictive probability.
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was expected. The Extraversion, Neuroticism, and Openness fac-
tors that were recovered in the ML EFA of Table 14 have lower
correlations in the Bayesian solution than in the ML EFA.

In summary, BSEM provides a solution that fits the researcher’s
prior beliefs better than ML. The ML CFA rejects the hypothesized
model, presumably because it is too strict in terms of requiring
exactly zero residual covariances. ML EFA does not recover the
researcher’s hypothesized Big Five factor pattern.

Residual Correlations Simulations

This section discusses Monte Carlo simulations of the BSEM
approach to factor modeling with residual correlations. A factor
model with 10 variables and two factors is used, where the first
five variables load on only the first factor, and the second five
variables load only on the second factor. The loadings are all 0.8,
the factor variances are 1, and the factor correlation is 0.5. The
residual variances are 0.36 so that observed variables all have
variances of 1. Two residual covariances (correlations) are in-
cluded, one for the first and sixth variables and one for the second
and seventh variables. In this way, ignoring the residual covari-

ances in the modeling tends to inflate the factor correlation. An
example would be an instrument administered at two time points,
where some variables have residuals that are correlated over time.
Residual correlations of 0.0, 0.1, and 0.3 are considered together
with sample sizes n � 200 and n � 500. A total of 500 replications
are used, and the results are presented in the format used for the
cross-loading simulations. The simulations present results for all
three methods presented earlier. For Method 1, both a more infor-
mative prior with df � 30 and a less informative prior with df �
14 (� p � 4) is studied. For Method 2, df � 30 is used. For
Method 3, the normal prior variance is set at 0.001. Tables with
results are available at the Web page www.statmodel.com/
examples/penn.shtml#baysem.

Comparing ML With Bayes

As a first step, model testing using ML and Bayes with nonin-
formative priors is compared for both correctly and misspecified
models. With residual correlations of 0.0, both ML and Bayes give
acceptable rejection rates with the correctly specified model (re-
sults presented in Web Table 3). Both ML and Bayes reject the

Table 11
Bayesian Analysis Using Informative, Small-Variance Priors for Cross-Loadings 0.2 and 0.3

Parameter Population Estimates average SD SE average MSE 95% cover % sig coeff

Cross-loading � 0.2, n � 100, 5% reject proportion for the PP p � 0.010

Major loading 0.800 0.7952 0.1152 0.1217 0.0133 0.952 1.000
Cross-loading 0.200 0.1024 0.0453 0.0731 0.0116 0.840 0.188
Factor variance 1.000 1.1522 0.2990 0.3018 0.1124 0.908 1.000
Factor correlation 0.500 0.5439 0.0819 0.1023 0.0086 0.966 0.996

Cross-loading � 0.2, n � 200, 5% reject proportion for the PP p � .004

Major loading 0.800 0.7979 0.0835 0.0859 0.0070 0.940 1.000
Cross-loading 0.200 0.1239 0.0418 0.0638 0.0075 0.856 0.492
Factor variance 1.000 1.0850 0.1978 0.2109 0.0463 0.942 1.000
Factor correlation 0.500 0.5424 0.0581 0.0823 0.0052 0.974 1.000

Cross-loading � 0.2, n � 500, 5% reject proportion for the PP p � .006

Major loading 0.800 0.8010 0.0514 0.0554 0.0026 0.964 1.000
Cross-loading 0.200 0.1427 0.0327 0.0541 0.0044 0.922 0.854
Factor variance 1.000 1.0595 0.1222 0.1473 0.0184 0.966 1.000
Factor correlation 0.500 0.5445 0.0382 0.0669 0.0034 0.986 1.000

Cross-loading � 0.3, n � 100, 5% reject proportion for the PP p � .012

Major loading 0.800 0.7671 0.1104 0.1166 0.0139 0.924 1.000
Cross-loading 0.300 0.1428 0.0460 0.0734 0.0268 0.364 0.470
Factor variance 1.000 1.2532 0.3158 0.3281 0.1636 0.860 1.000
Factor correlation 0.500 0.5650 0.0810 0.0999 0.0108 0.952 0.996

Cross-loading � 0.3, n � 200, 5% reject proportion for the PP p � .012

Major loading 0.800 0.7790 0.0807 0.0836 0.0069 0.948 1.000
Cross-loading 0.300 0.1755 0.0419 0.0640 0.0173 0.518 0.856
Factor variance 1.000 1.1623 0.2134 0.2257 0.0718 0.890 1.000
Factor correlation 0.500 0.5642 0.0577 0.0804 0.0075 0.950 1.000

Cross-loading � 0.3, n � 500, 5% reject proportion for the PP p � .006

Major loading 0.800 0.7891 0.0493 0.0553 0.0025 0.958 1.000
Cross-loading 0.300 0.2077 0.0318 0.0545 0.0095 0.640 1.000
Factor variance 1.000 1.1116 0.1252 0.1573 0.0281 0.930 1.000
Factor correlation 0.500 0.5636 0.0368 0.0661 0.0054 0.960 1.000

Note. sig � significant; coeff � coefficient; PP p � posterior predictive probability.
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model with ignorable residual correlations of 0.1, although ML is
more sensitive to this misspecification. For the larger misspecifi-
cation with residual correlations of 0.3, both ML and Bayes show
sufficient power to reject the model at both n � 200 and n � 500.

With BSEM Method 1 and residual correlations 0.1, good
coverage is found for all parameters except the residual covariance
(Web Table 4). There is sufficient power to detect the residual
covariance of 0.1 at n � 500. There is no important difference
between using df � 30 and df � 14, except that the point estimate
and the power for the residual covariance is slightly better for the
less informative prior with df � 14.

With BSEM Method 1 and residual correlations 0.3, acceptable
coverage is found when using the less informative prior with df �
14, except for the residual correlation (Web Table 5). The power
to detect the residual correlations is, however, excellent in all
cases. For the more informative prior with df � 30, the coverage
is less good. The key parameter of the factor correlation shows an
important overestimation, which is also seen with df � 14.

The simulation results for BSEM Methods 2 and 3 using residual
correlations of 0.3 are studied next (Web Table 6). The 5% reject
proportion for the posterior predictive p value is 0 in all cases. For
Method 2, the results are very good except for the residual covariance
being underestimated and having poor coverage. The power to detect
it is, however, excellent. The factor correlation is also somewhat
underestimated. Method 2 performs considerably better than Method
1. The Method 3 results are somewhat worse than those of Method 1
for df � 14, with poorer performance for the residual covariance and
the factor correlation. The power to detect the residual covariance is,
however, excellent also for Method 3. It should be noted that Method
3 is the only one of the three methods that can let such a residual
covariance be freely estimated, that is, using a noninformative prior.
Using a less informative Method 3 prior with a larger variance of 0.01
did not alter the results very much. In summary, Method 2 performs
the best of the three methods, and Method 3 performs the worst for
this simulation setting.

Method 3 works well when the two residual covariances are freely
estimated, that is, using noninformative priors (Web Table 7). The
remaining residual covariances are using the same informative priors
as before. Results are shown for n � 200 and n � 500.

An Example of Small-Variance Priors for Both
Structural and Measurement Parameters

The BSEM approach is not limited to measurement modeling
but is also applicable to restrictions on structural coefficients in
SEM. Also, although the two application areas studied in this
article show the particular advantage of BSEM when ML estima-
tion produces a nonidentified model, this nonidentification aspect
is not a requirement for BSEM. Although the topic of Bayesian
informative priors for structural coefficients in SEM is not the
primary target of this article, the following section gives a brief
discussion in the context of an example. The analyses also illus-
trate how the use of informative priors in the measurement mod-
eling is combined with the use of informative priors in the struc-
tural modeling.

Table 12
Wording and Hypothesized Factor Loading Pattern for the 15 Items Used to Measure the Big
Five Personality Factors in the British Household Panel Data (“I See Myself As Someone
Who . . .”)

Item A C E N O

y1: Is sometimes rude to others (reverse scored) X 0 0 0 0
y2: Has a forgiving nature X 0 0 0 0
y3: Is considerate and kind to almost everyone X 0 0 0 0
y4: Does a thorough job 0 X 0 0 0
y5: Tends to be lazy (reverse scored) 0 X 0 0 0
y6: Does things efficiently 0 X 0 0 0
y7: Is talkative 0 0 X 0 0
y8: Is outgoing, sociable 0 0 X 0 0
y9: Is reserved (reverse scored) 0 0 X 0 0
y10: Worries a lot 0 0 0 X 0
y11: Gets nervous easily 0 0 0 X 0
y12: Is relaxed, handles stress well (reverse scored) 0 0 0 X 0
y13: Is original, comes up with new ideas 0 0 0 0 X
y14: Values artistic, aesthetic experiences 0 0 0 0 X
y15: Has an active imagination 0 0 0 0 X

Note. A � Agreeableness; C � Conscientiousness; E � Extraversion; N � Neuroticism; O � Openness.

Table 13
Maximum Likelihood Model Testing Results for Big Five
Personality Factors Using British Household Panel Data for
Female (N � 691) and Male (N � 589) Participants

Model �2 df p RMSEA CFI

Female
CFA 552 80 .000 0.092 0.795
CFA � CUs 432 74 .000 0.084 0.845
EFA 183 40 .000 0.072 0.938

Male
CFA 516 80 .000 0.096 0.795
CFA � CUs 442 74 .000 0.092 0.826
EFA 113 40 .000 0.056 0.965

Note. RMSEA � root-mean-square error of approximation; CFI � com-
parative fit index; CFA � confirmatory factor analysis; CU � correlated
uniqueness; EFA � exploratory factor analysis.
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Figure 3 shows a structural equation model for science achieve-
ment proposed in Kaplan (2009, Figure 4.1). Drawing on the Rand
input–process–output model (Shavelson, McDonnell, & Oakes,
1989), Kaplan (2009) stated that

it is hypothesized that the background student characteristics of pre-
vious science grades (scigra6) and socioeconomic status (ses) influ-
ence science achievement indirectly through 10th grade science
grades. The role of teacher certification in science is hypothesized to
predict the extent of hands-on science involvement. This in turn is
hypothesized to predict student perceptions of a challenging class-
room environment, which in turn should predict science achievement
through science grades. (p. 54)

Kaplan (2009) analyzed a sample of 6,677 students in 10th
grade in public schools from the National Educational Longitudi-
nal Study of 1988. ML estimation of this model results in a
chi-square test of model fit of 1,731 with 39 degrees of freedom
(RMSEA � 0.081, CFI � 0.844) so that the model is clearly
rejected. The model obtains a multitude of large modification
indices, which could lead to a long model respecification search.
The corresponding Bayesian analysis with noninformative priors
also points to a poorly fitting model with a posterior predictive p
value of zero. This is Model 1 in Table 16, showing the lower and
upper limits of the 95% interval for the difference in the fit statistic
for the real and replicated data described earlier in the Model Fit
section. A positive lower limit indicates poor fit, whereas an
interval with a zero fit statistic difference falling close to the
middle of the interval indicates good fit. As shown later, it is useful
to study the change in the 95% posterior predictive p value

intervals when comparing alternative models. The Bayesian struc-
tural parameter estimates for Model 1 are shown in Table 17 to
provide a comparison with later models. The ML estimates are
very close to the Bayesian values.

A series of Bayesian analyses with informative priors is reported in
Table 16 as Model 2 through Model 8. For the priors to have the
intended effect, it is important to put the variables on a scale that
relates to the prior choices. To this aim, the observed variables are all
standardized apart from the dichotomized covariate teacher certifica-
tion. Standardization is innocuous in this case because the model is
scale free. Also, the metric of the two latent variables is set by fixing
their residual variance at one. Because the R2 is rather low, this metric
setting creates latent variables that have variances close to one.

Model 2 in Table 16 shows the 95% posterior predictive p value
interval for the Bayesian analysis where informative, low-variance
priors are applied to the 11 zero restrictions in the structural part of the
model in Figure 3. Normal priors with mean zero and variance 0.01
are used so that the 95% limits of the prior distribution are �0.20.
Because of the variable standardization, this means that the prior
distributions largely contain values that are of ignorable effect size. In
this sense, the essence of the original model hypothesis is maintained
by a priori allowing only minor deviations from the 11 zero restric-
tions. Although still not well-fitting, Model 2 represents a large
improvement over Model 1 in the posterior predictive p value interval,
moving its limits to the left on the real line. The Model 2 structural
parameter estimates are shown in Table 18, where bolded rows
correspond to parameters included in the initial model of Figure 3, and
asterisked estimates correspond to new parameters that are significant

Table 14
Maximum Likelihood Exploratory Factor Analysis of the Big Five Personality Factors Using British Household Panel Data

Item

Female sample Male sample

F1 F2 E N 0 F1 F2 E N 0

Loadings

y1 0.827� 0.000 0.014 0.011 0.005 0.389� 0.010 0.016 0.083 0.294�

y2 0.147� 0.215� 0.323� 0.033 0.020 0.188 0.447� 0.123� 0.030 0.011
y3 0.103� 0.569� 0.280� 0.046 0.095� 0.506� 0.469� 0.026 0.042 0.030
y4 0.018 0.455� 0.003 0.025 0.270� 0.406� 0.011 0.119� 0.010 0.272�

y5 0.365� 0.220� 0.039 0.068 0.009 0.654� 0.449� 0.037 0.009 0.004
y6 0.016 0.852� 0.001 0.052 0.087 0.656� 0.077 0.020 0.090 0.141�

y7 0.154� 0.053 0.541� 0.015 0.129� 0.047 0.015 0.629� 0.045 0.123
y8 0.041 0.024 0.748� 0.049 0.002 0.012 0.024 0.795� 0.051 0.032
y9 0.064 �0.416� 0.346� 0.116� 0.031 0.156 0.380� 0.396� 0.010 0.049
y10 0.045 0.061 0.063 0.727� 0.036 0.023 0.020 0.029 0.698� 0.294�

y11 0.021 0.001 0.039 0.670� 0.013 0.075 0.279� 0.052 0.519� 0.021
y12 0.022 0.250� 0.061 0.547� 0.063 0.004 0.311� 0.051 0.648� 0.109
y13 0.024 0.011 0.036 0.107 0.764� 0.069 0.007 0.001 0.023 0.734�

y14 0.011 0.088� 0.038 0.125� 0.659� 0.073 0.057 0.035 0.036 0.486�

y15 0.054 0.140� 0.087 0.014 0.541� 0.002 0.006 0.038 0.146� 0.671�

Factor correlations

F1 — —
F2 0.151� — 0.399� —
E 0.024 0.362� — 0.268� 0.200� —
N 0.085 0.100� 0.108� — 0.311� 0.065 0.252� —
O 0.142� 0.229� 0.473� 0.175� — 0.344� 0.397� 0.454� 0.180� —

Note. The bolded entries are loadings that are the largest for the item. F1 � Factor 1; F2 � Factor 2; E � Extraversion; N � Neuroticism; O � Openness.
� p � .05.

327BAYESIAN STRUCTURAL EQUATION MODELING



in the sense of their 95% posterior distribution credibility intervals not
including zero. As seen in Table 18, six new parameters have signif-
icant values, four of them for the key science achievement regression.

An interesting aspect of the informative priors for Model 2 is that
when the four significant parameters for the science achievement
regression are estimated with noninformative priors (i.e., as com-
pletely free parameters) the posterior predictive p value interval and
the four estimates change very little. This indicates that model fit
benefits from letting the remaining 11  4 � 7 structural zeros have
small-variance priors even when the resulting estimates are quite
small. This is in line with the case of cross-loadings in the earlier
factor analyses. Also, overlooking the need to include a significant
and substantial effect, such as that of socioeconomic status influenc-
ing science achievement, is not important in the informative priors
analysis of Model 2 because the estimate is almost the same as if the
parameter had been included in the original model.

Because of the 39 degrees of freedom, the Figure 3 model
implies many more restrictions beyond the structural part. The
factor indicators may have direct influence from the three covari-
ates, the factors may have cross-loadings, there may be residual
correlations among the factor indicators, and the factor indicators
may have direct relationships to the two dependent variables
science Grade 10 and science achievement. Using informative
priors, the first three sets of these restrictions are relaxed in Models
3 through 8 of Table 16, adding to the informative priors for the
structural part of Model 2.

Model 3 adds small-variance (0.01) normal priors to the 18
direct effects from the three covariates to the six factor indica-
tors. Direct effects imply differential item functioning, so that

the factor indicator measurement intercepts differ for different
covariate values, for example, for certified and not certified
teachers. Including all direct effects in an ML analysis gives a
nonidentified model, but one that is rendered identified by the
Bayesian approach of small-variance priors. None of the direct
effects are significant in the sense of the 95% Bayesian credi-
bility interval containing zero, but small, nonzero estimates are
obtained. This model further reduces the lower and upper limits
of the posterior predictive p value interval relative to Model 2
but does not produce a well-fitting model. Model 4 instead adds
12 small-variance (0.01) normal priors for the cross-loadings of
the factors. Again, none of the cross-loadings are significant.
This does not improve posterior predictive p value fit as much
as in Model 3. Model 5 adds small-variance priors to the
residual correlations among the factor indicators. Drawing on
the earlier residual correlation simulation study, Method 2 is
chosen with the setting IW(I, 30). (Note that replacing df � 30
with df � 15 gave essentially the same results.) Out of the 15
residual correlations, as many as 11 are significant. This indi-
cates a misspecified measurement model, although only three
residual correlations obtain estimates larger than �0.2, and the
largest is 0.34. Model 5 gives a relatively large improvement
of the posterior predictive p value interval. Model 6 and Model
7 use residual correlations and either direct effects or cross-
loadings, thereby improving the posterior predictive p value
intervals but not sufficiently for good fit. Model 7 is the first
model in the sequence to obtain a positive p value, although it
is a small value of .032. Model 8 uses all three features,

Table 15
Bayesian Analysis Using Informative, Small-Variance Priors for Residual Correlations Using Data for British Household Panel Study
Female and Male Samples, Method 2

Item

Female sample Male sample

A C E N 0 A C E N 0

Loadings

y1 0.772� 0.006 0.026 0.000 0.012 0.842� 0.013 0.011 0.010 0.018
y2 0.575 0.014 0.021 0.013 0.028 0.394 0.006 0.024 0.006 0.018
y3 0.503� 0.034 0.023 0.012 0.010 0.479� 0.040 0.005 0.021 0.013
y4 0.029 0.704� 0.014 0.003 0.024 0.040 0.683� 0.027 0.019 0.017
y5 0.017 0.657� 0.001 0.006 0.028 0.014 0.708� 0.020 0.002 0.018
y6 0.032 0.548� 0.015 0.007 0.015 0.043 0.579� 0.000 0.036 0.007
y7 0.008 0.014 0.685� 0.024 0.006 0.005 0.005 0.748� 0.016 0.005
y8 0.023 0.002 0.702� 0.017 0.003 0.024 0.011 0.754� 0.023 0.013
y9 0.016 0.021 0.622� 0.008 0.002 0.025 0.015 0.575� 0.005 0.005
y10 0.003 0.025 0.022 0.791� 0.023 0.001 0.009 0.013 0.801� 0.044
y11 0.016 0.007 0.024 0.736� 0.008 0.012 0.010 0.022 0.708� 0.024
y12 0.012 0.022 0.004 0.695� 0.027 0.017 0.006 0.003 0.613� 0.034
y13 0.006 0.020 0.006 0.047 0.780� 0.004 0.023 0.008 0.007 0.732�

y14 0.008 0.010 0.007 0.046 0.738� 0.004 0.021 0.013 0.023 0.672�

y15 0.006 0.006 0.011 0.003 0.660� 0.011 0.001 0.031 0.035 0.651�

Factor correlations

A — —
C 0.366� — 0.319� —
E 0.081 0.119 — 0.025 0.197 —
N 0.059 0.093 0.163 — 0.133 0.238� 0.160 —
O 0.041 0.201 0.321� 0.158 — 0.040 0.250 0.297� 0.091 —

Note. The bolded entries are loadings that are the largest for the item. A � Agreeableness; C � Conscientiousness; E � Extraversion; N � Neuroticism;
O � Openness.
� p � .05.
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resulting in a well-fitting model with a posterior predictive p
value interval that includes zero and a p value of .276. The
results for the structural parameters of Model 8 are very similar
to those of Model 2 in Table 18 and are not shown.

As a technical point, the Model 2 analysis converges very
quickly, needing only approximately 1,000 iterations and showing
low autocorrelations. This is in contrast to Model 3 through Model
8. For these models, many more iterations are needed to ensure
convergence, and the autocorrelation is high for many of the
parameters. To lower the autocorrelations, thinning is used so that
only every 100th iteration is included in the posterior distribution
used to report estimates. As a further check on convergence, such

thinning is used with 2,000, 5,000, and 10,000 iterations, yielding
essentially the same results. Similar parameter estimates are ob-
tained with and without thinning, suggesting that high autocorre-
lation is not necessarily a detriment to good estimation.

In concluding this SEM example, one observation is that Model
8 could have been the first model in the analysis sequence. It
captures the spirit of the Figure 3 model in that the zero parameters
not shown in the figure are given priors that imply only small
deviations from these hypothesized zeros. The hypothesis could
instead be the BSEM hypothesis of almost zeros. It is also inter-
esting to compare the use of priors for the measurement part of a
model with the use of priors for the structural part. The cross-
loadings and residual correlations of the two studies in this article
refer to nuisance parameters and therefore appear different than the
priors for structural parameters, which are of prime interest in the
modeling. Specifying almost zero cross-loadings, however, does
imply a hypothesis of where the major loadings are thought to
appear and is, in this sense, akin to specifying almost zero struc-
tural parameters. Finally, it should be noted that the use of small-
variance priors does not imply that a model is always going to be
correct. The Figure 3 model has an important structural flaw in the
sense that the Model 8 estimate for science achievement regressed
on socioeconomic status has not only a significant estimate but an
estimate that is substantial enough to be of practical interest. A
somewhat less important flaw of the Figure 3 model is that the
measurement model for the two factors is misspecified in the
sense of needing many residual correlations. This misspecifi-
cation, however, does not seem to impact the structural part of
the model.

Figure 3. Structural equation model for science achievement (Kaplan, 2009). scigra6 � science grades in Grade 6;
scigra10 � science grades in Grade 10; ses � socioeconomic status; sciach � science achievement; certsci � teacher
certification in science; involve � perceptions of hands on involvement; challenge � students felt challenged in the
classroom; makemeth � make up your own problems and work out your own methods to investigate problems;
ownexp � design and conduct experiments or projects on your own; choice � make your own choice of science topic
or problem to study; challg � students feel challenged in the science classroom; underst � students feel challenged
to show understanding; workhard � students work hard in science class. From Structural Equation Modeling:
Foundations and Extensions (2nd ed.), by D. Kaplan, 2009, Newbury Park, CA: Sage. Copyright 2009 by Sage
Publications. Reprinted with permission.

Table 16
Bayesian Analyses of the Science Achievement Model

Model Informative priors 95% PP p interval

1 None [1,664, 1,720]
2 Structural [448, 505]
3 Structural, direct effects [369, 428]
4 Structural, cross-loadings [380, 445]
5 Structural, residual correlations [88, 155]
6 Structural, direct effects,

residual correlations
[28, 90]

7 Structural, cross-loadings,
residual correlations

[2, 64]

8 Structural, direct effects, cross-
loadings, residual
correlations

[24, 44]

Note. PP p � posterior predictive probability.
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Conclusions

This article proposes a new approach to factor analysis and SEM
using Bayesian analysis. The new approach represents hypotheses in
a new way, replacing parameter specifications of exact zeros with
approximate zeros based on informative, small-variance priors. It is
argued that this produces an analysis that better reflects substantive
theories. The proposed Bayesian approach with informative priors for
hypothesized parameter restrictions—BSEM—is particularly benefi-
cial in applications where if those parameters are added to a conven-
tional model, a nonidentified model is obtained using ML. The extra
model parameters can be viewed as nuisance parameters that on the
basis of substantive theory and previous studies are hypothesized to be
close to zero, although perhaps not exactly zero. This approach is
useful for measurement aspects of latent variable modeling, such as
with CFA and the measurement part of SEM. Two application areas
are studied: cross-loadings in CFA and residual correlations in CFA.
BSEM is also useful for the structural part of an SEM as shown in a
real-data illustration. The approach encompasses three elements:
model testing, model estimation, and model modification. The first
two are evaluated by Monte Carlo simulation studies, whereas the
third warrants further studies. The Monte Carlo and real-data results
can be summarized as follows.

Summary of Findings

Model testing uses a posterior predictive probability approach
that has not previously been investigated this extensively. It is
found that posterior predictive probability works well both for
models with only noninformative priors and for the proposed
BSEM approach where some parameters have informative priors.
Posterior predictive probability is found to perform better than the

ML likelihood-ratio chi-square test at small sample sizes where
ML typically inflates chi-square and is found to be less sensitive
than ML to ignorable deviations from the correct model. Posterior
predictive probability is found to have sufficient power to detect
important model misspecifications.

Bayesian model estimation is shown to perform well with both non-
informative and informative priors. Using BSEM with both ignorable and
nonignorable degrees of model misspecification, key parameters are in
most cases reasonably well estimated in terms of their coverage. BSEM
outperforms ML estimation with misspecified models.

BSEM also provides a counterpart to ML-based model modifi-
cation. ML modification indices inform about model improvement
when a single parameter is freed and can lead to a long series of
modifications. In contrast, BSEM informs about model modifica-
tion when all parameters are freed and does so in a single step. The
simulations show sufficient power to detect model misspecifica-
tion in terms of 95% Bayesian credibility intervals not covering
zero. As with ML model modification, BSEM model modification
should be supported by substantive interpretability.

An example for each of the two application areas shows the
promise of BSEM. For Holzinger and Swineford’s (1939) exam-
ple, a well-fitting factor model is found that is superior to ML-
based models. Instead of choosing between an ill-fitting ML CFA
model and a well-fitting but unnecessarily weakly specified ML
EFA model, BSEM maintains the spirit of CFA while allowing
small cross-loadings. A comparison is also made with target rota-
tion (Asparouhov & Muthén, 2009; M. W. Browne, 2001). Target
rotation is similar to BSEM in that it replaces mechanical rotation
with rotation guided by the researcher’s judgment, in this case
using zero targets for cross-loadings. It is different from BSEM by
not allowing user-specified stringency of closeness to zero by

Table 17
Bayes Results for the Structural Parameters of Model 1

Relationship (slope) Estimate Posterior SD One-tailed p

95% CI

Lower 2.5% Upper 2.5%

Science achievement regressed on
Science grades in Grade 10 0.383 0.011 .000 0.361 0.405
Science grades in Grade 6
Socioeconomic status
Teacher certification
Students felt involved
Students felt challenged

Science grades in Grade 10 regressed on
Students felt challenged 0.130 0.013 .000 0.105 0.157
Science grades in Grade 6 0.414 0.011 .000 0.392 0.435
Socioeconomic status 0.098 0.011 .000 0.076 0.119
Teacher certification 0.017 0.037 .322 0.054 0.091
Students felt involved

Students challenged regressed on
Students felt involved 0.168 0.018 .000 0.133 0.202
Science grades in Grade 6
Socioeconomic status
Teacher certification

Students involved regressed on
Teacher certification 0.026 0.052 .318 0.077 0.126
Science grades in Grade 6
Socioeconomic status

Note. Lines with empty entries correspond to parameters that are added in later model modifications. CI � confidence interval.
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varying the prior variance, replacing that with least-square fitting.
For Holzinger and Swineford’s example, applying target rotation
with zero targets for all cross-loadings gives results similar to EFA
using Geomin or Quartimin rotation, except yielding more signif-
icant cross-loadings. BSEM using small-variance cross-loading
priors gives far simpler loading patterns, shrinking the cross-
loadings toward the prior mean. A check of the degree of shrinkage
that matches the data is provided by the BSEM posterior predictive
p value approach. Table 7 shows that for these data, the prior
variance choice does not have an important impact on the results.

For the Big Five personality example, a well-fitting factor model
is found that recovers the hypothesized factor loading pattern by
allowing for a large number of small residual correlations. In
contrast, ML CFA is ill fitting even when allowing for a priori
residual correlations, and ML EFA does not recover the hypothe-
sized factor loading pattern.

Applying BSEM is easy and fast for analyses of cross-loadings.
Analysis with residual covariances leads to heavier computations
because of slow MCMC convergence. A further benefit of the
Bayesian analysis is that estimation works well also for models
that are large relative to the sample size (see also Asparouhov &
Muthén, 2010a).

Related Approaches

BSEM with its adjoining posterior predictive p value model test
is similar in spirit to the frequentist conceptualization of close fit
(M. W. Browne & Cudeck, 1993). ML model testing of close fit
rather than conventional exact chi-square fit is expressed by the
RMSEA fit index. In assessing differences between models, Mac-
Callum, Browne, and Cai (2006) also argued against exact fit as

being of limited empirical interest given that it is never true in
practice. RMSEA uses an overall approximate fit level deemed
sufficient. In contrast, BSEM allows informative priors to reflect
notions of closeness for each parameter.

Press (2003, chapter 15) discusses a Bayesian factor analysis
approach that has some similarities to the one proposed in this
article. The MCMC algorithm is not used, but instead estimates are
obtained as expected values in the posterior distributions. Press
specified a prior for the loading matrix with a mean that uses a
specific target pattern of large and zero loadings. All loadings have
the same prior variances. In the example (Press, 2003, pp. 368–
372), the variances are chosen to give weakly informative priors.
In contrast, the current approach has zero prior means for all
loadings, with small prior variances for nontarget loadings and
large prior variances for target loadings so that target loadings are
solely determined by the data. In this sense, Press’s approach is
closer to EFA, and the current approach is closer to CFA.

In BSEM, the ability to free all loadings in a measurement
model can be viewed as the ability to form an EFA with the
rotation guided by the priors. BSEM is, however, more general
than EFA and essentially has the flexibility of exploratory SEM
(ESEM; Asparouhov & Muthén, 2009) because it can accommo-
date correlated residuals in an EFA model, it can accommodate
covariates in an EFA model, and it can accommodate an EFA
model as part of a larger model. In terms of the measurement
model, ESEM is exploratory in nature, while BSEM has more of
a confirmatory flavor. BSEM also generalizes ESEM in the fol-
lowing way. In ESEM, the optimal rotation is determined only on
the basis of the unrotated loadings as in EFA, that is, the optimal
rotation does not consider residual covariances or covariate direct

Table 18
Bayes Results for the Structural Parameters of Model 2

Relationship (slope) Estimate Posterior SD One-tailed p

95% CI

Lower 2.5% Upper 2.5%

Science achievement regressed on
Science grades in Grade 10 0.244 0.012 .000 0.222 0.267
Science grades in Grade 6 0.196� 0.012 .000 0.172 0.219
Socioeconomic status 0.270� 0.011 .000 0.249 0.291
Teacher certification 0.126� 0.034 .000 0.193 0.059
Students felt involved 0.102� 0.013 .000 0.128 0.077
Students felt challenged 0.009 0.013 .236 0.035 0.015

Science grades in Grade 10 regressed on
Students felt challenged 0.127 0.014 .000 0.100 0.153
Science grades in Grade 6 0.410 0.011 .000 0.388 0.433
Socioeconomic status 0.098 0.011 .000 0.077 0.120
Teacher certification 0.018 0.038 .322 �0.056 0.091
Students felt involved 0.019 0.013 .074 0.007 0.046

Students challenged regressed on
Students felt involved 0.173 0.018 .000 0.137 0.209
Science grades in Grade 6 0.118� 0.015 .000 0.089 0.147
Socioeconomic status 0.006 0.015 .343 0.024 0.036
Teacher certification 0.001 0.045 .495 0.085 0.092

Students involved regressed on
Teacher certification 0.026 0.052 .301 �0.076 0.125
Science grades in Grade 6 0.012 0.015 .208 0.042 0.018
Socioeconomic status 0.049� 0.015 .001 0.079 0.018

Note. Bolded rows correspond to parameters included in the initial model of Figure 3, and asterisked estimates correspond to new parameters that are
significant in the sense of their 95% posterior distribution credibility intervals not including zero. CI � confidence interval.
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effects in the optimal rotations. In contrast, in BSEM the optimal
rotation is determined by all parts of the model.

BSEM Extensions

The BSEM ideas presented here can be extended in several
ways, both for the measurement part of an SEM and for the
structural part. BSEM can be extended to include equality con-
straints. A typical SEM example is multiple-group analysis with
measurement invariance. It is common to find small deviations
from exact invariance that cause rejection by the ML LRT. Group
differences in measurement intercept vectors and loading matrices
can be given zero-mean, small-variance priors. The special case of
intercept noninvariance can be handled by letting the grouping
variables be covariates that influence the factors, also referred to as
MIMIC (multiple-indicators, multiple-causes) modeling (see, e.g.,
Muthén, 1989). Here, noninvariance is defined as direct effects
from covariates to the factor indicators. With ML, including all
direct effects results in a nonidentified model, whereas BSEM
solves the problem using zero-mean, small-variance priors for the
direct effects. This is illustrated in the reanalysis of Kaplan’s
(2009) science achievement model. For a study of this extension,
see www.statmodel.com/examples/penn.shtml#baysem.

An extension of the residual correlations approach to categorical
indicators in latent class and latent trait analysis is given in
Asparouhov and Muthén (2011).

Reflections on Analysis Strategies

This article discusses several factor analysis alternatives: EFA
using both mechanical and target rotation, confirmatory (ML and
Bayes) factor analysis, BSEM with informative cross-loading pri-
ors, and BSEM with informative residual covariances. It is worth-
while to consider the different choices made with these different
types of analyses to gain further understanding of the epistemo-
logical implications of BSEM.

One key aspect of factor analysis is the resulting factor corre-
lations. The analysis of Holzinger and Swineford’s (1939) data
provides an illustration of the different factor correlation findings
obtained by the different analysis alternatives. In EFA using
oblique rotation, the nonzero correlations among the factors typi-
cally reduce the size of cross-loadings relative to orthogonal rota-
tion because correlations among the factor indicators on different
factors can be channeled through the factors. From the point of
view of BSEM with informative cross-loading priors, the factor
correlations from EFA with oblique rotation may be too low
because too many nonzero cross-loadings are allowed. BSEM
shrinks the cross-loadings toward their prior means of zero, and the
BSEM posterior predictive p value gauges whether a certain de-
gree of shrinking, corresponding to a certain prior variance, is
compatible with the data. In Holzinger and Swineford’s data the
EFA factor correlations were lower than the BSEM factor corre-
lations, and this is expected to generally be the case. EFA with
target rotation did not change this picture.

ML CFA with correlated factors fixes many cross-loadings to
zero so that the rotation of EFA is avoided. Because of the many
cross-loadings fixed at zero, CFA tends to require higher factor
correlations than EFA with oblique rotation in order to represent
the correlations among the factor indicators (see also Asparouhov

& Muthén, 2009; Marsh et al., 2009, 2010). From the point of view
of BSEM with informative cross-loading priors, these CFA factor
correlations are too high. This is because BSEM postulates cross-
loadings that are not exactly zero, which in turn leads to lower
BSEM factor correlations. In this sense, factor correlations from
BSEM with informative priors for cross-loadings are expected to
be a compromise between EFA and CFA factor correlations. This
is the case for Holzinger and Swineford’s (1939) data.

In the case of informative priors for residual covariances, BSEM
is expected to result in smaller factor correlations than CFA with
zero residual covariances given that less of the correlation among
factor indicators needs to be channeled through the factors.

Given these observations, a possible strategy is to use EFA with
mechanical rotation in early pilot studies of a measurement instru-
ment until a body of knowledge about the factor indicators and the
factors has been built up. Although EFA was here carried out by
ML, it could also be carried out by Bayesian analysis with non-
informative priors. A switch can then be made from EFA to BSEM
with informative priors, where the informative priors can be cho-
sen with smaller and smaller variances. In this sense, the Bayesian
approach provides a continuum of analyses to be carried out in a
series of studies, choosing priors to reflect increasing knowledge
about the measurement situation. Here, ML CFA is the frequentist
counterpart to the far end of the continuum. The Bayesian ap-
proach avoids the big increase in model parsimony going from an
ML EFA to an ML CFA, which often leads to an ill-fitting CFA
model. Similarly, it avoids the big jump in going directly to an ML
CFA without preceding EFA steps as is currently often advocated,
also typically leading to an ill-fitting CFA model.

A devil’s advocate may argue that the BSEM approach adds
junk parameters to permit model fit. A first response in the context
of cross-loadings is that EFA potentially adds more such param-
eters and, unlike BSEM, does not test statistically whether they are
needed. A more important response is that unlike CFA, BSEM
allows the researcher to specify the degree of precision with which
he or she wants to portray prior beliefs. For CFA, the only choice
is what corresponds to a prior variance of exactly zero, whereas
with BSEM an exact zero is not required. For models and data
where the choice of prior variance makes a difference to the
interpretation of the results, this informs the researcher that
the data does not carry enough information on the model. A
more comforting situation is illustrated in Table 7, showing
ignorable dependence on the prior variance choice.

Testing model fit assumes a somewhat different form in BSEM
relative to ML. First, the SEM example of science achievement shows
that the BSEM approach provides for a relatively easy way to isolate
the parts of a model that contribute to model misfit by applying
small-variance priors to only that part. Second, even though the
BSEM use of small-variance priors for key model parts often leads to
well-fitting models as judged by the posterior predictive p value test
of model fit, model flaws can be found by the significance of param-
eters that a priori were hypothesized to be ignorable.

Caveats

Several warnings are important for using BSEM. This is especially
the case regarding the use of BSEM with informative priors and
residual covariances. First, it may be difficult to balance the need for
small residual covariances against small cross-loadings in that both
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aid in representing correlations among factor indicators. Second,
allowing for small residual covariances may obscure the need to add
minor but still important factors. Third, medium-sized residual cova-
riances may obscure that the postulated factor pattern is misspecified.

Furthermore, this article presents only a beginning of the study of
BSEM. Much more experience is needed. For example, the posterior
predictive p value approach to model checking needs further study.
How much are the p values influenced by the number of variables, the
number of observations, and other model features? Preliminary in-
vestigations of moderate departures from the assumed multivariate
normality of the observed variables does not seem to have a critical
impact, but this needs to be studied further. Another question is to
which extent the maximum posterior predictive p value should guide
which prior the results should be reported for. Although priors should
be decided on before the data are analyzed, often a range of priors are
equally motivated. Also, it would be worthwhile to offer several
posterior predictive tests, extending posterior predictive probability
beyond merely using the LRT statistic for the overall model and also
focusing on a particularly important part of the model implications.
Furthermore, the idea of the BSEM-derived counterpart to modifica-
tion indices needs to be evaluated. It is of interest to see if this is more
likely to lead to the correct model when the initial model needs several
modifications. More needs to be learned about the performance of
BSEM parameter posterior estimation using different informative
priors for different types of models, sample sizes, and variable distri-
butions. Hopefully, this article will stimulate such further research.
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Appendix

Obtaining the Posterior Distribution

Bayesian estimation uses Markov chain Monte Carlo (MCMC)
algorithms. The idea behind MCMC is that the conditional distri-
bution of one set of parameters given other sets can be used to
make random draws of parameter values, ultimately resulting in an
approximation of the joint distribution of all the parameters. For a
technical discussion, see, for example, Gelman et al. (2004). For
the technical implementation in Mplus, see Asparohov and Muthén
(2010a). Denote by �i a vector of unknowns consisting of param-
eters, latent variables, and missing observations at iteration i. The
vector is divided into several sets, � � (�1i, �2i, . . . , �Si)
. For
example, in an application without latent variables and missing data,
the parameters may be divided into means, intercepts, and slopes in
one set and divided into variance and residual variances in another set.
Normal priors are commonly used for the first set, whereas inverse-
gamma and inverse-Wishart priors are commonly used for the second
set. The conditional distribution for the first set is normal and is
inverse-gamma or inverse-Wishart for the second set.

The MCMC sequence of random draws can be described as fol-
lows. Using a set of parameter starting values, new � values are
obtained by the following steps over i � 1, 2, . . . , n iterations, in each
step drawing from a conditional posterior parameter distribution:

Step 1: �1,i��2,i1, . . ., �S,i1, data, priors (A1)

Step 2: �2,i��1,i, �3,i1, . . ., �S,i1, data, priors (A2)

. . . (A3)

Step S: �S,i��1,i, . . ., �S1,i1, data, priors. (A4)

For Step 1 Iteration 1, the parameter values for iteration i  1 �
0 are starting values. Step 1 produces values for the parameters of
�1. In Step 2 Iteration 1, those values and the starting values for
the other parameters produce values for the parameters of �2 and
so on up to Step S Iteration 1. Iterations 2, . . . , n go through the
same steps in the same fashion. Typically, several MCMC chains
are used, starting from different starting values and using different
random seeds when making the random draws. The chains form

independent sequences of iterations and give an opportunity to
monitor convergence.

In certain cases, it is not possible to draw from the conditional
posterior distributions described earlier because they do not exist in
explicit form. In such cases, the Metropolis–Hastings algorithm
(Gelman et al., 2004) is used instead. Suppose that in Step 1, �1,i

cannot be explicitly drawn. Then �*1,i is drawn from a distribution, J,
usually referred to as the jumping distribution. The distribution J is
chosen to be similar to the conditional distribution in Step 1 and to
allow for explicit draws. The new draw is accepted as �1,i with
probability

R �
J��1,i1�

J��1,i
� �

P��1,i
� �*�

P��1,i1�*�
.

Otherwise �1,i1 is used as the next draw, �1,i.

Assessing Convergence

In the analyses in this article, convergence is investigated in the
following way. Consider n iterations in m chains, where �ij is the
value of parameter � in iteration i of chain j.

Define the within- and between-chain variation as

�� �j �
1

n �
i�1

n

�ij, (A5)

�� �� �
1

m �
j�1

m

�� �j, (A6)

W �
1

m �
j�1

m
1

n �
i�1

n

��ij � �� �j�
2, (A7)

B �
1

m � 1�
j�1

m

��� �j � �� ���
2. (A8)

(Appendix continues)
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Convergence is determined using the Gelman–Rubin convergence
diagnostic (Gelman & Rubin, 1992; Gelman et al., 2004). This
considers the potential scale reduction factor (PSR),

PSR � �W � B

W
, (A9)

where a PSR value not much larger than 1 is considered evidence
of convergence. Gelman et al. (2004) suggested values of 1.1 or
smaller for all parameters. This means that convergence is
achieved when the between-chain variation is small relative to the
within-chain variation. Gelman et al. used a slightly different
definition of their potential scale reduction R̂, but the difference
relative to Equation A9 is a negligible factor of n/(n  1). It may
be the case, however, that PSR convergence observed after n
iterations may be negated when using more iterations. Because of
this, a longer chain should be run to check that PSR values are
close to 1 in a long sequence of iterations.

Priors

The density of the inverse-Wishart distribution IW(S, d) with d
degrees of freedom is given by

�S�d/ 2�X��d�p�1�/ 2 Exp(Tr�SX1�/2)

2dp/ 2�p�d/2�
, (A10)

where the argument X of the density is a positive definite matrix,
p is the number of variables, and �p is the multivariate gamma
function. To use an informative prior with a certain expected
value, one can use the fact that the mean of the distribution is

S
d � p � 1

. (A11)

The mean exists and is finite only if d � p � 1. If d � p � 1,
then one can use the fact that the mode of the distribution is

S
d � p � 1

. (A12)

The variance (i.e., the level of informativeness) is controlled
exclusively by the parameter d. The larger the value of d, the more
informative the prior is.

To evaluate the informativeness of the prior, one can consider
the marginal distribution of the diagonal elements. The marginal
distribution of the jth diagonal entry is the inverse-gamma distri-
bution (Lee, 2007),

IG��d � p � 1�/ 2, Sjj/2�. (A13)

Thus the marginal mean is

Sjj

d � p � 1
(A14)

if d � p � 1, and the marginal variance is

2Sjj
2

�d � p � 1�2 �d � p � 3�
(A15)

if d � p � 3. To use an informative prior with a certain
variance, one can multiply the desired expected value by (d 
p  1) to get S.

The marginal distribution of the off-diagonal elements cannot be
expressed in closed form, but the marginal mean for the (i, j)
off-diagonal element is

Sij

d � p � 1
(A16)

if d � p � 1, and the marginal variance is

�d � p � 1�Sij
2 � �d � p � 1�SiiSjj

�d � p� �d � p � 1�2 �d � p � 3�
(A17)

if d � p � 3. As an example, using an identity matrix S � I and
d � p � 6 for IW(S, d) gives a mean of zero and a variance of
0.0111 (SD � 0.1054).

It is clear that stating the level of informativeness using inverse-
Wishart priors is rigid as the informativeness of one parameter in
the matrix determines the informativeness of all other parameters.
A special case is of particular interest. Setting the prior to IW(D,
p � 1), where D is a diagonal matrix, the marginal distribution for
all correlations is uniform on the interval (1, 1), and the marginal
distribution of the variance is IG(1, djj/2). The values of the
diagonal elements djj can be set to match the mode of the desired
prior with the mode of IG(1, djj/2), which is djj/4. Note, however,
that the mean cannot be used for this purpose because the mean of
IG(1, djj/2) is infinity. Only the mode is defined for this distribu-
tion. In this case, the marginal distribution of the diagonal ele-
ments has infinite mean and variance. The marginal for the cova-
riance elements has a mean of zero by symmetry but also has an
infinite variance. The marginal mean for the correlation parameter
is zero, and the marginal variance for the correlation parameter is
1/3.

More generally, setting the prior to IW(D, d), where D is a
diagonal matrix, the marginal distribution for all correlations is the
beta distribution B[(d  p � 1)/2, (d  p � 1)/2] on the interval
(1, 1), if d � p with a mean of 0 and a variance of

1

d � p � 2
. (A18)

Note also that the posterior distribution in the MCMC generation
for the variance covariance parameter with prior IW(S, d) is a
weighted average of S/d and the sample variance where the
weights are d/(n � d) and n/(n � d), respectively, where n is the
sample size. Thus, one can interpret the degrees of freedom pa-
rameter d as the number of observations added to the sample with
the prior variance covariance matrix. Naturally, as the sample size
increases the weight d/(n � d) will converge to 0, and the effect of
the prior matrix S will diminish. To maintain the same effect of the
prior on the estimation for larger sample sizes, the degrees of
freedom parameter should be chosen proportionally larger.

More information on the inverse-Wishart distribution and the
marginal distributions of all the entries in the matrix can be found
in Barnard, McCulloch, and Meng (2000). See also Gelman et al.
(2004).
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