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Overview

The general DSEM model and estimation

Model fit: DIC, model estimated means and variances

Centering

The MEAR model

Covariates in DSEM, new RDSEM model (residual DSEM)

Reference for this talk is the ”Dynamic Structural Equation Models”
paper available online http://statmodel.com/download/DSEM.pdf
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The general DSEM model

Merge ”time series”, ”structural equation”, ”multilevel” and
”TVEM(time varying effect modeling)” concepts in a
generalized modeling framework in Mplus V8

Yit, ηit and Xit - are the observed dependent variables, latent
factors and predictors for individual i at time t

Four distinct sources of correlation in such observed data:
- correlation due to individual specific effects (multilevel)
- correlation due to proximity of observations (time series)
- correlation between different variables (SEM)
- correlation due to the same stage of evolution (TVEM)

DSEM finds these correlations
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DSEM model

Includes three separate models: single level, twolevel ,
cross-classified

Main decomposition equation

Yit = Y1,it +Y2,i +Y3,t

Y2,i, Y3,t are the ”individual” and ”time” specific contribution.
These are latent variables. Y1,it is the residual.
Includes three separate models:

single level DSEM: type=general, N=1, Y2,i, Y3,t are removed
two-level DSEM: type=twolevel, Y3,t is removed
cross-classified DSEM: type=cross, full version

We describe the cross-classified DSEM as it is the most general
model, however ....
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DSEM model

Cross-classified DSEM requires that the time scale is aligned for
all individuals - not every data set is applicable, ex. observational
studies. Time t specific random effect apply for all individuals so
time t has to mean the same thing, ex second grade.
The two-level DSEM much simpler formulation
The two-level DSEM is the most common and introductory
model for applications
The two-level DSEM can be estimated with less data, fewer
requirements for size of N and T as compared to cross-classified
DSEM, for example unbalanced designs
The two-level DSEM easier to estimate as compared to
cross-classified DSEM: much fewer number of random effects
Mplus 8 speed for two-level DSEM always acceptable, Mplus 8
speed for cross-classified DSEM: depends on the model, some
models acceptable, models with random variances or random
autoregressive parameters can be very slow
Single level model - one individual modeled separately
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DSEM model

The within level model includes latent variables and observed
variables from the previous L (lag) periods

Y1,it = ν1 +
L

∑
l=0

Λ1,lη1,i,t−l +
L

∑
l=0

RlY1,i,t−l +
L

∑
l=0

K1,lX1,i,t−l + ε1,it

η1,it = α1 +
L

∑
l=0

B1,lη1,i,t−l +
L

∑
l=0

QlY1,i,t−l +
L

∑
l=0

Γ1,lX1,i,t−l +ξ1,it.

Note that all predictors are centered i.e. Y1,i,t−l is not Yi,t−l
(covariates X are optional)
The model is a combination of the state space model with the
dynamic factor model, merged with full SEM functionality, e.g.,
covariates, path analysis, regression among latent variables,
CFA, MIMIC, correlated uniqueness, lagged loadings, in
addition to the core extensions of two-level and cross-classified
modeling as well as categorical variables.
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DSEM model

The usual measurement and structural equations of SEM at level
2 and 3.

Y2,i = ν2 +Λ2η2,i + ε2,i

η2,i = α2 +B2η2,i +Γ2x2,i +ξ2,i

Y3,t = ν3 +Λ3η3,t + ε3,t

η3,t = α3 +B3η3,t +Γ3x3,t +ξ3,t

These include not just between parts of Yit but also observed
between level variables

Tihomir Asparouhov Part 5 Muthén & Muthén 7/ 64



DSEM model

Random parameters on within level
intercepts
slopes
loadings
auto-regressive parameters
variances - new V8 feature available for DSEM and non-DSEM
random covariance? Only via random factor variances

We have not found an easy to interpret, random covariance
model, that is based on normally distributed random effects
which can be used in linear equations as predictors or to be
predicted by other variables
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DSEM model

Every within level random parameter s has an individual specific
part s2,i and time specific part s3,t

s = s2,i + s3,t

s2,i, s3,t are normally distributed random effects which are a part
of the between level latent variable vectors η2,i and η3,t

Random variances are special

s = Exp(s2,i + s3,t)

This way we always keep these positive
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DSEM model

The general model on the within level can now also be written
with indices i and t for all the possible random parameters

Y1,it = ν1 +
L

∑
l=0

Λ1,litη1,i,t−l +
L

∑
l=0

RlitY1,i,t−l +
L

∑
l=0

K1,litX1,i,t−l + ε1,it

η1,it = α1,it +
L

∑
l=0

B1,litη1,i,t−l +
L

∑
l=0

QlitY1,i,t−l +
L

∑
l=0

Γ1,litX1,i,t−l +ξ1,it
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DSEM model

The above model assumes conditional normality

Ordered polytomous and binary dependent variables using the
underlying Y∗ approach

Missing data: MAR likelihood based treatment via MCMC
estimation. If there is autocorrelation in the data the missing data
will be imputed from the neighbouring observations rather than
from the average for the person! Note that standard econometrics
methodology even for single level models does not include
missing data. Even for single level data with missing
observations this is new.
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Residual DSEM (RDSEM), available in future Mplus
release

No change in the between level model. The within level model further
splits the autoregressive and the structural part

Y1,it = Y0,it + Ŷ1,it

η1,it = η0,it + η̂1,it

The variables Y0,it and η0,it represent the linear predictor part (no
random element)

The variables Ŷ1,it and η̂1,it represent the auto-regressive part and
can be thought of as being the residuals
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Residual DSEM model

The linear predictor model for Y0,it and η0,it

Y0,it = ν1 +
L

∑
l=0

K1,litX1,i,t−l

η0,it = α1,it +
L

∑
l=0

Γ1,litX1,i,t−l

The auto-regressive model for Ŷ1,it and η̂1,it

Ŷ1,it =
L

∑
l=0

Λ1,litη̂1,i,t−l +
L

∑
l=0

RlitŶ1,i,t−l + ε1,it

η̂1,it =
L

∑
l=0

B1,litη̂1,i,t−l +
L

∑
l=0

QlitŶ1,i,t−l +ξ1,it
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DSEM Initial Conditions

At time t = 1, ...,L the DSEM model uses predictors with
negative time indices such as ηi,t=0, ηi,t=−1, Y1,i,t=0, Y1,i,t=−1,
Xi,t=0, Xi,t=−1. We treat these as auxiliary parameters with their
own prior.

If sequences are long such as T > 50 the prior does not affect the
results. For smaller time-series the priors may have minor effect.

Mplus implements 2 options

A. Mplus default: automatic priors, in the first 100 burnin
MCMC iterations we update the priors from the sample statistics
of ηit, Y1,it, or Xi,t, then we discard those 100 MCMC iteration,
and retain the constructed priors. Works quite well even for
small T .
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DSEM Initial Conditions

B. Specify a normal prior for these auxiliary parameters in model
prior. Difficult to use in practice especially when variables are
not standardized.

MODEL: f BY y@l (&1); f*0.6;
y ON f&1*0.4 y&l*0.5 y&2*0.2;
y@0.01;

MODEL PRIOR: f∼N(0,0.6); y∼N(0,1);
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DSEM features not available in Mplus 8

Non-recursive models Y1 on Y2, Y2 on Y1

R0 and Q0 can not be random

Λ1,l, B1,l and random variances, can be random but can not
include a time specific random effect

For categorical variables the lagged variables Y∗i,t−l are not a part
of the model. For categorical variables time series models can be
built only through latent variables measured by the categorical
variable or other continuous dependent or independent variables.
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DSEM Estimation

MCMC with Gibbs sampler. All latent variables, missing values,
initial conditions, random effects and model parameters, i.e., all
unknown quantities are placed in one of 13 blocks:

B1: Y2,i
B2: All random slopes s2,i
B3: Y3,t
B4: All random slopes s3,t
B5: Other latent variables η2,i and η3,t
B6: Latent variables η1,it, including initial conditions where t ≤ 0
B7: Missing variables Yit
B8: Initial conditions Y1,it and X1,it for t ≤ 0
B9: Threshold parameters for all categorical variables θ3
B10: Underlying variables Y∗it for all categorical variables
B11: Non-random intercepts, slope and loadings parameters θ1
B12: Non-random variance, covariance and correlation
parameters θ2
B13: Random variance parameters

Tihomir Asparouhov Part 5 Muthén & Muthén 17/ 64



DSEM Estimation

Determine each block conditional distribution, given all other
blocks and the data

Update (generate new values for) each block from that
conditional distribution

Repeat cycling between the blocks until convergence and use the
generated values as the posterior distribution, point estimates, SE

Mplus mini-max strategy for block formation: minimize the
number of block while keeping conditional distributions explicit,
i.e., maximizing the blocks. Each block is further split into the
sub-blocks that are conditionally independent and update these
separately. Strategy for most efficient computation and mixing.
Blocks 3,6,7 sequentially updated.

Bayes estimation inheritance: DSEM algorithm is an extension
of Mplus 7.4, i.e., not developed from scratch.

All conditional distribution are described in the DSEM paper
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Overview

The general DSEM model and estimation

Model fit: DIC, model estimated means and variances
Centering

The MEAR model

Covariates in DSEM, new RDSEM model (residual DSEM)
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DIC

DIC can be used to compare DSEM models. Implemented for
models with all continuous dependent variable (no categorical).

D(θ) =−2log(p(Y|θ))

pD = D̄−D(θ̄)

DIC = D(θ̄)+2pD

Despite the clear definition with the above formulas, there is
substantial variation in what DIC actually is. The source of the
variation is the definition of θ , and if it includes the latent
variables or not.
Different definitions of DIC are not comparable. You can
compare only if they are using the same likelihood [Y|θ ]
DIC most likely can not be used to compare models if the two
models use different θ
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DIC

In DSEM the following are used in the θ vector in addition to all
model parameters

Y2,i and all random effects s2,i
Y3,t and all random effects s3,t
Initial conditions
Latent variables η1,it if their lagged variables are used
Missing variables Yit if their lagged variable is used

This choice of θ yields easy computation of [Y|θ ] (improved in
8.1)
To compare two models with DIC all you need to verify is that θ

between the two models represents the same random effects.
Random effect with zero variance count both ways: fixed or
random.
pD - estimated number of parameters should generally be near
the size of the vector θ , i.e., should be near the count of the
above list
In DSEM pD is large and needs extra long MCMC sequence for
stable estimate
ARMA(1,1) model not comparable to AR(1) with DIC for V8.Tihomir Asparouhov Part 5 Muthén & Muthén 21/ 64



Model fit evaluation based on comparing sample and model
estimated statistics

Assuming stationarity of the autoregressive part of the DSEM
model we compute subject specific model estimated mean,
variances, autocorrelations of lag L. These can be compared to
their sample counterparts.

Caution about non-stationary models where trend is in the
model: use RDSEM style models such as MEAR where trend is
separated from the autoregression. The Mplus residual output
does not apply directly and no warning is given. This applies
only to the residual output in Mplus and not to the model
estimation and results. RDSEM and MEAR models, separation
of trend and autoregression will be discussed later.
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Model fit evaluation based on comparing sample and model
estimated statistics

Model fit evaluation using MSE and correlation between sample
v.s. model estimated. For example, means.

R = Cor(µi,Yi∗)

MSE =
N

∑
i=1

(µi−Yi∗)
2/N.

The correlation is available in the Mplus plot utilities. MSE
requires saving the plot data and computing it separately.
Model estimated auto-correlation is available in the Mplus
residual output.
This method if fully valid only when there is no missing data. In
the presence of missing data estimated quantities maybe more
accurate than the sample quantities and may not match due to the
missing data.

Tihomir Asparouhov Part 5 Muthén & Muthén 23/ 64



Time-series model estimated means, variance, correlations
using Yule-Walker assuming stationarity

Zt = µ +
L

∑
l=1

AlZt−l +ζ

Σ = Var(ζ )

E(Zt) =

(
I−

L

∑
l=1

Al

)−1

µ

Γj = Cov(Zt,Zt−j)


Γ0 ΓT

1 ΓT
2 ... ΓT

L
Γ1 Γ0 ΓT

1 ... ΓT
L−1

Γ2 Γ1 Γ0 ... ΓT
L−2

... ... ... ... ...
ΓL ΓL−1 ΓL−2 ... Γ0




I
−AT

1
−AT

2
...
−AT

L

=


Σ

0
0
...
0


Tihomir Asparouhov Part 5 Muthén & Muthén 24/ 64



Overview

The general DSEM model and estimation

Model fit: DIC, model estimated means and variances

Centering
The MEAR model

Covariates in DSEM, new RDSEM model (residual DSEM)

Tihomir Asparouhov Part 5 Muthén & Muthén 25/ 64



Simulation studies: Centering

Simulation example using two-level random autoregressive
AR(1) model

Mplus latent centering

Yit = µi + ri(Yi,t−1−µi)+ξit.

Observed centering

Yit = µi + ri(Yi,t−1−Yi∗)+ξit

Uncentered
Yit = µi + riYi,t−1 +ξit
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Centering

Autocorrelation bias

Nickell, S. (1981). Biases in dynamic models with fixed effects.
Econometrica: Journal of the Econometric Society, 1417-1426.
Hamaker E.L. and Grasman R.P.P.P. (2015) To center or not to
center? Investigating inertia with a multilevel autoregressive
model. Front. Psychol., 5, 1492.

Bias for the big-fish-little-pond effect (BFLPE)

Ludtke, O., Marsh, H.W., Robitzsch, A., Trautwein, U.,
Asparouhov, T., & Muthén, B. (2008). The multilevel latent
covariate model: A new, more reliable approach to group-level
effects in contextual studies. Psychological Methods,13,203-29.
Asparouhov, T. & Muthén, B. (2006). Constructing covariates in
multilevel regression. Mplus Web Notes: No. 11.
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Centering

Ludtke / BFLPE bias is for two-level models, involves 2 different
variables, and the bias is on the between

(βw−βb)ψw

Tψb +ψw

Nickell / autocorrelation bias is for DSEM, involves 1 variable,
and the bias is on the within

− 1+ r
T−1

Both stem from not accounting for the error in the sample mean
estimate of the mean

Both disappear when cluster sample size T increases

Both can appear in parallel in the same example
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Centering

Note that observed centering or uncentered do not exist in case
there is missing data - listwise deletion is not an option

Hamaker and Grasman (2015) show that the uncentered method
eliminates Nickell’s bias. It does create other bias however, ex
for σ11

Hamaker and Grasman (2015) show that using the true mean to
center still creates bias, which means that the bias is not simply a
measurement error bias but also the latent nature of the predictor
should be accounted for.
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Centering - results

Table: Nickell’s bias for r=0.3

T N Latent centering Observed centering Nickell’s formula
10 100 0.025 -0.140 -0.144
20 50 0.006 -0.070 -0.068
30 30 0.008 -0.042 -0.045
50 50 0.000 -0.029 -0.027
100 100 -0.001 -0.014 -0.013

Nickell’s formula is very accurate. Latent centering eliminates
Nickell’s bias.
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Centering - results

Table: Bias for Var(µi) = 3

T N latent centering Uncentered
10 100 -0.015 -1.637
20 50 0.217 -1.483
30 30 0.645 -1.256
50 50 0.378 -1.361
100 100 0.096 -1.508

For latent centering bias on Var(µi) as N increases (or with using
weakly informative priors). For the uncentered method in will not
disappear even asymptotically as the fundamentals of the model are
wrong.
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Centering - comparison of latent centering and uncentered

Mplus latent centering

Yit = µi + ri(Yi,t−1−µi)+ξit.

Yit = µi(1− ri)+ riYi,t−1 +ξit.

Uncentered
Yit = µi + riYi,t−1 +ξit

The uncentered and the latent centering are reparameterizations
of each other. To obtain the correct µi we need to divide by 1− ri

The latent centering has the advantage of obtaining µi directly
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Centering - comparison of latent centering and uncentered
with subject specific covariate X

Mplus latent centering

Yit = µi +βXi + ri(Yi,t−1−µi−βXi)+ξit.

Yit = µi(1− ri)+β (1− ri)Xi + riYi,t−1 +ξit.

Uncentered
Yit = µi +βXi + riYi,t−1 +ξit

The uncentered and the latent centering are NOT
reparameterizations of each other as the Xi effect is random in
the latent centering.
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ARMA(1,1) and the measurement error AR(1) models

The ARMA(1,1) model

Yt = µ +φYt−1 + εt +θεt−1

σ = Var(εt)

The measurement error AR(1) = MEAR(1)
Yt = µ + ft + εt

ft = φ ft−1 +ξt

σ1 = Var(εt),σ2 = Var(ξt)

The two models are equivalent

σ1 =−
θσ

φ

σ2 = (1+θ
2)σ +

(1+φ 2)θσ

φ
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ARMA(1,1) and the measurement error AR(1) models

... as long as σ1 > 0 and σ2 > 0

φ is the autocorrelation for f but the autocorrelation for Y is
smaller

The MEAR(1) shows how traditional SEM logic doesn’t hold for
DSEM: one indicator factor model is perfectly identified
Two reasons to prefer MEAR(1) v.s. ARMA(1,1)

More efficient Mplus estimation
Easier to interpret - SEM like flavor

Two reasons to prefer MEAR(1)/ARMA(1,1) v.s. AR(1)
AR(1) exponential decay of autocorrelation is not realistic
ARMA(1,1) is a two-parameter fit for the autocorrelation
function , v.s., AR(1) which is one parameter

Easy to test MEAR(1)/ARMA(1,1) v.s. AR(1) using significance
of parameter.
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AR(1) v.s. ARMA(1,1) autocorrelation decay
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ARMA(1,1) simulation study

Table: Bias(coverage) MEAR(1) / ARMA(1,1), N=1

parameter True value T = 100 T = 200 T = 300 T = 500
µ 0 -.09(.82) -.01(.89) -.04(.85) -.02(.87)
φ .8 -.07(.96) -.04(.92) -.03(.87) -.01(.95)
σ1 1 -.10(.97) -.09(.94) -.08(.88) -.04(.90)
σ2 1 .25(.95) .17(.92) .14(.91) .08(.90)

T ≥ 200 recommended for small bias and acceptable coverage
levels

For two-level models smaller T are acceptable as long as not all
four parameters are subject specific - typically σ1 and σ2 will not
be subject specific
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ARMA(2,1) simulation study

Yt = µ +φ1Yt−1 +φ2Yt−2 + εt +β3εt−1
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ARMA(2,1) simulation study results
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Two-level ARMA(1,1)/MEAR(1) for categorical variables

Since the underlying variable of a categorical variable is not
available for lag modeling MEAR(1) is a good fit and allows
time series modeling with a single categorical variable
For binary variable

P(Yit = 1) = Φ(µi + fit)

fit = φ fi,t−1 +ξit

µi ∼ N(µ =−τ,σb),σ2 = σw = Var(ξit)

σ1 = 1 is the residual variance of Y∗it

For ordered polytomous variable

P(Yit = j) = Φ(τj+1−µi− fit)−Φ(τj−µi− fit)

fit = φ fi,t−1 +ξit

µi ∼ N(0,σb),σ2 = σw = Var(ξit),σ1 = 1
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Two-level ARMA(1,1)/MEAR(1) for binary

Table: Two-level ARMA(1,1)/MEAR(1) with binary variable, N=100,
T=300

parameter True value Estimate(Coverage)
µ 0 0.00 (.95)
φ .5 0.50(.78)

σw 1 1.01(.71)
σb 0.5 0.52(.94)

Further algorithmic improvements (8.1) possible to eliminate the need
for the MEAR modeling and lower the requirements for the size of T
(also not needed if you have more than one factor indicator).
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Two-level ARMA(1,1)/MEAR(1) for ordered polytomous

Table: Two-level ARMA(1,1)/MEAR(1) with ordered polytomous, N=100,
T=100

parameter True value Estimate(Coverage)
τ1 -3 -3.06 (.87)
τ2 -1 -1.02 (.81)
τ3 0 -0.01 (.79)
τ4 1 1.01 (.75)
τ5 3 3.05 (.81)
φ .5 0.50(.93)

σw 1 1.09(.83)
σb 0.5 0.54(.94)
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How to add a covariate in ARMA(1,1) and AR(1) models

The same applies for AR(1) and ARMA(1,1)/MEAR(1). Three
ways to do it (using N=1 as an example)

Residual AR model

Yt = µ + ft +β1Xt +ξt

ft = φ ft−1 + εt.

Full AR model

Yt = µ + ft +ξt

ft = φ ft−1 +β2Xt + εt.

Joint effect model

Yt = µ + ft +β1Xt +ξt

ft = φ ft−1 +β2Xt + εt.
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How to add a covariate in ARMA(1,1) and AR(1) models

Consider the fundamental difference between the models by
what it implies for E(Yt|X)
Residual AR model - no effect beyond the last value of X

E(Yt|X) = µ +β1Xt.

Full AR model - accumulation effect of X with diminishing
effects

E(Yt|X) = µ +β2(Xt +φXt−1 +φ
2Xt−2 +φ

3Xt−3 + ...).

Joint effect model - direct and accumulated effect

E(Yt|X) = µ +β1Xt +β2(Xt +φXt−1 +φ
2Xt−2 +φ

3Xt−3 + ...).
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How to add a covariate in ARMA(1,1) and AR(1) models.
The special case of Xt = t, linear growth model

Hamaker, E.L. (2005) Conditions for the equivalence of the
autoregressive latent trajectory model and a latent growth curve
model with autoregressive disturbances. Sociological Methods
and Research, 33, 3, 404 - 418.

It is shown in this paper that the residual AR and the full AR
models are equivalent, i.e., the joint effect model is not identified
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How to add a covariate in ARMA(1,1) and AR(1) models.
The special case of Xt = t, linear growth model

The residual AR model: linear growth AR(1) model
Yt = γ0 + γ1t+ξt

ξt = φξt−1 + εt

The full AR model: linear growth full AR(1) model

Yt = β0 +β1t+φYt−1 + εt

Here t affects Yt through its effect on Yt−1 in addition to the
direct effect β1

Yt−1 = β0 +β1(t−1)+φYt−2 + εt−1

The two models are algebraically equivalent and the joint effect
model is unidentified

γ0 =
β0

1−φ
− φβ1

(1−φ)2 , γ1 =
β1

1−φ
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AR(1) quadratic growth model, Xt = (t, t2)

The quadratic growth AR(1) model
Yt = γ0 + γ1t+ γ2t2 +ξt

ξt = φξt−1 + εt

The quadratic growth full AR(1) model
Yt = β0 +β1t+β2t2 +φYt−1 + εt

The two models are algebraically equivalent and the joint effect
model is unidentified. No simple reparametrization.

γ0 =
β0

1−φ
− φβ1

(1−φ)2 +
β2φ(1+φ)

(1−φ)3

γ1 =
β1

1−φ
− 2φβ2

(1−φ)2

γ2 =
β2

1−φ
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Two-level joint effect ARMA(1,1)/MEAR(1) simulation
study

Yit = µi + ft +β1Xit +ξit

fit = φ fi,t−1 +β2Xit + εit

µi ∼ N(µ,σb)

β1 = 0.3, β2 = 0.4, φ = 0.5, µ = 0, σb = 0.7,
Var(ξit) = Var(εit) = 1

The covariate is generated using AR(1) process with
Var(Xit) = 1 and autocorrelation rx = 0,0.5,0.8

We analyze the data using the joint effect model, the residual
AR, and the full AR
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Two-level joint effect ARMA(1,1) simulation results: joint
effect

Table: Two-level joint effect ARMA(1,1) with covariate, N=200, T=100

parameter rx True value Estimate(Coverage)
β1 0 .30 .30(.87)
β1 0.5 .30 .30(.96)
β1 0.8 .30 .31(.89)
β2 0 .40 .40(.87)
β2 0.5 .40 .40(.93)
β2 0.8 .40 .40(.90)
φ 0 .50 .50(.88)
φ 0.5 .50 .50( .93)
φ 0.8 .50 .50( .93)

No bias. Good coverage. Model is well identified.
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Two-level joint effect ARMA(1,1) simulation results:
residual AR

Table: Two-level joint effect ARMA(1,1) with covariate analyzed as residual
AR, N=200, T=100, dropping β2

parameter rx True value Estimate(Coverage)
β1 0 .70 .65(.00)
β1 0.5 .70 .74(.07)
β1 0.8 .70 .88(.00)
φ 0 .50 .50(.92)
φ 0.5 .50 .51(.85)
φ 0.8 .50 .52(.83)

Both parameters are biased. Coverage is low. Bias depends on rx.
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Two-level joint effect ARMA(1,1) simulation results: full
AR

Table: Two-level joint effect ARMA(1,1) with covariate analyzed as full AR,
N=200, T=100, dropping β1

parameter rx True value Estimate(Coverage)
β2 0 .70 .69(.92)
β2 0.5 .70 .67(.21)
β2 0.8 .70 .65(.07)
φ 0 .50 .36(.00)
φ 0.5 .50 .38(.00)
φ 0.8 .50 .41(.00)

Both parameters are biased. Coverage is low. Bias depends on rx.
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How to add a covariate in ARMA(1,1) and AR(1) models

The residual AR and the full AR models are not a
reparameterization of each other.

The choice between the residual AR and the full AR models
should not be made based on what is simpler to interpret,
software availability, or tradition - rather the data should decide
that.

For the AR(1) model the issue is more complicated than the
ARMA(1,1) model as the residual AR model requires fixing
Var(ξi) to 0 (small value near zero) which leads to slow
convergence, i.e., we have to specify the model as MEAR(1)

For the AR(1) model the Residual DSEM is the appropriate
approach - fast convergence, no fixing residuals to zero, no
MEAR(1) usage. RDSEM absorbs the complexity but is
complicated to estimate than DSEM.
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Simulation study: two-level residual AR(1) model

T = 50,N = 50,rep = 50,Xit ∼ AR(1),rx = 0.5

Yit = µi +βXit +ξit

ξit = φξit−1 + εit

Three methods: DSEM-MEAR(1) with fixed residual variance to
a small value, DSEM with free residual variance, RDSEM (new
input)
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Simulation study: two-level residual AR(1) model

Table: Two-level residual AR(1) with covariate bias(coverage)

method DSEM-fixed DSEM-free RDSEM
β .00(.60) .00(.55) .00(.90)
φ .03(.62) .01(.92) .00(.94)

time per rep in sec 3 33 0.5

Clearly RDSEM outperforms DSEM for this model due to quality of
mixing - only 200 MCMC iterations until convergence.
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Linear growth AR(1) simulation

In this example we illustrate the following 8 concepts
Equivalence of residual and full AR(1) models for linear growth
models
We illustrate that the model estimation is correct even when
stationarity is not present in the model and that only
residual/tech4/stand depend on the stationarity assumption
The dependence of Yule-Walker output: residual/tech4/stand on
the stationarity of the autoregressive portion of the model
How to setup the model so that the trend is not included in the
autoregressive portion of the model using the MEAR concept for
the purpose of obtaining correct Yule-Walker output
We illustrate the advantages of RDSEM
Challenges with fixing variance to zero/small values
We illustrate 4 ways to run the model in Mplus and obtain the
exact same model estimates
How to use MODEL CONSTRAINT to implement the
reparameterization for the residual and full growth AR(1) models

Tihomir Asparouhov Part 5 Muthén & Muthén 57/ 64



Linear growth AR(1) simulation

We generate data 500 points using the full AR linear growth model

Yt = β0 +β1t+φYt−1 + εt

β0 = 1, β1 = 0.3, φ = 0.5, θ = Var(εt) = 1, t = 0.1,0.2,0.3, ...,50.
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Linear growth AR(1) simulation

Estimate the following 4 equivalent models
Linear growth full AR(1), followed by model parameter
transformation, using DSEM

Yt = β0 +β1t+φYt−1 + εt

Linear growth residual AR(1) using RDSEM

Yt = γ0 + γ1t+ εt

εt = φεt−1 +ξt

Linear growth MEAR(1) model with Var(ζt) fixed to a small
value 0.05, DSEM

Yt = γ0 + γ1t+ ft + εt

ft = φ ft−1 +ξt

Linear growth MEAR(1) model with Var(ζt) estimated as a free
parameter, DSEM
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Linear growth full AR(1) using DSEM
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Linear growth residual AR(1) using RDSEM
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Linear growth MEAR(1) (free) using DSEM
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Linear growth AR(1) simulation: results

MEAR(1) MEAR(1)
True DSEM RDSEM free fixed
value Full AR Resid AR Full AR Full AR

convergence fast fast slow slow
γ0 1.94 1.94(.18) 1.94(.19) 1.93(.19) 1.93(.19)
γ1 .6 .6(.006) .6(.006) .6(.006) .6(.006)
φ .5 .51(.04) .51(.04) .53(.04) .53(.04)
θ 1 1(.06) 1(.06) .93 (.09) .94(.06)

E(Y) 16.94 23.33 16.94 16.94 16.94
Var(Y) 76.23 67.06 76.05 76.12 76.17

DIC 1421 1420 N/A N/A
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Linear growth AR(1) simulation: conclusions

All four methods produce the same model estimates, MEAR
models produce approximation
Full AR(1) DSEM model yields incorrect residual / tech4 / stand
results due to violating the assumptions of Yule-Walker
MEAR(1) free is preferred over MEAR(1) fixed because you
don’t need to decide on the small value, also safeguard against
the small variance not being zero, i.e., safeguard against the
model not being AR(1) but rather ARMA(1,1)
MEAR(1) formulation shows slow convergence, however, in real
data sets most likely the residual variance will not be exactly
zero / much better convergence
MEAR(1) methods do not produce usable DIC due to
conditioning on the within level factor Var(Y|f )≈ 0
Fixing variances to zero is not harmless in Bayes estimation as it
is in ML - most likely causing poor mixing and convergence
RDSEM is the best method - not available in Mplus 8, available
in Mplus 8.1
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