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Introduction

This chapter discusses the assessment of treatment effects in longitudinal

randomized trials using growth mixture modeling (GMM) (Muthén &

Shedden, 1999; Muthén & Muthén, 2000; Muthén et al., 2002; Muthén &

Asparouhov, 2008). GMM is a generalization of conventional repeated mea-

surement mixed-effects (multilevel) modeling. It captures unobserved subject

heterogeneity in trajectories not only by random effects but also by latent

classes corresponding to qualitatively different types of trajectories. It can be

seen as a combination of conventional mixed-effects modeling and cluster

analysis, also allowing prediction of class membership and estimation of each

individual’s most likely class membership. GMM has particularly strong

potential for analyses of randomized trials because it responds to the need

to investigate for whom a treatment is effective by allowing for different

treatment effects in different trajectory classes.

The chapter is motivated by a University of California–Los Angeles study

of depression medication (Leuchter, Cook, Witte, Morgan, & Abrams, 2002).

Data on 94 subjects are drawn from a combination of three studies carried

out with the same design, using three different types of medications: fluox-

etine (n = 14), venlafaxine IR (n = 17), and venlafaxine XR (n = 18). Subjects

were measured at baseline and again after a 1-week placebo lead-in phase. In

the subsequent double-blind phase of the study, the subjects were rando-

mized into medication (n = 49) and placebo (n = 45) groups. After randomi-

zation, subjects were measured at nine occasions: at 48 hours and at weeks

1–8. The current analyses consider the Hamilton Depression Rating Scale.
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Several predictors of course of the Hamilton scale trajectory are available,

including gender, treatment history, and a baseline measure of central

cordance hypothesized to influence tendency to respond to treatment.

The results of studies of this kind are often characterized in terms of an

end point analysis where the outcome at the end of the study, here at 8

weeks, is considered for the placebo group and for the medication group.

A subject may be classified as a responder by showing a week 8 depression

score below 10 or when dropping below 50% of the initial score. The treat-

ment effect may be assessed by comparing the medication and placebo

groups with respect to the ratio of responders to nonresponders.

As an alternative to end point analysis, conventional repeated measure-

ment mixed-effects (multilevel) modeling can be used. Instead of focusing on

only the last time point, this uses the outcome at all time points, the two

pretreatment occasions and the nine posttreatment occasions. The trajectory

shape over time is of key interest and is estimated by a model that draws on

the information from all time points. The idea of considering trajectory shape

in research on depression medication has been proposed by Quitkin et al.

(1984), although not using a formal statistical growth model.

Rates of response to treatment with antidepressant drugs are estimated to be

50%–60% in typical patient populations. Of particular interest in this chapter is

how to assess treatment effects in the presence of a placebo response. A placebo

response is an improvement in depression ratings seen in the placebo group that

is unrelated to medication. The improvement is often seen as an early steep

drop in depression, often followed by a later upswing. An example is seen in

Figure 7–2. A placebo response confounds the estimation of the true effect

of medication and is an important phenomenon given its high prevalence of

25%–60% (Quitkin, 1984). Because the placebo response is pervasive, the sta-

tistical modeling must take it into account when estimating medication effects.

This can be done by acknowledging the qualitative heterogeneity in trajectory

shapes for responders and nonresponders.

It is important to distinguish among responder and nonresponder trajec-

tory shapes in both the placebo and medication groups. Conventional

repeated measures modeling may lead to distorted assessment of medication

effects when individuals follow several different trajectory shapes. GMM

avoids this problem while maintaining the repeated measures modeling

advantages. The chapter begins by considering GMM with two classes, a

nonresponder class and a responder class. The responder class is defined as

those individuals who respond in the placebo group and who would have

responded to placebo among those in the medication group. Responder class

membership is observed for subjects in the placebo group but is unobserved

in the medication group. Because of randomization, it can be assumed that

this class of subjects is present in both the placebo and medication groups
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and in equal numbers. GMM can identify the placebo responder class in the

medication group. Having identified the placebo responder and placebo non-

responder classes in both the placebo and medication groups, medication

effects can more clearly be identified. In one approach, the medication

effect is formulated in terms of an effect of medication on the trajectory

slopes after the treatment phase has begun. This medication effect is allowed

to be different for the nonresponder and responder trajectory classes.

Another approach formulates the medication effect as increasing the prob-

ability of membership in advantageous trajectory classes and decreasing the

probability of membership in disadvantageous trajectory classes.

Growth Mixture Modeling

This section gives a brief description of the GMM in the context of the

current study. A two-piece, random effect GMM is applied to the Hamilton

Depression Rating Scale outcomes at the 11 time points y1–y11. The first

piece refers to the two time points y1 and y2 before randomization, and the

second piece refers to the nine postrandomization time points y3–y11. Given

only two time points, the first piece is by necessity taken as a linear model

with a random intercept, defined at baseline, and a fixed effect slope. An

exploration of each individual’s trajectory suggests a quadratic trajectory

shape for the second piece. The growth model for the second piece is cen-

tered at week 8, defining the random intercept as the systematic variation at

that time point. All random effect means are specified as varying across

latent trajectory classes. The medication effect is captured by a regression

of the linear and quadratic slopes in the second piece on a medication

dummy variable. These medication effects are allowed to vary across the

latent trajectory classes. The model is shown in diagrammatic form at the

top of Figure 7–1.1

The statistical specification is as follows. Consider the depression outcome

yit for individual i, let c denote the latent trajectory class variable, let g denote

random effects, let at denote time, and let 2t denote residuals containing

measurement error and time-specific variation. For the first, prerandomiza-

tion piece, conditional on trajectory class k (k = 1, 2 . . . K),

1. In Figure 7–1 the observed outcomes are shown in boxes and the random effects in circles.

Here, i, s, and q denote intercept, linear slope, and quadratic slope, respectively. In the follow-

ing formulas, these random effects are referred to as g0, g1, and g2. The treatment dummy

variable is denoted x.
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Ypre
it ‰ci¼k ¼ gpre

0i ¼ gpre
1i atþ 2

pre
it ; (1)

with �1 = 0 to center at baseline, and random effects

gpre
10i‰ci¼k ¼ �10k þ �10i; (2)

gpre
11i‰ci¼k ¼ �11k þ �11i; (3)

with only two prerandomization time points, the model is simplified to

assume a nonrandom slope, V(�11) = 0, for identification purposes. For the

second, postrandomization piece,

yit‰ci¼k ¼ g0i þ g1iat þ g2ia
2
tþ 2it; (4)

with �11 = 0, defining g0i as the week 8 depression status. The remaining �t

values are set according to the distance in timing of measurements. Assume

for simplicity a single drug and denote the medication status for individual i

by the dummy variable xi (x = 0 for the placebo group and x = 1 for the

medication group).2 The random effects are allowed to be influenced by

ybase ybpo1i y2 y3 y4 y5 y6 y7 y8

ybase ybpo1i y1 y2 y3 y4 y5 y6 y7 y8y48

i2 s2 q2

c

i1 s1

x

c

x

i2 s2 q2

y1y48

Figure 7.1 Two alternative GMM approaches.

2. In the application three dummy variables are used to represent the three different medications.
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group and a covariate, w, their distributions varying as a function of trajectory

class (k),

g0i‰ci¼k ¼ �0k þ �01kxi þ �02kwi þ �0i; (5)

g1i‰ci¼k ¼ �1k þ �11kxi þ �12kwi þ �1i; (6)

g2i‰ci¼k ¼ �2k þ �21kxi þ �22kwi þ �2i; (7)

The residuals �i in the first and second pieces have a 4 � 4 covariance matrix

�k, here taken to be constant across classes k. For both pieces the residuals

2it have a T � T covariance matrix �k, here taken to be constant across

classes. For simplicity, �k and �k are assumed to not vary across treatment

groups. As seen in equations 5–7, the placebo group (xi = 0) consists of

subjects from the two different trajectory classes that vary in the means of

the growth factors, which in the absence of covariate w are represented by

�0k, �1k, and �2k. This gives the average depression development in the

absence of medication. Because of randomization, the placebo and medica-

tion groups are assumed to be statistically equivalent at the first two time

points. This implies that x is assumed to have no effect on g10i or g11i in the

first piece of the development. Medication effects are described in the second

piece by g01k, g11k, and g21k as a change in average growth rate that can be

different for the classes.

This model allows the assessment of medication effects in the presence of

a placebo response. A key parameter is the medication-added mean of the

intercept random effect centered at week 8. This is the g01k parameter of

equation 5. This indicates how much lower or higher the average score is at

week 8 for the medication group relative to the placebo group in the trajec-

tory class considered. In this way, the medication effect is specific to classes

of individuals who would or would not have responded to placebo. The

modeling will be extended to allow for the three drugs of this study to

have different g parameters in equations 5–7.

Class membership can be influenced by baseline covariates as expressed

by a logistic regression (e.g., with two classes),

log½Pðci ¼ 1jxiÞ=Pðci ¼ 2‰xiÞ� ¼ �c þ �cwi; (8)

where c = 1 may refer to the nonresponder class and c = 2, the responder

class. It may be noted that this model assumes that medication status does

not influence class membership. Class membership is conceptualized as a

quality characterizing an individual before entering the trial.
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A variation of the modeling will focus on postrandomization time points.

Here, an alternative conceptualization of class membership is used. Class

membership is thought of as being influenced by medication so that the

class probabilities are different for the placebo group and the three medica-

tion groups. Here, the medication effect is quantified in terms of differences

across groups in class probabilities. This model is shown in diagrammatic

form at the bottom of Figure 7–1. It is seen that the GMM involves only the

postrandomization outcomes, which is logical given that treatment influences

the latent class variable, which in turn influences the posttreatment out-

comes. In addition to the treatment variable, pretreatment outcomes may

be used as predictors of latent class, as indicated in the figure. The treatment

and pretreatment outcomes may interact in their influence on latent class

membership.

Estimation and Model Choice

The GMM can be fitted into the general latent variable framework of the

Mplus program (Muthén & Muthén, 1998–2008). Estimation is carried out

using maximum likelihood via an expectation-maximization (EM) algorithm.

Missing data under the missing at random (MAR) assumption are allowed

for the outcomes. Given an estimated model, estimated posterior probabilities

for each individual and each class are produced. Individuals can be classified

into the class with the highest probability. The classification quality is sum-

marized in an entropy value with range 0–1, where 1 corresponds to the case

where all individuals have probability 1 for one class and 0 for the others. For

model fitting strategies, see Muthén et al. (2002), Muthén (2004), and

Muthén and Asparouhov (2008). A common approach to decide on the

number of classes is to use the Bayesian information criterion (BIC),

which puts a premium on models with large log-likelihood values and a

small number of parameters. The lower the BIC, the better the model.

Analyses of depression trial data have an extra difficulty due to the typically

small sample sizes. Little is known about the performance of BIC for sam-

ples as small as in the current study. Bootstrapped likelihood ratio testing can

be performed in Mplus (Muthén & Asparouhov, 2008), but the power of such

testing may not be sufficient at these sample sizes. Plots showing the agree-

ment between the class-specific estimated means and the trajectories for

individuals most likely belonging to a class can be useful in visually inspect-

ing models but are of only limited value in choosing between models.

A complication of maximum-likelihood GMM is the presence of local

maxima. These are more prevalent with smaller samples such as the current

ones for the placebo group, the medication group, as well as for the com-

bined sample. To be confident that a global maximum has been found, many
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random starting values need to be used and the best log-likelihood value

needs to be replicated several times. In the present analyses, between 500

and 4,000 random starts were used depending on the complexity of the

model.

Growth Mixture Analyses

In this section the depression data are analyzed in three steps using GMM.

First, the placebo group is analyzed alone. Second, the medication group is

analyzed alone. Third, the placebo and medication groups are analyzed jointly

according to the GMM just presented in order to assess the medication effects.

Analysis of the Placebo Group

A two-class GMM analysis of the 45 subjects in the placebo group resulted in

the model-estimated mean curves shown in Figure 7–2. As expected, a

responder class (class 1) shows a postrandomization drop in the depression

score with a low of 7.9 at week 5 and with an upswing to 10.8 at week 8. An

estimated 32% of the subjects belong to the responder class. In contrast, the

nonresponder class has a relatively stable level for weeks 1–8, ending with a

depression score of 15.6 at week 8. The sample standard deviation at week 8

is 7.6. It may be noted that the baseline score is only slightly higher for the

nonresponder class, 22.7 vs. 21.9. The standard deviation at baseline is 3.6.3

The observed trajectories of individuals classified into the two classes are

plotted in Figure 7–3a and b as broken lines, whereas the solid curves show

the model-estimated means. The figure indicates that the estimated mean

curves represent the individual development rather well, although there is a

good amount of individual variation around the mean curves.

It should be noted that the classification of subjects based on the trajectory

shape approach of GMM will not agree with that using end point analysis. As

an example, the nonresponder class of Figure 7–3b shows two subjects with

scores less than 5 at week 8. The individual with the lowest score at week 8,

however, has a trajectory that agrees well with the nonresponder mean curve

for most of the trial, deviating from it only during the last 2 weeks. The week

8 score has a higher standard deviation than at earlier time points, thereby

weighting this time point somewhat less. Also, the data coverage due to

3. The maximum log-likelihood value for the two-class GMM of Figure 7–2 is 1,055.974, which is

replicated across many random starts, with 28 parameters and a BIC value of 2,219. The

classification based on the posterior class probabilities is not clear-cut in that the classification

entropy value is only 0.66.
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missing observations is considerably lower for weeks 5–7 than other weeks,

reducing the weight of these time points. The individual with the second

lowest score at week 8 deviates from the mean curve for week 5 but has

missing data for weeks 6 and 7. This person is also ambiguously classified in

terms of his or her posterior probability of class membership.

To further explore the data, a three-class GMM was also fitted to the 45

placebo subjects. Figure 7–4a shows the mean curves for this solution. This

solution no longer shows a clear-cut responder class. Class 2 (49%) declines

early, but the mean score does not go below 14. Class 1 (22%) ends with a

mean score of 10.7 but does not show the expected responder trajectory

shape of an early decline.4 A further analysis was made to investigate if

the lack of a clear responder class in the three-class solution is due to the

sample size of n = 45 being too small to support three classes. In this

analysis, the n = 45 placebo group subjects were augmented by the medica-

tion group subjects but using only the two prerandomization time points

from the medication group. Because of randomization, subjects are statisti-

cally equivalent before randomization, so this approach is valid. The first,

prerandomization piece of the GMM has nine parameters, leaving only

25 parameters to be estimated in the second, postrandomization piece by
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Figure 7.2 Two-class GMM for placebo group.

4. The log-likelihood value for the model in Figure 7–4a is 1,048,403, replicated across several

random starts, with 34 parameters and a BIC value of 2,226. Although the BIC value is slightly

worse than for the two-class solution, the classification is better, as shown by the entropy value

of 0.85.
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the n = 45 placebo subjects alone. Figure 7–4b shows that a responder class

(class 2) is now found, with 21% of the subjects estimated to be in this class.

High (class 3) and low (class 1) nonresponder classes are found, with 18%

and 60% estimated to be in these classes, respectively. Compared to Figure 7–3,

the observed individual trajectories within class are somewhat less hetero-

geneous (trajectories not shown).5
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Figure 7.3 Individual trajectories for placebo subjects classified into (a) the responder

class and (b) the non-responder class.

5. The log-likelihood value for the model in Figure 7–4b is 1,270.030, replicated across several

random starts, with 34 parameters and a BIC value of 2,695. The entropy value is 0.62. Because

a different sample size is used, these values are not comparable to the earlier ones.
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Analysis of the Medication Group

Two major types of GMMs were applied to the medication group. The first

type analyzes all time points and either makes no distinction among the

three drugs (fluoxetine, venlafaxine IR, venlafaxine XR) or allows drug differ-

ences for the class-specific random effect means of the second piece of the

GMM. It would not make sense to also let class membership vary as a

function of drug since class membership is conceptualized as a quality char-

acterizing an individual before entering the trial. Class membership influ-

ences prerandomization outcomes, which cannot be influenced by drugs.

To investigate class membership, the second type of GMM analyzes the

nine postrandomization time points both to focus on the period where the

medications have an effect and to let the class membership correspond to

only postrandomization variables. Here, not only are differences across the

three drugs allowed for the random effect means for each of the classes but

the drug type is also allowed to influence class probabilities.
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Figure 7.4 (a) Three-class GMM for placebo group. (b) Three-class GMM for placebo

group and pre-randomization medication group individuals.
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Analysis of All Time Points

A two-class GMM analysis of the 49 subjects in the medication group

resulted in the model-estimated mean curves shown in Figure 7–5. As

expected, one of the classes is a large responder class (class 1, 85%). The

other class (class 2, 15%) improves initially but then worsens.6

A three-class GMM analysis of the 49 subjects in the medication group

resulted in the model-estimated mean curves shown in Figure 7–6. The three

mean curves show the expected responder class (class 3, 68%) and the class

(class 2, 15%) found in the two-class solution showing an initial improve-

ment but later worsening. In addition, a nonresponse class (class 1, 17%)

emerges, which has no medication effect throughout.7

Allowing for drug differences for the class-specific random effect means of

the second piece of the GMM did not give a trustworthy solution in that the

best log-likelihood value was not replicated. This may be due to the fact that

this model has more parameters than subjects (59 vs. 49).

Analysis of Postrandomization Time Points

As a first step, two- and three-class analyses of the nine postrandomization time

points were performed, not allowing for differences across the three drugs. This

gave solutions that were very similar to those of Figures 7–5 and 7–6. The

similarity in mean trajectory shape held up also when allowing for class prob-

abilities to vary as a function of drug. Figure 7–7 shows the estimated mean

curves for this latter model. The estimated class probabilities for the three drugs

show that in the responder class (class 2, 63%) 21% of the subjects are on

fluoxetine, 29% are on venlafaxine IR, and 50% are on venlafaxine XR. For

the nonresponder class that shows an initial improvement and a later wor-

sening (class 3, 19%), 25% are on fluoxetine, 75% are on venlafaxine IR, and

0% are on venlafaxine XR. For the nonresponder class that shows no

improvement at any point (class 1, 19%), 58% are on fluoxetine, 13% are

on venlafaxine IR, and 29% are on venlafaxine XR. Judged across all three

trajectory classes, this suggests that venlafaxine XR has the better outcome,

followed by venlafaxine IR, with fluoxetine last. Note, however, that for these

data subjects were not randomized to the different medications; therefore,

comparisons among medications are confounded by subject differences.8

6. The log-likelihood value for the model in Figure 7–5 is –1,084.635, replicated across many

random starts, with 28 parameters and a BIC value of 2,278. The entropy value is 0.90.

7. The log-likelihood value for the model in Figure 7–6 is –1,077.433, replicated across many

random starts, with 34 parameters and a BIC value of 2,287. The BIC value is worse than for

the two-class solution. The entropy value is 0.85.

8. The log-likelihood value for the model of Figure 7–7 is –873.831, replicated across many

random starts, with 27 parameters and a BIC value of 1,853. The entropy value is 0.79.
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Figure 7.5 Two-class GMM for medication group.
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Figure 7.6 Three-class GMM for medication group.
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As a second step, a three-class model was analyzed by a GMM, where not

only class membership probability was allowed to vary across the three drugs

but also the class-varying random effect means. This analysis showed no

significant drug differences in class membership probabilities. As shown

in Figure 7–8, the classes are essentially of different nature for the three

drugs.9

Analysis of Medication Effects, Taking Placebo

Response Into Account

The separate analyses of the 45 subjects in the placebo group and the

49 subjects in the medication group provide the basis for the joint analysis

of all 94 subjects. Two types of GMMs will be applied. The first is directly

in line with the model shown earlier under Growth Mixture Modeling,

where medication effects are conceptualized as postrandomization changes

in the slope means. The second type uses only the postrandomization

time points and class membership is thought of as being influenced by
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Figure 7.7 Three-class GMM for medication group post randomization.

9. The log-likelihood value for the model of Figure 7–8 is –859.577, replicated in only a few

random starts, with 45 parameters and a BIC value of 1, 894. The entropy value is 0.81. It

is difficult to choose between the model of Figure 7–7 and the model of Figure 7–8 based on

statistical indices. The Figure 7–7 model has the better BIC value, but the improvement in the

log-likelihood of the Figure 7–8 model is substantial.
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medication, in line with the Figure 7–7 model. Here, the class probabilities

are different for the placebo group and the three medication groups so that

medication effect is quantified in terms of differences across groups in class

probabilities.
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Figure 7.8 Three-class GMM for (a) fluoxetine subjects, (b) venlafaxine IR subjects, and

(c) venlafaxine XR subjects.
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Analysis of All Time Points

For the analysis based on the earlier model (see Growth Mixture Modeling), a

three-class GMM will be used, given that three classes were found to be

interpretable for both the placebo and the medication groups. Figure 7–9

shows the estimated mean curves for the three-class solution for the placebo

group, the fluoxetine group, the venlafaxine IR group, and the venlafaxine XR

group. It is interesting to note that for the placebo group the Figure 7–9a

mean curves are similar in shape to those of Figure 7–4b, although the

responder class (class 3) is now estimated to be 34%. Note that for this

model the class percentages are specified to be the same in the medication

groups as in the placebo group. The estimated mean curves for the three

medication groups shown in Figure 7–9b–d are similar in shape to those of

the medication group analysis shown in Figure 7–8a–c. These agreements

with the separate-group analyses strengthen the plausibility of the modeling.

This model allows the assessment of medication effects in the presence of

a placebo response. A key parameter is the medication-added mean of the

intercept random effect centered at week 8. This is the g01k parameter of

equation 5. For a given trajectory class, this indicates how much lower or

higher the average score is at week 8 for the medication group in question

relative to the placebo group. In this way, the medication effect is specific to

classes of individuals who would or would not have responded to placebo.

The g01k estimates of the Figure 7–9 model are as follows. The fluoxetine

effect for the high nonresponder class 1 at week 8 as estimated by the GMM

is significantly positive (higher depression score than for the placebo group),

7.4, indicating a failure of this medication for this class of subjects. In the

low nonresponder class 2 the fluoxetine effect is small but positive, though

insignificant. In the responder class, the fluoxetine effect is significantly

negative (lower depression score than for the placebo group), –6.3. The ven-

lafaxine IR effect is insignificant for all three classes. The venlafaxine XR

effect is significantly negative, –11.7, for class 1, which after an initial slight

worsening turns into a responder class for venlafaxine XR. For the nonre-

sponder class 2 the venlafaxine XR effect is insignificant, while for the

responder class it is significantly negative, –7.8. In line with the medication

group analysis shown in Figure 7–7, the joint analysis of placebo and med-

ication subjects indicates that venlafaxine XR has the most desirable outcome

relative to the placebo group. None of the drugs is significantly effective for

the low nonresponder class 2.10

10. The log-likelihood value for the model shown in Figure 7–9 is –2,142.423, replicated across a

few random starts, with 61 parameters and a BIC value of 4,562. The entropy value is 0.76.
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Analysis of Postrandomization Time Points

As a final analysis, the placebo and medication groups were analyzed together

for the postrandomization time points. Figure 7–10 displays the estimated

three-class solution, which again shows a responder class, a nonresponder

class which initially improves but then worsens (similar to the placebo response

class found in the placebo group), and a high nonresponder class.11 As a first

step, it is of interest to compare the joint placebo–medication group analysis of

Figure 7–10 to the separate placebo group analysis of Figure 7–4b and the

separate medication group analysis of Figure 7–6.

Comparing the joint analysis in Figure 7–10 to that of the placebo group

analysis of Figure 7–4b indicates the improved outcome when medication

group individuals are added to the analysis. In the placebo group analysis of

Figure 7–4b 78% are in the two highest, clearly nonresponding trajectory

classes, whereas in the joint analysis of Figure 7–10 only 36% are in the

highest, clearly nonresponding class. In this sense, medication seems to have

a positive effect in reducing depression. Furthermore, in the placebo analysis,

21% are in the placebo-responding class which ultimately worsens, whereas

in the joint analysis 21% are in this type of class and 43% are in a clearly

responding class.

Comparing the joint analysis in Figure 7–10 to that of the medication

group analysis of Figure 7–6 indicates the worsened outcome when placebo

group individuals are added to the analysis. In the medication group analysis

of Figure 7–6 only 17% are in the nonresponding class compared to 36% in

the joint analysis of Figure 7–10. Figure 7–6 shows 15% in the initially

improving but ultimately worsening class compared to 21% in Figure 7–10.

Figure 7–6 shows 68% in the responding class compared to 43% in Figure 7–10.

All three of these comparisons indicate that medication has a positive effect

in reducing depression.

As a second step, it is of interest to study the medication effects for each

medication separately. The joint analysis model allows this because the class

probabilities differ between the placebo group and each of the three medica-

tion groups, as expressed by equation 8. The results are shown in Figure

7–11. For the placebo group, the responder class (class 3) is estimated to be

26%, the initially improving nonresponder class (class 1) to be 22%, and the

high nonresponder class (class 2) to be 52%. In comparison, for the fluox-

etine group the responder class is estimated to be 48% (better than placebo),

the initially improving nonresponder class to be 0% (better than placebo),

and the high nonresponder class to be 52% (same as placebo). For the

11. The log-likelihood value for the model shown in Figure 7–10 is –1,744.999, replicated across

many random starts, with 29 parameters and a BIC value of 3,621. The entropy value is 0.69.
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venlafaxine IR group, the responder class is estimated to be 46% (better than

placebo), the initially improving nonresponder class t be 47% (worse than

placebo), and the high nonresponder class to be 7% (better than placebo). For

the venlafaxine XR group, the responder class is estimated to be 90% (better

than placebo), the initially improving nonresponder class to be 0% (better

than placebo), and the high nonresponder class to be 10% (better than

placebo).

Conclusions

The growth mixture analysis presented here demonstrates that, unlike con-

ventional repeated measures analysis, it is possible to estimate medication

effects in the presence of placebo effects. The analysis is flexible in that the

medication effect is allowed to differ across trajectory classes. This approach

should therefore have wide applicability in clinical trials. It was shown that

medication effects could be expressed as causal effects. The analysis also

produces a classification of individuals into trajectory classes.

Medication effects were expressed in two alternative ways, as changes in

growth slopes and as changes in class probabilities. Related to the latter

approach, a possible generalization of the model is to include two latent

class variables, one before and one after randomization, and to let the med-

ication influence the postrandomization latent class variable as well as transi-

tions between the two latent class variables. Another generalization is

proposed in Muthén and Brown (2009) considering four classes of subjects:

(1) subjects who would respond to both placebo and medication, (2) subjects

who would respond to placebo but not medication, (3) subjects who would

respond to medication but not placebo, and (4) subjects who would respond

to neither placebo nor medication. Class 3 is of particular interest from a

pharmaceutical point of view.

Prediction of class membership can be incorporated as part of the model

but was not explored here. Such analyses suggest interesting opportunities

for designs of trials. If at baseline an individual is predicted to belong to a

nonresponder class, a different treatment can be chosen.
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