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Historically, the focus of behavior genetic research was to obtain estimates of the sources of fa-
milial resemblance for a single phenotype. Current research strategies have moved beyond her-
itability estimates to the search for physiological and behavioral mechanisms by which genetic
risk is translated into individual differences in behavior and disease liability. Such research ques-
tions often require multivariate designs and complex analytic models, including the analysis of
continuous and categorical dependent variables within the same model. Recent advances in com-
puter software for categorical data analysis have increased the tools available for researchers in
behavior genetics. This paper describes how to use the Mplus software program (Muthén and
Muthén, 1998, 2002) for the analysis of data obtained from twins. Example analyses include
two- and five-group twin models for univariate and bivariate continuous and categorical vari-
ables. Data on alcoholism and age at first drink drawn from the Virginia Adult Twin Study of
Psychiatric and Substance Use Disorders are used to illustrate how Mplus can be used to ana-
lyze multiple-category variables, recode and transform variables, select subgroups for analysis,
handle subjects with incomplete data, include constraints to ensure non-negative loadings, in-
clude model covariates, model sex differences, and test alternative hypotheses about mediation
of genetic risk by measured variables.
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INTRODUCTION

Before the 1970s, most behavior genetic analyses were
conducted by using qualitative or quantitative methods
to compare indices of familial resemblance, such as in-
traclass correlations, calculated separately for each
pairing of relative types (e.g., Cattell, 1960). Jinks and
Fulker (1970) pioneered the application to human be-
havior of model-fitting methods previously devel-
oped for the analysis of data from plant and animal
breeding studies (e.g., Mather and Jinks, 1971). Eaves,
Martin, Heath, and colleagues (e.g., Eaves et al., 1978;
Martin and Eaves, 1977) adapted the analysis of co-
variance structure (Joreskog, 1973) to apply model-
fitting methods to the analysis of multivariate twin data
using FORTRAN programs for genetic applications

based on numerical optimization and integration using
NAG. About the same time, Fulker (1978) and others
(e.g., Behrman et al., 1978) developed specialized
programs for fitting models to twin data that also em-
ployed maximum likelihood estimation. These model-
fitting methods represented a clear advance over the
earlier approaches, but required users to be skilled
programmers.

The development of the multiple group version of
LISREL (Joreskog and Sorbom, 1977) led a number of
investigators to appreciate the possibility of using this
commercially available program for the analysis of
multivariate kinship data. The first behavior genetic ap-
plications of LISREL were by McArdle and Goldsmith
(1990; McArdle et al., 1980) for twin data and Cantor
(1983; Cantor and Nance, 1981) for twin-family data,
followed by Boomsma and Molenaar (1986). Soon
afterward, the use of LISREL was popularized through
the early International Workshops on Methodology
of Twin and Family Studies and a special issue of
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Behavior Genetics (volume 19(1), 1989). In recent
years, the use of the LISREL logic has been expanded
by the Mx program developed by Neale et al., (e.g.,
Neale, 1991; Neale et al., 2002), which has the advan-
tages of being free and developed specifically for use
with multivariate kinship data.

The biometric analysis of categorical phenotypes
has a parallel history. Before the mid-1970s, categori-
cal variables obtained from twins were typically ana-
lyzed using concordance ratios (e.g., Smith, 1974).
Model-fitting approaches to categorical data were de-
scribed by Fulker (1973) and Eaves et al. (1978), who
combined maximum-likelihood analysis with the
“threshold” model described by Falconer (1965) and
Edwards (1969). Multivariate categorical data could
be analyzed with structural modeling software by
first computing sample statistics (e.g., polychoric
matrices using PRELIS, Joreskog and Sorbom, 1986)
followed by a second stage of analyzing these statistics
using models for continuous variables. This two-stage
approach had several drawbacks, including the inability
to test for differences among groups in thresholds.
This was addressed in part by early versions of Mx
that accepted contingency tables as input for maximum-
likelihood estimation and allowed modeling of
thresholds.

Advances in computer processing speed and sta-
tistical theory have led to a rapid expansion of ap-
proaches to the analysis of categorical data. The
development of the commercially available LISCOMP
program (Muthén, 1988) allowed direct modeling of
continuous and categorical data based on raw input.
Despite its potential usefulness for a variety of appli-
cations in twin and family research, LISCOMP has not
been widely used by behavioral genetic researchers.
Prescott et al. used LISCOMP to estimate bivariate twin
models which incorporated both continuous indicators
and categorical diagnostic variables (Prescott, 1991;
Prescott and Gottesman, 1990; Prescott and Kendler,
1999a). Waller and Muthén (1992) described the use
of LISCOMP for analyzing censored variables from a
twin sample.

The Mplus software program created by Muthén
and Muthén (1998, 2002) shares similar estimation pro-
cedures with LISCOMP, but has attempted a simpler
input language. Mplus can use a combination of cate-
gorical and continuously scored data, employs raw data
input, and obtains rapid convergence of models based
on multivariate categorical data.

There are no prior published examples of the use
of Mplus with twin or extended pedigree data. The goal
of this paper is to demonstrate how Mplus can be used

for the analysis of data from twins. This paper is in-
tended to be a starting point for behavior geneticists
interested in using Mplus. Seven examples are pro-
vided to illustrate models for univariate and bivariate
continuous and categorical data. Illustrations include
analysis of multiple-category variables, recoding and
transforming variables, selection of subgroups, han-
dling of subjects with incomplete data, constraints to
ensure non-negative loadings, inclusion of covariates,
models for sex differences, and models to test hy-
potheses about genetic mediation.

METHODS

Example Data

Examples 1–2: Simulated data

Scores for 1000 MZ and 1000 DZ twin pairs were
simulated using SAS version 8.0 (SAS Institute, 1999).
Data were generated for normally distributed scores,
with a mean of 100 and standard deviation of 10 and
proportions of variance of a2 = .40, c2 = .20, and
e2 = .40. Scores were analyzed as continuous and bi-
nary. The binary variables were created based on cut-
ting scores of 100, 110, and 120 (i.e., representing
category splits of .50:.50, .83:.17 and .975:.025).

Examples 3–7

These are real data from previously published
analyses of alcohol-related variables collected as part
of the Virginia Adult Twin Study of Psychiatric and
Substance Use Disorders (VATSPSUD), which in-
cludes two longitudinal studies of participants from the
Virginia Twin Registry (now part of the Mid-Atlantic
Twin Registry). The first study is of 2439 women from
female-female twin pairs, who were interviewed up to
four times between 1988 and 1997. The second is a par-
allel study of male-male and male-female twin pairs
(and members of multiple births containing at least one
male) that includes 5091 males and 1723 females in-
terviewed once or twice between 1993 and 1998. De-
tails about ascertainment, subject characteristics, and
measures are available elsewhere (e.g., Kendler and
Prescott, 1999; Prescott et al., 1999).

Five variables are included in the analyses:

Age at interview (“age” in the input scripts):
Subject ages ranged from 18 to 56 years
(mean = 36.8, SD = 8.9). (Pairs are correlated
>.98 for age at interview so only twin 1’s age
is used).
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1 More information about Mplus can be obtained at http://www.
statmodel.com.

Zygosity (zyg): Pairs were classified as identi-
cal or fraternal based on a computer algorithm
of questionnaire responses, estimated to be
>95% accurate based on validation by PCR of
12–16 markers (Kendler and Prescott, 1999).
Group codes for complete pairs are: 1 = MZF,
2 = DZF, 3 = MZM, 4 = DZM, 5 = DZO.
Lifetime drinking (abst): 1 = lifetime absti-
nence, 0 = former or current drinker
Age at drinking onset (onset): among drinkers,
the first age at which at least one standard drink
(1.5 oz ethanol) was consumed. Coded as 98
among lifetime abstainers.
Alcoholism (dx): coded as 0 = unaffected, 1 =
alcohol abuse only, 2 = alcohol dependence
(with or without alcohol abuse) based on DSM-
IV diagnostic criteria (American Psychiatric
Association, 1994).

Statistical Analyses

The analyses are organized into seven examples.
The first two use simulated data to demonstrate that the
correct parameter values could be recovered using the
Mplus program. Example 1 is a two-group twin model
for a continuous variable. Example 2 is a two-group
twin model for a binary variable. The remaining ex-
amples use data from the VATSPSUD. The original
analyses of these data were conducted using LISCOMP
and Mx and are available elsewhere (Prescott and
Kendler, 1999a,b; Prescott et al., 1999). Example 3
shows how to fit a scalar sex limitation model to a con-
tinuous variable. Example 4 shows how to fit a non-
scalar sex limitation model to a multiple-category
variable. Example 5 illustrates a bivariate model for a
continuous predictor and a binary outcome. Example 6
shows a model to test whether the genetic variance in
a categorical outcome is mediated through a continu-
ous variable. Example 7 shows how to estimate a bi-
variate model for two binary variables. The input data
for Examples 1 and 2 and the input scripts and com-
plete program output for all the examples are available
at http://www.vipbg.vcu.edu/∼cprescot/twinmplus.

Models were fit directly to raw data using the
Mplus program, version 2.12 (Muthén and Muthén,
2002)1. Mplus is a DOS-based program that has a
Windows interface, providing editing of scripts and
viewing of output. Models for continuous data em-
ployed a fitting function using maximum likelihood

(ML) estimation, the program default for continuous
data. Mplus version 2.12 does not feature ML estima-
tion with models for categorical dependent variables
(although this is planned for future releases of Mplus),
so the analyses presented here used the default method,
weighted least squares with mean and variance-adjusted
chi-squares (WLSMV). As with other software for
categorical variables, the estimation of variance com-
ponents assumes the categories are created by the place-
ment of thresholds on an underlying continuum. In
psychopathology research, this continuum is often re-
ferred to as liability, representing an individual’s vul-
nerability to express a disorder. Further details of
estimation can be obtained from the Mplus User’s
Guide (Muthén and Muthén, 2002) and in technical
notes obtainable from the Mplus website.

Model Specification Using Mplus

Table I displays an Mplus input script for a two-
group univariate twin model for a continuously scored
variable. A short script of 20 lines is sufficient to spec-
ify the model. This efficiency occurs in part because
parameters and variables are defined for the first group
and the only input required for subsequent groups is
specification of values that differ from the first group.
The input statements are described briefly below and
illustrated more fully in the context of the examples.

Title, Data and Variable Lines

The TITLE line includes a title that will be printed
at the top of the first page of the output file. The DATA
statement specifies the location and format of the file
containing the input data. The program defaults are for
the data file to be in the same subdirectory as the input
script and the input format to be free.

The VARIABLE lines describe the input variables
and include: NAMES—specifies the ordering and
names of the input variables; USEVARIABLES—
specifies the variables to be analyzed (listed first are
input variables and next any new variables created
within the script); GROUP—defines group member-
ship labels and value codes for multiple group analy-
ses. It is not necessary to sort the input data file or
create separate files for each group, making it easy to
use the same input file for multiple models.

Three optional statements can be placed in the
VARIABLE section. Subsets of observations can be se-
lected for analysis based on values in the dataset using
the USEOBS statement. Input variables (but not group-
ing variables) can be recoded or transformed using
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TITLE: 2-group Univariate Twin Model for a Continuous Variable

DATA: FILE = examplel.dat;

VARIABLE: NAMES = famno zyg y1 y2;
USEVARIABLES = y1 y2;
GROUP = zyg(1=mz 2=dz);

ANALYSIS: TYPE = MEANSTRUCTURE;

MODEL: ! set up values for all groups
[yl*100] (1); [y2*100] (1); ! means
y1@0; y2@0; ! fix residual variances to zero

Al BY yl*5 (11); A2 BY y2*5 (11); ! additive genetic loadings
Cl BY yl*5 (12); C2 BY y2*5 (12); ! common envt loadings
El BY yl*8 (13); E2 BY y2*8 (13); ! specific envt loadings

[A1@0 A2@0 C1@0 C2@0 E1@0 E2@0]; ! fix latent variable means=0
A1@1 A2@1 C1@1 C2@1 E1@1 E2@1; ! fix latent variable vars=l
Al WITH A2@1; A1 WITH C1-E2@0;    A2 WITH C1-E2@0;   ! latent variable corrs
C1 WITH C2@1; C1 WITH E1-E2@0;    C2 WITH E1-E2@0; 
El WITH E2@0;

MODEL dz: ! parameters which differ from 1st group
Al WITH A2@0.5;

OUTPUT: SAMP RES STAND;

Table I. MPLUS Input Script for Example 1 with Continuous Data

the DEFINE statement. Cases with incomplete data can
be excluded based on missing values specified in the
MISSING statement. These options are illustrated in
the examples.

Analysis, Model, and Output Lines

In the ANALYSIS section, MEANSTRUCTURE
indicates that the model includes means (or thresholds)
as well as covariance structure. The PARAM statement
is used with categorical dependent variables to indicate
which parameterization is being used (see Appendix 1).
H1 indicates that the model is an unrestricted model
for the means, variances, and covariances of the ob-
served variables. The likelihood of the H1 model is
compared to that of the specified model (H0) to obtain
the chi-square test of model fit.

The first MODEL statement specifies the general
model that applies to all groups unless specified oth-
erwise. Subsequent model statements must include a
group label as listed in the GROUP statement (e.g., DZ)
and only need to include specifications for parameters
that differ from the general model. In the examples, the
general model is written for the first group listed in the
GROUP statement (MZ, MZF, or MZM).

If an estimation method other than the default (ML
for continuous, WLSMV for categorical variables) is
desired, it can be selected using the ESTIMATION
statement. Other options include weighted least squares
(WLS) and unweighted least squares (ULS).

The OUTPUT command is optional. Default out-
put includes the parameter estimates, their standard er-
rors, and the ratio of estimates divided by standard
errors (t values). The output requested in the script in
Table I includes sample statistics (SAMP), residual
matrices (RES), and standardized parameter values
(STAND). The latter is useful because it prints the ex-
plained and residual variances. Many other options are
described in the Mplus User’s Guide. For example, re-
questing technical output type 1 (TECH1) results in the
parameter specifications and starting values being
displayed using matrix notation. Mplus employs the
“all-y” model of LISREL, similar to three-matrix RAM
notation (McArdle and McDonald, 1984) used in many
Mx applications. Note that the parameter labels dis-
played in the parameter specification section of the out-
put are numbered according to their order of appearance
in the script and do not correspond to the user-defined
labels. Likelihood-based confidence intervals are avail-
able by requesting CINTERVAL on the output line.
However, note that these apply to the loading and not
the squared loading (variance proportion).

Language Conventions

In brief, the Mplus language uses the following
conventions (where x represents a specific numeric
value): @x fixes a parameter to x; and ∗x specifies a
free parameter with a starting value of x. Integers in
parentheses serve as parameter labels to indicate which
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parameters are fixed to be equal to one another [e.g.,
all parameters followed by (11) are equated]. A mean
or threshold is indicated in Mplus by enclosing the vari-
able name in [], scaling parameters (described below)
are indicated by {}, and variances and covariances are
indicated when the variable name is not enclosed.
Thresholds are indicated by the variable name followed
by a $ sign and an integer, with the integer indicating
the ordering of multiple thresholds (e.g., y1$1 for the
first threshold of the variable y1, y1$2 for the second).
Comments are indicated by a preceding exclamation
point (!). All statements (except TITLE and comment
lines) must end with a semicolon. Input beyond 80 char-
acters will not be read and will result in a warning
printed in the program output.

The Mplus input language uses variable labels
rather than matrix positions to specify parameters. This
makes understanding a script much easier than with
other programs that use matrix locations or parameter
labels. The keyword WITH is used to indicate covari-
ances among variables (observed or latent). Thus the
statement A1 with A2@0.5; in the DZ group spec-
ifies that the correlation of A1 and A2 is fixed to 0.5.

Latent variables are defined by their relation to
input variables, and this produces a compact notation.
In Table I, the statement A1 BY y1*5(11); defines
the variable A1 as latent (because it was not included
in the list of input variables specified by USEVARI-
ABLES), the keyword BY specifies that A1 loads on
(is indicated by) the observed variable y1, the loading
has a starting value of 5, and it is equated to all other
parameters with the label (11).

For convenience, several other conventions have
been employed in the input scripts presented here but
are not required by Mplus. Keywords are listed using
uppercase and user input using lowercase. The num-
bers 1 and 2 after variable names are used to indicate
scores for twins 1 and 2, respectively. (Opposite-sex
pairs are ordered so that the male is twin 1, otherwise
the assignment to twin 1 or twin 2 can be considered
random). Integers used to indicate equality constraints
are grouped to identify different types of parameters
(e.g., the integers 1 and 2 are used for thresholds or
means, 11–13 for loadings). For models containing both
sexes, the convention is employed of using the values
1–99 for females and adding a constant (100) to indi-
cate the corresponding parameters for males.

The ordering of the statements within a MODEL
section is largely arbitrary. One requirement is that a
WITH statement that includes a latent variable must
come later in the script than the BY statement that de-
fines that latent variable. In the examples, the following

ordering has been used: the first few lines specify param-
eters and constraints for the input variables (means,
thresholds, variances, residuals); the next few lines
define the latent variables and their relations to the input
variables; the last lines specify the means, variances, and
covariances of the latent variables.

EXAMPLES

Two-Group Models for Continuous
and Categorical Variables

The goal of the first set of analyses was to ensure
that the twin model as specified in Mplus accurately re-
covers the known parameters used to simulate the data.
The numeric estimation in Mplus has been adequately
documented elsewhere (e.g., Muthén and Muthén,
1998; Muthén et al., 1999), so one example of contin-
uous and categorical data was deemed adequate.

Example 1: Two-Group Model for Continuous
Variables

The input script used for analyzing the simulated
continuous variables is displayed in Table I and corre-
sponds to Fig. 1. The input data file includes variables
for family number, zygosity, and scores for twin 1 and
twin 2 (y1 and y2). The GROUP command specifies
that zyg is the grouping variable and defines the values
of the group codes.

The first MODEL line sets start values for the
score intercepts and equates them for twin 1 and 2. The

Fig. 1. Univariate twin model for continuous variables as specified
with the Mplus program. Numbers in parentheses correspond to the
labels used for estimated parameters in the input script for Exam-
ple 1. The estimated parameters include the observed variable inter-
cepts ([y1] and [y2]), and three sources of variation. Residual
variation for the observed scores is fixed to 0 because this is con-
founded with E variation. Other fixed parameters include the latent
variable variances (all fixed to 1) and the correlations between the
genetic (rA) and common environmental (rC) latent variables.
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second line fixes the observed variable residual vari-
ances to 0 (e.g., y1@0;). The Mplus default is for the
residual variances on dependent variables to be free
and estimated. They are fixed to 0 here so that the
individual-specific variables (E1, E2) are latent vari-
ables in the model. For univariate models, e2 could also
be estimated as the residual score variance; the para-
meterization in Example 1 was selected because it was
more familiar to researchers who use twin data.

The next three lines define the latent variables
(A, C, E), specify start values for the loadings, and
equate the loadings across twin 1 and twin 2. The next
two lines fix the latent variable means to 0 and vari-
ances to 1. The last three lines specify the values of the
correlations among the latent variables. Note that the
default is for all of these correlations to be free (not
fixed to 0 as in Mx or LISREL). With six latent vari-
ables there are 15 correlations to be fixed. These can
be written out individually, or can be specified more
compactly, as shown in Table I. Note that when a list
of variables is specified using a hyphen, the program
assumes their order is the same as when they were first
defined (in the variable list or with BY statements). For
example, C1-E2 signifies C1, C2, E1, and E2, and the
statement A1-A2 WITH C1-E2@0; fixes eight pa-
rameters to 0: A1 and A2 with each of C1, C2, E1, and
E2. The other cross-twin correlations are defined for
MZ twins as: rA = 1.0 by A1 WITH A2@1;, rC = 1.0
by C1 WITH C2@1; and rE = 0 by E1 WITH E2@0;.

The default for a multiple group model is for most
parameters to be invariant across groups. (There are ex-
ceptions, such as scaling parameters for categorical
variables, described in Example 2). In most cases, the
only parameters that need to be specified in subsequent
groups are those that differ from the values defined for
the general model. In the case of a two-group twin
model, only the correlation between the additive ge-
netic latent variables differs between groups. It is de-
fined in the DZ group by the statement A1 WITH
A2@0.5;.

Selected output for Example 1 is shown in Ap-
pendix 1. The format of the output produced by Mplus
is very similar to that created by the LISREL and
LISCOMP programs. The input statements are repeated
(not shown in Appendix 1), and the input data are sum-
marized by listing the number of observations in each
group, the number and names of observed and latent
variables, and (if requested by including SAMP in the
OUTPUT line) the sample statistics for each group, in-
cluding thresholds or means, and variance-covariance
and correlation matrices. Note that all variable names
are printed in uppercase in the output file, regardless
of how they were formatted in the input script.

The chi-square goodness-of-fit statistic for this
model was approximately 4.8, representing twice the
difference between the log likelihood value for the null
hypothesis of all covariances being 0 (−14524.9), and
the value for the alternative hypothesis represented by
the specified model (−14522.5). The output includes
additional fit indices not shown in Appendix 1, includ-
ing CFI, TLI, AIC, BIC, and RMSEA.

The MODEL RESULTS section of the output dis-
plays model parameters. All fixed parameters are
shown at their fixed values (e.g., 0, 1.0, or 0.5) and
have standard errors of 0. Estimated parameters have
non-0 standard errors. The additive genetic loading (A1

BY Y1) is estimated to be 6.255 (SE = 0.481) and the
standardized parameter value is 0.636, shown in the far
right column. The common environment loading is
estimated at 4.239 (SE = 0.621, stand = 0.431) and the
specific environmental loading is 6.298 (SE = 0.138,
stand = 0.640). The resulting proportions of variance
(obtained by squaring the standardized loadings) are:
a2 = .404, c2 = .186, and e2 = 0.410, which sum to 1.0
and are consistent with the observed pair correlations
in the simulated data (rMZ = 0.592 and rDZ = 0.387).

The next few lines of output display the latent vari-
able correlations and means. The Intercepts section
shows the mean score across all MZ and DZ subjects
is 100.196 (SE = 0.189). Parameter estimates for the
DZ group are then displayed, which are identical to
those of the MZ group, with the exception of the addi-
tive genetic correlation. The complete output next lists
any requested output options, including model residu-
als, model expectations, starting values, the matrix
specification of the estimated parameters, and the
model run-time.

Submodels (i.e., AE, CE, E only) can be estimated
in the usual way. The easiest method to alter the Mplus
scripts is to begin with the ACE model and remove pa-
rameters by fixing them to 0. For example, to fit the
AE model, the line C1 BY y1*.6(12); C2 BY
y2*.6(12); in Table I would be changed to C1 BY
y1@0;C2 BY y2@0;. An alternative method is to
turn the line that defines the parameter into a comment
(using !) so it will be ignored by the program. How-
ever, this requires that all subsequent references to the
parameter be removed (e.g., all correlations between C1
or C2 and other parameters would now be undefined).

Example 2: Two-Group Model for a Binary Variable

The default Mplus specification for categorical
variables is called the DELTA parameterization by the
Mplus authors. A binary variable twin model using the
DELTA parameterization is portrayed in Fig. 2a, and
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Fig. 2. Mplus specification for a univariate twin model for a cate-
gorical variable. The phenotype is a binary variable, indicated by the
rectangle with a single horizontal line. The binary variable is trans-
formed into a continuous latent variable using a probit function based
on the threshold and scaling factor. (a) The Mplus default, DELTA
parameterization, corresponding to the input script in Table II. The
thresholds, [y1$1, y2$1], are estimated and the scaling factors,
{y1,y2}, are fixed to 1.0. The other estimated parameters are the ad-
ditive genetic and common environmental loadings. The E factor is
shown in dashed lines because (in the DELTA parameterization) it
is not an estimated parameter, but is available in the Residual vari-
ance section of the program output. (b) Alternate, THETA parame-
terization which allows the E factors to be modeled. The thresholds,
[y1$1, y2$1], are fixed (to the value estimated in a prior run using
the DELTA parameterization). The scaling factors are given as part
of the program output. Residual variation on the latent scores is fixed
to 0 and all three biometric loadings are estimated.

the input script is provided in Table II. The observed
binary variable, represented by a box with a single hor-
izontal line, is transformed into a continuous latent vari-
able (of the same name) by a probit function, based on
the observed distribution of scores in the categories. In
the case of a binary variable, the probit function is
based on a constant that is the product of a scaling fac-
tor and the threshold. The threshold represents the score
on the liability distribution that divides two categories.
The model is estimated by standardizing the latent
variable (to have mean of 0 and variance of 1) and
estimating either the threshold or scaling factor. The

dependency of the threshold, scaling factor, and total
variance is a mathematical property, not a feature spe-
cific to Mplus. It is addressed in LISREL by prior stan-
dardization of binary variables (e.g., using PRELIS)
and in Mx by including a constraint setting the total
variance to unity.

In the script shown in Table II, the threshold is es-
timated (e.g., [y1$1](1)) and the scaling factor is
fixed to 1 (e.g., {y1@1}). The DELTA parameteriza-
tion does not allow the residual variance to be estimated
as a model parameter. This means standard errors are
not available for e2, but the value of e2 can be obtained
by subtracting all other sources of variation from 1.0
or by referring to the Residual Variance printed in the
R-SQUARE section of the program output (see Muthén
and Asparouhov [2002] for technical details). An al-
ternative specification (THETA) that includes e2 as a
model parameter is described below and illustrated in
Example 7.

For a multiple-category variable, there is addi-
tional information from the relative spacing of the
thresholds between categories. Most twin model appli-
cations will fix the scaling factor to 1 and estimate all
the thresholds. However, the scaling factor can be freed
to test hypotheses about proportional equality across
groups. For example, one might wish to test whether
males and females differed in total variance but had
equivalent standardized biometric estimates. This could
be done with a single parameter test (allowing the scal-
ing parameter to differ from 1.0 in one group) rather
than by freeing all the thresholds.

The input for Example 2 differs in five ways from
that for Example 1:

1. In the VARIABLE section, the CATEGORICAL
statement identifies variables in the analysis that are
(or will be transformed to be) categorical. The num-
ber of categories in each variable does not need to
be specified; the program parses the input data file
to determine this.

2. In the Model section, the statement [y1$1
y2$1](1); defines the thresholds, assigns the
parameter label of 1 and equates the estimates across
twin 1 and twin 2. This statement is equivalent to the
longer version: [y1$1] (1); [y2$1](1); and
replaces the one defining the intercepts in the
continuous variable script.

3. The statement {y1@1 y2@1}; fixes to 1 the
scaling factors for the observed variables.

4. All statements referring to the latent variables for
individual specific variation (E1, E2) have been
omitted, including their loadings, means, variances,
and correlations.
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TITLE: 2-group Univariate Twin Model for a Binary Variable (DELTA param)

DATA: FILE = example1.dat;

VARIABLE: NAMES = famno zyg y1 y2;
USEVARIABLES = y1 y2;
GROUP = zyg(1=mz 2=dz);
CATEGORICAL = y1 y2;

DEFINE: CUT y1-y2 (110);

ANALYSIS: TYPE = MEANSTRUCTURE;
PARAM = DELTA; ! default method

MODEL: ! set up values for all groups
[y1$1 y2$1] (1); ! thresholds
{y1@1 y2@1}; ! fix scaling factors to 1

A1 BY y1*.6 (11); A2 BY y2*.6 (11); ! additive genetic loadings
C1 BY y1*.3 (12); C2 BY y2*.3 (12); ! common envt loadings

[A1-C2@0]; ! fix latent variable means=0
A1-C2@1; ! fix latent variable vars=1
A1-A2 WITH C1-C2@0; ! latent variable correlations
A1 WITH A2@1; C1 WITH C2@1;

MODEL dz: ! parameters which differ from 1st group
A1 WITH A2@0.5;

OUTPUT: SAMP RES STAND;

Table II. MPLUS Input Script for Example 2

5. Example 2 includes an optional DEFINE state-
ment, which categorizes the simulated contin-
uous variables into binary variables based on
a cutting score of 110.

Selected output from this model appears in
Appendix 2. The sample statistics show the thresholds
for the scores of twins 1 and 2 from MZ and DZ pairs.
The thresholds correspond to z-scores on a normal dis-
tribution and here range from 1.041 to 1.098, which is
consistent with selecting the cutting score at +1 SD
above the expected mean of the continuous variable.
The estimated tetrachoric correlations are rMZ = .581
and rDZ = .323, consistent with the simulation model
values of rMZ = .600 and rDZ = .400.

The format of the Model results is similar to that
for Example 1, except that the output now includes
thresholds and scaling parameters for y1 and y2. The
estimated threshold pooled across all subjects in the
MZ and DZ groups is 1.071 with a standard error of
0.027. Because the score variance is constrained to
equal 1, the estimated loadings are already standard-
ized. The additive genetic loading is estimated to be
0.718 (SE = 0.117), which can be squared to obtain
the estimated genetic variance (a2) of 0.516. The com-
mon environment loading is estimated to be 0.255
(SE = 0.278), so the c2 variance is 065. The esti-
mated specific environmental variance can be obtained
either by subtraction (e2 = 1 − (a2 + c2) = 0.419) or

by referring to the residual variance listed in the
R-SQUARE section of the output.

Analyses were also conducted for threshold val-
ues based on cutting scores of 100 and 120 (i.e., 0 SD
and 2 SD). The estimated correlations were identical to
those produced by Mx and SAS, and the model param-
eter estimates were consistent with the correlations.

Use of the THETA Parameterization

Under most circumstances, it is not informative to
test whether residual score variance differs from 0, be-
cause no measured variables are expected to be error
free. However, there may be situations in which ob-
taining the standard error for residual variance would
be desirable. This can be done using an alternative,
mathematically equivalent parameterization, called
THETA in Mplus (Muthén and Asparouhov, 2002).

In the DELTA parameterization, thresholds are es-
timated, scaling factors are fixed (to 1), and residual
variance is obtained from the estimated model. The
THETA parameterization, depicted in Fig. 2b, uses
thresholds fixed to an arbitrary value, estimated spe-
cific environmental parameter (and associated standard
error), calculated scaling factors, and residual variance
fixed to 0. The value of the scaling factor is dependent
on that chosen for the threshold, and is shown as a
calculated parameter in the program output. When
the threshold is fixed to any positive value (e.g., x), the
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standardized parameters are correct as displayed in
the output, but the unstandardized parameters need to
be rescaled by dividing by the scaling factor. This
rescaling can be avoided by fixing the thresholds to
their correct values, as obtained by: (1) a prior run using
the DELTA parameterization or (2) dividing x by the
scaling factor (estimated in a prior run using the
THETA parameterization). Fixing the thresholds to
their actual values ensures that the standard error and
t values (EST/SE), as well as the standardized estimates
are correct. An Mplus script corresponding to Fig. 2b
is available from the author’s website. The THETA
input is employed and discussed further in Example 7.
Appendix 3 summarizes the differences in model input
for continuous variables and categorical variables using
the THETA and DELTA parameterizations.

Five-Group Twin Models for Continuous
and Categorical Univariate Variables

The next two examples illustrate the use of Mplus
to analyze sex differences in continuous and multi-
category dependent variables. Data from the Virginia
adult twin studies described previously are used to
illustrate analyses that account for features of real data,
including cases with incomplete data, the inclusion of
covariates, recoding of variables, and analysis of a
subset of subjects.

Example 3: Model to Test Scalar Sex Differences
for a Continuous Variable

Table III shows the Mplus input script for a con-
tinuous variable, age at drinking onset,2 analyzed in all
five zygosity groups. The model, portrayed in Fig. 3, can
be used to test hypotheses about proportional variances
across sex. In this model (sometimes called a scalar sex
difference model), males and females have proportional
biometric structure. This is specified by males and
females having equal biometric loadings but differing
in the scalar parameter (e.g., O1 BY onset1), which
is fixed to 1.0 for one sex (here, females) and estimated
for the other sex. Example 3 also illustrates the analysis

of a sample with incomplete data and transformation of
a dependent variable before analysis.

The inclusion of MISSING and H1 on the
ANALYSIS line requests the inclusion of observations
with incomplete data, a feature available in Mplus
version 2.12 only when all dependent variables are con-
tinuous. The missing data estimation uses full infor-
mation ML (FIML) based on the assumption of missing
at random (MAR). This allows data to be used from
526 individuals whose cotwins have known zygosity
but are missing onset data, as well as from the 3372
pairs with complete data for both twins. The MISSING
statement specifies that missing values for onset are in-
dicated by the values 98 and 99 in the input file.

Onset age is positively skewed, and it might be de-
sirable to transform it before analysis. The DEFINE
statement transforms the onset variables by taking the
base-10 logarithm and multiplying by 10. (Multiplica-
tion by 10 has no effect on the fit, but makes the esti-
mates somewhat easier to work with, because the score
variances are ∼1.0 rather than ∼.01.)

Selected output is displayed in Appendix 3A.3 To
save space, only the parameter estimates for the DZO
group are shown. Variables for twin 1 are for males and
those for twin 2 are for females. The output first sum-
marizes the proportion of data present. Among DZO
pairs, 96.2% of the male twins and 91.6% of the female
twins have data, and complete data is available for
87.9% of the pairs. The next section of the displayed
output shows the sample statistics, and the final sec-
tion presents the parameter values.

The square of the scalar parameter in males
(1.0892 = 1.19) indicates that the total variance in
males is 1.19 times greater than that for females. The
variance proportions based on this model are easily cal-
culated from the standardized loadings to be a2 = .40,
c2 = .08, and e2 = .52. The sexes differ in their means,
estimated as 12.4 (se = .02) for females and 11.9
(se = .02) for males (which correspond to the untrans-
formed values of 17.3 and 15.5 years, respectively).
These estimates are listed in the program output under
the INTERCEPTS heading because they are the expected
scores after partialing the effects of other variables in the
model. In this example, the intercepts and score means
are identical because all the variables contributing to
onset (A, C, E) have means of 0. When the intercepts and
score means differ, the expected score means can be ob-
tained from the Estimated Model and Residuals portion
of the output, requested with the RES command.

2 Age at drinking onset would be more properly modeled as a
duration variable, to account for the right censoring among
nondrinkers who may eventually use alcohol. In the original
publication based on the drinking onset data (Prescott and Kendler,
1999a), we included analyses to test for the influence of such
censoring, but found little effect, probably because >95% of the
sample had used alcohol. Event history models for twin data have
been presented by Meyer et al. (1991) and Yashin et al. (1999),
among others.

3 Appendices 3A, 4–7, all input scripts, and output are available at
http://www.vipbg.vcu.edu/∼cprescot/twinmplus.
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TITLE: 5-Group Model for Transformed Age at Drinking Onset, MF proportional

DATA: FILE = onset99.dat;

VARIABLE: NAMES = famno mpair zyg age dx1 abst onset1 dx2 abst2 onset2;
USEVARIABLEs = onset1 onset2;
GROUP = zyg(1=mzf 2=dzf 3=mzm 4=dzm 5=dzo); ! excludes prs with unk zyg
MISSING = onset1-onset2(98,99);

DEFINE:  onset1=10*(log10(onset1));  onset2=10*(log10(onset2));

ANALYSIS: TYPE = MEANSTRUCTURE MISSING H1;

MODEL:
[onset1 onset2] (1); ! means
onset1@0; onset2@0; ! fix resid variance=0
O1 BY onset1@1; O2 BY onset2@1; ! scalars

! Biometric loadings
A1 BY O1*.2 (11); A2 BY O2*.2 (11); ! additive genetic loadings
C1 BY O1*.2 (12); C2 BY O2*.2 (12); ! common envt loadings
E1 BY O1*.8 (13); E2 BY O2*.8 (13); ! indvl envt loadings

! Means, variances & correlations for latent variables
[O1-E2@0]; !fix latent variable means
O1-O2@0; A1-E2@1; !fix latent variable variances
O1-O2 WITH A1-E2@0; ! fix correlations
A1-A2 WITH C1-E2@0;
C1-C2 WITH E1-E2@0;
O1 WITH O2@0; A1 WITH A2@1; C1 WITH C2@1; E1 WITH E2@0;

MODEL dzf:
A1 WITH A2@0.5;

MODEL mzm: ! in groups mzm, dzm and dzo, need to specify params
[onset1 onset2] (101); ! which differ from values set up in the first group
O1 BY onset1*1.2 (102); O2 BY onset2*1.2 (102);

MODEL dzm:
[onset1 onset2] (101);
O1 BY onset1*1.2 (102); O2 BY onset2*1.2 (102);
A1 WITH A2@0.5;

MODEL dzo:
[onset1] (101);
O1 BY onset1*1.2 (102);
A1 WITH A2@0.5;

OUTPUT: SAMP STAND RES TECH1;

Table III. MPLUS Input Script for Example 3

As with other programs, various hypotheses
about sources of sex differences can be tested by
comparing the fits of alternative models. To test
equality (versus proportionality) of biometric esti-
mates across sex, the scalar could be fixed to 1.0 in
males by specifying O1 BY onset1@1; O2 BY
onset2@1; in the MZM, DZM, and DZO groups.
(Note that because the Mplus default is to hold fac-
tor loadings invariant across groups, the same result
would be obtained by commenting out or deleting
the lines freeing this parameter in the male groups.)
The fit of a model testing male-female equality of
variance components was � 2 = 96.5, d f = 20, much

worse than the fit of the scalar model used in
Example 3 (� 2 = 69.4, d f = 19).

A model to test invariance of means and loadings
could be specified by taking the previous equality
model and changing the parameter label for the mean
among males (101) to be the same as that among fe-
males (1). This model obtained a fit of � 2 = 489.9,
d f = 21, reflecting the substantial sex differences in
age at drinking onset.

The improved fit of a nonscalar sex differences
model, allowing the sexes to differ in all parameters
(means, total variance, and sources of variance) was
�� 2 = 51.9, d f = 17, suggesting the variance structure
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Fig. 3. Mplus specification for estimating a scalar sex differences
model for a continuous variable (Example 3). The parameters as
shown apply to opposite-sex pairs. Proportional equality of variance
across sexes is specified by allowing males and females to have equal
biometric loadings and multiplying the total variance in one sex by
a scalar. Males and females are allowed to have different score in-
tercepts. The genetic covariance for opposite-sex pairs may be fixed
to 0.5 or free (*); the common environmental covariance may be
fixed to 1.0 or free (*).

differs for the two sexes. Mplus input for a non-scalar
sex differences model is provided in Example 4.

Example 4: Five-Group Sex-Difference Model
for a Categorical Variable with Covariates

Table IV and Fig. 4 show input used to test for
nonscalar sex differences in the sources of variance for
a three-category variable. Mplus employs casewise
deletion with categorical outcomes, so this analysis in-
cludes only twin pairs with complete diagnostic infor-
mation. The model was fit to DSM-IV alcoholism
diagnoses categorized into unaffected = 0, alcohol
abuse only = 1, and alcohol dependence = 2. A three-
category variable requires two thresholds. These are
indicated in the input script by $1 and $2, (i.e., the la-
bels dx1$1 and dx1$2 represent the first and second
thresholds for the variable dx1). Males and females are
allowed to have different thresholds for diagnosis (pa-
rameter labels 1 and 2 for females, 101 and 102 for
males) and different A and C loadings (11 and 12 for
females, 111 and 112 for males). The male-female ge-
netic correlation is estimated by specifying Adx1
WITH Adx2*0.5; in the DZO group.

In this model, the biometric components of vari-
ance are estimated after partialing the linear and qua-
dratic effects of age. This is done because in this (and
other) samples, there are age cohort effects on the preva-
lence of alcoholism. A new variable, dage, is created

using the DEFINE statement by centering age around
the approximate mean in the data (35 years) and rescal-
ing by 10. This is done to aid interpretation of the
regression coefficients (centering places the 0 point
within the data and rescaling puts the variance in a sim-
ilar metric as that for diagnosis). A second DEFINE
statement creates a quadratic age variable (dagesq). The
default in Mplus is for the covariances between exoge-
nous variables (those influencing other observed vari-
ables) and latent variables to be free. Here, these
covariances are all fixed to 0 by the statement dage-
dagesq WITH Adx1-Cdx2@0;.Regressions among
observed variables are specified using the ON keyword
(e.g., dx1 ON dage*-.3(21);). In addition to the
regression parameters (21 and 22 for females, 121 and
122 for males), the script includes parameters for the
means of dage and dagesq (23 and 24), their variances
(25, 26), and their covariance (27). The means, vari-
ances, and covariances of the age variables are equated
over groups, because all the zygosity groups are as-
sumed to be drawn from the same population with re-
spect to age. The Mplus default is for the means of
exogenous variables to be held equal over groups, but
not the variances and covariances, so these constraints
are specified in the MODEL statements for each group.4

Appendix 4 displays the parameter estimates for
the DZO group obtained from fitting this model. The
thresholds for diagnosis were estimated for males as:
0.223 for the cutpoint between unaffected and alcohol
abuse and 0.591 for the cutpoint between abuse and de-
pendence, corresponding to prevalences of 13.4% with
abuse only (i.e., the proportion of a normal distribution
between z-scores of .223 and .591) and 27.8% meeting
criteria for lifetime alcohol dependence (i.e., the pro-
portion of a normal distribution above z = .591). The
thresholds for females were 0.929 and 1.213, corre-
sponding to prevalences of 6.4% with abuse only and
11.1% with alcohol dependence. The estimated tetra-
choric correlations for the three-category diagnosis in
the pairs were: MZF = .533, DZF = .170, MZM =
.525, DZM = .281, DZO = .116.

4 Note that modeling the age parameters (by equating them across
twins or groups) has the effect of bringing them into the model—
assuming joint normality for the outcome variable as well as the
covariate—and invokes the biserial/tetrachoric correlation approach
to estimation. When covariates are not modeled, Mplus uses a probit
regression-based estimation approach that only assumes normality
of the distribution of the outcomes given the covariate and makes
no assumptions about the distribution of the covariate. Although
the latter approach may be preferable statistically, it may not be
practical for twin models where one wants to constrain equality of
the regressions across twins or groups.
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TITLE:  5-group Model for 3-Category Diagnosis with Age Regressions & Free Rg

DATA: FILE = onset99.dat;

VARIABLE: NAMES = famno mpair zyg age dx1 abst1 onset1 dx2 abst2 onset2;
USEVARIABLEs = dx1 dx2 dage dagesq;
CATEGORICAL = dx1 dx2;
GROUP = zyg(1=mzf 2=dzf 3=mzm 4=dzm 5=dzo);
MISSING = ALL(98,99);

DEFINE: dage = (age-35)/10; dagesq = (dage*dage);

ANALYSIS: TYPE = MEANSTRUCTURE;

MODEL:
{dx1@1 dx2@1}; ! scaling
[dx1$1 dx2$1] (1); [dx1$2 dx2$2] (2); ! thresholds

dx1 ON dage*-.3 (21);   dx2 ON dage*-.3 (21); ! age regressions
dx1 ON dagesq*-.1 (22); dx2 ON dagesq*-.1 (22);

[dage](23); [dagesq] (24); ! estimate means
dage(25); dagesq (26); ! variances &
dage WITH dagesq (27); ! covariance of covariates

! Biometric loadings
Adx1 BY dx1*.6 (11); Adx2 BY dx2*.6 (11); ! additive genetic loadings
Cdx1 BY dx1*.6 (12); Cdx2 BY dx2*.6 (12); ! common envt loadings

! Means, variances & correlations for latent variables
[Adx1-Cdx2@0]; ! fix means=0
Adx1-Cdx2@1; ! fix vars=1
dage-dagesq WITH Adx1-Cdx2@0;
Adx1-Adx2 WITH Cdx1-Cdx2@0;
Adx1 WITH Adx2@1; Cdx1 WITH Cdx2@1;

MODEL DZF: ! PARAMETERS WHICH DIFFER FROM FIRST GROUP (MZF)
dage(25); dagesq (26); ! equate variances &
dage WITH dagesq (27); ! covariance of covariates
Adx1 WITH Adx2@0.5;

MODEL MZM:
[dx1$1 dx2$1] (101); [dx1$2 dx2$2] (102); ! thresholds for males

dage(25); dagesq (26); ! variances &
dage WITH dagesq (27); ! covariance of covariates

dx1 ON dage*.3 (121);   dx2 ON dage*.3 (121);
dx1 ON dagesq*.1 (122); dx2 ON dagesq*.1 (122);

Adx1 BY dx1*.6 (111); Adx2 BY dx2*.6 (111); ! loadings for males 
Cdx1 BY dx1*.6 (112); Cdx2 BY dx2*.6 (112);

MODEL DZM:
[dx1$1 dx2$1] (101); [dx1$2 dx2$2] (102);
dx1 ON dage*.3 (121); dx2 ON dage*.3 (121);
dx1 ON dagesq*.1 (122); dx2 ON dagesq*.1 (122);
dage(25); dagesq (26); ! variances &
dage WITH dagesq (27); ! covariance of covariates 

Adx1 BY dx1*.6 (111); Adx2 BY dx2*.6 (111);
Cdx1 BY dx1*.6 (112); Cdx2 BY dx2*.6 (112);
Adx1 WITH Adx2@0.5;

MODEL DZO: !Only need to specify male parameters 
[dx1$1] (101); [dx1$2] (102);

dx1 ON dage*.3 (121);
dx1 ON dagesq*.1 (122);
dage(25); dagesq (26); ! variances &
dage WITH dagesq (27); ! covariance of covariates

Adx1 BY dx1*.6 (111);
Cdx1 BY dx1*.6 (112);
Adx1 WITH Adx2*0.5;

OUTPUT: SAMP STAND RES TECH1;

Table IV. MPLUS Input Script for Example 4
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Fig. 4. Mplus specification for a nonscalar sex differences model
with a three-category outcome variable (shown as a box with two
horizontal lines), including linear and quadratic age as covariates
(Example 4). The parameters as shown apply to opposite-sex pairs.
Estimated parameters are indicated by integers in parentheses.

The age regressions for males and females indicate
significant negative quadratic effects (male = −.133 and
female = −.088), such that the oldest and youngest co-
horts have lower prevalences of alcoholism. For women,
there is also a significant negative linear effect (−.149),
indicating the prevalences are lowest in the oldest age-
group. Although statistically significant in this large
sample, the age effects account for a very small pro-
portion of the overall variance in diagnosis liability.

The variance components for males are: a2 = .491,
c2 = .019, e2 = .475, dage = .000, and dagesq = .013,
and for females: a2 = .483, c2 = .000, e2 = .488,
dage = .017, and dage2 = .006. The total variance in
this model includes age effects, so simply squaring the
values in the StdYX column for a, c, and e would not
produce the correct standardized parameter estimates.
Instead, the estimates would need to be standardized as
a proportion of the total variance after partialing age
(i.e., 0.985 for males and 0.971 for females).

The estimated male-female genetic correlation of
.204 is not significantly different from the default value
of .50. When the model was run with the genetic cor-
relation fixed to .50, the common environment loading
in females became slightly negative. In some circum-
stances with five-group models, a negative loading in
one sex and a positive loading in the other could indi-
cate over-fitting to the data. Mplus does not permit the
user to specify parameter boundaries. However, a spec-
ification in which the square roots of the genetic and
common environmental loadings are estimated will
constrain the male-female covariance to be non-
negative (see Appendix 8 and Fig. 8).

Bivariate Models for Categorical Data

Examples 5, 6, and 7 illustrate several approaches
to estimating the sources of covariation between drink-
ing onset age and liability for alcoholism. To save
space, Tables V–VII display program input for two-
group models, but could be expanded to five groups as
with Examples 3 and 4.

Example 5: Estimating the Sources of Covariation
Between a Continuous and a Categorical Variable

The first model, depicted in Fig. 5 for one indi-
vidual, estimates the sources of covariation between
drinking onset (treated as a continuous score) and
liability for alcoholism based on a Cholesky decom-
position. Liability to alcoholism is regressed on the bio-
metric factors contributing to onset, and there are also
sources of residual variation for diagnosis. The sources
of covariation between diagnosis and onset are repre-
sented by the loadings labeled 51, 52, and 53. The
model is fit to data from female twin pairs in which
both twins are nonabstainers.

The input script corresponding to Fig. 5 is pre-
sented in Table V. The input illustrates some useful
Mplus features for selecting cases and recoding vari-
ables. Observations are limited to female MZ and DZ
pairs in which both twins are nonabstainers by the state-
ment USEOBS = (abst1==0 and abst2==0)
and (zyg==1 or zyg==2);. (The double equal
symbol corresponds to the logical operation “is equal
to”.) The DEFINE command is used to recode the
three-category diagnosis variable into two categories.
Values of 1 or 2 (i.e., greater than the 0 cutting score)
are recoded so a score of 1 now corresponds to having
either alcohol abuse or alcohol dependence. The next
DEFINE statement recodes diagnosis so affected indi-
viduals have value 0 and unaffected have value 1. This
is done for convenience so that the covariance between
diagnosis and younger drinking age will be estimated
as positive rather than negative.

Selected output is shown in Appendix 5. The
cross-twin cross-variable correlations (onset1-dx2,
onset2-dx1) are more similar for MZ than DZ pairs,
and among MZ pairs are about as large as the within-
person cross-variable correlations (dx1-onset1 and dx2-
onset2), suggesting genetic covariance. The proportions
of variance (obtained by squaring the standard-
ized loadings) in onset are a2

o = (.639)2 = .408,
c2

o = (.355)2 = .126, and e2
o = (.683)2 = .466. The

sources of onset-dx covariation are estimated to
be a2

do = (0.667)2 = .445, c2
do = (−0.064)2 = .004, and

e2
do = (0.047)2 = .002. Thus 45% of the variance in al-

coholism liability is estimated as shared with that in
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Table V. MPLUS Input Script for Example 5

TITLE:  2-Group Bivariate Model for Age at Drinking Onset and Diagnosis

DATA:    FILE = onset99.dat;

VARIABLE:  NAMES = famno mpair zyg age dx1 abst1 onset1 dx2 abst2 onset2;
USEVARIABLES = dx1 dx2 onset1 onset2;
CATEGORICAL = dx1 dx2;
USEOBS = (abst1==0 and abst2==0) and (zyg==1 or zyg==2);
GROUP = zyg(1=mzf 2=dzf);
MISSING = dx1,abst1,dx2,abst2(99) onset1,onset2(98,99);

DEFINE: CUT dx1(0);  CUT dx2(0); ! for DSM4 abuse/dependence 
DEFINE: dx1=1-dx1;  dx2=1-dx2; ! recoding affected=0, unaff=1

ANALYSIS: TYPE = MEANSTRUCTURE;

MODEL:
{dx1@1 dx2@1}; ! scaling 
[dx1$1 dx2$1] (1); ! thresholds
[onset1 onset2] (11); ! means
onset1@0 onset2@0; ! residual variances on onset

!BIOMETRIC COMPONENTS FOR ONSET
Ao1 BY onset1*.6 (41); Ao2 BY onset2*.6 (41);
Co1 BY onset1*.6 (42); Co2 BY onset2*.6 (42);
Eo1 BY onset1*.8 (43); Eo2 BY onset2*.8 (43);

[Ao1-Eo2@0];
Ao1-Eo2@1;

Ao1 BY dx1*.6 (51); Ao2 BY dx2*.6 (51);
Co1 BY dx1*.6 (52); Co2 BY dx2*.6 (52);
Eo1 BY dx1*.6 (53); Eo2 BY dx2*.6 (53);

!RESIDUAL COMPONENTS FOR DX
Adx1 BY dx1*.6 (61); Adx2 BY dx2*.6 (61);
Cdx1 BY dx1*.6 (62); Cdx2 BY dx2*.6 (62);

[Adx1-Cdx2@0];
Adx1-Cdx2@1;

!CORRELATIONS AMONG BIOMETRIC COMPONENTS
Ao1-Ao2 WITH Co1-Cdx2@0;
Co1-Co2 WITH Eo1-Cdx2@0;
Eo1-Eo2 WITH Adx1-Cdx2@0;
adx1-adx2 WITH Cdx1-Cdx2@0;
Ao1 WITH Ao2@1; Adx1 WITH Adx2@1;
Co1 WITH Co2@1; Cdx1 WITH Cdx2@1;
Eo1 WITH Eo2@0;

MODEL dzf:
Ao1 WITH Ao2@0.5;  Adx1 WITH Adx2@0.5;

OUTPUT: SAMP STAND RES TECH1;

onset, and this is almost entirely due to additive genetic
covariance. (Although the c loading is negative, it is
essentially 0. If it were larger, the model could be fit
with this loading fixed to 0 or using a square-root
parameterization.) The estimates for residual diagnosis
liability are virtually 0 (ad = −.005, cd = .000). This
means that all the familial variation in diagnosis is es-
timated as covarying with the additive genetic sources
for onset. The remaining 55% is nonfamilial residual
variation, reflected in the Residual variance column of
the R-SQUARE portion of the output.

Example 6: Mediation Model for Sources of
Covariation

In this model the covariation is modeled through
the onset variable. This contrasts with the less restric-
tive model used for Example 5 that tests whether onset
and age have common genetic and/or environmental
sources. The fit of this mediation model compared to
the prior model represents a test of whether the phe-
notypic variable can be considered a direct risk factor
for the outcome (e.g., Prescott et al., in press). To create
the script for the mediation model, the regressions of
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TITLE:  2-group Bivariate Mediation Model for diagnosis and drinking onset
with fixed unreliability for onset among female drinking pairs

DATA: FILE = onset99.dat;

VARIABLE: NAMES = famno mpair zyg age dx1 abst1 onset1 dx2 abst2 onset2;
USEVARIABLEs = dx1 dx2 onset1 onset2;
CATEGORICAL = dx1 dx2 ; 
USEOBS = (abst1==0 and abst2==0) and (zyg==1 or zyg==2);
GROUP = zyg(1=mzf 2=dzf);
MISSING = dx1,abst1,dx2,abst2(99) onset1,onset2(98,99);

DEFINE: CUT dx1(0);  CUT dx2(0); dx1=1-dx1; dx2=1-dx2;

ANALYSIS: TYPE = MEANSTRUCTURE;

MODEL:
{dx1@1 dx2@1}; !scaling
[dx1$1 dx2$1]  (1); ! thresholds
[onset1 onset2]  (11); !means
onset1@4.502 onset2@4.502; !estimated unreliability = .395*total variance

!BIOMETRIC COMPONENTS FOR ONSET
Ao1 by onset1*.6 (41); Ao2 by onset2*.6 (41);
Co1 by onset1*.6 (42); Co2 by onset2*.6 (42);
Eo1 by onset1*.8 (43); Eo2 by onset2*.8 (43) ;
[Ao1-Eo2@0];
Ao1-Eo2@1;

! MEDIATION PARAMETERS
dx1 on onset1*.6 (54); dx2 on onset2*.6 (54);

! RESIDUAL COMPONENTS FOR dx
Adx1 by dx1*.6 (61); Adx2 by dx2*.6 (61);
Cdx1 by dx1*.6 (62); Cdx2 by dx2*.6 (62);

[Adx1-Cdx2@0];
Adx1-Cdx2@1;

!CORRELATIONS AMONG BIOMETRIC COMPONENTS
Ao1-Ao2 with Co1-Cdx2@0;
Co1-Co2 with Eo1-Cdx2@0;
Eo1-Eo2 with Adx1-Cdx2@0;
Adx1-Adx2 with Cdx1-Cdx2@0;
Ao1 with Ao2@1; Adx1 with Adx2@1 ;
Co1 with Co2@1; Cdx1 with Cdx2@1 ;
Eo1 with Eo2@0;

MODEL dzf:
Ao1 with Ao2@0.5; Adx1 with Adx2@0.5;

OUTPUT: SAMP STAND RES TECH1;

Table VI. MPLUS Input Script for Example 6

diagnosis on the latent variables underlying onset
(parameters 51–53 in Example 5) could simply be re-
placed by a regression of diagnosis on onset. A con-
ceptual limitation of this approach is that the common
E factor (e.g., EO1) in a bivariate model contains the
unreliable variation in the predictor variable, whereas
E covariation is assumed to be estimated without error.
Thus a better model, shown in Fig. 6, estimates the re-
gression of diagnosis on the predictor after partialing
the unreliable variance in the predictor. Although the
unreliable variance cannot be estimated based on a sin-
gle measure of the predictor, an external estimate can

be employed (e.g., from published norms, a test-retest
estimate, or another sample). To allow a fair test of the
model, the unreliability estimate should be chosen such
that the resulting reliable variance does not exceed the
variation in the predictor that overlaps with the out-
come (as estimated using the Cholesky version of the
bivariate model). In Example 6, the reliability estimate
is obtained from the short-term test-retest correlation
of reported drinking onset obtained in this sample,
r = .605. The unreliable variance (u2 in Fig. 6) is the
product of the unreliability (i.e., 1 − .605 = .395) and
the total score variance. The sample variance can be
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Table VII. MPLUS Input Script for Example 7

TITLE: 2-Group Bivariate Model for Diagnosis and Categorized Onset Age

DATA: FILE = onset99.dat;

VARIABLE: NAMES = famno mpair zyg age dx1 abst1 onset1 dx2 abst2 onset2;
USEVARIABLEs = dx1 dx2 onset1 onset2;
CATEGORICAL  = dx1 dx2 onset1 onset2 ;
GROUP = zyg(3=mzm 4=dzm);
MISSING = ALL(99);

DEFINE: CUT dx1(0); CUT dx2(0); ! for dsm4 abuse/dependence
DEFINE: CUT onset1(15); CUT onset2(15); ! recodes to binary variable
DEFINE: onset1=1-onset1;  onset2=1-onset2; ! recoding to early=1 later=0

ANALYSIS: TYPE = MEANSTRUCTURE; PARAM = THETA;

MODEL:
[dx1$1@1 dx2$1@1 onset1$1@1 onset2$1@1]; ! values estimated in prior run

! BIOMETRIC COMPONENTS FOR ONSET
Ao1 BY onset1*.6 (41); Ao2 BY onset2*.6 (41);
Co1 BY onset1*.6 (42); Co2 BY onset2*.6 (42);
Eo1 BY onset1*.8 (43); Eo2 BY onset2*.8 (43);

[Ao1-Eo2@0];
Ao1-Eo2@1;

! BIOMETRIC COMPONENTS FOR dx
Ao1 BY dx1*.6 (51); Ao2 BY dx2*.6 (51);
Co1 BY dx1*.6 (52); Co2 BY dx2*.6 (52);
Eo1 BY dx1*.6 (53); Eo2 BY dx2*.6 (53);

Adx1 BY dx1*.6 (61); Adx2 BY dx2*.6 (61);
Cdx1 BY dx1*.6 (62); Cdx2 BY dx2*.6 (62);
Edx1 BY dx1*.6 (63); Edx2 BY dx2*.6 (63);
[Adx1-Edx2@0];
Adx1-Edx2@1;

! CORRELATIONS AMONG BIOMETRIC COMPONENTS
Ao1-Ao2 WITH Co1-Edx2@0; Ao1 WITH Ao2@1;
Co1-Co2 WITH Eo1-Edx2@0; Co1 WITH Co2@1;
Eo1-Eo2 WITH Adx1-Edx2@0; Eo1 WITH Eo2@0;
Adx1-Adx2 WITH Cdx1-Edx2@0; Adx1 WITH Adx2@1;
Cdx1-Cdx2 WITH Edx1-Edx2@0; Cdx1 WITH Cdx2@1; Edx1 WITH Edx2@0;

MODEL MZM:
dx1@0 dx2@0 onset1@0 onset2@0; ! fixing residual variance=0

MODEL DZM:
dx1@0 dx2@0 onset1@0 onset2@0;
Ao1 WITH Ao2@0.5; Adx1 WITH Adx2@0.5;

OUTPUT: SAMP STAND RES TECH1;

calculated within the model, but this requires a com-
plex script with extra latent variables, so it is simpler
to enter the unreliability as a fixed parameter.

Input for the model depicted in Fig. 6 is shown in
Table VI and selected output in Appendix 6. The load-
ings for onset are similar to those from Example 5, ex-
cept that to obtain the total individual-specific variance
in onset, one would square the E loading (0.732) and
add the fixed estimate of unreliable variance, shown in
the Residual Variances line (4.502). The standardized
proportions of variance for onset are a2

o =
(.666)2 = .444, c2

o = (.338)2 = .114, e2
o = (.217)2 =

.047, and u2
o = .395. Because the unreliability for onset

is fixed, the R-SQUARE section of the output shows
the explained variance for onset as the remainder, .605.
The proportion of variance in diagnosis that overlaps
with onset is obtained by squaring the standardized re-
gression coefficient (from the StdYX column, .464).
This yields .215, a value substantially lower than the
estimated overlap of .451 obtained in Example 5.
The remaining (non–onset related) sources of vari-
ance in diagnosis include a2

d = (.568)2 = .323, c2
d =

(.000)2 = .000, and residual variance of .461.
The WLSMV goodness-of-fit statistic for this

model is 34.5 for 10 parameters, compared with a fit
of 22.6 for 8 parameters for the standard covariance
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Fig. 5. Mplus specification for a bivariate Cholesky decomposition
model for estimating covariation between a continuous predictor vari-
able and a binary outcome (Example 5). The model is shown for one
individual (twin 1). One set of factors (Ao, Co, Eo) contributes to
variation in both onset age and liability to alcoholism diagnosis (dx).
A set of residual factors contributes to the remaining variation in al-
coholism liability. Individual-specific diagnosis residual variance is
not estimated as an independent parameter, but is available as a cal-
culated value in the Residual variance section of the program output.

Fig. 6. Mplus specification for a bivariate mediation model to test
the hypothesis that onset directly mediates liability to diagnosis
(Example 6). The model is shown for one individual (twin 1).
Covariation between diagnosis liability and onset is modeled as oc-
curring through onset. All sources of covariation (additive genetic,
common environment and specific environment) in diagnosis liabil-
ity occur in the same proportions as the sources of variation in the
reliable portion of onset. A fixed estimate of onset unreliability (u2)
is obtained from an external source.

Fig. 7. Mplus specification for a bivariate Cholesky model for two
binary variables (Example 7) using the THETA parameterization.
The model is shown for one individual (twin 1). Use of the THETA
parameterization allows identification of both loadings on EO (para-
meters 43 and 53). t1 and t2 are fixed values estimated in a prior run.

model (Example 5). Although the WLSMV values
cannot be used for exact comparisons of model fits (see
the Mplus User’s Guide for details), the large differ-
ence in fit suggests the mediation hypothesis can be

rejected for this sample. The basis for this can be seen
by examining the parameter values. In Example 5, the
dx-onset covariance is attributed almost entirely to ge-
netic sources, whereas the mediation model requires
the covariance to be in the same proportions as the re-
liable variance in onset (i.e., a2

o : c2
o : e2

o = 44 : 11 : 05).

Example 7: Estimating Sources of Covariation
for Two Binary Variables

This example uses a standard bivariate model ap-
plied to two binary variables and illustrates the useful-
ness of the THETA parameterization. By fixing the
residual variances to 0, all the specific environmental
loadings can be estimated. Using the default, DELTA,
parameterization only the specific environmental co-
variance is identified; it cannot be separated into two
loadings.

The input script used for this example is shown in
Table VII. The data employed are from male twin pairs
to provide a comparison to the results for females in
Examples 5 and 6. The same variables were used, ex-
cept that onset was recoded into a categorical variable
based on a cutting score of age 15. Coding onset as
binary provides one way to account for the fact that it
is a censored variable. All individuals, including ab-
stainers, can be assigned to a binary variable based on
whether they reported drinking by age 15 or not. In the
data file, abstainers have been assigned a value of “98”
for onset whereas drinkers with missing onset age have
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a value of “99.” This enables cases with missing data
to be excluded from the analysis based on the MISS-
ING statement, but censored cases to be included by
recoding the 98 values. Onset is recoded to be 0 if
onset ≤ 15 and = 1 if onset > 15 (including values of
98). The third DEFINE statement reverses this coding
(i.e., recoding onset as 1 for drinking by age 15 and 0
if not), so that early drinking will be positively corre-
lated with alcoholism liability.

In other respects the input script is quite similar
to one that would be used for a bivariate model for con-
tinuous variables. The exceptions are that the ANALY-
SIS statement specifies PARAM = THETA and rather
than estimating means, there are thresholds fixed to the
value estimated in a prior run. Unlike the DELTA pa-
rameterization, the residual variances must be fixed to
0. Note that this must be done in a separate MODEL
statement for each group listed in the GROUP state-
ment, including the first group. An input script for cal-
culating thresholds is available on the website. Running
this yielded the correct values for the thresholds, of
.249 for onset and .367 for dx. These were then input
into the script using the THETA parameterization.

Selected output is shown in Appendix 7. The pro-
portions of variance are obtained by squaring the values
in the StdYX column. Variation in onset is estimated
as a2

o = (.619)2 = .383, c2
o = (.462)2 = .213, e2

o =
(.635)2 = .403. The proportions of dx shared with
onset are a2

do = (.546)2 = .298, c2
do = (−.001)2 = .000,

e2
do = (.039)2 = .002, summing to a 30% overlap,

virtually all of which is from additive genetic variation
contributing to both variables. The residual variation
in diagnosis is estimated as a2

d = (.405)2 = .164,
c2

d = (.293)2 = .086, e2
d = (.671)2 = .450. In summary,

among males, 55% of the variation in liability for alco-
holism is estimated as familial, the majority of this is due
to genetic variation, including 30% overlapping with
onset.

DISCUSSION

The examples illustrate the usefulness of Mplus
for structural modeling analyses with data from twins.
Mplus has several advantages compared to most other
available software programs, including the ability to
analyze a combination of categorical and continuously
scored dependent variables, to use raw data input, and
to obtain rapid convergence of models using multi-
variate categorical data. Other useful features are the
ability to recode variables within the context of the
model script, to select subsets of cases based on group

membership or values of variables in the dataset, and
to include cases with incomplete data.

The program defaults can be very useful, allow-
ing specification of complex, multiple-group models in
brief scripts. However (as with other structural model-
ing software programs), the defaults can also lead to
unintended consequences. When developing new mod-
els, it is useful to study the specification section of the
output (obtained by requesting TECH1) to ensure that
all the variances and covariances one believes are fixed
to 1 or 0 are correctly specified.

A major disadvantage of Mplus for behavior ge-
netic research is that the program does not have user-
defined boundary or other nonlinear constraints. This
may limit the application of Mplus for advanced mod-
els, such as for assortative mating. When using multi-
variate models or testing for sex differences, the user
may wish to ensure that all loadings are estimated as
non-negative. As shown in Appendix 8 and Fig. 8, the
program input can be rewritten to keep all loadings non-
negative by estimating the square roots of the loadings.
However, this is cumbersome with complex models.
A related issue is that multiple models may be required
to test whether a parameter falls outside its theoretical
boundaries (e.g., a male-female genetic correlation <0
or >.5), and if so, to constrain it to be inside of the
boundary area. This is an imperfect solution as other
modifications to the model may alter the estimate of
the now-fixed parameters.

Fig. 8. Mplus specification for a nonscalar sex differences model,
parameterized to ensure male-female covariances are non-negative.
Parameter labels correspond to the input script in Appendix 8. The pa-
rameters as shown apply to opposite-sex pairs. This model uses place-
holders (AD1, CD1, AD2, CD2) to estimate the square roots of the
additive genetic and common environment loadings.
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Another disadvantage is that (like most other
structural modeling programs) the currently available
version of Mplus is not able to employ incomplete data
with categorical dependent variables. (The next release
of Mplus, version 3, will include ML estimation for
models with categorical outcomes and will also handle
missing data assuming MAR [B. Muthén, personal com-
munication.]) It is possible to separate the observations
into groups based on the pattern of missing data, create
“pseudo” data for the groups with missing information,
and use filter matrices and invariance constraints over
groups to have only the true data contribute to the model
estimates (see McArdle and Prescott [1996] for an con-
tinuous variable example using LISREL). However, this
becomes unwieldy when there are many patterns of
missing data and is correct only for OLS estimation be-
cause when using WLS, inclusion of the pseudo-data
will alter the weight matrices.

Some other minor issues associated with the cur-
rent version of Mplus can be frustrating if the user is
unaware of them. When fitting multiple group models
to multi-category variables, the first group listed in the
Group statement must have data at all levels of the vari-
able or problems will be encountered when reading in
the data file. The MISSING value statement allows a
range of values to be specified using a dash (e.g.,
MISSING=ALL(95-99);) but care should be used
to specify this correctly if the input file uses a negative
number as a missing value code.

The examples presented in this paper represent just
a few of the models that have been applied to twin and
family data. Other advanced applications have been
implemented using other programs (e.g., Neale and
Cardon, 1992), many of which are possible in Mplus.
There are several features of Mplus that were not
illustrated here but may be of use to behavior geneticists,

including exploratory factor analysis, multilevel mod-
eling, latent variable mixture models, and Monte Carlo
simulation studies.

It is worth noting that there are other structural
modeling programs that estimate models based on mul-
tiple groups (e.g., AMOS, Arbuckle and Wothke, 1999;
EQS, Bentler, 1989), but have not been widely em-
ployed for behavior genetic applications. Categorical
data from twins have also been analyzed using pro-
grams developed for pedigree data (e.g., Hannah et al.,
1983), and logit analysis (e.g., Kaprio et al., 1981).
Other programs for multivariate data analysis such as
SAS PROC MIXED (SAS Institute, 1999) have been
adapted to estimate sources of covariance among fam-
ily members (e.g., Guo and Wang, 2002; Prescott and
Kendler, 2001). There is no doubt that other program-
ming options and analytic approaches will appear in
the future. Criteria to consider when comparing
alternative programs include the ease of writing
program input, interpretation of program output, op-
tions for numerical optimization, speed of computation,
calculation of standard errors, availability of user-
defined constraints, user support, and the costs of soft-
ware and training.

The advantages of using Mplus relative to other
available software programs will depend on the specific
application and the features valued by the researcher.
For twin and family researchers experienced with other
programs, the main advantages of Mplus are the abil-
ity to analyze a combination of continuous and cate-
gorical dependent variables, rapid computational speed,
and ease of handling common forms of incomplete data.
For researchers new to behavior genetic analyses and
those unfamiliar with matrix algebra, the simplicity and
flexibility of Mplus programming make it an alterna-
tive worth considering.

APPENDIX 1

Selected Output from a Univariate Twin Model for a Continuous Variable (Example 1)

SUMMARY OF ANALYSIS

Number of groups                                     2
Number of observations

Group MZ                                       1000
Group DZ                                       1000

Number of y-variables                                  2
Number of x-variables                                  0
Number of continuous latent variables                    6

(Continued on next page)
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APPENDIX 1

Selected Output from a Univariate Twin Model for a Continuous Variable (Example 1) 
(Continued from previous page)

Observed variables in the analysis
Y1      Y2
Grouping variable     ZYG

Continuous latent variables in the analysis
A1       A2          C1         C2           E1        E2

Estimator                                           ML
Maximum number of iterations                         1000
Convergence criterion                           0.500D-04
Maximum number of steepest descent iterations           20

Input data file(s)  example1.dat
Input data format  FREE

SAMPLE STATISTICS

SAMPLE STATISTICS FOR MZ
Means

Y1           Y2
1      100.385       100.235

Covariances
Y1           Y2

Y1          98.756
Y2          57.743        96.296

Correlations
Y1           Y2

Y1           1.000
Y2           0.592         1.000

SAMPLE STATISTICS FOR DZ
Means

Y1           Y2
1     100.116      100.076

Covariances
Y1           Y2

Y1        90.747
Y2        37.176      101.818

Correlations
Y1           Y2

Y1           1.000
Y2           0.387       1.000

THE MODEL ESTIMATION TERMINATED NORMALLY
TESTS OF MODEL FIT

Chi-Square Test of Model Fit
Value                                 4.818
Degrees of Freedom                          6
P-Value                                0.5673

...

Loglikelihood
H0 Value                           –14524.953
H1 Value                           –14522.545

...
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MODEL RESULTS
Estimates S.E. Est./S.E. Std StdYX

Group MZ
A1   BY    Y1 6.255 0.481 12.999 6.255 0.636
A2   BY    Y2 6.255 0.481 12.999 6.255 0.636
C1   BY    Y1 4.239 0.621 6.822 4.239 0.431
C2   BY    Y2 4.239 0.621 6.822 4.239 0.431
E1   BY    Y1 6.298 0.138 45.493 6.298 0.640
E2   BY    Y2 6.298 0.138 45.493 6.298 0.640

A1   WITH  A2 1.000 0.000 0.000 1.000 1.000
C1 0.000 0.000 0.000 0.000 0.000
C2 0.000 0.000 0.000 0.000 0.000
E1 0.000 0.000 0.000 0.000 0.000
E2 0.000 0.000 0.000 0.000 0.000

A2   WITH  C1 0.000 0.000 0.000 0.000 0.000
C2 0.000 0.000 0.000 0.000 0.000
E1 0.000 0.000 0.000 0.000 0.000
E2 0.000 0.000 0.000 0.000 0.000

C1   WITH  C2 1.000 0.000 0.000 1.000 1.000
E1 0.000 0.000 0.000 0.000 0.000
E2 0.000 0.000 0.000 0.000 0.000

C2   WITH  E1 0.000 0.000 0.000 0.000 0.000
E2 0.000 0.000 0.000 0.000 0.000

E1   WITH  E2 0.000 0.000 0.000 0.000 0.000
Means

A1 0.000 0.000 0.000 0.000 0.000
A2 0.000 0.000 0.000 0.000 0.000
C1 0.000 0.000 0.000 0.000 0.000
C2 0.000 0.000 0.000 0.000 0.000
E1 0.000 0.000 0.000 0.000 0.000
E2 0.000 0.000 0.000 0.000 0.000

Intercepts
Y1 100.196 0.189 529.142 100.196 10.185
Y2 100.196 0.189 529.142 100.196 10.185

Group DZ

A1   BY    Y1 6.255 0.481 12.999 6.255 0.636
A2   BY    Y2 6.255 0.481 12.999 6.255 0.636
C1   BY    Y1 4.239 0.621 6.822 4.239 0.431
C2   BY    Y2 4.239 0.621 6.822 4.239 0.431
E1   BY    Y1 6.298 0.138 45.493 6.298 0.640
E2   BY    Y2 6.298 0.138 45.493 6.298 0.640

A1   WITH  A2 0.500 0.000 0.000 0.500 0.500
C1 0.000 0.000 0.000 0.000 0.000
C2 0.000 0.000 0.000 0.000 0.000
E1 0.000 0.000 0.000 0.000 0.000
E2 0.000 0.000 0.000 0.000 0.000

A2   WITH  C1 0.000 0.000 0.000 0.000 0.000
C2 0.000 0.000 0.000 0.000 0.000
E1 0.000 0.000 0.000 0.000 0.000
E2 0.000 0.000 0.000 0.000 0.000

C1   WITH  C2 1.000 0.000 0.000 1.000 1.000
...

APPENDIX 1

Selected Output from a Univariate Twin Model for a Continuous Variable (Example 1) (Concluded)

... indicates lines omitted
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SAMPLE STATISTICS

ESTIMATED SAMPLE STATISTICS FOR MZ
SAMPLE THRESHOLDS

Y1$1         Y2$1
1        0.015     –0.010

SAMPLE TETRACHORIC CORRELATIONS
Y1           Y2

Y1
Y2            0.583

ESTIMATED SAMPLE STATISTICS FOR DZ
SAMPLE THRESHOLDS

Y1$1         Y2$1
1         0.040           0.023

SAMPLE TETRACHORIC CORRELATIONS
Y1           Y2

Y1
Y2             0.405

...
MODEL RESULTS

Estimates S.E. Est./S.E. Std StdYX
Group MZ
A1      BY    Y1 0.596 0.096 6.193 0.596 0.596
A2      BY    Y2 0.596 0.096 6.193 0.596 0.596
C1      BY    Y1 0.477 0.100 4.788 0.477 0.477
C2      BY    Y2 0.477 0.100 4.788 0.477 0.477

A1      WITH C1 0.000 0.000 0.000 0.000 0.000
C2 0.000 0.000 0.000 0.000 0.000
A2 1.000 0.000 0.000 1.000 1.000

A2      WITH C1 0.000 0.000 0.000 0.000 0.000
C2 0.000 0.000 0.000 0.000 0.000

C1      WITH C2 1.000 0.000 0.000 1.000 1.000
Means

A1 0.000 0.000 0.000 0.000 0.000
A2 0.000 0.000 0.000 0.000 0.000
C1 0.000 0.000 0.000 0.000 0.000
C2 0.000 0.000 0.000 0.000 0.000

Thresholds
Y1$1 0.017 0.023 0.739 0.017 0.017
Y2$1 0.017 0.023 0.739 0.017 0.017

Variances
A1 1.000 0.000 0.000 1.000 1.000
A2 1.000 0.000 0.000 1.000 1.000
C1 1.000 0.000 0.000 1.000 1.000
C2 1.000 0.000 0.000 1.000 1.000

Scales
Y1 1.000 0.000 0.000 1.000 1.000
Y2 1.000 0.000 0.000 1.000 1.000

Group DZ
A1    BY      Y1 0.596 0.096 6.193 0.596 0.596
A2    BY      Y2 0.596 0.096 6.193 0.596 0.596
C1    BY      Y1 0.477 0.100 4.788 0.477 0.477
C2    BY      Y2 0.477 0.100 4.788 0.477 0.477
A1    WITH   C1 0.000 0.000 0.000 0.000 0.000

C2 0.000 0.000 0.000 0.000 0.000
A2 1.000 0.000 0.000 1.000 1.000

...
R-SQUARE
Group MZ

Observed  Residual
Variable  Variance  R-Square
Y1         0.417     0.583
Y2         0.417     0.583

Group DZ
Observed  Residual
Variable  Variance  R-Square
Y1         0.417     0.583
Y2         0.417     0.583

APPENDIX 2

Selected Output from a Univariate-Twin Model for a Binary Variable (Example 2)
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VARIABLE TYPE & PARAMETERIZATION

Continuous Binary − DELTA Binary − THETA

TITLE Two-Group ACE Model

DATA FILE = example.dat;

VARIABLE NAMES = famno zyg y1 y2;
USEVAR = y1 y2;
GROUP = zyg(1=MZ 2=DZ);

CATEGORICAL = y1 y2;

TYPE = MEANSTRUCTURE;

ANALYSIS PARAM=DELTA;a PARAM=THETA;

MODEL [y1](1); [y2] (1); [y1$1] (1); [y2$1] (1); [y1$1@x]; [y2$1@x];b

y1@0; y2@0; {y1@1 y2@1};

A1 by y1 (11); A2 by y2 (11); A1 by y1 (11); A2 by y2 (11); same as continuous
C1 by yl (12); C2 by y2 (12); C1 by y1 (12); C2 by y2 (12);
E1 by y1 (13); E2 by y2 (13);

[A1-E2@0]; [A1-C2@0]; same as continuous
A1-E2@1; A1-C2@1;
A1-A2 with C1-E2@0; A1-A2 with C1-C2@0;
C1-C2 with E1-E2@0; A1 with A2@1;
A1 with A2@1; C1 with C2@1;
C1 with C2@1;
El with E2@0;

MODEL y1@0; y2@0;
MZ

MODEL A1 with A2@0.5; A1 with A2@0.5; A1 with A2@0.5;
DZ yl@0; y2@0;

OUTPUT SAMP RES STAND;

Obtaining mean = par 1 threshold = par 1 threshold = x * scaling
parameter a = par 11 a = par 11 factor
estimatesc c = par 12 c = par 12 a= par11 * scaling factor

e = par 13 e2 = residual variance c= par12 * scaling factor
e= par13 * scaling factor

APPENDIX 3

Summary of Mplus Input for Continuous and Categorical Variables

a Mplus default, statement not required
b x = any positive number; if x is fixed at the true threshold value (e.g., obtained in a prior run using the Delta parameterization), the scaling

factor = 1 and t-values will be accurate
c par = parameter; residual variance and scaling factor are printed when output RES is requested 
Note: Blank cell indicates no statement required; starting values for estimated parameters are not shown, but may be needed
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