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Abstract

We describe an extension of the pseudo maximum likelihood (PML) estima-

tion method developed by Skinner (1989) to multistage strati¯ed cluster sampling

designs, including ¯nite population and unequal probability sampling. We con-

duct simulation studies to evaluate the performance of the proposed estimator.

The estimator is also compared to the general estimating equation (GEE) method

for linear regression implemented in SUDAAN. We investigate the distribution of

the likelihood ratio test (LRT) statistic based on the pseudo log-likelihood value

and describe an adjustment that gives correct chi-square distribution. The per-

formance of the adjusted LRT is evaluated with a simulation study based on the

Behrens-Fisher problem in a strati¯ed cluster sampling design.
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1 Introduction

Estimation of simple statistical models such as linear and logistic regres-

sions with survey data is well established and widely used. These models

are however inadequate for analyzing large multivariate data sets that are

being made available by governmental agencies and other research institu-

tions. Increasingly analysts are turning to advanced multivariate models

to better penetrate these complex data structures. Simultaneous regression

equations, structural equation models, time series models, log-linear models,

mixture models, mixed models, latent class models, latent variable models

and combinations of these are frequently the analysts' choice. Methods for

estimating such models however with data obtained by multistage survey

designs are not well established. Frequently analysts use methods designed

for simple random sampling followed by an ad-hoc adjustment for variance

estimation, see Stapleton (2005) for a review of such methods. These meth-

ods however are somewhat arbitrary and their theoretical properties are not

well known. Until recently many statistical packages implemented such ad

hoc methods as well, see Asparouhov (2005a).

Skinner (1989) introduced the pseudo maximum likelihood (PML) method,

following ideas of Binder (1983), which can be used to estimate any gen-

eral multivariate parametric model with data from a complex survey design

which includes strati¯cation, cluster sampling, and unequal probability sam-

pling with replacement. This method is in fact applicable to a more general

sampling design which includes strati¯ed multistage sampling with unequal

probability sampling with replacement at the primary sampling stage while

allowing for with and without replacement unequal probability sampling on
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subsequent stages. This sampling design is known as the WR sampling de-

sign and is pioneered and implemented in the software package SUDAAN

(RTI, 2002). SUDAAN however is based on the general estimating equa-

tions (GEE) methodology and is only capable of estimating simple univari-

ate models such as linear and logistic regression. Mplus, Version 3 (Muthen

& Muthen, 1998-2004), implements the PML method for the WR design

and many multivariate models with normal, discrete and other parametric

distributions for observed and latent variables. More information on Mplus

modeling capabilities can be obtained at www.statmodel.com. Other multi-

variate modeling packages, such as LISREL (SSI, 2005) have recently adopted

the PML method as well.

The three fundamental sampling designs, WR, WOR and WORUNEQ,

pioneered in SUDAAN, are widely used in practice and are being adopted

in other software packages. The WOR design is a strati¯ed multistage sam-

pling design with equal probabilities without replacement sampling at the

PSU level and equal probabilities with or without replacement sampling at

the subsequent stages. The WORUNEQ is a strati¯ed multistage design

with unequal probabilities without replacement sampling at the PSU level

and with or without replacement equal probabilities sampling at subsequent

stages.

The contributions of this paper are as follows. In Section 2, we expand

Skinner's (1989) PML method to the WOR and WORUNEQ designs. We

also discuss the asymptotic properties of the PML estimator. It is surprising

that this °exible estimation method has not been developed yet for these

common sampling designs. In Section 3 we conduct a simulation study on a
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factor analysis model estimated from a two-stage WOR design. In Section

4 we evaluate the performance of four di®erent estimators for samples with

small number of PSUs. The four estimators are PML, implemented in Mplus,

the GEE method implemented in SUDAAN, the GEE with exchangeable

correlation method implemented in SUDAAN and the bias corrected PML

method we propose in this article. In Section 5 we investigate the distribu-

tion of the likelihood ratio test statistic based on the pseudo log-likelihood

value and describe an adjustment that gives a correct chi-square distribution.

The e®ects of various complex sampling features on the distribution of the

LRT statistic are illustrated with a simulation study based on the Behrens-

Fisher problem in a strati¯ed cluster sampling design. All computations are

performed with Mplus, Version 3 (Muthen & Muthen, 1998-2004), unless

explicitly noted.

2 Pseudo Maximum Likelihood Estimation in

Multistage Sampling

In this section we describe the pseudo maximum likelihood estimation for a

general parametric model and the three sampling designs WR, WOR, and

WORUNEQ. Suppose that the log-likelihood for individual i is Li and the

model parameters are µ. Let Ti be the vector of ¯rst derivative of Li with

respect to µ. Suppose that wi are the weights produced by the complex

sample design, i.e., wi = 1=pi, where pi is the probability that individual i

is included in the sample. Let n be the size of the sample population and

N be the size of the whole target population. The true model parameters µ0
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are de¯ned as the unique values that maximize the likelihood of the target

population

L0 =
NX
i=1

Li:

The PML estimates µ̂ are de¯ned as the parameters that maximize the

weighted sample log-likelihood

L =
nX
i=1

wiLi:

These estimates are obtained by solving the weighted score equations

nX
i=1

wiTi = 0:

For large sample size the weighted sample score equation is an approximation

to the total score equation

nX
i=1

wiTi ¼
NX
i=1

Ti = 0: (1)

which is solved by the true parameter µ0. Thus the PML estimate µ̂ is a con-

sistent estimate of µ. The asymptotic variance of µ̂ is given by the asymptotic

theory for maximization estimators (see Amemiya (1985), Chapter 4)

(L00)¡1V ar(L0)(L00)¡1; (2)

where 0 and 00 denote the ¯rst and the second derivatives of the weighted sam-

ple log-likelihood. The middle term V ar(L0) = V ar(
Pn
i=1wiTi) is computed

according to the formulas for the variance of the weighted estimate of the

total described in Cochran, Chapter 11 (1977) or RTI (2002) taking the ap-

propriate design into account. To describe V ar(L0) we index the individual
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observations by membership in each of the sampling stages. That is, individ-

ual i1; i2; i3::: is individual in strata i1, PSU i2, secondary sampling unit i3,

etc. Let ni1:::il be the number of sampling subunits in sampling unit i1:::il,

i.e., ni1 is the number of PSUs in strata i1, ni1i2 is the number of secondary

sampling units in PSU i2 in strata i1, etc. Let Zi1:::ir = wi1:::irTi1:::ir and let

r be the total number of sampling stages.

Zi1:::il =
X
il+1

Zi1:::ilil+1 =
X

il+1;:::;ir

Zi1:::ir ;

¹Zi1:::il =
1

ni1:::il
Zi1:::il ;

si1:::il =
X
il+1

(Zi1:::il+1 ¡ ¹Zi1:::il)
T (Zi1:::il+1 ¡ ¹Zi1:::il):

Suppose that

f¤i1:::il =

(
fi1:::il if the sampling in the i1:::il unit is WOR

0 otherwise

For the WR design, regardless of the number of sampling stages, the variance

of the score is given by

V ar(L0) =
X
i1

ni1
ni1 ¡ 1

si1:

For the WOR design, for compactness, we describe the variance of the score

for a strati¯ed 3 stage sampling design

V ar(L0) = V1 + V2 + V3;

where

V1 =
X
i1

(1¡ f¤i1)
ni1

ni1 ¡ 1
si1
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V2 =
X
i1;i2

(1¡ f¤i1i2)f ¤i1
ni1i2

ni1i2 ¡ 1
si1i2

V3 =
X
i1;i2;i3

(1¡ f¤i1i2i3)f¤i1f ¤i1i2
ni1i2i3

ni1i2i3 ¡ 1
si1i2i3

For the WORUNEQ design we describe the variance of the score again for a

strati¯ed 3 stage sampling design. The probability that PSU i2 in stratum

i1 is selected is denoted by pi2ji1. The probability that both PSUs i2 and i
0
2

in stratum i1 are selected in the sample is denoted by pi2i02ji1

V ar(L0) = V1 + V2 + V3;

where

V1 =
X
i1

X
i2

X
i02>i2

pi2ji1pi02ji1 ¡ pi2i02ji1
pi2i02ji1

(Zi1i2 ¡ Zi1i02)2

V2 =
X
i1;i2

(1¡ f¤i1i2)pi2ji1
ni1i2

ni1i2 ¡ 1
si1i2

V3 =
X
i1;i2;i3

(1¡ f ¤i1i2i3)pi2ji1f ¤i1i2
ni1i2i3

ni1i2i3 ¡ 1
si1i2i3:

The above estimation method hinges on the approximation (1) of the

total score, which can be achieved if the number of PSU units is large and the

residuals of the score estimation within each PSU units satisfy Lindeberg's

extension of the central limit theorem (see Feller, 1968). If the number of PSU

units is small however the PML parameter estimates can be substantially

biased.

3 Factor Analysis Simulation Study

In this section we will evaluate the performance of the PML estimator for a

two-stage WOR design for a factor analysis model. The model is described
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as follows

Yij = ¹j + ¸j´i + "ij (3)

where i = 1; :::; n, n is the sample size, and j = 1; :::; 5, i.e., the observed vec-

tor for each individual is of dimension 5. Here ¹j is the intercept parameter,

¸j is the loading parameter, ´i is the factor variable, and "ij is the residual

variable. The variables ´i and "ij are normally distributed zero-mean vari-

ables with variances Ã and µj respectfully. The parameters we use for this

simulation study are as follows

£ = (¹1; :::; ¹5; ¸1; :::; ¸5; µ1; :::; µ5; Ã) = (4)

(2; 2:7; 3:3; 4:5; 5:5; 1; 0:7; 1:3; 1:5; 0:5; 1; 1; 1; 1; 1; 1:2):

First we describe the target and the sample populations. We generate a mul-

tivariate target population of 50000 individuals with 5 normally distributed

outcomes with mean and variance given by model (3) with parameter values

given by (4). We impose the following two-level population structure on the

target population. We group the observations into 140 PSUs, the ¯rst 120

are of size 250 and the remaining 20 are of size 1000. The observations are

not placed at random in the PSUs. They are placed according to an ordering

based on a function f . That is, the ¯rst 250 observations with the highest val-

ues of f are placed in PSU 1, the second highest 250 are placed in PSU 2, etc.

After all 120 PSUs of size 250 are formed we form the remaining 20 PSUs of

size 1000 again according to the order given by the f function. This method

of constructing target population was used in Smith and Holmes (1989). The

choice of f is to some extent critical to the type of sampling we get. Suppose

that f is instead a random function independent of Y . The multi-stage sam-
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pling will then be equivalent to simple random sampling (SRS). In a model

with dependent variable Y and independent variable X , a function f that

depends only onX but not on Y produces non-informative random sampling.

The only way to produce informative sampling is to choose f which depends

on Y in addition to perhaps other variables. In this target population we

choose fi =
P
j Yij, which clearly induces informative sampling.

The target population is sampled with a two-stage WOR design. Equal

probability sampling is used at each stage. We vary the number m of PSUs

included in the sample while the number of units sampled from the i¡th
PSU remains constant, ni = 10. The total sample size is thus n = 10m.

The ratio between the sampling weights in the large PSUs and the sampling

weights in the small PSUs is 4. We use 500 replications, i.e., we sample the

target population 500 times and calculate the PML estimates and their 95%

con¯dence intervals.

||||||||||| Insert Table 1 and 2 |||||||||||

Table 1 shows the bias of the PML parameter estimates and Table 2 shows

the coverage of the PML con¯dence intervals. We see that the performance of

the PML method is very good, bias is almost non-existent and the coverage

for the con¯dence intervals is in line with expectation. The only exception

is the estimation of the Ã parameter which has larger bias and consequently

lower con¯dence interval coverage for samples with small number of PSUs.

In the next section we explore further the bias that arises in model estimation

from samples with small number of PSU.
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4 Small Number of PSUs

In this section we explore di®erent estimation techniques for dealing with

bias that arises in small number of PSUs samples. We conduct a simulation

study similar to the simulation study conducted in the previous section. For

simplicity we use a two-stage WR design on a smaller target population. Here

again equal probability sampling is used at each stage. The target population

of size 10000 is generated as in the previous section and 14 PSUs are formed,

12 of size 500 and 2 of size 2000. The sample population again has a varying

number m of PSUs while the number of units sampled from the i¡th PSU
remains constant, ni = 50. The total sample size is n = 50m. We use 500

replications in this simulation study as well. To be able to compare various

estimating techniques we choose a basic regression model for Y1 and Y2

Y1 = ®+ ¯Y2 + ":

Using the whole target population we get the true values of the parameters

as ® = 0:56 and ¯ = 0:54. The variance parameter of the residual " is not

included in this investigation because the methods implemented in SUDAAN

do not provide an estimate for this parameter. We compare four di®erent

estimation methods. The ¯rst method is the PML method implemented in

Mplus. The second method is the GEE method implemented in SUDAAN.

This method is based on general estimating equations which are identical to

the PML score equations and as our simulation study con¯rms the results

produced by the two methods are identical. This observation is valid also

for other models such as logistic regression. The third method is the GEE

method with exchangeable correlation implemented in SUDAAN. We denote
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this method by GEE-Ex. The RSTEPS parameter that this method depends

on did not a®ect the results in our simulation signi¯cantly and thus we only

report the results we obtained with the default RSTEPS=1.

The forth estimation method we examine in this simulation study is a

bias corrected PML method (BC) that we describe here. The ¯rst step of

the BC estimation method is to construct estimates for the mean and the

variance/covariance of Y1 and Y2, by estimating the bias of the PML mean

and variance/covariance estimates. We illustrate this for a single Y variable.

The PML estimate for the mean is

¹̂PML =

P
i wiYiP
iwi

:

The BC estimate for the mean is then

¹̂BC =

P
i wiYiP
i wi

¡ Ĉ0;

where Ĉ0 is an estimate for the bias C0 of the PML estimate, i.e., if ¹ is the

mean of Y

C0 = E
µP

i wiYiP
i wi

¶
¡ ¹:

The term C0 is of the form

C =
Ẑ1

Ẑ2
¡ E(Ẑ1)
E(Ẑ2)

:

Formula 6.33 in [C] provides a method for estimating such a quantity. An

asymptotic estimate for C is

1

Ẑ22

Ã
V ar(Ẑ2)

Ẑ1

Ẑ2
¡ Cov(Ẑ1; Ẑ2)

!
:

Both Z1 and Z2 are estimates of the total quantity for the variables Y and

the constant variable 1. Thus the variance/covariance terms above can be
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estimated just as the variance/covariance of the total score estimates given

in Section 2. These estimates take into account the sampling design. The

PML estimate for the variance is

v̂PML =

P
i wiY

2
iP

iwi
¡
ÃP

i wiYiP
i wi

!2
:

The BC variance estimate is

v̂BC =

P
i wiY

2
iP

iwi
¡
ÃP

iwiYiP
i wi

!2
¡ Ĉ1;

where Ĉ1 is an estimate of the second order moment bias of the ¯rst termP
iwiY

2
i =

P
i wi constructed just as the bias estimate for the mean. The co-

variance term is estimated from the multivariate version of the above formula.

Once the mean and the variance/covariance estimates for Y1 and Y2 are con-

structed, we estimate the parameters µ=(®,¯) by minimizing the quasi ML

¯t function

F (µ) = tr(v̂BC v(µ)¡1)¡ log jv̂BCv(µ)¡1j+(¹̂BC¡¹(µ))Tv(µ)¡1(¹̂BC¡¹(µ));

where ¹(µ) and v(µ) are the vector mean and variance of the (Y1; Y2) vector

expressed in terms of the model parameters µ and the following auxiliary

parameters: the mean Y2, the variance of Y2, and the variance of the residual

in the above regression equation.

We study the properties of these four estimators for samples with small

number of PSUs. Tables 3 and 4 show the bias and the MSE of the four

estimators on samples with 5, 10, 15, and 20 PSUs. The PML method and

the GEE method, as expected, produce identical results not only on average

but in individual replications as well and are reported in the same column.

13



The bias of the PML/GEE estimator is present for both the intercept and the

slope even for m = 20 but as expected this bias decreases as the number of

PSUs increases. The bias of the BC estimator is almost non-existent except

for m = 5. The BC method outperforms the PML/GEE estimator in terms

of both MSE and bias in this simulation. The BC method, however, may not

outperform the PML method in all situations. Examples in Cochran (1977)

show that sometimes this method reduces the bias while increasing the MSE

of the estimates. The estimator GEE-Ex performs very poorly. This method

produces large bias for both parameters and large MSE. It seems also that

this bias does not disappear as the number of sampled PSUs increases. A sim-

ulation study based on a logistic regression model produced the same results.

The PML/GEE method performed well as the number of PSUs increases for

logistic regression as well. In contrast the GEE-Ex method produced large

bias regardless of the number of PSUs in the sample.

||||||||||| Insert Table 3 and 4 |||||||||||

5 Likelihood Ratio Test in Multistage Sam-

pling

Hypotheses involving several parameters are frequently tested in multivariate

modeling. Wald's test can be used for such testing if the asymptotic vari-

ance/covariance of the parameter estimates is available. Wald's test however

requires additional calculations, which sometimes are quite complex. One
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such example is the test of a factor analysis model against an unrestricted

covariance model. When maximum-likelihood estimation is performed how-

ever the likelihood ratio test (LRT) can be obtained without additional com-

putations and this test is frequently used for complex hypothesis testing.

In this section we show how the pseudo maximum likelihood can be used

to perform LRT for multistage sampling designs. The distribution of the

LRT statistic based on the maximized weighted log-likelihood value is not

a chi-square distribution. This distribution depends on the sampling design

just as the asymptotic covariance of the parameter estimates depends on the

sampling design. Here we describe an adjustment of the LRT statistic which

takes into account the sampling design and produces a test statistic with a

chi-square distribution. This adjustment is constructed similarly to the ad-

justments of the Yuan-Bentler (2000) and the Satorra-Bentler (1988) robust

chi-square tests for mean and variance structures. Similar ¯rst and second

order adjustments are described also in Rao-Thomas (1989) for contingency

tables.

We assume a general hypothesis testing for two nested models M1 and

M2. Let µi be the true parameter values and µ̂i the parameters estimates for

model Mi that maximize the pseudo log-likelihood function Li. Let di be the

number of parameters in model Mi. The corrected LRT statistic is

T ¤ = c ¢ 2(L1 ¡ L2); (5)

where c is the correction factor

c =
d1¡ d2

Tr((L001)¡1V ar(L01)) ¡ Tr((L002)¡1V ar(L02))
: (6)

The statistic T ¤ has approximately a chi-square distribution with d1 ¡ d2
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degrees of freedom. The components Tr((L00i )
¡1V ar(L0i)) are easily available

since they are part of the asymptotic covariance for the parameter estimates

given in (2). Justi¯cation for this approximation is given in the Appendix.

We demonstrate the importance of the LRT adjustment with a simple

simulation study which incorporates both cluster and strati¯ed sampling. For

simplicity we use a single outcome variable and compare the mean and the

variance of this outcome across two groups. Each of the two groups contains

three strata. Within each stratum we sample at random entire clusters. For

example the two groups can be private and public schools, the strata can

be di®erent regions in the country, the clusters can be the classrooms and

the students can be the individual observations. While in this example the

groups actually contain entire strata and clusters, this doesn't necessarily

have to be the case. For example the grouping variable could be gender

which is not nested above the strata and the cluster variables.

All six strata in our simulation study have equal size and we sample 200

observations from each by cluster sampling. Within each stratum the clusters

are of equal size. We denote the size of the clusters in stratum s in group g

by nsg. The cluster sizes in the six strata are as follows n11 = 5, n21 = 10,

n31 = 20, n12 = 10, n22 = 20, n32 = 40. The distribution of observations i in

cluster j in stratum s in group g is described by

Yijsg = ¹sg + ´jsg + "ijsg

where ´jsg and "ijsg are zero mean normally distributed variables with vari-

ance 1, and the parameters ¹sg are as follows ¹11 = 1, ¹21 = 2, ¹31 = 3,

¹12 = 0, ¹22 = 2, ¹32 = 4. Given our choice of parameters the total mean

in the two groups is 2. The total variance of y is, however, larger in the
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second group. We test two hypotheses by LRT. The ¯rst hypothesis T1 is

that the means in the two groups are equal and is also known as the Behrens-

Fisher problem, see Sche®e (1970). The second hypothesis T2 is that both the

means and the variance parameters are equal in the two groups. The ¯rst

test should not reject the hypothesis because the means are indeed equal.

The second test should, however, reject the hypothesis because the variances

are not equal. In addition the test statistic T1 should have a chi-square dis-

tribution with 1 degree of freedom because it tests just one constraint. Test

statistic T2 has two degrees of freedom because it tests two constraints. The

null hypothesis for the second test is not correct however and therefore the T2

test statistic is not expected to have a chi-square distribution with 2 degrees

of freedom. This test statistic is expected to be su±ciently large so that the

test is rejected.

To evaluate the e®ect of strati¯cation and clustering on the test we com-

pare ¯ve di®erent methods for computing the LRT statistic. These methods

are as follows.

² Method A. Adjusted robust LRT which takes both the clustering and
the strati¯cation into account.

² Method B. Adjusted robust LRT which takes only the clustering into
account and ignores the strati¯cation.

² Method C. Adjusted robust LRT which takes only the strati¯cation into
account and ignores the clustering.

² Method D. Adjusted robust LRT which ignores both the clustering and
the strati¯cation.
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² Method E. Unadjusted LRT.

The results of the simulation study are presented in Table 5. We report

the average values of the T1 and T2 test statistics over 500 replications and the

rejection rates for the two tests based on the 5% rejection level. As expected

method A performs correctly producing a test statistic T1 with an average

value of approximately 1 and rejection rate of approximately 5%, while all

the other methods produced erroneous results. From the table we clearly

see that including the strati¯cation information results in an increase of the

LRT statistic and the rejection rates, while including the cluster information

decreases the LRT statistic and the rejection rates. The result of not includ-

ing the strati¯cation information in the ¯rst test is that there are virtually

no rejections, while the result of not including the cluster information is that

the test rejects the null hypothesis incorrectly an additional 47% of the time

above the nominal 5% level. Methods D and E both produce rejection rates

that are too high and in our simulation the results of the two methods are

quite close.

The most important e®ect of strati¯cation is actually seen in the second

test. Methods C, D and E all have in°ated power largely because the cluster-

ing information is ignored. Method A rejects 76% of the time for this sample

size. As the sample size increases this rejection rate converges to 100%. Not

including the strati¯cation information in method B results in a decrease of

power. As a result of that, method B does not reject the second hypothesis

as it should an additional 26% of the time.

It is clear from Table 5 that the sampling features in complex sampling

designs can a®ect dramatically the distribution of the LRT statistics and
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erroneous conclusions can be reached if the sampling features are not ac-

counted for. The adjusted LRT statistic provides an e®ective solution for

hypothesis testing with complex sampling data. The LRT adjusted statistic

is implemented in Mplus, Version 3 (Muthen & Muthen, 1998-2004) for a

wide variety of models and complex sampling designs.

||||||||||| Insert Table 5 |||||||||||

6 Conclusion

In this article we demonstrated how the PML estimator can be used with

the three basic complex sampling designs WR, WOR and WORUNEQ. The

PML estimator can be utilized in advanced multivariate statistical modeling

to properly account for various features of complex sampling designs. The

PML parameter estimates are a®ected only by the sampling weights while

their standard errors are adjusted to re°ect the e®ects of strati¯cation, clus-

ter sampling, multistage sampling, ¯nite population sampling and unequal

probability sampling. Our simulation studies showed that the PML method

performs very well as long as the number of PSUs is not small. When the

number of PSUs is small alternative estimator such as the bias corrected PML

method described here are preferable. Our comparison with the method im-

plemented in SUDAAN showed that the GEE method is equivalent to the

PML method for linear and logistic regression. The GEE with exchangeable

correlation method performed poorly in our simulation study. The main ad-
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vantage of the PML method however is its generality. This method can be

used to estimate any parametric model.

In this article we described an adjustment to the LRT statistic which

takes into account the complex sampling design. The unadjusted LRT can

lead to erroneous results when analyzing survey data, while the adjusted

LRT performs correctly. Because of its simplicity of use, the adjusted LRT

is a valuable alternative to other methods such as Wald's test.

The PML extension described in this article and the LRT adjustment

can also be used for multilevel models via the multilevel pseudo maximum-

likelihood method described in Grilli and Pratesi (2004) and Asparouhov

(2005b).
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7 Appendix

We follow the ideas of Yuan-Bentler (2000) to derive a general LRT correction

based on the PML method under complex sampling. The arguments below

also apply to any consistent estimator obtained by maximizing an objective

function l. Such estimators are called extremum estimators; see Amemiya

(1985), Chapter 4.

We assume a general hypothesis testing for two nested models M1 and

M2. Let µi be the true parameter values and µ̂i the parameters estimates

for model Mi that maximize the pseudo log-likelihood function Li. We are

interested in the asymptotic distribution of the test statistic T = 2(L2(µ̂2)¡
L1(µ̂1)) that can be used to test the more restricted modelM1 versus the less

restricted model M2. More speci¯cally we are interested in the asymptotic

distribution of T when M1 is correct. Since M1 is correct µ2 is a function of

µ1 and L1(µ1) = L2(µ2). Let ¢ = @µ2=@µ1. Let Si = @Li(µ)=@µi and Hi =

¡n¡1@2Li(µ)=(@µi)2. Given some basic regularity conditions (see Amemiya,
Theorem 4.1.3) we have that

p
n(µ̂i ¡ µi) = Op(1); (7)

where n is the number of observations. Using the Taylor expansion we get

that

Li(µ̂i) = Li(µi) + Si(µi)(µ̂i ¡ µi)¡ 1
2
n(µ̂i ¡ µi)THi(µi)(µ̂i ¡ µi) + op(1) (8)

and

0 = Si(µ̂i) = Si(µi)¡ nHi(µi)(µ̂i ¡ µi) + op(
p
n) (9)
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Solving equation (9) for Si(µi) and substituting that in (8) gives us

Li(µ̂i) = Li(µi) +
1

2
n(µ̂i ¡ µi)THi(µi)(µ̂i ¡ µi) + op(1) (10)

Now

T = n(µ̂2 ¡ µ2)TH2(µi)(µ̂2 ¡ µ2)¡ n(µ̂1 ¡ µ1)TH1(µi)(µ̂1 ¡ µ1) + op(1) (11)

The chain rule for di®erentiation gives us

S1 = ¢S2: (12)

Solving (9) for Si(µi) and substituting in (12) we get that

H1(µ1)
p
n(µ̂1 ¡ µ1) = ¢H2(µ2)

p
n(µ̂2 ¡ µ2) + op(1) (13)

Solving now equation (13) for
p
n(µ̂1 ¡ µ1) and substituting in (11) we get

T = n(µ̂2¡ µ2)T
µ
H2(µ2)¡H2(µ2)¢TH¡1

1 (µ1)¢H2(µ2)
¶
(µ̂2¡ µ2)+op(1) (14)

From equation (9) we also see that the asymptotic distribution of

p
n(µ̂i ¡ µi)! N(0; Vi) (15)

where

Vi =
1

n
Hi(µi)

¡1V ar(Si(µi))Hi(µi)
¡1 (16)

Elementary matrix algebra shows that the asymptotic distribution of T is

X
i

¸iÂ
2
1i (17)

where Â21i are independent chi-square distributed random variables and ¸i

are the eigenvalues of

E = V2

µ
H2(µ2)¡H2(µ2)¢TH¡1

1 (µ1)¢H2(µ2)
¶
: (18)
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The p-values of this distribution are easy to compute following a method

developed in Imhof (1961). Because µ1 and µ2 are not known we use µ̂1 and

µ̂2 in equation (18).

By equation (9) we get that Si(µi) = Op(
p
n): The chain rule for the

second derivative gives us

H1(µ1) = ¢
TH2(µ2)¢ + n

¡1S2@2µ2=(@µ1)2 = ¢TH2(µ2)¢ + op(1) (19)

This leads us to the following alternative computation of E

E2 = V2

µ
H2(µ2)¡H2(µ2)¢

T (¢H2(µ2)¢)
¡1¢TH2(µ2)

¶
= E + op(1): (20)

While asymptotically equations (18) and (20) are equivalent, they will lead

to di®erent results for ¯nite sample size. It is not clear which one of the two

should be preferred in speci¯c applications.

Instead of computing the exact p-value of the weighted chi-square distri-

bution (17) we can use the following adjusted test statistic. Let

T ¤ =
dP
i ¸i
T =

d

Tr(E)
T: (21)

where d is the number of parameter restrictions model M1 imposes, i.e., d

is the di®erence between the number of parameters in the two models. The

ratio

c =
Tr(E)

d

is the correction factor. The distribution of T ¤ is approximated by a chi-

square distribution with d degrees of freedom and thus its p-values are read-

ily available. Again we can use E2 in formula (21) instead of E and get an

asymptotically equivalent statistic which in ¯nite sample size may be sub-

stantially di®erent.
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Now we derive one more formula for computing T ¤. Using equations (12)

and (16) we get that

H1(µ1)V1H1(µ1) = ¢H2(µ2)V2H2(µ2)¢
T : (22)

Now using formula (18) and (22) we get that

Tr(E) = Tr(V2H2(µ2))¡ Tr(V2H2(µ2)¢TH¡1
1 (µ1)¢H2(µ2)) =

Tr(V2H2(µ2)) ¡ Tr(¢H2(µ2)V2H2(µ2)¢
TH¡1

1 (µ1)) =

Tr(V2H2(µ2))¡ Tr(V1H1(µ1)):

Again since µ1 and µ2 are not know we approximate with µ̂1 and µ̂2

Tr(E) = Tr(V2H2(µ̂2))¡ Tr(V1H1(µ̂1)): (23)

Formula (23) is the same as formula (5) and is also the formula implemented

in Mplus. This formula has several advantages. It is computationally more

e±cient then formulas (18) and (20) because it does not involve the computa-

tion of ¢. It can also be used to easily compute the proper LRT adjustment

when two nested hypothesis are involved as follows. Suppose that we have

three models M1, M2 and M3 and we have the test statistics T
¤
1 and T

¤
2 for

testing M1 versus M3 and M2 versus M3. Suppose that the LRT statistics

have been computed according to formulas (21) and (23). Let the correc-

tion factors be c1 and c2 and the degrees of freedom d1 and d2. We want

to compute the LRT statistic T ¤ for testing M1 versus M2. Let the degrees

of freedom for that test be d and the correction factor be c. We have that

d = d1 ¡ d2 and

cd = Tr(V2H2(µ̂2))¡ Tr(V1H1(µ̂1)) = (Tr(V3H3(µ̂3))¡ Tr(V1H1(µ̂1)))¡

24



(Tr(V3H3(µ̂3))¡ Tr(V2H2(µ̂2))) = c1d1 ¡ c2d2:

Thus

c =
c1d1 ¡ c2d2

d

and

T ¤ =
c1T

¤
1 ¡ c2T ¤2
c

:

The exact same approach was outlined in Satorra-Bentler (1999) when ap-

plied to the Satorra-Bentler (1988) chi-square statistic.
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Table 1: Bias of PML Parameter Estimates for Factor Analysis Model

n m ¹3 ¸3 µ3 Ã

200 20 0.054 0.045 -0.028 -0.129

500 50 0.007 0.009 -0.011 -0.035

1000 100 0.001 -0.003 -0.004 0.003

1400 140 0.003 -0.001 -0.001 0.003

Table 2: Coverage of PML 95% Con¯dence Intervals for Factor Analysis

Model

n m ¹3 ¸3 µ3 Ã

200 20 0.882 0.908 0.912 0.746

500 50 0.940 0.924 0.928 0.850

1000 100 0.950 0.950 0.946 0.926

1400 140 0.954 0.948 0.968 0.952

Table 3: Bias and Mean Squared Error for the Intercept in Linear Regression.

PML/GEE PML/GEE GEE-Ex GEE-Ex BC BC

m Bias MSE Bias MSE Bias MSE

250 5 0.434 0.632 1.576 2.855 0.179 0.442

500 10 0.220 0.281 1.634 2.889 0.016 0.211

750 15 0.132 0.185 1.664 2.902 -0.028 0.157

1000 20 0.103 0.131 1.675 2.917 -0.026 0.111
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Table 4: Bias and Mean Squared Error for the Slope in Linear Regression.

PML/GEE PML/GEE GEE-Ex GEE-Ex BC BC

n m Bias MSE Bias MSE Bias MSE

250 5 -0.237 0.130 -0.672 0.466 -0.133 0.123

500 10 -0.125 0.063 -0.656 0.440 -0.036 0.059

750 15 -0.072 0.040 -0.642 0.419 -0.002 0.038

1000 20 -0.061 0.027 -0.649 0.427 -0.004 0.024

Table 5: E®ect of Strati¯cation and Clustering on the Chi-Square Test

Method A B C D E

T1 Average 1.042 0.349 9.141 5.052 4.984

T1 Rejection 0.054 0.002 0.524 0.380 0.380

T2 Average 12.827 8.057 75.884 61.236 53.856

T2 Rejection 0.760 0.500 0.990 0.982 0.980
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