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1 Introduction

Multilevel statistical models allow researchers to evaluate the effects of indi-
viduals’ shared environment on an individual’s outcome of interest. Finite
mixture models allow the researchers to question the homogeneity of the
population and to classify individuals into smaller more homogeneous la-
tent subpopulations. Structural equation models allow the researchers to
explore relationships between observed variables and latent constructs. As
researchers get more and more experience with these techniques they will
inevitably want to use them within a unified framework that will enable
them to combine all these ideas into a comprehensive statistical model that
addresses all features present in the data. In this article we will describe
a general statistical model that incorporates multilevel models, finite mix-
ture models and structural equation models into a very general and flexible
modeling framework. The basis of this methodology was first implemented
in Mplus Version 3 (Muthen & Muthen, 2004), while the complete model-
ing framework described in this article is available in Mplus 4.2 (Muthen &
Muthen, 2006).

The topic of Multilevel Mixture Models is relatively new, although a num-
ber of articles have discussed similar frameworks and applications. Among
these are Asparouhov (2006), Bijmolt et. al. (2004), Vermunt (2003) and
Vermunt and Magidson (2005).

The goal of this article is to describe a two-level modeling framework that
includes multiple latent variables. Each latent class variable can be either
a within level variable, a between level variable or a within-between level
variable. The more general and flexible a statistical model is, the bigger the
effort on the part of the researcher to interpret the model and the results
in a practically meaningful way. In this article we will illustrate the general
model with some specific simple examples and will describe the advantages
of these models over conventional modeling techniques.

In Section 2 we describe the basic two-level mixture framework. In Sec-
tion 3 we introduce the multiple class variables framework and describe a
two-level latent transition analysis (LTA) model. In Section 4 we use the
two-level LTA model to analyze students behavior data and illustrate the
modeling capabilities of this framework. In Section 5 we describe a two-level
model with a between level latent class variable and compare this model to
the model described in Section 2. We show that a between level latent class
variable is a special case of the within-between latent class variable used in
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Section 2 and 3. In Section 6 we describe a two-level model that incorporates
both a within and a between latent class variables. In Section 7 we describe
the grade of membership model (GoM) and show its advantages over latent
class analysis (LCA) models. We also show how this model can be incor-
porated into the modeling framework described in Section 2. We illustrate
2- and 3- class GoM model with an application of criminal offense data.
The GoM modeling idea can be combined with most finite mixture models.
In Section 8 we apply the GoM modeling idea to the factor mixture model
(FMA). Thus we incorporate the GoM, the IRT and the LCA model into one
general model. We illustrate the capabilities of this FMA-GoM model with
a practical application using ADHD diagnostics data. In Section 9 we show
that the 3PL guessing IRT model is a special case of the FMA-GoM model.
Section 10 discusses the technical aspects of the estimation of the two-level
mixture models.

2 The Basic Two-level Mixture Model

Let ypij be the p−th observed dependent variable for individual i in cluster
j. In this section we will only consider two types of variables, categorical
and normally distributed continuous variables. However it is possible to
incorporate other types of distributions and link function as in the generalized
linear models of McCullagh and Nelder (1989). Suppose that Cij is a latent
categorical variable for individual i in cluster j which takes values 1, ..., L.

To construct a structural model for the categorical variables we proceed
as in Muthen (1984) by defining an underlying normally distributed latent
variable y∗pij such that for a set of parameters τck

[ypij = k|Cij = c] ⇔ τck < y∗pij < τck+1. (1)

A linear regression for y∗pij is thus equivalent to a Probit regression for ypij.
Alternatively, y∗pij can have a logistic distribution. Linear regression for y∗pij

will then translate to a logistic regression for ypij. For continuous variables
we define y∗pij = ypij.

Let y∗ij be the vector of all dependent variables and let xij be the vector
of all covariates. The structural part of the model is defined by

[y∗ij|Cij = c] = νcj + Λcjηij + εij (2)

[ηij|Cij = c] = µcj + Bcjηij + Γcjxij + ξij (3)
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P (Cij = c) =
exp(αcj + βcjxij)∑
c exp(αcj + βcjxij)

. (4)

where ηij are normally distributed latent variables, εij and ξij are zero mean
normally distributed residuals. Some parameters have to be restricted for
identification purpose. For example, the variance of εpij should be 1 for
categorical variables ypij. Also αLj = βLj = 0.

The multilevel part of the model is introduced as follows. Each of the
intercept, slope or loading parameters in equations (2-4) can be either a fixed
coefficient or a cluster random effect, i.e., a coefficient that varies across clus-
ters. Let ηj be the vector of all such random effects and let xj be the vector
of all cluster level covariates. The between level model is then described by
the following equation

ηj = µ + Bηj + Γxj + ξj (5)

where ξj is a normally distributed residual.
The above four equations comprise the definition of a simple multilevel

structural mixture model. There are many extensions of this model that are
available in the Mplus framework. For example observed dependent variables
can be incorporated on the between level. Other extensions arise from the
fact that a regression equation can be constructed between any two variables
in the model. Such equations can be fixed or random effect regressions.
Another interesting extension is to have all intercept and slopes parameters
in equation (5) vary across the latent class. This essentially amounts to
interaction between the C variable and the random effect variables.

The model described in this section can also be extended to include multi-
ple latent class variables. This extension is described in the following section.

3 Multiple Latent Class Variables

In this section we describe the basic framework for a multilevel mixture
model with multiple latent categorical variables C1, C2, ... etc. For simplicity
we will focus on the model with two latent categorical variables C1 and
C2 however the framework easily extends to more than two class variables.
One application of the multiple latent class variable framework is the latent
transition analysis (LTA) model. The LTA model is used in longitudinal
settings and Ct represents the latent class variable at time t. As in the
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previous section let y∗tij be the vector of all dependent variables observed at
time t and xtij be the vector of all covariates at time t. The structural part
of the model is given by

[y∗tij|Ctij = c] = νtcj + Λtcjηtij + εtij (6)

[ηtij|Ctij = c] = µtcj + Btcjηtij + Γtcjxtij + ξtij (7)

where ηtij are normally distributed latent variables and εtij and ξtij are nor-
mal residuals. The multinomial logistic regression for the class variable C1

at the first time point is given by

P (C1ij = c) =
exp(α1cj + β1cjx1ij)∑
c exp(α1cj + β1cjx1ij)

. (8)

The multinomial logistic regression for the second class variable C2 includes
C1 as a covariate

P (C2ij = d|C1ij = c) =
exp(α2dj + γdcj + β2djx2ij)∑
d exp(α2dj + γdcj + β2djx2ij)

. (9)

where γdcj shows the effect of C1 on C2. Equations (8) and (9) form a set
of recursive system of logit models, see Agresti (1996), and can be used to
explore the dependence of C2 on C1. When there are more than two latent
categorical variables C1,...,CT the LTA models the dependence of Ct on the
previous class variables C1,...,Ct−1. A first order Markov chain model is a
special case of the LTA model which assumes that Ct depends only on Ct−1

but not on earlier class variables.
As in the previous section, each of the intercept, slope and loading param-

eters in equations (6-9) can be either a fixed coefficient or a random effect.
If ηj are all random effects and xj are all cluster level covariates, equation
(5) again describes the cluster level structural model.

The multilevel framework described above allows us to study the effect
of C1 on C2 on the individual level through equation (9) but also on the
cluster level by estimating the intercepts α2dj and α1cj as random effects and
estimating a regression equation

α2dj = µ + βα1cj + εdcj. (10)

We illustrate this modeling technique with a practical example in the next
section.
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4 Two-level LTA Example

To illustrate the two-level LTA model we use data from the Baltimore study
of aggressive and disruptive behavior in the classroom, see Muthen et. al.
(2002). The data to be analyzed consists of 10 Likert scale items known as the
TOCA instrument. These items are teacher-rated student’s behavior on the
scale of 1 to 6. The items are strongly skewed and to simplify the illustration
we convert all items to binary scale. All values larger than 1 are recoded
as 2. The statistical model that we present here is not intended to draw
any substantive conclusions. We only illustrate the statistical methodology
that could be useful in such applications. The model that we described
however was suggested by Nicholas Ialongo as an appropriate approach in
these settings. We analyze the first grade data collected in the fall and in
the spring. The 10 fall measurements, U1p, p = 1, ..., 10, are used to estimate
a latent class model with two classes. Denote this class variable with C1.
Similarly the 10 spring measurements, U2p, p = 1, ..., 10, are used to estimate
a latent class model with two classes. Denote this class variable with C2.
Consequently we combine the two models into a single model and estimate a
transitional model from C1 to C2. Of particular interest is the effect of C1 on
C2 which can be estimated in a logistic regression where C2 is the dependent
variable and C1 is the predictor variable as in equation (9). The structural
part in the fall data is fairly similar to the structural part in the spring data so
we estimate the joint model with a time invariant latent class model. In both
the fall and the spring the first class contains the more disruptive students
and the second class contains the less disruptive students. The model is
described by the following equations

P (Utp = 2|C1 = c) = πcp (11)

P (C1 = 1) =
exp(α1)

exp(α1) + 1
(12)

P (C2 = 1|C1) =
exp(α2 + γI(C1))

exp(α2 + γI(C1)) + 1
(13)

where I(C1) is an indicator variable for C1, I(C1) = 1 if C1 = 1 and I(C1) = 0
if C1 = 2. Large values of γ will indicate strong relationship between C1 and
C2. It is also possible to calculate the R2 contribution of C1 as a predictor
of C2

R2 =
γ2P (C1 = 1)(1− P (C1 = 1))

γ2P (C1 = 1)(1− P (C1 = 1)) + π2/3
. (14)
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Table 1: Probability Profiles for the Two Classes.

class Ct = 1 Ct = 2
parameter π1p π2p

Stubborn 0.92 0.36
Break Rules 0.96 0.29
Harm Others 0.73 0.03
Break Things 0.59 0.03
Yells at Others 0.82 0.18

Take Others’ Property 0.78 0.07
Fights 0.73 0.08
Lies 0.81 0.10

Tease Classmates 0.90 0.24
Trouble Accepting Authority 0.78 0.12

The term π2/3 represents the variance of the error term with the logistic
distribution.

The model described so far however will not allow us to evaluate the
classroom effects on individual behavior. Previous analysis on the Baltimore
data have shown that the average level of aggressive/disruptive behavior in
the classroom strongly influences individual aggressive behavior development.
To incorporate the classroom effects we estimate α1 and α2 as normally
distributed classroom level random effects. These random effects will allow
us to model the differences between the classrooms. For example, large α1

values correspond to classrooms with a large number of disruptive students.
In addition we can estimate a regression equation between the two random
effects

α2j = µ + βα1j + εj (15)

where µ and β are fixed coefficients and εj is a mean zero normally distributed
residual. Thus the model will allow us to evaluate not only the individual
effect of C1 on C2 in equation (13) but also the direct effects of α1 on C1 in
equation (12), α2 on C2 in equation (13) and α1 on α2 in equation (15). In
addition the total effect of α1 on C2 can be computed which consists of two
indirect effects, via C1 and via α2.

The results of this two-level LTA are presented in Table 1 and Figure 1.
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Figure 1: Two-level Latent Transition Model
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Table 1 contains the probability profiles for the two classes and all ten TOCA
instruments. It is clear that the two classes are very well separated. For the
fall data class 1 contains 46% of the students while for the spring data class
1 contains 52% of the students. The probability of switching from class 1 to
class 2 is only 7% while the probability of switching from class 2 to class 1
is 18%.

Figure 1 shows the structure of the model and the estimated regression
paths between Ci and αi. As in equation (14) we can compute the proportion
of explained variance by this model. For example the logistic regression
equation from α1 to C1 shows that α1 explains 39% of the variance of C1.
For C2 this model explains 65% of the variance, 35% is explained by the
classroom effect α1, 30% is explained by the residual individual effect of C1

(the part of C1 that is unexplained by α1), and 5% is explained by the residual
classroom effect α2 (the part of α2 that is unexplained by α1). Also we can
see that alone C1 explains 41% of the variance of C2, while the addition of
the classroom effect α2 explains now only 24% of the variance, which is a
significant reduction from the fall classroom influence of 39%. This seems to
indicate that much of the classroom influence has occurred in the fall.
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5 Between Level Class Variables

Models where the latent class variable is not an individual level variable but
is a cluster level variable are also of interest. Such models will allow us to
explore population heterogeneity that is caused by cluster level variables.
For example, when heterogeneity in students’ performance is caused by het-
erogeneity among teachers the latent class variable in the model should be
a cluster level variable. Small modification in the model described in Sec-
tion 2 are needed to accommodate between level class variables. The first
modification is that

Cij = Cj (16)

which essentially is a stochastic type equality constraint that guarantees
equality between the class variables within a cluster of observations. The
second modification is that equation (4) should be replaced by

P (Cj = c) =
exp(αc + βcxj)∑
c exp(αc + βcxj)

, (17)

because only between level covariates can be used as class predictors. Note
also that the intercepts and slopes in equation (17) are not random as we now
have only one such equation per cluster which makes it very hard to model
these parameters as random effects. A between level class variable allows a
more flexible structural model on the between level. In the between level
structural model all parameters, including the residual variance covariance
matrix can be class specific

ηj = µc + Bcηj + Γcxj + ξj. (18)

In multilevel mixture models estimating a between level class variable is
actually easier than estimating a two level model with a within level class
variable. For example the forward-backward algorithm (see, Vermunt, 2003)
is not needed when the class variable is on the between level and one can use a
simple EM estimation approach as in Muthen and Shedden (1999). However,
it is not clear in general if between level heterogeneity is feasible to estimate in
many practical applications with relatively small sample size on the between
level. Between level sample size of 100 clusters or less is a rather common
situation in multilevel data sets. The key question in modeling between
level class variables is whether the within level observed variables can be
used directly to identify the classes. If that is not the case, the within level
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Table 2: Model specification and MSE of α1

Model C v MSE
Model 1 within 0 0.31
Model 2 between 0 0.10
Model 3 between 0.1 0.26
Model 4 between 0.2 0.44

observed data would be used simply to measure the between level random
effects which will consequently identify the classes. In that case we will have
a rather limited sample size to identify the classes, namely the between level
sample size. An alternative way to pose this question is how to construct
models with between level latent class variables where the within level data
can contribute directly to the class formation and identification, which will
produce more reliable models with more accurate parameter estimates.

The answers to the above questions will be illustrated with the following
simulation study. We generate and estimate four different two class mixture
models and evaluate the stability of the estimation by the mean squared
error (MSE) of parameters α1 in equation (4). The smaller the MSE of α1

the easier it is to recover the heterogeneity in the population. We use a
simple two class mixture model for a two-level random effect regression

Yij = µcj + βcjXij + εij (19)

where µcj and βcj are between level random effects with variance v and
covariance 0. We vary the parameter v across the models. The means of
µcj and βcj are 1 and 0.2 in class 1 and 0 and 0.8 in class 2. The residual
variable εij is a zero mean normally distributed variable with variance θ = 1.
The covariate Xij is also a standard normal random variable. We vary the
status of the C variable across the models. In Model 1 the variable is a within
variable and in Model 2-4 it is a between level variable. Table 2 summarizes
the specification of the models and the MSE of the log odds ratio parameter
α1 in equation (17). All models are generated and estimated with the correct
specification. The sample size is 500 for all models, there are 50 clusters of
size 10 each. The two classes are of equal size. We generate 100 samples for
each model.
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Table 3: Parameter Estimates (Standard Errors) and Log-Likelihood Value

Parameter True Value Model 5 Model 6
µ1 1 0.90(0.14) 0.90(0.13)
µ2 0 0.13(0.13) 0.12(0.12)
β1 0.2 0.25(0.07) 0.25(0.06)
β2 0.8 0.81(0.07) 0.81(0.06)
θ 1 1.01(0.04) 1.01(0.04)
v 0.2 0.22(0.08) 0.22(0.08)

LL -1517.6 -1517.6

The results of this simulation study show clearly that there are two com-
peting forces moving in opposite direction when it comes to identifying be-
tween level class variables. The difference between Model 1 and Model 2
is only in the stochastic constraint (16). The fact that the class variables
are constrained to be identical across cluster contributes greatly to easing
the class identification process. The difference between Models 2-4 is in the
variance of the between level random effects. As the variance increases, the
advantage of the stochastic constraint (16) is lost due to the fact that the
random effect means in the two classes are fewer and fewer standard devi-
ation units apart, which makes the two classes overlap. The conclusion of
this simulation study is that to produce reliable models with between level
class variables the models should include sufficient number of parameters
that differ across class and utilize the within level observed data directly.
Such parameters are class varying fixed effects or random effects with large
variation across class but small variation across clusters. For example a
sound strategy would be to include significant between level random effects
but to eliminate from the model between level random effects that are not
significant and replace them with fixed effects that can vary across classes.

The next modeling issue we want to address is the situation when the
researcher does not a priori know whether or not the latent class variable is
a cluster level variable or individual level variable. This is a substantively
important question as it provides an insight into the causation of the het-
erogeneity. We illustrate this issue with the following simulation study. We
generate a sample according to a modification of Model 4 where the random
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Figure 2: Conditional Latent Class Probability, Var(α1)=100
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slope variance is fixed to 0 while the random intercept variance is 0.2. We
generate a sample of 100 clusters of size 10 for a total of 1000 observations.
Let’s call this model Model 5. We analyze the data according to this true
model assuming that the class variable is a between level variable. We also
analyze this data according to Model 6 where the latent class variable C is
assumed to be a within level variable with a between level random intercept
α1. Model 6 would be the model of choice when the researcher is uncertain
about the status of the latent class variable. In Model 6 we assume that the
class variable is a within level variable, but with a between level component,
so essentially it is a variable that has both individual and cluster effect, i.e.,
within and between variable. The results of the analysis are presented in Ta-
ble 3. The two estimated models have almost identical parameter estimates.
For all parameters the true value is within the confidence limits. The vari-
ance of α1 in Model 6 was estimated as 609 which can be used to compute
the ICC value for C

ICC =
V ar(α1)

V ar(α1) + π2/3
= 0.995. (20)

This simulation shows that even if the latent class variable is a between
level variable the data can be analyzed as if the variable is a between-within
variable as in Model 6.

Formal tests can be constructed to test whether the class variable is only
a between level variable or it is a between-within level variable. Using the
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Figure 3: Conditional Latent Class Probability, Var(α1)=10000
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ICC value one can test whether this value is significantly different from 1
by constructing a confidence interval using the delta method or by using
the bootstrap resampling method. Note however that because the ICC pa-
rameter is approaching its boundary value of 1, the delta method is not as
reliable and should only be used as an approximation. This is because maxi-
mum likelihood estimation of bounded parameters does not follow the usual
asymptotic theory of unbounded parameters. For practical purposes how-
ever an ICC value above 0.8 would be a good indication to pursue models
where the class variable is only on the between level. In addition, an LRT
test can be used to test for significant differences between the two models.
That is because the two models are actually nested and Model 6 has one
more parameter than Model 5. This additional parameter is the variance of
α1. Again however because of the boundary proximity the LRT test will not
have the usual chi-square distribution when the ICC approaches 1.

Finally let’s focus on the question why Model 5 is nested within Model 6.
When the variance of α1 in Model 6 approaches infinity the model becomes
equivalent to Model 5 because the variables Cij are so highly correlated that

P (Ci1j 6= Ci2j) ≈ 0, (21)

i.e. the stochastic constraint (16) is mandated by the model. Figure 2 and
Figure 3 also illustrate this point. In Figure 2 we plot the conditional class
probability P (Cij = 1|α1) on a standard scale of α1, when the variance of
α1 is 100 and the mean is 0. Figure 3 shows this probability when the
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Table 4: Specification for Latent Class Variable Status

Status V ar(αcj)
Within 0
Between huge

Within-Between positive

variance of α1 is 10000. It is clear from these plots that for most values of
α1 the conditional probability is either 0 or 1. This is especially so when the
variance of α1 is 10000. When this probability is 0 or 1 then Cij can not
vary across individuals in the cluster as it is completely determined by the
value of the random effect α1 in the j−th cluster. When the variance of α1

is large the influence of the random intercept α1 on Cij is large which makes
the class variables within a cluster so highly correlated that no variation of
the class variables within the cluster is possible.

Table 4 summarizes the modeling possibilities for the latent class variables
and the corresponding interpretation for the intercept variance parameter.
Note however that when estimating a between level class variable model that
there is a numerical advantage for directly specifying the class variable as
a between level variable as in Model 5, rather than as a within-between
variable with large variance as in Model 6. Both approaches are possible
in Mplus 4.2. The advantage of the Model 5 approach is that it does not
use numerical integration for the random effect αcj. Model estimation with
numerical integration will typically be more computationally demanding.

6 Within and Between Class Variables

All three types of latent class variables given in Table 4 can be used simulta-
neously in a model. The variables can be measured and predicted by different
observed variables, as in the two-level LTA model described in Section 3, or
they can be measured and predicted by the same observed variables. Within
level latent class variables can be measured and predicted only by within level
observed variables. Between level latent class variables can be measured by
within and between observed variables but can be predicted only by between
observed variables. Within-between latent class variables can be measured
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and predicted by within level observed variables, while the random effects
αcj can be measured and predicted by between observed variables.

In this section we illustrate these modeling combinations by describing
a model which includes a within and a between latent class variable. Let
Cij be a latent class variable for individual i in cluster j which takes values
1, ..., L. Let Dj be a between level latent class variable for cluster j which
takes values 1, ...,M . The within level model is

[y∗ij|Cij = c, Dj = d] = νcdj + Λcdjηij + εij (22)

[ηij|Cij = c, Dj = d] = µcdj + Bcdjηij + Γcdjxij + ξij (23)

The multinomial logistic regression for the within class variable Cij includes
the between class variable Dj as a covariate

P (Cij = c|Dj = d) =
exp(αcj + γcdj + βcjxij)∑
c exp(αcj + γcdj + βcjxij)

(24)

where γcdj shows the effect of D on C. For identification purposes αLj =
βLj = γLdj = γcMj = 0.

Each of the intercept, slope or loading parameters in equations (22-24)
can be either a fixed coefficient or a cluster random effect. If ηj is the vector
of all random effects the between level model is then described by

[ηj|Dj = d] = µd + Bdηj + Γdxj + ξj. (25)

The model for the between level class variable Dj is also a multinomial logit
regression

P (Dj = d) =
exp(αd + βdxj)∑
d exp(αd + βdxj)

(26)

where xj are the between level covariates.

7 The Grade of Membership Model

In this section we show how to utilize the two-level mixture framework de-
scribed in Section 2 to estimate the Grade of Membership model (GoM).
GoM is not a multilevel model, it is a single level model. The model is
an extension of the latent class analysis (LCA) model that allows not only
separation of individuals into classes that show similar outcomes but also
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allows for individuals to be modeled as partially members of several different
classes. Individuals with such partial class membership will be those that
on some measurements behave like the individual in one class while on some
other measurements behave like individuals in another class. Partial class
membership is a substantively useful concept for modeling individuals that
are in a transitional state. For example when modeling different levels of dis-
ability in the elderly, an individual can be classified as healthy or as disabled
but can also be in a state of deteriorating health, in which case the individ-
ual can be classified as partially healthy and partially disabled and the level
of membership in each of the two classes can be specific to that particular
individual. The GoM modeling idea also allows us to determine whether
individuals transition from one class to another even when we have a cross
sectional sample rather than longitudinal. Observing individuals with partial
membership at one point in time is an indication that individual transition
from one class to another.

In this article we follow the Erosheva (2002) exposition of the GoM model.
For simplicity we assume that all observed variables are binary and that
there are only two classes in the model, however the model description below
generally applies to any type of observed variables and any number of classes.
Let Yij be the i−th measurement for individual j. In the LCA model a class
variable Cj is defined for each individual and the distribution of Yij is given
by

P (Yij = 1|Cj = c) = Φ(τic) (27)

where Φ is the standard normal distribution function. In the GoM model a
latent class variable Cij is defined specifically for the i−th measurement of
individual j. The distribution of Yij is given by

P (Yij = 1|Cij = c) = Φ(τic). (28)

The distribution of Cij is given by

P (Cij = 1) = fj (29)

where fj is a subject specific random effect of some kind. Typically fj is given
a Dirichlet prior which facilitates Bayesian estimated methods, see Erosheva
(2003), however other functional forms can be used as well. Here we will
adopt the logistic regression equation that we have used in this article up to
now. Let

P (Cij = 1) =
exp(α1j)

1 + exp(α1j)
(30)
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where α1j is a normally distributed random variable. Equations (28) and
(30) describe a simple GoM model. It is easy to see that this model is a
special case of the two-level mixture model described in Section 2 where now
the individual j takes the role of a cluster j and the multivariate vector
of all measurements Yij is treated as a univariate observations clustered in
the individual j. Many statistical packages, including Mplus, implement
data transformation routine that converts the data from the original ”wide-
multivariate” format to ”long-multilevel” format. Such transformation is
applied here as well. It is easy to see now that the GoM model is equivalent
to a univariate two-level mixture model. There is one complication in the
GoM model that is not directly available in the two-level mixture model. This
complication is the fact that the parameter τic depends on i, i.e., it varies
across observations in the cluster. This complication however can easily be
resolved by incorporating dummy variable for all measurements. Suppose
that there are L measurements and N individuals in the sample. Define the
dummy variables Xqij for i = 1, ..., N , j = 1, ..., L and q = 1, ..., L

Xqij =
{

1 if q = i
0 otherwise

(31)

Each observation now consist of one dependent variable Yij and L indepen-
dent variables Xqij for q = 1, ..., L. The equation (28) can now be written
as

P (Yij = 1|Cij = c) = Φ

(
L∑

q=1

τqcXqij

)
. (32)

Note now that the parameters in equation (32) are independent of i and thus
the GoM model is part of the two-level framework described in Section 2.

The above formulation of the GoM model has the advantage that it can
easily accommodate predictors Xj for the class allocation by adding a regres-
sion equation such as

α1j = α1 + γXj + εj (33)

Equivalently the predictors can be added directly in the multinomial logistic
regression (30). It is also possible to add item specific covariate. This is
done by adding a new covariate in equation (32) which is the product of the
dummy variable corresponding to that item and the covariate.

The above formulation of the GoM model also allows us to easily see that
the LCA model is nested within the GoM model. In fact, the two class GoM
model that we described above has just one more parameter than the 2 class
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LCA model. This parameter is the variance of the random effect variable
α1j. Note that the LCA is different from the GoM model only by the fact
that it imposes the stochastic restriction (16), which basically means that on
all measurements for individual j can be in one and the same class. As we
explained in the previous section the stochastic restriction (16) is equivalent
to fixing the variance of α1j to infinity, or to a numerically equivalent large
value. For GoM models with K > 2 classes equation (30) is replaced by

P (Cij = c) =
exp(αcj)

1 +
∑K−1

c=1 exp(αcj)
(34)

where now there are K − 1 random effects αcj for c = 1, ..., K − 1. The
LCA class model with K classes is again nested within the GoM model with
K classes, which has K(K − 1)/2 more parameter, namely the variances
and covariance parameters of the random effects αcj. When the variances
are fixed to large values and the covariances to 0 the GoM model becomes
equivalent to the LCA model.

In the estimation of the GoM model the random effects αcj are numer-
ically integrated which makes the estimation more challenging when there
are large number of classes. To avoid this problem a more restricted model
has been proposed by Hedeker (2003) and Vermunt (2003) which essentially
adds a one factor analysis model without residuals on the random effects αcj

αcj = αc + λcηj (35)

where ηj is a standard normal random effect and αc and λc are fixed param-
eters. This model requires only one dimension of numerical integration and
has K − 1 more parameters, namely the loadings parameters λc. Note how-
ever that the LCA model is not nested into this more restricted GoM model.
When K = 2 the restricted GoM (35) is equivalent to the unrestricted GoM.

It is possible to include other types of dependent variables in the above
formulation of the GoM model. If the variables are continuous for example
the dummy variables structure described above will produce item specific
class varying means. For polytomous variables taking d categories the Probit
equation (34) should be replaced with a multinomial logistic regression so
that each dummy variable contributes d − 1 parameters rather than 1 and
all item probabilities are unconstrained and class specific.

We now illustrate the GoM model and compare it to the LCA model. We
use the Antisocial Behavior (ASB) data taken from the National Longitudinal
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Table 5: Log-Likelihood Comparison for the LCA and GoM Models.

Model 2 class 3 class
LCA -42625.7 -41713.1
GoM -42159.1 -41554.6

Survey of Youth (NLSY) that is sponsored by the Bureau of Labor Statistics.
These data are made available to the public by Ohio State University. Data
for the analysis include 17 antisocial behavior items that were collected in
1980 when respondents were between the ages of 16 and 23. The ASB items
assessed the frequency of various behaviors during the past year. A sample of
7,326 respondents has complete data on the antisocial behavior items. The
17 items include 8 property offense items, 5 personal offense items and 4 drug
offense items. The items were dichotomized 0/1 with 0 representing offense
not occurred in the past year.

Table 5 shows the log-likelihood values obtained for a 2 and 3 class LCA
and GoM models. For the 3 class GoM model we used the restricted model
(35). For both the two and the three class models the GoM model improved
the log-likelihood value substantially. The GoM estimation showed more
starting values dependence then the LCA model. To obtain these results
we used 30 randomized starting value sets and completed the top 5 after
preliminary optimization. A good strategy for selecting starting values for
the GoM model estimation is to use the LCA parameter estimates. The
GoM model estimation is also more computationally demanding because it
needs numerical integration for the random effects αcj and because the data
is expanded to include the dummy variables. In the two class model both
the LCA and the GoM model essentially split the population into a more
offense prone class and less offense prone class. Figure 4 shows the prob-
ability profiles for the offense prone class for the two models. Each of the
plotted points represents an item, the X coordinate is the LCA probability
of occurrence and the Y coordinate is the GoM probability of occurrence.
The probability profiles are different. The GoM probabilities in this class are
all higher than the LCA probabilities. However the correlation between the
two sets of probabilities is 99%. The difference in the probability profiles is
due to the fact that the two models identify the classes differently. In the
LCA model the classes are identified by the average probability pattern in
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Figure 4: 17 Items Probability Profiles for the Offense Prone Class for GoM
v.s. LCA models
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the class while in the GoM model the classes are identified by the extreme
probability pattern that members are drawn to as they become closer and
closer to being fully in that class.

8 Combining LCA, IRT and GoM Models

In this section we describe a model that incorporates the modeling capa-
bilities of 3 types of models, namely the LCA, IRT and the GoM model.
The combination of LCA and IRT models is sometimes refereed to as factor
mixture analysis (FMA) model or alternatively as mixture IRT model. This
model was used for example in Qu et. al. (1996) to model residual correla-
tions within a class. In Muthen (2005) and Muthen and Asparouhov (2005)
FMA models were also explored as substantively important generalization of
the IRT and LCA models.

Following is a brief formulation of the FMA model. As in the previous
section for simplicity we assume that Yij is the i−th binary observed variables
for individual j. Let Cj be the latent class variable for individual j. The
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Table 6: Log-Likelihood Comparison for the LCA and GoM Models.

Model Log-Likelihood Number of Parameters
LCA -3650.0 37
FMA -3502.4 56

FMA-GoM -3501.7 57

model is then described by the following two equations

P (Yij = 1|Cj = c) = Φ(τic + λicηj) (36)

P (Cj = c) =
exp(αc)

1 +
∑K−1

c=1 exp(αc)
(37)

where ηj is a standard normal random effect and τic, λic and αc are fixed
parameters. To generalize this model to include partial class membership
into an FMA-GoM model we proceed as in the previous section. Let Cij be
an item specific latent class variable. The FMA-GoM model is described by
the following equations

P (Yij = 1|Cij = c) = Φ(τic + λicηj) (38)

P (Cij = c) =
exp(αcj)

1 +
∑K−1

c=1 exp(αcj)
(39)

As in the previous section equation (38) is equivalent to

P (Yij = 1|Cij = c) = Φ

(
L∑

q=1

βqcXqij

)
. (40)

βqc = τqc + λqcηj (41)

where αcj are normally distributed random variables. This model is again a
special case of the framework described in Section 2. All random effects αcj

and ηj are now numerically integrated. Just as the LCA model is nested in
the GoM model the FMA model (36-37) is nested in the FMA-GoM model
(39-41). For example for a two class model the FMA-GoM model has just
one more parameter.
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For illustration we estimate a 2 class FMA-GoM model for a UCLA clin-
ical sample of 425 males ages 5-18, all with ADHD diagnosis. The data
consists of nine inattentiveness items and nine hyperactivity items all di-
chotomously scored. For simplicity we estimate the restricted FMA model
where the factor loadings λic are class invariant, λic = λi. Table 6 shows the
log-likelihood values and the number of parameters for the 2 class LCA, FMA
and FMA-GoM models. In this example, the FMA improved the likelihood
dramatically over the LCA model however the GoM-FMA improved the like-
lihood only marginally. The ICC of the α1j was estimated to be 86%. Thus
in this example the concept of partial class membership is not supported
by the data. The substantive conclusion appears to be that individuals are
never in a transitional phase and are preset to be in one of the two classes.

One of the original applications of the FMA/Mixture IRT model is the
ability to separate individuals into classes that respond similarly to the vari-
ous items. For example, individuals solve mental rotation problems using one
of several solution strategies. The Mixture IRT model allows us to separate
the population into classes that appear to be using the same solving strategy.
Adding the GoM modeling idea to the Mixture IRT model will allow us to
also model individuals that may use one strategy on one items but another
strategy on a different item.

9 The Three Parameter Guessing IRT Model

In this section we show that the three parameter (3PL) guessing IRT model
is a special case of the GoM-FMA model described in the previous section.
The 3PL model is described by the following equation

P (Yij = 1) = gi + (1− gi)Ψ(ai(ηj − bi)) (42)

where Ψ is the normal or the logistic distribution function. Now let’s consider
the following GoM-FMA model with 2 classes

P (Yij = 1|Cij = c) = Ψ(τic + λicηj) (43)

P (Cij = 1) =
exp(α1j +

∑
q γqXqij)

1 + exp(α1j +
∑

q γqXqij))
(44)

The difference between model (38-39) and model (43-44) is that in the multi-
nomial logistic regression on Cij we have included covariates. Let’s now con-
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straint several of the parameters in the above model

α1j = 0

λi1 = 0

τi1 = 15.

The constant 15 above is chosen to be sufficiently high so that Ψ(15) ≈ 1.
This approximation holds for both the normal and the logistic distribution.
Given these constraints we can simplify the above model

P (Yij = 1|Cij = 1) = 1 (45)

P (Yij = 1|Cij = 2) = Ψ(τi2 + λi2ηj) (46)

P (Cij = 1) =
exp(γi)

1 + exp(γi)
(47)

It is now easy to see that model (42) is just a reparameterization of model
(45-47). The parameters in model (42) are obtained from the parameters of
model (45-47) via the following equations

gi =
exp(γi)

1 + exp(γi)
(48)

ai = λi2 (49)

bi = − τi2

λi2

. (50)

10 Technical Aspects of The Estimation

All models presented in this article were estimated with Mplus Version 4.2.
Mplus uses maximum-likelihood estimation with robust standard error esti-
mation (see White (1980)).

The estimation of Multilevel Mixture Models presents a number of chal-
lenges. The maximum likelihood estimation of mixture models in general is
susceptible to local maximum solutions. To avoid this problem Mplus uses an
algorithm that randomizes the starting values for the optimization routine.
An initial sets of random starting values are first selected. Partial optimiza-
tion is performed for all starting value sets which is followed by complete
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optimization for the best few starting value sets. It is not clear how many
starting value sets should be used in general. Different models and data
may require different starting value sets. Most results in this article were
obtained by selecting 20 initial sets and completing the best 5. One useful
criterion that the starting value perturbation has been thorough is that the
best log-likelihood value is reached at least twice, however even if this cri-
teria is satisfied, it is no guarantee that the number of starting value sets is
sufficient. A sound strategy to minimize the impact of the starting values
of the optimization routine is to build Multilevel Mixture Models gradually
starting with simpler models that have few random effects and classes. Con-
sequently one can use the parameter estimates from the simpler models for
starting values for the more advanced models.

Another estimation challenge is the fact that most Multilevel Mixture
Models require numerical integration techniques for some of the normally
distributed latent variables in the model. Adaptive numerical integration
can be performed in Mplus as well as non-adaptive. In general adaptive nu-
merical integration tends to be more accurate but it is also more unstable
and frequently can fail the optimization process. In such situation Mplus will
abandon adaptive integration and will use non-adaptive integration. Gauss-
Hermite, the trapezoid and the Monte-Carlo integration methods are imple-
mented in Mplus. It is well know that Gauss-Hermite is very dependent on
the adaptiveness of the integration method and without it can produce very
inaccurate results. This is not the case for the trapezoid integration method
which performs quite well even without adaptive integration. Given the in-
stability of adaptive integration we prefer the trapezoid integration method
over the Gauss-Hermite integration method, which is also the Mplus default
and the method we used for the results presented here. The Monte-Carlo
integration method is appropriate when the number of integration dimen-
sions is high (5 or more). It is usually the least accurate integration method.
Model parameterization is also vary important and rather broad but also
unexplored component in the estimation of Multilevel Mixture Models. Cer-
tain parameterizations will facilitate faster convergence of the optimization,
see for example the PM-EX algorithm of Liu et. at. (1997). Another pa-
rameterization that generally improves convergence speed is the Cholesky
parameterization, see Hedeker and Gibbons (1996). This parameterization
is available for all Multilevel Mixture Models in Mplus. Another attractive
feature of this parameterization is that when it is used with non-adaptive
quadrature it can guarantee monotonically increasing likelihood in the EM-
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algorithm which makes the convergence process very stable even with small
number of integration points and large number of integration dimensions.
The parameterization in the model can also affect the number of dimensions
of the numerical integration and therefore affect dramatically the computa-
tional speed. Ultimately choosing the most optimal parameterization for a
model is more difficult than choosing other technical options. Mplus is very
flexible and can be used with most parameterizations, especially since Mplus
can implement a separate auxiliary parameterization model in addition to
the statistical model. There are other technical options related to numerical
integration, see Muthen and Muthen (1998-2006). A sound strategy when
selecting these technical options would be that they should not affect the es-
timation results and if they do such effects should conform with the published
literature on this topic.

11 Conclusion

In this article we described a modeling framework that incorporates three
popular modeling techniques, multilevel modeling, structural equation mod-
eling and finite mixture modeling. This modeling framework has the po-
tential of uncovering previously unexplored aspects of the data. Two-level
analysis with multiple latent categorical variables was illustrated with a two-
level latent transition analysis. We also described how heterogeneity can
be modeled as a within, between, or a within-between phenomenon. We il-
lustrated how the GoM modeling idea can be incorporated within a single
level mixture model to allow partial class membership. The GoM models are
estimated within the two-level mixture modeling framework.

The Mplus user’s guide, Muthen and Muthen (2006), has a number of
other practical multilevel mixture examples as well as details on the Mplus
model specifications.

Another important application of this framework is the non-parametric
hierarchical regression models. These models provide an alternative to the
popular hierarchical regression models with normally distributed random
effects by assuming a more realistic non-parameteric distribution instead.
A detailed discussion on this topic is available in Muthen and Asparouhov
(2006).

Two-level mixture models vary greatly in their complexity. In this article
we illustrated most of the basic modeling principles. Researchers familiar
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with multilevel models and mixture models will find it easy to combine these
modeling ideas. Sound modeling strategies should be used with these com-
plex new models. Gradual model building, comparison with single class
models and single level models should always be performed. The flexible
modeling framework we described in this article will offers researchers many
competing modeling strategies. Rigorous statistical techniques should be
used to choose among these alternatives. In addition, researchers should
promote models that have solid connections with substantive theory.
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