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Abstract

This paper generalizes the robust weighted least-squares (WLS) approach of Muthén
(1993) beyond the binary factor analysis model to the general structural equation model
considered in Muthén (1984). A key feature in this generalization is the addition of
covariates by which the means of the outcome variables can vary across the individuals
of the sample. The paper relates the robust WLS approach to a generalized estimating
equation (GEE) approach recently proposed by Melton and Liang (1997) both with
respect to statistical performance and computational speed. It is shown that except
for small sample sizes and strongly skewed distributions, the robust WLS approach
performs statistically almost as well as GEE, produces good standard error estimates,
but gives considerably faster computations. While in the Melton and Liang (1997) GEE
context model testing is not straight-forward and was not pfovided, robust chi-square
model testing is easily obtained in the WLS approach. As in Muthén (1984), the robust
WLS approach is quite general in that it allows for a combination of binary, ordered

polytomous, and continuous outcome variables and allows for multiple-group analysis.






1 Introduction

Efficient estimation in latent variable models with categorical outcomes is in need of
further study given the lack of algorithms that are both statistically sound and compu-
tationally fast for realistic-sized models. This paper contributes to this research area by
studying the performance of estimators suitable for large models and for samples that
are not large. The problem is conveniently introduced by focusing on the case of binary
outcomes for a factor analysis model.

Consider an i.i.d. sample of size n for the p-dimensional vector y of binary variables

scored 0 or 1 and define the observation vector d;,
Yi1
yip
d; = Yi2Yi1 (1)

Yi3Yi1
Yi3Yi2

yipyip—— 1

so that the vector of univariate and bivariate proportions in the sample may be expressed

as
p=n_! Z d; (2)
=1

A conventional unbiased and consistent estimator of V' (d;) can be formed as

n

V(di) = (n=1)7' 3_(d: — d)(di — d) (3)

=1

Let 7 denote the vector of univariate and bivariate probabilities corresponding to (2).



Christoffersson (1975) considered a binary factor analysis model for y where the model
may be formalized as 7(k), where k represents the model parameters. Christoffersson

(1975) considered the generalized weighted least-squares fitting function

Fwis,, = (p— (k) W, (p — (k) (4)

When W, = T, with I, denoting the asymptotic covariance matrix for p, the

asymptotic variance matrix for the parameter estimates is
aV(R) =n"H (AT A,)7 (5)

where

A, = 0m(k)/0K (6)

This variance estimator is sometimes referred to as the naive or model-based form. A
consistent estimator of I" can be obtained as the sample covariance matrix of d; given
in (3).

Let F(k) be the minimum of (4). When W, is a consistent estimator of I';,
G =nF(R) (7)

is asymptotically distributed as chi-square and provides a goodness-of-fit statistic for
model testing.
Muthén (1978) considered a linearization of the binary factor model and the analo-

gous fitting function

Fiss, = (s = o)) W;'(s - () ®)



where o represents population thresholds and tetrachoric correlations and there is a
one-to-one transformation between 7 and o. Similarly, s is defined to be the transfor-
mation of p, so that s is the sample counterpart to o. The fitting function of (8) is
somewhat advantageous to (4) computationally because (k) of (4) involves univariate
and bivariate integrals that need to be evaluated at each iteration. For (8), I'y may be

estimated as

£y = V(s) = (g5 () o] ©)

inserting estimated parameters in [(%;f—,]. The variance matrix of the estimates and a
chi-square test of model fit are obtained analogous to (5) and (7). Muthén (1984) used
analogous approaches for variance computations and chi-square testing in more general
structural equation models and models including covariates.

However, Muthén (1993) pointed out that using W = I' is disadvantageous with
binary y variables for both statistical and computational reasons. The matrix I' has no
simple pattern and for a large number of y variables it is very large. Poor estimation of
T is obtained unless the sample size is very large. Also, (5) shows that W = I' needs
to be inverted which can be time consuming with many y variables. For small samples
and very low or high probgbilities, this matrix may also be singular.

Inspired by Satorra (1992), Muthén (1993) proposed an alternative, robust approach
to variance calculation and chi-square model testing using the estimator in (8). The
robust formulas are as follows for a general weighted least-squares fitting function; for

general references on the underlying theory, see, e.g. Browne (1982, 1984) and Satorra

(1989, 1992).



It is well-known that a Taylor expansion gives the asymptotic covariance matrix for

the estimated parameter vector & obtained by (4) or (8),
aV(k) =n HA'WIA)TA'WITWIA(A'WA) ! (10)
where
A =0u(k)/0k (11)
where in our application I is the asymptotic covariance matrix of either p or s and with
p representing either 7t or o. This provides robust estimation of parameter standard
erTors.

If W =T, the robust expression (10) simplifies to (5). In (10), however, we note
that W and I' are not the same. This gives two important advantages: I' need not
be inverted and W can be chosen as a matrix which is easy to invert. Muthén (1993)
considered W = 1.

Furthermore (cf. Satorra, 1992), a robust goodness-of-fit test is obtained as the

mean-adjusted chi square defined as

Gum =nF(k)/a (12)
where
a = tr[UT)/d (13)
with
U=W'-wla@Awl!la)'A'wW1) (14)

and where d is the degrees of freedom of the model. A mean- and variance-adjusted
goodness-of-fit statistic is defined as
Guv = [d/tr(UT)*)|nF(R) (15)
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where in this case d is computed as the integer closest to d*,
d* = (tr(UT))?/tr((UT)?) (16)

Again, it is seen that neither Gy nor Gy require inversion of I' but only of W.

Muthén (1993) performed a Monte Carlo study which showed that the robust vari-
ance expression (10) applied to the estimator in (8) gave considerably better sampling
behavior for the estimated standard errors than using the naive form (5). Furthermore,
the mean-adjusted chi-square test G of (12) gave considerably better chi-square perfor-
mance than using (7). Unfortunately, this approach was not incorporated into generally
available structural equation modeling software.

We may note that the estimator & using (4) is obtained by setting the first-order

derivatives of F s, with respect to & to zero, resulting in the expression

AW (p—m) =Y AW (d; - ) = 0 (17)

i=1
where the subscript p is dropped for simplicity. This indicates the connection with
quadratic estimating equations for k, a method which has recently been proposed by
Melton and Liang (1997) for the analysis of structural equation models with binary
outcomes. The details of the Melton-Liang generalized estimating equations (GEE)
approach will be reviewed below. The GEE approach of Melton and Liang (1997) uses a
robust variance estimator similar to (10). Melton and Liang (1997) carried out a Monte
Carlo study to show that these standard errors performed considerably better than the
standard errors based on the naive form of (5) as used in Muthén (1978, 1984).

In this paper, we will generalize the robust weighted least-squares (WLS) approach

of Muthén (1993) beyond the binary factor analysis model to the general structural
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equation model considered in Muthén (1984). A key feature in this generalization is
the addition of covariates by which the means of the outcome variables can vary across
the individuals of the sample. We will relate this robust WLS approach to the Melton-
Liang GEE approach both with respect to statistical performance and computational
speed. Computational considerations are important given that multivariate latent vari-
able models with categorical outcomes are computationally demanding. It will be shown
that the robust WLS approach performs statistically almost as well as GEE, but gives
considerably faster computations. While in the Melton and Liang (1997) GEE context
model testing is not straight-forward and was not provided, robust chi-square model
testing is easily obtained in the WLS approach. As in Muthén (1984), the proposed
robust WLS approach is quite general in that it allows for a combination of binary,
ordered polytomous, and continuous outcome variables and allows for multiple-group

analysis.
2 The Muthén (1984) Model

This section briefly reviews the essential parts of the Muthén (1984) general structural
equation model and its estimation. For simplicity, the discussion focuses on binary
outcome variables.

Consider an i.i.d. sample of size n for the p-dimensional vector y of binary observa-
tions scored 0 or 1 and assume that the binary responses are realizations of underlying
continuous random variables. Let y; be the vector of observed binary responses for
experimental unit 4,4 = 1,2,...,n and y} be an underlying continuous variable.

Denote typical elements of y; and y} by y;; and Y5, J =1,2,...,p, respectively. If



y;; exceeds a threshold value 7;, then y;; equals one, otherwise y;; equals zero.

The measurement part of the model is given by

. . 1 if yt > 7
Y; =Ani+€i’ 1=1,2,...,n, y¢j={0 Cl:z‘é J , (18)

and where A is a p x m matrix of measurement slopes, 7; is an m x 1 vector of latent
variables for experimental unit i, €; is a p X 1 vector of residuals. Note that the model
does not contain an intercept term since intercepts and threshold parameters are not
jointly identifiable.

The structural part of the model is given by
m; =oa+Bn, +Tx; + (19)

where a is an m X 1 vector of latent variable intercepts, B is an m x m matrix of
dependent latent variable slopes with zero diagonal elements. It is further assumed that
I — B is non-singular, I' is an m X ¢ matrix of covariate slopes, x; is a ¢ x 1 vector of
observed covariates for experimental unit i, and ¢; is a vector of latent variable residuals.

Expressions for the mean vector p} and covariance matrix X} of y; conditional on
x; are derived under the assumption that €, €, ..., €,, are i.i.d. distributed with mean
zero and diagonal covariance matrix ©, that ¢;,¢,,...,¢,, are i.i.d. distributed with
mean zero and covariance matrix ¥, and that €; and ¢, are uncorrelated. Under the

distributional assumptions given above it follows that
p;=A(I-B)'a+A(I-B) 'I'x (20)

i =AI-B)'¢(I-B)!A'+0 (21)



Let p;; denote the first-order conditional moment of y;; given x;,

pii = E(yi|x) =1 -Plyy=1]x)+0-Ply; =0 x)

P(y; > 75 | xi) (22)
o0
= / f(y; pajy 0355)dy
Tj
Because the variance of y}; is not identifiable when binary data is observed it is assumed
that ¥} has unit diagonal elements and hence ¢}, = 1,7 =1,2,...,p. It follows that

igj

pij = / $(2)dz

Ti— M
= &(-7;+ /‘L:j) (23)
Denote the second conditional moment of y;; and y; given x; by o;jx. Then
Oijk = E(Yijvir | Xi) — fij ik, | (24)
where

E(yyya | x) =1-Plyy=Llyx=1|x)+0

= P(y:j > T Uik > Tk | Xi)

oo

= [ J 9(21,Z2|Xi;0fjk)dzld22 (25)

TiHi; Th—Hik
— B*( . * . * . %
= O*(—7; + pij; — Tk + Wik Thx),

where ®(a, b, p) denotes the probability that P(z; < a, 2o < b) and where ( ) denotes a

21
22
random variate which has a standardized bivariate normal distribution with correlation

coefficient p.



3 Generalized Estimating Equations Applied to the
Model of Muthén (1984)

This section briefly reviews the Melton and Liang (1997) GEE estimator for binary
outcome variables as applied to the model of Muthén (1984).
Let
Yi1
Yi = y;i2 ) (26)

yip

(Yi2 — pa2) (Yar — i)
5 = (yis — .U'z'S):(yil — pa1) ’ o)

(yip — pip) (Yip—1 — Mip—1)

where s; is a p(p — 1)/2 vector of empirical second-order moments for individual i.

Let

where the px 1 and p(p—1)/2 x 1 vectors p; and o; have typical elements ;; (see (23))
and o;ji (see (24)) respectively.
Let k be a vector of parameters for the model in (18) - (21) and consider the following

fitting function based on quadratic estimating equations

F(k) = ieéW{lei, (29)

i=1



where we define a working weight matrix as

(Wi 0 )
Wl—_( 0 Wix (30)

W1, is the working covariance matrix of y;,
Winlie = pij(1—pj), j=k

= Oijk, J 7£ k (31)

W9, is a diagonal working covariance matrix of s; with all non-diagonal elements equal

to zero and diagonal elements equal to

[Winalinse = E(sx) — 05k (32)

where the subscripts jk,jk = 1,2,...,p(p — 1)/2 correspond to the elements (y;; —
tis) (Yie — tax) of s;.
From (29) to (32) it follows that

n

F(KZ) = ZeQIW{llleﬂ -+
1=1

{i e/ [Wi22]l,l} , (33)
1 (=1

1=

where p* =p(p — 1)/2.

Let

A; = [A;1 Aéz], (34)
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where

ou; oo,
Nt o= L 35
A‘Ll a b A‘LQ a ( )

The sets of estimating equations are derived by setting the derivative of F(k) with

respect to k equal to the null vector. From (33) through (35) it follows that

oF

= 36
e~ 0 (36)
gives the estimating equations
> AW e; =0, (37)
i=1
and hence
Y A Wiien =0, (38)
i=1
and
> ApWisen =0. (39)

i=1

Solutions to the equations (38) and (39) cannot be obtained in closed form and
therefore an iterative procedure has to be used to obtain estimates of the unknown
parameters. Melton and Liang (1997) proposed an iteratively re-weighted least squares
approach where W;, u., and o; are updated as the model parameter values are updated.

This algorithm can also be characterized as a Gauss-Newton or Fisher scoring approach

11



with expected Hessian matrix C,

C=Y AW'A, (40)

Melton and Liang (1997) have shown that /n(k — k) is asymptotically multivariate

normal with mean zero and covariance matrix which is consistently estimated from

V=C! (Z A,-W;le,-e;Wi‘lA,-) c, (41)

i=1

with C defined as above and where & is used in the calculation of A; and W;.
The computations are greatly simplified if ¢ = 0, and therefore no covariates x; are
included in the analysis. In this case, A; and W; remain unchanged over individuals so

that the estimating equations (38) and (39) can be rewritten as

AW es =0 (42)

i=1

4 Robust WLS Applied to Muthén (1984)

Muthén (1984) considered the WLS fitting function
F=(-0)Wl(s-o0) (44)

Analogous to the linearization of the factor model in Muthén (1978), the vector s is

obtained by multivariate regression of the p-dimensional vector y on the g-dimensional

12



covariate vector x. A two-stage procedure is used to estimate the unknown quantities of
this regression. Consider as an example the case of two binary outcome variables y; and
y, regressed on x. For each of the two y variables we may consider a univariate-response

probit regression (see (23)) with log likelihood element l;; for individual ¢ and variable

75

L = yij log P(ysj = 1) + (1 — 95) log P(ys; = Olxi) (45)

We may also consider a bivariate probit regression (see (25)) with log likelihood

element [;j for observation ¢,

Lijk = yij Yix log P(yi; = 1,y = z;) +
vi; (1 — yax) log P(yi; = 1,y = Olzi) + (46)
(1 — yi;)yix log P(yij = 0, ya = llzi) +

(1- yij)(]- - yik) log P(yij =0,y = lei),

Denoting the g-dimensional vector of probit slopes for variable y; by ; and the residual

correlation for y; and yx by pjx , the vector s for a set of p binary variables y regressed

on ¢ z variables is the solution to

13



Blil/aﬁ
Ol;1 /O,
8li2/672
alig/aﬂ'g

0=0L/07 =3 azip} or, | =2 0L)/0e (47)
. Ol;p/ 07,
ali21/ 0pa1

alipp—l/ 6ppp—1

Here, solutions for 7 and 7 elements are obtained as maximum-likelihood estimates
in univariate-response probit regressions. As a second stage, the solutions for p are
obtained by maximum-likelihood of bivariate-response probit regressions holding the 7
and 7 elements fixed at the estimated values from the univariate-response regressions.

The above shows that for the WLS approach of (44), s is calculated before the
optimization for finding the model parameter estimates begins. In contrast, s; for the
GEE approach described earlier needs to be iteratively updated when finding the model
parameter estimates. Also, y, and s; for the GEE approach vary over i. Furthermore, p;
and o; in the GEE approach vary over 7 which is not the case for o of the WLS fitting
function (44). The result is that the WLS approach saves considerable computing time
relative to GEE when there is a large sample size, when there are many y variables, and
when the model has many parameters.

Muthén (1984) considered parameter estimate standard errors and a chi-square test
of model fit in line with the naive forms (5) and (7) discussed in the introduction.
Here, we will instead study the robust variance form (10) and the mean- adjusted and

mean- and variance-adjusted goodness of fit tests (12) and (15). In this way, we will
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generalize the work in Muthén (1993) to the full structural equation model of Muthén
(1984). A key aspect of this generalization is the inclusion of the covariate vector x. As
shown in the introduction, the robust formulas are based on a consistent estimator of I,
the asymptotic covariance matrix of the statistics vector used in the WLS estimators.
For the factor model considered in the introduction, a consistent estimator can rely on
variances and covariances of sample proportions among the binary y variables. This
is not possible with more general models that include x covariates because there are
no such proportions when considering y; for each x;. A more general approach is also
needed for models with combinations of categorical and continuous y variables as in the
Muthén (1984) model. We propose a general approach that draws on I' estimation using
likelihood theory in line with the I' estimator W used in Muthén (1984).

Muthén (1984) gave as a consistent estimator of the asymptotic covariance matrix

of s,
~ S = = 51
V(s)=B > 0L(i)/0c dL(:)/00’ B (48)
=1
where
X By 0
B=|. R 49
(le B22> (49)

where By; is block diagonal where block j (j =1,2,...,p) is

—~ | 0Li;/0r; ol;;/0; '
2 [ Oli; /O } [ li;/ O, } (50)

i=1

and the non-zero elements of By, are
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Z alijk/apjk [Bl,-j/av-s 6lij/81rs] (51)

=1

and By, is diagonal with elements

n

Zl(al,-jk/ap,-k)?. (52)
The covariance matrix in (48) defines the I' matrix in the robust variance and
goodness-of-fit formulas (10), (12), and (15). Muthén and Satorra (1995) give the tech-
nical details for showing that this matrix provides a consistent estimator. It remains to
define a “working” weight matrix W for the WLS estimator of (44). It is important for
computational speed that the weight matrix is simple given that is has to be inverted.
An identity weight matrix is not general enough given that the elements of s refer to
different types of quantities expressed in different metrics: thresholds, means, intercepts,
slopes, variances, correlations. Instead, we propose as working weight matrix W a diag-
onal matrix with its diagonal equal to the diagonal of I'. The form of this working weight
matrix is slightly simpler than that considered in the GEE approach. More importantly
for computational speed, unlike GEE our weight matrix does not vary over individuals
and does not need to be iteratively updated during the search for model parameter es-
timates. As in Muthén (1984), the optimization of (44) is carried out by quasi-Newton
methods only requiring first-order derivatives and building up an approximation to the
second-order derivative matrix.
It is interesting to note some subtle differences between the GEE approach and the
proposed robust WLS approach. As opposed to the WLS approach, the GEE sample

statistics s; of (27) use centering with model-estimated means. It is instructive to con-
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sider the GEE variance estimator (41) for the special case of no x variables so that the

summation over i does not affect A; or W; !,

V=C! <Aw-1 f:(e,-eg)w-lA) c! (53)

=1

This is in the form of the robust variance formula (10) given in the introduction. The
estimate of I' in (10) can be obtained via the proportion-based expression (3) or as
in the more general form of (48), but neither is exactly in the GEE form Y- (e;e}).
It may also be noted that in contrast to the WLS approach, different choices for the
working weight matrix W; of the GEE approach lead not only to different estimators,
but also to different optimization algorithms. This is clear from (40) where W;! is part
of the Hessian matrix of the GEE Fisher scoring algorithm. For example, the choice of
diagonal W; matrices for GEE saves computational time for the matrix inversions but
was found to give rise to an increased number of iterations needed to reach a solution of

the estimating equations.

5 Simulation Study

In their simulation study, Melton and Liang (1997) found that the Muthén (1984) stan-
dard error estimates did not perform well for the model and sample sizes studied. The
comparison with respect to parameter estimates and their variation may, however, be
influenced by the I estimation problem of the original WLS estimator as discussed in
the introduction. Using a simple working weight matrix, the new WLS estimator may
perform better and it is of interest to see how the standard errors compare to those of

GEE. Melton and Liang (1997) also argued that the two-stage procedure used in Muthén
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(1984) to produce s in the WLS fitting function (44) would result in less efficient model
parameter estimates than with their GEE approach. Because of this, the empirical
sampling variability of the robust WLS estimator will also be compared to that of GEE.

Melton and Liang (1997) carried out a Monte Carlo study using several binary re-
sponse models to compare GEE with the Muthén (1984) estimator. We will use a sim-
ilar Monte Carlo study to compare the GEE approach with the proposed robust WLS
approach. As described in Section 4, the robust WLS approach‘uses marginal likelihood-
based weights with a diagonal working weight matrix W in (44) together with the robust
variance form of (10). Melton and Liang (1997) did not offer a model test of fit with their
GEE approach but this is readily available for the robust WLS approach as discussed
above. We will report the mean-adjusted and mean- and variance-adjusted goodness of
fit tests (12) and (15). Non-diagonal forms for the working weight matrix W were also
considered, but Monte Carlo simulations not reported here showed that choices of W
which had off-diagonal elements in line with I" did not give better estimator, standard
error, and chi-square performance but typically gave worse results.

The case of no z variables warrants special attention given that it corresponds to
exploratory and confirmatory factor analysis. This is referred to as Case A in Muthén
(1983, 1984) and Muthén and Satorra (1995) where it is pointed out that the asymptotic

“theory can draw on that of proportions instead of theory for the likelihood expressions
given in Section 4. With binary y variables, this involves the analysis of tetrachoric
correlations. For Case A models, an alternative choice of W and Iis possible using the
proportion-based weights of Muthén (1978) as shown in (9). This approach will also be

studied and compared to that using the marginal likelihood-based weights.
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Our Monte Carlo study uses the longitudinal simulation model of Melton and Liang
(1997) which has 12 y variables (p = 12), 3 covariate (x) variables (¢ = 3), 3 latent
variables, and 10 parameters. In this longitudinal model four binary indicators y mea-
sure a latent variable construct 7 at three time points with time-invariant measurement

parameters 7 and \ (cf. the Muthén, 1984, model in Section 2)

y:jt = )‘] MNit + €ijt) .7 = 1) 21 3a47 t= 17273 (54)

where 7 is related to a time-varying covariate x as

Mt = 7Y Tat + Gt (55)

Here, the construct residual variances and the covariances, elements of ¥ in the Muthén
(1984) model, are equal over the three time points and were given the values .5 and
.3, respectively. The three z variables have a multivariate normal distribution with
zero means, unit variances and correlations .5. Melton and Liang (1997) chose skewed
distributions of y with univariate probabilities in the range .08 — .25. They analyzed
this model for three sample sizes in the low to moderate range, 100, 200, and 400. The
expected number of y = 1 observations is rather low with this combination of sample
sizes and probabilities. To reflect more powerful studies, this paper will consider sample
sizes 200, 400, 800 and 1600 with the same probabilities. Even samples of size 200 — 400
might be considered small for such skewed outcomes and therefore cases with symmetric
y distributions having probabilities of .5 will also be studied as a contrast. Furthermore,
unlike Melton and Liang (1997), this paper will also include a model with no z covariates.

As in the Melton and Liang (1997) study, 500 replications will be used. For better
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comparability, robust WLS and GEE runs use the same seed. Parameter estimate bias,
standard error bias, 95% coverage, and chi-square model rejection proportions will be
reported. To roughly reflect how these methods are used in social and behavioral science
research practice, results will be judged acceptable with parameter estimate biases less
than 10%, standard error biases less than 15%, coverage within the .90 — 1.00 range,
and chi-square test rejection proportions at the 5% level less than .10.

The robust WLS performance improves dramatically on that of the WLS estimator
in Muthén (1984), but this comparison will not be reported here given that the new
method clearly supersedes the old one. The interested reader is referred to Melton and
Liang (1997) where the performance of the old WLS approach is reported.

In terms of computational time, the robust WLS estimator was found to be about
three times faster than GEE for the simulation model with p = 12,9 = 3,n = 200
when using the true parameter values as starting values. It is expected that this factor
increases when the starting values are not as good. For robust WLS without z’s, the
proportion-based weight approach was about three times faster than using the likelihood-

based weights. It is expected that this factor increases as a function of sample size.
5.1 Symmetric y distributions with z’s

Table 1 gives the Monte Carlo results for the robust WLS estimator with z’s for n = 200
in the symmetric y case (p = 12,q = 3,n = 200, symmetric). The parameter estimate
bias is small, less than 5% in all cases. The standard error bias is also rather small
and the coverage quite acceptable. The mean-adjusted chi-square test overestimates the

expected .05 rejection proportion at the 5% level as .176, but the mean- and variance-
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adjusted chi-square test is acceptable at .078.

Table 2 gives the GEE results corresponding to Table 1 (p = 12,9 = 3,n =
200, symmetric). Here, only 498 of the 500 replications converged. The parameter
bias is comparable to that of robust WLS. The standard error bias is somewhat smaller
and the coverage somewhat better. It is interesting to note that contrary to expectation
the empirical variation in the estimates assessed over the 500 replications and given in

the column “Est. s.d.” is in several cases larger for GEE.

5.2 Skewed y distributions with z’s

Table 3 and Table 4 extends the Table 1 and 2 comparison of the robust WLS and GEE
performance to the more difficult skewed y case (p = 12,9 = 3,n = 200, skewed). Here,
the biases are more pronounced. For robust WLS one parameter estimate is borderline
unacceptable while the standard error bias and coverage are unacceptable in several
cases. GEE performs clearly better than robust WLS. GEE is acceptable with minor
exceptions.

Table 5 and Table 6 compare robust WLS and GEE in the skewed case for a somewhat
larger sample size, n = 400 (p = 12,q = 3,n = 400, skewed). Here, the performance of
robust WLS is acceptable. GEE performs better than robust WLS on the whole. The
robust WLS mean- and variance-adjusted chi-square test of model fit performs very well
at the 5% level, while the mean-adjusted chi-square test is not acceptable.

Table 7 and Table 8 compare robust WLS and GEE in the skewed case for n = 800
(p = 12,9 = 3,n = 800, skewed). The robust WLS performance is again acceptable.

From a practical point of view, GEE does not perform significantly better than robust
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WLS at this sample size. It is interesting to note that the empirical variation in the
parameter estimates is somewhat larger for GEE throughout.

Table 9 and Table 10 compare robust WLS and GEE in the skewed case for n = 1600
(p = 12,q = 3,n = 1600, skewed). Here, the remaining biases for robust WLS at n = 800
have been strongly reduced and the estimator performs very well. GEE performs about

the same and the parameter estimates still have somewhat larger empirical variability.
5.3 No z’s

The case of no z’s is of special interest given that it corresponds to exploratory and
confirmatory factor analysis.

Table 11 shows the robust WLS results for the symmetric y case with no z’s and
n =200 (p = 12,q = 0,n = 200, symmetric). The results are acceptable. Table 12 gives
the corresponding GEE results which are also acceptable.

Table 13 and Table 14 give the corresponding results for the skewed case (p = 12,¢ =
0,n = 200, skewed). Here, robust WLS is acceptable with minor exceptions. Overall
it performs somewhat better than with z’s (compare Table 3). GEE performs clearly
better.

Table 15 and Table 16 give the results for the skewed case at the somewhat larger
sample size of n = 400 (p = 12,q = 0,n = 400, skewed). Robust WLS performance is
acceptable and again somewhat better than with x’s. From a practical point of view,
GEE does not perform significantly better. Again, the empirical variation in the GEE

estimates is never smaller and in several instances somewhat larger than those of robust

WLS.
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5.4 No z’s: proportion-based weights

When there are no z’s, robust WLS may use the faster W and I alternative of proportion-
based weights (9) instead of the likelihood-based weights used above. Only the skewed
y case is reported here.

Table 17 shows the robust WLS results with proportion-based weights for the skewed
case at n = 200 (p = 12,9 = 0,n = 200, skewed). The results are unacceptable for
the standard errors and the coverage as well as for chi-square tests. The performance
is considerably worse than for the corresponding likelihood-based weights used in the
Table 13 analyses.

Table 18 shows the corresponding results for n = 400 (p = 12, ¢ = 0,n = 400, skewed).
At this sample size, the performance is acceptable. From a practical point of view, the

results are not significantly different from the corresponding likelihood-based results in

Table 15.
6 Conclusions

This paper proposed a new, robust weighted least-squares (WLS) approach, improving
on the sampling behavior of the WLS estimator considered in Muthén (1984) and gen-
eralizing the Muthén (1993) robust WLS approach for binary factor analysis to general
structural equation modeling. A key feature in this generalization is the addition of
covariates by which the means of the outcome variables can vary across the individuals
of the sample. The paper gave a brief review of previous work in Muthén (1978, 1984,
1993) and related robust inference work for standard errors and chi-square tests of model

fit developed by Satorra and Brown. In line with Muthén (1984), the proposed robust
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WLS estimator involves marginal likelihood-based weights, but instead uses a simple,
diagonal weight matrix combined with robust inference procedures. The proposed WLS
approach was related to a quadratic estimating equations approach recently suggested
by Melton and Liang (1997) for binary outcomes.

A Monte Carlo study was used to compare the robust WLS approach to the Melton
and Liang (1997) GEE approach both with respect to statistical performance and com-
putational speed. It was shown that the robust WLS estimator performed well except
for cases with small sample sizes and skewed variables. It performed practically as well
as GEE for sample sizes exceeding 400, while GEE performed better for smaller sam-
ple sizes. Both estimators performed better at small sample sizes when the outcome
variables had symmetric rather than skewed distributions. Surprisingly, the sampling
variability of the robust WLS estimator was typically smaller than that of GEE. The
robust WLS estimator was found to give considerable savings in terms of computational
time relative to GEE. This is important given that multivariate latent variable models
with categorical outcomes are computationally demanding. For models with no covari-
ates, such as in factor analysis, the robust WLS approach using likelihood-based weights
was compared to a robust WLS approach using proportion-based weights. The latter
was found to work well for samples exceeding 400 and offered considerable savings in
terms of computational time.

While in the Melton and Liang (1997) GEE context model testing is not straight-
forward and was not included, it was shown that robust chi-square model testing is easily
obtained with the WLS approach. The mean-adjusted chi-square test did not perform

well but the mean- and variance-adjusted chi-square performed very well in all cases
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except with proportion-based weights for n = 200.

The proposed robust WLS approach is quite general. Given that it draws on the
likelihood-based weights of Muthén (1984) it allows for a combination of binary, ordered
polytomous, and continuous outcome variables as well as multiple-group analysis, exten-
sions that make the approach as general as that in Muthén (1984). Given the generality,
statistical performance, and relative computational speed of this new approach, it pro-
vides a useful practical method for latent variable analysis with large models involving

categorical outcomes.
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