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Summary. A two-level regression mixture model is discussed and contrasted with the conven-
tional two-level regression model. Simulated and real data shed light on the modelling alter-
natives. The real data analyses investigate gender differences in mathematics achievement
from the US National Education Longitudinal Survey.The two-level regression mixture analyses
show that unobserved heterogeneity should not be presupposed to exist only at level 2 at the
expense of level 1. Both the simulated and the real data analyses show that level 1 heteroge-
neity in the form of latent classes can be mistaken for level 2 heterogeneity in the form of the
random effects that are used in conventional two-level regression analysis. Because of this,
mixture models have an important role to play in multilevel regression analyses. Mixture models
allow heterogeneity to be investigated more fully, more correctly attributing different portions of
the heterogeneity to the different levels.

Keywords: Heterogeneity; Latent classes; Latent variables; Mathematics achievement;
Random effects

1. Introduction

Multilevel regression analysis has become a standard analysis tool for understanding unob-
served heterogeneity in relationships between variables that are measured on individuals clus-
tered within higher order units (Goldstein, 2003; Raudenbush and Bryk, 2002; Snijders and
Bosker, 1999). The heterogeneity is expressed in terms of random intercepts and slopes, i.e.
continuous latent variables that vary between clusters. This paper argues for the need also to
consider unobserved heterogeneity that represents qualitatively different relationships. This can
be captured by categorical latent variables, i.e. latent classes. Such modelling is the domain of
finite mixture analysis (McLachlan and Peel, 2000). For a review of finite mixtures applied to
single-level regression analysis, see Wedel and DeSarbo (1993). In recent years several devel-
opments of multilevel finite mixture modelling have been made (Vermunt, 2003; Asparouhov
and Muthén, 2008; Muthén and Asparouhov, 2008), but the topic still needs much further
exploration.

This paper aims to shed light on the applicability of two-level regression mixture analysis
through analyses of simulated and real data. The real data analyses investigate gender differences
in mathematics achievement from the US National Education Longitudinal Survey (NELS) (US
Department of Education, 1988). The analyses consider gender differences in selection mech-
anisms for mathematics training. A general two-level mixture model is used that encompasses
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both level 1 and level 2 mixtures. The 1988 NELS analyses show that the conventional two-
level regression model is outperformed by the mixture analysis model. It is shown that level 1
heterogeneity in the form of latent classes can be mistaken for level 2 heterogeneity in the form
of the random effects that are used in conventional two-level regression analysis. All analyses
are carried out by using the Mplus program (Muthén and Muthén, 2008) and scripts of Mplus
input code are available from the first author.

The outline of this paper is as follows. Section 2 presents prototypical examples that use
artificial data to illustrate key differences between single-class and mixture models. Section 3
describes analyses using an educational data set. Section 4 concludes.

2. Prototypical examples

This section discusses examples of two prototypical mixture models. First, some basic ideas
are illustrated by using a single-level regression mixture model. Second, a two-level structure is
added.

2.1. Single-level regression mixture modelling
Consider a regression mixture model where the intercept and slope of a linear regression of
a continuous variable y on a covariate x for individual i vary across the latent classes of a
categorical latent variable C with K categories or latent classes labelled c=1, 2, . . . , K,

yi|Ci=c =β0c +β1c xi + ri, .1/

where the residual ri ∼ N.0, θc/. For parsimony, the residual variance θc is often held class
invariant.

The probability of latent class membership varies as a multinomial logistic regression function
of a covariate z,

P.Ci = c|zi/= exp.ac +bc zi/

K∑

s=1
exp.as +bs zi/

, .2/

where for the last class K the standardization aK = 0 and bK = 0 is used to designate this as a
reference class. It should be noted that equations (1) and (2) generally may have different covari-
ates x and z. In the examples that are considered below and in many applications, however, they
are the same and z in equation (2) could be replaced with x. The mixture of normals provides
a flexible representation of the distribution of y conditional on x and z.

As a simple example, assume that there are two latent classes and that y is the score on a
mathematics test and x a binary variable representing gender. Consider data that are generated
as follows. Let x = 0 represent males and x = 1 represent females. The β0-values for the two
classes are chosen as 3 and 0, whereas the β1-values are −1:1 and 0.5. The a-value is 0 and the
b-value is 1. The covariate x has mean 0 and variance 1. The residual variance of y is 1. This
gives a y-variance that is close to 2 in the high class and 1.25 in the low class. The class means of
y for males are 3 and 0 respectively and for females 1.9 and 0.5. The class separation with respect
to the y-mean is 3 standard deviations for males and 1.4 standard deviations for females. This
scenario has features that are similar to what will be seen in the real data analyses to follow,
although they are more accentuated here.

Figs 1(a)–1(d) show histograms for a sample of size 10000 generated from this model where
in the latent class with a low score in mathematics (Figs 1(a) and 1(c)) females (Fig. 1(a)) do
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Fig. 1. Simulated two-class data for males and females: (a) low class, females; (b) high class, females; (c)
low class, males; (d) high class, males; (e) histograms for the observed distributions ( , males; , females)

better than males, whereas in the latent class with a high mathematics score males do better
than females. The logistic regression model part (2) specifies that females are more likely to be
in the high scoring latent class.

Fig. 1(e) shows the histograms for the observed distributions, i.e. ignoring latent class mem-
bership. It is seen that the mean is about the same for males and females, thereby hiding the
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Fig. 2. Model diagram for single-level regression mixture analysis

gender level difference that is seen in each latent class. The histogram for males shows a bimodal
distribution indicative of a two-class mixture, whereas for females the two classes generate a
slightly skewed distribution. In this case the mathematics score means for the two classes are
3 standard deviations apart for males but only about half that for females. If the mathematics
score means were closer together, bimodality would disappear and the distributions would look
close to normal, thereby not suggesting a mixture.

Fig. 2 shows a diagram of the regression mixture model in equations (1) and (2) with observed
variables in squares and the latent class variable in a circle. Full arrows represent regression rela-
tions. The arrows from x and c to y represent a linear regression of y on these two covariates.
The influence of c on y is that of a dummy variable affecting the intercept and therefore the
mean of y. The arrow from x to c indicates a logistic regression. The broken arrows from c to
the regression of y on x indicate that the slope varies across the latent classes. The full arrow
pointing to y and not originating from another variable represents the residual r in model (1).
Further background on how to interpret model diagrams of this kind is given in Muthén and
Muthén (2008).

The model that was used for the above simulated data can be understood as follows for the
case of a continuous covariate x. An increasing value of the covariate x increases the proba-
bility of being in the latent class with the highest y-mean (class 1). Within each class, x has a
further influence on y so as x increases y decreases for the high class (class 1) and y increases
for the low class (class 2). In this sense, x has both an indirect influence on y via the latent
class mediator variable c and a direct influence on y (for an overview of mediational modelling,
see MacKinnon (2008)). It is interesting to note that the direct x influence on the dependent
variable y is different even in sign in the two latent classes. The latent classes are to a large
extent distinguished by the level of the dependent variable, but also the sign of the relation-
ship which varies with the level. In this way, the regression mixture model shows a modelling
flexibility that is not achieved in conventional regression. The mixture may be simply viewed
as a tool for achieving this flexibility. In some situations, the latent classes of the mixture may
also correspond to substantively meaningful clusters that represent distinct subpopulations of
individuals, but this is not essential (for a discussion of the related concepts of direct and indirect
uses of mixture modelling, see Titterington et al. (1985)). Using more than two classes provides
further flexibility. In summary, the regression mixture model provides a modelling tool that is
very flexible in describing situations that are more complex than those which are captured by
conventional regression. For further details on single-level regression mixture modelling, see for
example DeSarbo and Cron (1988).

2.2. Two-level regression mixture modelling
A conventional two-level regression model allows for variation in the dependent variable due
to both level 1 and level 2 sources. Conditional on covariates, the level 1 source of variation
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is typically confined to a residual variance that is common to all subjects, whereas the level 2
source of variation is expressed in terms of level 2 variation in random intercepts and random
slopes. The level 1 variation is typically much larger than the level 2 variation, indicating greater
unobserved heterogeneity on the individual level. Variation across subjects in the level 1 resid-
ual variance is sometimes found (see, for example Goldstein (2003)). It is argued here, however,
that a potentially large source of unobserved heterogeneity resides in variation of the regression
coefficients between groups of individuals sharing similar but unobserved background charac-
teristics. It seems possible that this is quite common owing to heterogeneous subpopulations in
general population surveys. Such heterogeneity is captured by level 1 latent classes.

These ideas can be formalized as follows. Consider a two-level regression mixture model where
the random intercept and slope of a linear regression of a continuous variable y on a covariate
x for individual i in cluster j vary across the latent classes of an individual level latent class
variable C with K categories labelled c=1, 2, . . . , K,

yij|Cij=c =β0cj +β1cj xij + rij, .3/

where the residual rij ∼ N.0, θc/. Here, a single covariate is used for simplicity of illustration,
but further covariates can clearly be added. The probability of latent class membership varies
as a two-level multinomial logistic regression function of a covariate z,

P.Cij = c|zij/= exp.acj +bc zij/

K∑

s=1
exp.asj +bs zij/

: .4/

The corresponding level 2 equations are

β0cj =γ00c +γ01cw0j +u0j, .5/

β1cj =γ10c +γ11cw1j +u1j, .6/

acj =γ20c +γ21cw2j +u2cj: .7/

With K categories for the latent class variable there are K −1 equations (7). Here, w0j, w1j and
w2j are level 2 covariates and the residuals u0j, u1j and u2cj are (2 + K − 1)-variate normally
distributed with means 0 and covariance matrix Θ2 and are independent of rij. As before, in
many cases z=x in equation (4). Also, the level 2 covariates in equations (5)–(7) may be the same
as is the case in the examples considered below, where there is a common wj =w0j =w1j =w2j.
For some or all of these relations there may be no covariates at all.

Fig. 3 shows a diagram of a special case of a two-level regression mixture model. To make
it more concrete, the earlier two-class example of gender influence on performance in mathe-
matics may be expanded to consider students observed within schools. The filled circles at level
1 indicate that the y- and c-regressions have school varying random intercepts, β0cj and acj

respectively, as in equations (3) and (4). Ignoring for the moment the latent class aspect, the
meaning of a random intercept for y is well known. The random intercept for c, however, is
for a multinomial logistic regression and therefore captures schools’ influences on the students’
probabilities to be in a certain latent class. At level 2 these random intercepts are continuous
latent variables which are influenced by the level 2 covariate w as in equations (5)–(7), but now
with the common covariate w. Let w be average socio-economic status (SES) of students in the
school and have a positive influence γ21c on acj for the latent class with high mathematics score,
c=1.acj is standardized at 0 for c=2 in line with conventional multinomial logistic regression).
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Fig. 3. Model diagram for two-level regression mixture analysis

In this way, increasing school SES increases a1j and therefore the probability of being in the
latent class that is characterized by high mathematics score and a female disadvantage. Within
each class, let γ01c in equation (5) be positive so that increasing school SES increases β0cj and
therefore the student mathematics score.

Using the above example as background and drawing on the notation of equations (3)–(7),
it is instructive to consider the different components of the specification of the intercept and
slope for y that are given in equations (5) and (6). The intercepts and slopes for y in the Fig. 3
model are expressed as

β0cj =γ00c +γ01wj +u0j, .8/

β1cj =γ10c: .9/

For the random intercept β0cj, equation (8) shows that the intercept γ00c varies across the latent
classes of the level 1 variable c. This may account for the majority of the variation in the random
intercept with some further variation across level 2 units captured by the terms γ01 wj + u0j.
Here, the slope γ01 is not specified as varying across the latent classes of the level 1 variable c,
which may be realistic given that the influence of w on the random intercept is a level 2 relation-
ship. In contrast with the random intercept, equation (9) shows that the slope β1cj is specified
as not varying between level 2 units but only across the latent classes of the level 1 variable
c. In other words, for the slope it is assumed that it is more important to account for level 1
heterogeneity than level 2 heterogeneity. This seems often to be so in real data.

It is instructive to generate data from the model of Fig. 3 and to analyse them by using the
conventional (single-class) two-level regression model with random intercepts and slopes,

yij =β0j +β1jxij + rij, .10/

where the residuals rij are assumed independently and normally distributed with zero mean and
variance θ, and
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Fig. 4. Model diagram for conventional two-level regression analysis

β0j =γ00 +γ01wj +u0j, .11/

β1j =γ10 +γ11wj +u1j, .12/

where the u0j- and u1j-residuals are assumed to be normally distributed with zero mean and
covariance matrix Θ2. This conventional two-level model is shown in Fig. 4.

Data were generated for the two-level regression mixture model of Fig. 3 with 200 clusters
each of size 15 for a total sample of n=3000. The model of Fig. 3 has 11 parameters. The level 1
parameters were the same as those used above for the single-level regression mixture model.
The level 2 parameters result in an intraclass correlation of 0.25 for the high class and 0.33 for
the low class (the mean and variance of w were set at 0 and 1, γ011 =0:5, γ211 =1, the variance
for the residual u0j =0:5 and the variance for the residual u2j =0:5). Using 100 replications, all
parameter values as well as their standard errors were well recovered with good coverage.

The analysis of Fig. 3 data by using the conventional model of Fig. 4 and equations
(10)–(12) points to interesting results that challenge the interpretations that are obtained by
the conventional model. The conventional model has eight parameters. For each replication the
log-likelihood value and the Bayesian information criterion BIC (Schwarz, 1978) were consid-
erably worse for the conventional model than when using the correct Fig. 3 mixture model. This
shows that the Fig. 3 model is clearly recognizable. The key result is that γ11, the slope in the
regression of the random slope on the level 2 covariate in equation (12), comes out negative and
significant (not including the w-covariate shows a significant random-slope variance, so such a
regression is natural to explore). In other words, a researcher would conclude that increasing
school SES causes a reduction in the slope in the mathematics score regression on the variable
female so that females are more disadvantaged relative to males in high SES schools. The incor-
rect attribution of the student level heterogeneity across the two latent classes to heterogeneity
across schools is understandable and is probably common for the following reason.

The Fig. 3 model says that school SES has a positive influence on the random intercept for
the logistic regression, which in turn increases the probability of being in the latent class that is
characterized by a high score in mathematics and a female disadvantage (referred to as the high
class) as opposed to the latent class with a low score in mathematics and a female advantage.
This means that there is variation in the slope for females as school SES increases and the change
is in the negative direction. But the conventional model makes the researcher believe that school
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SES is the only cause of this gender phenomenon, whereas in reality it is caused by student level
latent class membership which only partly has school level causes. In the simulated data, the
parameter values are chosen so that the influence on the probability of being in the high class
is the same for the student level covariate female as for a change of 1 standard deviation in the
school level SES covariate.

Given that the probability of membership in the high latent class is higher for females than
males, one possible scenario for the latent class phenomenon is that females choose more rig-
orous mathematics studies than males, but once they have done so they have a disadvantage
relative to males. Other student level covariates can be sought that influence and explain the
latent class membership, such as prior performance in mathematics. Concluding on this chain
of events is quite different from the conclusion that is drawn from the conventional model. It
is true that increasing school SES has an influence by increasing the probability of member-
ship in the high class, but this influence is only half of the story. From an intervention point
of view, the conventional model and the mixture model may lead to different decisions on
what to manipulate. The conventional model ignores that membership in the high class is a
student level decision. A school level intervention might be less effective than a student level
intervention.

To conclude this section, it is instructive to turn the situation around and to use the mixture
model to analyse data that are generated according to a conventional random-effect regression
model. The numbers of students and schools are the same as in the previous data generation. To
accentuate the school level variation in the random effects, a model was chosen with random-
intercept variance that is three-quarters of the within-level residual variance and a random-slope
variance that is one and a half times the within-level residual variance. It should be noted that
the strong random-slope variation generates a non-normal dependent variable y which might
lead a researcher to use a mixture of normal distributions. The level 1 residual variance of y
is 1, the mean and variance of the covariate w are 0 and 1, γ00 =0, γ01 =0:5, the variance of u0j

is 0.5, γ10 =1, γ11 =1, the variance of u1j is 0.5 and the u0, u1 covariance is 0. The conventional
random-effect model has eight parameters whereas a two-class mixture model which is specified
as in Fig. 3 has 11 parameters. For each replication the log-likelihood and BIC-values of the
two-class mixture model were worse than those of the conventional (single-class) model, clearly
rejecting the need for more than one class. This suggests that the mixture model is not likely to
be found if the correct model does not have a mixture. Despite strong random-slope variation
of the conventional model, generating a non-normal dependent variable y, the log-likelihood
and BIC do not indicate a need for a mixture.

3. Real data example

In this section the conventional two-level regression model as well as two-level regression mix-
ture models are applied to data from the 1988 NELS (US Department of Education, 1988).
Mathematics achievement data from the 1988 grade 8 data are considered for a sample of 14217
students in 913 US schools. In the USA grade 8 is the ninth year of formal schooling and is typi-
cally referred to as middle school with students of age 13 years. The average number of students
per school is 15.6. The intraclass correlation for the mathematics score is 0.13. Of the schools
in the sample, 85% are public, 8% are private and 7% are Catholic. The analyses are merely
illustrative of the methodology and use a limited set of variables similar to the well-known ‘High
school and beyond’ example that was used as a key illustration in Raudenbush and Bryk (2002).
The level 1 covariates are gender (female) and student SES (stud-ses). The level 2 covariates
include the percentage of teachers with at least a Masters degree (per-adva), dummy variables
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(a) (b)

Fig. 5. Descriptive statistics for the NELS mathematics achievement data related to gender and student
SES: (a) males; (b) females

for private and Catholic schools compared with public schools (private and Catholic), and the
average SES in the school (mean-ses). The continuous covariates are grand mean centred. The
histograms for the mathematics scores of males and females are shown in Fig. 5 and seem to
indicate distributions that do not deviate far from normal. The non-normality that is seen in
Fig. 1 is not apparent here. Also, no clear outlying groups of students are detected in the scatter
plots of math on stud-ses.
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All subsequent analyses were carried out by using maximum likelihood estimation in the
Mplus program (Muthén and Muthén, 2008). The mixture modelling draws on the techniques
that are described in Asparouhov and Muthén (2008) and Muthén and Asparouhov (2008).

3.1. Conventional analysis
The conventional two-level regression model applied to NELS mathematics achievement is

mathij =β0j +β1j femaleij +β2j stud-sesij + rij, .13/

where the residuals rij are assumed independently normally distributed with zero mean and
variance θ, and

β0j =γ00 +γ01 per-adva+γ02 private+γ03 Catholic+γ04 mean-ses+u0j, .14/

β1j =γ10 +γ11 per-adva+γ12 private+γ13 Catholic+γ14 mean-ses+u1j, .15/

β2j =γ20 +γ21 per-adva+γ22 private+γ23 Catholic+γ24 mean-ses+u2j, .16/

where the u0j-, u1j- and u2j-residuals are assumed to be normally distributed with zero means
and covariance matrix Θ2.

Table 1 gives the estimates and standard errors for the conventional model with a random
intercept and two random slopes. The grand mean centring implies that β0j refers to males

Table 1. NELS mathematics analysis: estimates from conventional (single-class) two-level regression
analysis

Level Parameter Estimate Standard Z-ratio P-value
error

1 Residual variance 50.183 0.757 66.291 0.000
2 Regression of mathematics intercept β0j

on per-adva, γ01 0.274 0.570 0.481 0.631
on private, γ02 1.867 0.846 2.207 0.027
on Catholic, γ03 −0.591 0.503 −1.174 0.240
on mean-ses, γ04 3.488 0.313 11.135 0.000

2 Regression of female slope β1j
on per-adva, γ11 0.139 0.643 0.217 0.828
on private, γ12 −0.510 0.683 −0.746 0.456
on Catholic, γ13 0.028 0.583 0.048 0.962
on mean-ses, γ14 0.014 0.318 0.044 0.965

2 Regression of ses slope β2j
on per-adva, γ21 0.906 0.394 2.298 0.022
on private, γ22 −1.927 0.509 −3.786 0.000
on Catholic, γ23 −1.548 0.403 −3.841 0.000
on mean-ses, γ24 0.829 0.211 3.936 0.000

2 Intercept for mathematics intercept, γ00 45.680 0.145 316.013 0.000
for female slope, γ10 −0.225 0.155 −1.447 0.148
for ses slope, γ20 3.737 0.108 34.764 0.000

2 Residual variance for mathematics 6.687 0.667 10.024 0.000
intercept
for female slope 3.242 0.776 4.177 0.000
for ses slope 0.014 0.316 0.044 0.965

2 Residual covariance, mathematics −2.430 0.603 −4.028 0.000
intercept, female slope
mathematics intercept, ses slope 0.195 0.274 0.712 0.477
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Fig. 6. Plot of school-estimated slopes for females related to estimated mathematics intercepts for the NELS
by using conventional two-level regression analysis

at an average stud-ses-value and that γ00 refers to public schools at school average values of
per-adva and mean-ses. It is seen that the random intercept β0j is significantly influenced by
private (positive) and mean-ses (positive). The random slope for female has no significant school
level predictor. The average of the slope for females for public schools is −0:225, which is not
a significant gender effect. The random slope for student SES is significantly influenced by the
school level covariates per-adva (positive), private (negative), Catholic (negative) and mean-ses
(positive). The average slope for stud-ses is estimated as 3.737. Taken together, this implies that
private and Catholic schools reduce the positive effect of student SES on mathematics and are
in this sense more ‘egalitarian’.

Fig. 6 shows the estimated random slopes for the covariate female plotted against the esti-
mated random intercepts for math for each of the 913 schools in the sample (because the level 1
gender covariate is scored as 0 or 1 for male or female the random intercept represents the score
for males at public schools with average school values on per-adva and mean-ses). These are
expected a posteriori estimates drawing on normality assumed for the level 2 residuals in the
model. Fig. 6 illustrates the negative relationship between these random effects. The slopes for
females include both negative and positive values representing mathematics disadvantage versus
advantage relative to males. In high performing schools females have a disadvantage relative
to males in terms of mathematics score whereas in low performing schools females have an
advantage. Females have an advantage in 38% of the schools.

The aim of the alternative mixture modelling to be presented in the next sections is to inves-
tigate the need to account for unobserved level 1 heterogeneity. Because of this, it is of inter-
est to extend the conventional model to investigate level 1 heterogeneity more fully in the
form of a level 1 residual variance varying across level 1 covariate values (see, for example,
Goldstein (2003)) and across the three school types, public, Catholic and private (these exten-
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sions were suggested by a reviewer). The level 1 residual variance relationship to level 1 covariates
was investigated by adding the following heterogeneous residual variance model to equations
(13)–(16):

rij =N.0, κ0 +κ1 femaleij +κ2 stud-sesij/, .17/

where κ0, κ1 and κ2 are parameters to be estimated. The κ1- and κ2-estimates were found to be
significant, indicating a somewhat larger level 1 residual variance for males than females and
a small increase with increasing stud-ses. Allowing the level 1 residual variance to vary as a
function of school type resulted in significantly different residual variances with the smallest
residual variance for private schools, followed by Catholic schools, and with public schools
obtaining the largest value. The log-likelihood values for these two models are reported later as
model 1b and model 1c respectively, in the Table 2 summary for all models.

3.2. Mixture analysis
In this section, two-level regression mixture modelling is applied to the NELS mathematics
achievement data. Three mixture models are explored: model A, model B and model C. The key
model B will be presented not only in terms of formulae but also in a model figure for readers
who are not accustomed to complex statistical equations.

3.2.1. Mixture modelling with level 1 latent class variable: models A and B
Fig. 7 shows the two-level regression mixture model diagram (referred to as model B below).
The diagram uses the conventions that were described for Figs 2–4. It shows that unobserved
heterogeneity in the mathematics intercept and slopes is allowed for not only among schools, as
in the conventional model, but also among students. For students, the heterogeneity is expressed
as latent classes and for schools the heterogeneity is expressed as random coefficients varying
between schools. In this way, the model captures heterogeneity by using both categorical and
continuous latent variables.

Fig. 7 assumes three latent classes (K =3). At level 1 the arrows pointing to c from the cova-
riates female and stud-ses represent the multinomial logistic regression of student latent class
membership. The two filled circles for c represent the two random intercepts for c=1 and c=2
(the third class is the reference class). The three filled circles in the linear regression of math on
female and stud-ses represent the random intercept and the two random slopes. At level 2 the
random effects are related to the covariates per-adva, private, Catholic and mean-ses by using
linear regressions. The absence of a residual arrow for s-ses indicates that the residual variance
for s-ses is held at 0 because it was found insignificant. The other residuals are correlated.

Formally, the Fig. 7 two-level regression mixture model is expressed as follows. Consider the
random intercept and slopes of the linear regression of math regressed on the covariates female
and stud-ses for individual i in school j varying across the latent classes of an individual level
categorical latent variable C with K categories or latent classes,

mathij|Cij=c =β0cj +β1cj femaleij +β2cj stud-sesij + rij, .18/

where the residual rij ∼ N.0, θ/ and independently distributed. The probability of latent class
membership varies as a two-level multinomial logistic regression function,

P.Cij = c|femaleij, stud-sesij/= exp.acj +b1c femaleij +b2c stud-sesij/

K∑

s=1
exp.asj +b1s femaleij +b2s stud-sesij/

: .19/
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Fig. 7. Model diagram for two-level regression mixture analysis of NELS mathematics achievement
(model B)

The corresponding level 2 equations are written as functions of the level 2 covariates per-adva,
private, Catholic and mean-ses:

β0cj|Cij=c =γ00c +γ01c per-advaj +γ02c privatej +γ03c Catholicj +γ04c mean-sesj +u0j, .20/

β1cj|Cij=c =γ10c +γ11c per-advaj +γ12c privatej +γ13c Catholicj +γ14c mean-sesj +u1j, .21/

β2cj|Cij=c =γ20c +γ21c per-advaj +γ22c privatej +γ23c Catholicj +γ24c mean-sesj +u2j, .22/

acj =γ30c +γ31c per-advaj +γ32c privatej +γ33c Catholicj +γ34c mean-sesj +u3j, .23/

where the last equation represents K−1 random-effects regressions and the residuals u0j, u1j, u2j

and u3j are (3 + K − 1)-variate normally distributed with means 0 and covariance matrix Θ2
and are independent of rij.

With K classes, there are K − 1 random effects u3j in equation (23). In line with Vermunt
(2003) the dimensionality of the multinomial random intercepts can be reduced by using a
continuous factor f to represent their variation and covariation. The dimension reduction is
important in the maximum likelihood estimation because each random effect corresponds to
one dimension of numerical integration, where an increasing number of integration dimensions
leads to heavy and ultimately intractable computations. With three latent classes (K = 3), the
two multinomial random intercepts a1j and a2j can be expressed in terms of fj as

a1j =fj, .24/

a2j =λfj: .25/
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The variances and covariance of the two intercepts given the level 2 covariates are thereby
parameterized in terms of the parameter λ and the residual variance of the factor fj. In the
NELS application below, the three classes can be seen as ordered on a dimension from high to
low performance in mathematics in which case the single-factor simplification seems reasonable
in that the two random effects are likely to be highly correlated but have different variances. The
factor fj is in turn linearly regressed on the level 2 covariates. To allow the two multinomial
random intercepts to have different relations to the level 2 covariates, the covariates are allowed
to have a direct influence on one of the intercepts (here the second). In equations (24) and (25)
there are no residuals for the two multinomial random intercepts in their linear regression on
f , reducing two dimensions to one. This mixture model will be referred to as model B.

A simplified version of this model, model A, expresses the heterogeneity in the slopes for
the covariates female and stud-ses by using only the student level latent classes, not allowing
further random variation in these slopes across schools, i.e. u1j = 0 and u2j = 0. This leads
to two-dimensional integration corresponding to the mathematics intercept and the factor f.
This model is interesting in that it completely replaces the between-school variation in the
random slopes with between-student variation. The random intercept, however, retains the
variation between both students and schools given that this variation is typically much more
pronounced.

3.2.2. Mixture modelling with level 1 and level 2 latent class variable: model C
Consider the two-level regression mixture model where the random intercept and slope of the
linear regression of the mathematics achievement score math regressed on the covariates female
and stud-ses for individual i in school j vary across the categories of an individual level latent
class variable C with K categories as well as across a school level latent class variable D with L
categories,

mathij|Cij=c,Dj=d =β0cdj +β1cdj femaleij +β2cdj stud-sesij + rij, .26/

where the residuals rij ∼N.0, θ/ and independently distributed. The probability of latent class
membership for the individual level latent class variable varies as a two-level multinomial logistic
regression function:

P.Cij = c|Dj =d, femaleij, stud-sesij/=Lij,

Lij = exp.acj +b1c femaleij +b2c stud-sesij/

K∑

s=1
exp.asj +b1s femaleij +b2s stud-sesij/

: .27/

The corresponding level 2 equations are written as functions of the level 2 covariates per-adva,
private, Catholic and mean-ses, with variation in coefficients across the latent classes of both
C and D,

β0cj|Dj=d =γ00cd +γ01cd per-advaj +γ02cd privatej +γ03cd Catholicj +γ04cd mean-sesj +u0j,
.28/

β1cj|Dj=d =γ10cd +γ11cd per-advaj +γ12cd privatej +γ13cd Catholicj +γ14cd mean-sesj +u1j,
.29/

β2cj|Dj=d =γ20cd +γ21cd per-advaj +γ22cd privatej +γ23cd Catholicj +γ24cd mean-sesj +u2j,
.30/
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acj|Dj=d =γ30c +γ31c per-advaj +γ32c privatej +γ33c Catholicj +γa4c mean-sesj +u3j, .31/

where the last equation represents K−1 random-effects regressions and the residuals u0j, u1j, u2j

and u3j are (3+K−1)-variate normally distributed with means 0 and covariance matrix Θ2 and
are independent of rij. The same dimension reduction as in equations (24) and (25) is carried
out here. The model is completed by expressing the probability of latent class membership for
the school level latent class variable D as the multinomial logistic regression,

P.Dj =d|per-advaj, privatej, Catholicj, mean-sesj/=Lj,

Lj = exp.ad +b1d per-advaj +b2d privatej +b3d Catholicj +b4d mean-sesj/

L∑

s=1
exp.as +b1s per-advaj +b2s privatej +b3s Catholicj +b4s mean-sesj/

: .32/

3.3. National Education Longitudinal Survey model comparisons
For comparison of fit of models that have the same number of classes and are nested, the
usual likelihood ratio and Wald χ2-tests will be used. Likelihood ratio comparisons of models
with different numbers of classes violate the requirement of not having parameters on the bor-
der of the admissible parameter space in the more restricted model because of zero-probability
parameters. Deciding on the number of classes is instead typically accomplished by the Bayesian
information criterion BIC (Schwarz, 1978; Kass and Raftery, 1993),

BIC=−2 log.L/+ r log.n/, .33/

where r is the number of free parameters in the model and n is the sample size. The lower the
BIC-value, the better the model. The number of classes is increased until a BIC minimum is
found.

Table 2 reports the log-likelihood, number of parameters and BIC for the models that were
considered. The conventional model is referred to as model 1 in Table 2, whereas the extension
to heterogeneous level 1 residual variance as a function of level 1 covariates is labelled model
1b and the extension to heterogeneous level 1 residual variance as a function of level 2 school
type is labelled model 1c. Among the 1-class models, model 1c has the best (lowest) BIC-value.
It is clear, however, that the BIC improvement for model 1c relative to model 1 is considerably

Table 2. NELS mathematics analysis: log-likelihood and
BIC comparisons of models

Model Number of Log- Number of BIC
classes likelihood parameters

1 1 −48519 21 97240
1b 1 −48507 23 97234
1c 1 −48486 23 97192
A2 2 −48358 20 96907
A3 3 −48288 28 96844
A4 4 −48255 35 96845
B2 2 −48337 32 96981
B3 3 −48258 43 96928
B4 4 −48208 54 96933
C23 2, 3 −48211 61 97004
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Fig. 8. School-estimated slopes for females related to estimated mathematics intercepts for the NELS by
using two-level regression mixture analysis

smaller than the BIC improvement of the 2-class model A2 relative to model 1. Model A2 uses
fewer parameters than model 1c but has a better log-likelihood and BIC, illustrating the impor-
tance of allowing for level 1 heterogeneity in terms of mixtures with coefficients varying across
the latent classes. Model A3 with three latent classes has only five more parameters than model
1c but has a considerably lower BIC. Comparing the three versions of model A, model A3 is
found preferable on the basis of BIC.

The results for the more general model of Fig. 7 are listed under model B in Table 2. Model B
allows slope heterogeneity among both students and schools. For this type of model, BIC
suggests that three latent classes are optimal. Although model B3 has a worse BIC-value than
model A3, these two models have the same number of classes and can therefore be compared in
a conventional way. The Wald test significance of the extra parameters of model B3 shows that
model B3 is preferable to model A3. Model C23 adds two latent classes at level 2 to model B3,
but BIC indicates that this school level mixture is not needed for these data.

The conclusions that are drawn from model B3 are quite different from those of the conven-
tional model 1. Fig. 8 shows a scatter plot of the estimated slopes for females related to the
mathematics intercepts for the 913 schools. Fig. 8 is based on the model 3 posterior estimates
for the random intercept and slopes. Because these random effects have within-level variation
over the latent classes the estimates for the random effects in the three possible level 1 classes are
different and therefore the posterior estimates for students within the same school can differ.
In addition each student can be partially classified in two or more classes with varying class
membership probabilities, which leads to further variation in the random-effect estimates. Fig. 8
shows the scatter plot for the school average random intercept and the school average gender
random slope. Fig. 8 may be compared with the corresponding Fig. 6 for model 1. Whereas for
model 1 38% of the schools showed an advantage for females over males, in model B3 this is
reduced to 9%.



Mixture Analysis 655

The estimated model B3 may be discussed by using Fig. 7. At level 1 the influence of the
three classes of c on mathematics and on the regression of mathematics on female and stud-ses
is characterized as follows. The three latent classes are ordered from high to low mathematics
achievement intercept (γ00): 57.2 (class 1, 22%), 47.7 (class 2, 46%) and 37.4 (class 3, 32%).
The mean differences correspond to a little more than 1 standard deviation of the mathe-
matics score. The means of the slopes for females for these three classes evaluated for public
schools (γ10) all indicate a disadvantage for females: −2:0, −1:3 and −0:2. Here, the inter-
cepts for class 1 and 2 are significantly different from 0 but the mean for class 3 is not. The
significant gender differences are in contrast with the non-significance that is found in the con-
ventional model where no latent class distinction was made. The level 1 multinomial logistic
regression of latent class membership on the level 1 covariates shows that both female and
stud-ses have significant positive influence on the probability of being in the high mathemat-
ics scoring class 1. In terms of gender effects, the results are similar to what was shown in
Fig. 1.

At level 2 of model B3 the mathematics intercept is not significantly predicted by any of
the level 2 covariates. For the conventional model the mathematics intercept had a positive
significant influence from the level 2 covariates private and mean-ses (shown earlier in Table 1).
For model B3, however, the mathematics intercept regression variation is expressed differently,
being both between and within latent classes. The non-significance refers to the within-class
variation. The level 2 covariates can also have an influence on performance in mathematics
via the random intercepts for the multinomial logistic regression. Model B3 shows such an
effect as a significant positive effect of mean-ses on the factor f. Unlike the conventional model,
there is, however, not a significant effect of the sector covariate private. As in the conventional
model, the model B3 level 2 regression of the slope for females on the level 2 covariates shows
no significant effects. The residual variance for the slope for females is 3.1 with standard error
0.7 supporting the need for model B3 over the simpler model A3. For the random slope for
stud-ses there is a significant negative influence from the sector covariate Catholic. Unlike the
conventional model, however, there is no significant effect of private. In this way, the con-
clusions regarding egalitarian effects are different between the two models. Also, model B3
does not show a significant effect of mean-ses on the stud-ses slope. In conclusion, the con-
ventional model and the mixture model provide different conclusions regarding key aspects
of the analyses. The mixture model has better log-likelihood and BIC-values and can there-
fore be said to be closer to the data. This suggests that the mixture model results are more
trustworthy.

4. Conclusions

The two-level regression mixture analyses have shown that unobserved heterogeneity should
not be presupposed to exist at level 2 at the expense of level 1. Both the simulated and the
real data analyses have shown that level 1 heterogeneity in the form of latent classes can be
mistaken for level 2 heterogeneity in the form of the random effects that are used in conven-
tional two-level regression analysis. This suggests that mixture models have an important role
to play in multilevel regression analyses. Mixture models allow heterogeneity to be investigated
more fully, more correctly attributing different portions of the heterogeneity to the different
levels.

NELS analyses of mathematics performance in grade 12 gave similar results to the results
discussed for grade 8. Although the analyses that are shown here are mostly illustrative of the
methods and not based on substantive causal theories, they may serve to stimulate further
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investigations of the determinants of student level latent class membership. Such investigations
may focus on the mathematics achievement development over grades 8–12 and also using infor-
mation on mathematics courses taken during these grades.

A drawback of the mixture modelling is that the maximum likelihood computations are signifi-
cantly more time consuming. First, computations are slow because mixture modelling in general
exhibits multiple maxima of the likelihood so analyses that are based on many random starting
value sets must be used to avoid a local maximum. Second, maximum likelihood estimation of
mixture models with random effects calls for numerical integration, where each random effect
with a non-zero level 2 variance contributes one dimension of integration. Model B involves
three dimensions of integration. Taken together with the large sample size of n = 14217 this
makes the computations slow. Model B has only one random slope and, with more random
slopes, the computations would be even slower. The simpler model A involves only two dimen-
sions of integration irrespective of the number of slopes and is therefore a more practical model.
For these data, model B fits better but model A results were close to those of model B and may
serve as an approximation. Model C uses both level 1 and level 2 latent classes and leads to
even more heavy computations. A model A version of this may give more manageable compu-
tations. On the whole, however, the rapidly improving speed of computers and the increased
availability of multiple processors are likely ultimately to make these timing concerns less rele-
vant. As an alternative, Markov chain Monte Carlo analysis may be performed as in Goldstein
and Browne (2002, 2005). Markov chain Monte Carlo sampling, however, comes with its own
challenges in the context of complex latent variable modelling, including choice of parameter-
izations to ensure good mixing, label switching for latent classes and difficulties in determining
identification status and convergence.

Acknowledgements

The research of the first author was supported under grant K02 AA 00230-01 from the National
Institute on Alcohol Abuse and Alcoholism, by grant 1 R21 AA10948-01A1 from the National
Institute on Alcohol Abuse and Alcoholism, by the National Institute of Mental Health under
grant MH40859 and by grant P30 MH066247 from the National Institute on Drug Abuse
and the National Institute of Mental Health. The work has benefited from discussions in the
Prevention Science and Methodology Group, directed by Hendricks Brown. We thank Shaunna
Clark and Michelle Conn for helpful research assistance.

References

Asparouhov, T. and Muthén, B. (2008) Multilevel mixture models. In Advances in Latent Variable Mixture Models
(eds G. R. Hancock and K. M. Samuelson), pp. 27–51. Charlotte: Information Age Publishing.

DeSarbo, W. S. and Cron, W. L. (1988) A maximum likelihood methodology for clusterwise linear regression.
J. Class., 5, 248–282.

Goldstein, H. (2003) Multilevel Statistical Models, 3rd edn. London: Arnold.
Goldstein, H. and Browne, W. (2002) Multilevel factor analysis modelling using Markov chain Monte Carlo

estimation. In Latent Variable and Latent Structure Models (eds G. Marcoulides and I. Moustaki), ch. 11, pp.
225–244. Mahwah: Erlbaum.

Goldstein, H. and Browne, W. (2005) Multilevel factor analysis models for continuous and discrete data. In Con-
temporary Psychometrics (eds A. Maydeu-Olivares and J. J. McArdle), ch. 14, pp. 453–475. Mahwah: Erlbaum.

Kass, R. E. and Raftery, A. E. (1993) Bayes factors. J. Am. Statist. Ass., 90, 773–795.
MacKinnon, D. (2008) Introduction to Statistical Mediation Analysis. New York: Erlbaum.
McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models. New York: Wiley.
Muthén, B. and Asparouhov, T. (2008) Growth mixture modeling: analysis with non-Gaussian random effects. In

Longitudinal Data Analysis (eds G. Fitzmaurice, M. Davidian, G. Verbeke and G. Molenberghs), pp. 143–165.
Boca Raton: Chapman and Hall–CRC.



Mixture Analysis 657

Muthén, B. and Muthén, L. (2008) Mplus User’s Guide. Los Angeles: Muthén and Muthén.
Raudenbush, S. W. and Bryk, A. S. (2002) Hierarchical Linear Models: Applications and Data Analysis Methods,

2nd edn. Newbury Park: Sage.
Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statist., 6, 461–464.
Snijders, T. and Bosker, R. (1999) Multilevel Analysis: an Introduction to Basic and Advanced Multilevel Modeling.

Thousand Oakes: Sage.
Titterington, D. M., Smith, A. F. M. and Makov, U. E. (1985) Statistical Analysis of Finite Mixture Distributions.

New York: Wiley.
US Department of Education (1988) National Education Longitudinal Study of 1988 (NELS:88), base-year and

first follow-up surveys. National Center for Education Statistics, US Department of Education, Washington
DC.

Vermunt, J. (2003) Multilevel latent class models. Sociol. Methodol., 33, 213–239.
Wedel, M. and DeSarbo, W. S. (1993) A review of recent developments in latent structure regression models. In

Advanced Methods of Marketing Research (ed. R. Bagozzi), pp. 352–388. London: Blackwell.


