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Abstract

Conventional covariance structure analysis, such as factor analysis, is often
applied to data that are obtained in a hierarchical fashion, such as students
observed within classrooms. A more appropriate specification is presented which
explicitly models the within—level and between—level covariance matrices. The
likelihood expression under multivariate normality is studied and related to that
of conventional covariance structure modeling. It is shown that conventional
covariance structure software can be easily adapted to handle hierarchical models.
Using this framework, several hierarchical data models are outlined. An example

of mathematics achievement testing is analyzed in detail.
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1. Introduction

This paper considers data that are collected in a hierarchical fashion, such as
students sampled within schools. This is a frequently used design in large—scale
surveys, such as The National Longitudinal Study with data gathered regarding
the educational aspirations and attainment of high school seniors of 1972 or The
National Education Longitudinal Study of 1988 with data on eighth grade
students. Multivariate modeling of such data are most frequently done as if the
data were obtained as a simple random sample from a single population. Hence,
the standard assumption of i.i.d. observations is made. New analysis techniques
that are more suited to the hierarchial data structure have recently emerged under
the labels of hierarchical, or multilevel models (see e.g. Aitkin & Longford,
1986; Burstein, 1980; De Leeuw & Kreft, 1986; Goldstein 1986, 1987;
Longford, 1987, Mason, Wong, & Entwistle, 1984; Raudenbush & Bryk, 1988).
As pointed out by Muthen anci Satorra (1989), such modeling takes into account
that hierarchically gathered data both gives rise to correlated observations and
observations from heterogeneous populations with varying parameter values.
While appropriate analysis techniques of this kind are now available for standard

regressions and analysis of variance situations, Muthen and Satorra emphasized



the lack of techniques for covariance structure models, such as factor analysis,
vl

path analysis, and structural eqation modeling.

Muthen and Satorra (1989) outlined several possible covariance structure models
and their maximum-likelihood estimation. However, they did not discuss how
such estimation should be carried out in practice nor did they provide examples
of such modeling. A companion article, Muthen (1989), discussed the
relationships of multilevel structural equation modeling to conventional structural
equation modeling and showed that conventional structural equation modeling
software could be used for multilevel structural equation modeling in the special
case of balanced data. The aim of this paper is both to further develop the
Muthen—Satorra modeling and to present a general, practical estimation scheme
in the general unbalanced case. Recent, related work is that of De Leeuw (1985),
Goldstein and McDonald (1988), McDonald and Goldstein (1988), and Longford
and Muthen (1990). The McDonald and Goldstein paper outlines maximum-—
likelihood estimation of generél multilevel structural model with the aim of
developing specially designed software to carry out the complex computational
tasks. The Longford and Muthen paper focuses on efficient computation for
hierarchical data factor analysis models. It is interesting to note, however, that a

good part of these tasks was already carried out more than 20 years ago in the



dissertation of Schmidt (1969), see also Schmidt and Wisenbaker (1986), using
specially designed software. While the development of special software is of
great value for these situations, the present paper shows that quite general models
can be fitted by maximum likelihood using only slight modifications of already
existing structural equation modeling software. Drawing on the maximum
likelihood solution, a simpler to use ad hoc estimator will also be proposed.
Examples are given to illustrate new analysis possibilities. Taken together, these
developments should enable a more rapid spread of these important modeling

schemes.

To develop the framework for specific hierarchical models, Section 2 presents
the likelihood for two—level hierarchical data. This development leads up to the
presentation of useful relations between the hierarchical data likelthood and the
maximum-likelihood fitting function employed in conventional structural
equation modeling software. Section 3 proposes an estimator that is simpler to
compute than maximum lﬂceli‘ixood while still using the structural equation
modeling framework. Section 4 proposes specific models and show how they fit
into the general structural equation modeling framework. Section 5 uses some of
these models and structural equation software to analyze data on mathematics

achievement for students observed within classrooms.



2. The likelihood for hierarchical data

Consider for simplicity a two-level structure where data are gathered on
individual units obtained within groups of units. Let Yei denote the p—vector of
observed y variables for individual unit i within group g. Also assume the
availability of group-level observation on the g—vector z g Let

(1) E (ygp) = by »

@ E@g=h,,

3V (ygi) =Zyw+Zp ,

) V(z)=E,,
(5) Cov(yg; zp) = Ey,,
where Zyy; denotes individual-level (within) variation and Xy denotes group—~
level (between) variation. With .inore than two levels of hierarchical nesting
more covariance matrix components would be added. It will be assumed that a
particular hypothesized covariance structure model, Hy, say, expresses the distinct
elements of {L,,, Hy» Zw Zg. X, I, in terms of a smaller number of

yz
parameters, while the unrestricted model, Hy, places no restrictions on these



elements. Specific models will be discussed in section 3.

Assume g = 1, 2, ..., G independently observed groups withi=1, 2, ..., Ng

individual observations within group g. Arrange the data vector for which

independent observations are obtained as

(6) dg'= (zg” ygl" ygz" " ygNg') )

where we note that the length of d | varies across groups. The mean vector and

g

covariance matrix of dg are
M By =R Iyg @1 )

2z symmetric

where INg 1s an identity matrix of dimension N_, lNg is a unit vector of length

g

Ng and the symbol ® denotes the Kronecker product.

Assuming multivariate normality of dg, the maximization of the likelihood for G



independent draws of d g leads to the minimization of the maximum-likelihood

(ML) fitting function

9 T {logl):dgl+(dg—udg)‘2d—g1(dg - 1dg) )

In simplifying (9) we will make repeated use of the standard matrix algebra
results

(10)

I Ay A ‘

(11)

( An An )'1

(A“ AIZ)
Az Az

A21 A22

where

12) A=A A Ay TA) T,



(13) AR =(Ayp-Ay Ayl AT,

(14)  AR=-A;;7 A, AR,

and due to symmetry of ng

(15) A?2l=(Al%y.

Using (10), and Kronecker product algebra we find
(16) | Zyg | =1Z,,]| INg® Zw + Ing Ing ® (Bp — Zy; z, Z7) | .
By standard results, this simplifies as

A1) | Zggl=1Zn | | Sy M6 | By 4 N, (S 5,5, %) |

This expression may be restated using (10) with



(18) An syrnmetric} N [ 2 symmetric
Ag Az T, Ny Zw+Zs
= ng H]
say. This reexpresses (17) as
(19) [ Zgel= [Z] [Ty |NeTT N,

In (18) we recognize that A,, is the covariance matrix for the sample mean
vector ?g. This may be shown by applying Kronecker product algebralto the y
part of (7) and (8). In this way, Z,g is the covariance matrix for variables that
vary across groups, not across individuals. Hence, the determinant in (19) is
expressed in terms of that of a between matrix for z and Y variables and that of a

within matrix, Zy, for y variables.

Consider now the covariance matrix ng in (8). Using the inverse matrix
formulas (11) - (15) together with the definition of A in (18) we may express the

inverse as -

( mH&i’Vv‘-\
Fevda

"l'W\]LQ, ‘F'u‘\

?527*)



11 :
Q0 (Z! =[ . Sym‘ﬂfmﬂ
52 52

where

Y P
21) Egll = All , /,; ﬁNgé) MO (}A‘Q)

J

/

22) E A =(Z, 12y =1, ®N, AR Ay A7,

g

(23)  EgP =1y Ing ®Ng2 A2 4 Iy ® Zyy™ = Iy Iy ® N" Zy .

Returning to the ML fitting function in (9), and considering the quadratic form

for a certain group,

Eél symmetric

(24) qg = (zg'yg')
z2! ¥ e

Ve

with

10



Zg - Ul

- Ygi - H
25) (zi)= g. rol
Ye
YeNg - Hy
we obtain

(26) qg = z*g' Egll A

+2yk '3 21 % * 'y 22

g & g

/ 1 ,
Kronecker algebra gives ? (6 My 7& (}’}L
1)) 7
' 21 — v ' -
@) 2y*g Ll zr =-2(Yg-py ) AR Ay AT (z,-1,),
(28) y*g' Zgzzy*gz (yg _”_y)' AZZ(—ig_u_y)_*_
Ng )
+ I (Ygi—hy) Tw" (ygi—Hy)
i=1

—Ny (Yg —py ) Ty (Vg —ny) .

11



These expressions agree with those of McDonald and Goldstein (1988); see also
Muthen (1989, (33)).

Reassembling these terms, using the definition of ng in (18), and defining

(29) (vg-p) =

it follows that we may write the quadratic form part of the ML fitting function of

(9) as

(30)

12



«©

i
—
i
p——
Z oMo 4 MO
a
<
[(@]
=
<
[fe]
T~

g
-1 '
+zwéiz(ygi-uy ) (Ygi - Hy )
-1 '
- I\ éNg(Yg'Hy)(YQ My )},

where simplification of the last two terms by centering at Yg gives

(31

U{Zgé(vg_“)(vg"u-)"*'
g

+Zw (N=G ) Spw }
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defining Spyy as the usual pooled—within sample covariance matrix

(32)

N

G
Sew=(N-G)' D Y (ygi-¥g) (¥ei-Vg) '
g=1li=1

The expression in (31) can be further developed to show a key connection with
conventional structural equation modeling. The first term, containing a
summation over the groups, can be rearranged as a double sum over distinct

group sizes and groups of a particular size. Letting D stand for the number of

distinct groups, N stand for the 4 group size, and G4 stand for the number of

groups of the dth size, we obtain

D Gy
(33) D Zig (Vg-k)(Vg-1) =3 Zug > (Vak 1) (Vax- )
g de=1 k=1

D :
= szZva1{Gc-l12 (de'-\/_d)(vdk'\_/—d)"*'(vd'u)(vd'u)'}
d=1 k

where Vd represents the mean vector for z and y in group category d.

14



Collecting terms, the ML fitting function of (9) can now be written as

(34)
L2z symmetric
®64in 1 +(N-G)In {Zwl + ZGgln|Ng|+
d Zyz  NjIw+Ip d
E L SYmImerric 1
Ggq tr { _1 1 [Gq Z (vak-Vd)(vdk-Vd)' +(Va- w)(Vg-u)'1)+
d=1 Zyz Ny Zw +ZIp k

+r (ZW (N-G)Spw ] .

In terms of the software that will be used it is sligthly more convenient to
consider the corresponding ML fitting function where we multiply Z, ; by N.

The ML fitting function of (34) may then be rewritten as

(35)

15



D ;
N t

ZGd[hl‘ 4 L symmetric '+

Cl Ndzyz 2W+NdZB
NgZz symmetric

+tr

N4 Zy, 2w+ NgZp
+(N-G) {In [Zw|+tr [Z% Spw]]},

]'1 (Spa+Na(va-p)(Va-p))l}+

where Sp; denotes the between—group matrix for groups of distinct size category

d,

(36)

Gy

SBd=NdG&1k§1 [—;—i:%}[(m—id)'(%k-?d )]

_ and Spyy is defined as in (32).

The way the log likelihood function of (35) is written shows that it may be

optimized with respect to the model parameters using conventional structural

16



equation modeling software that allows for the simultaneous analysis of multiple
populations with structured means (see for example Muthen, 1983, 1984, 1989).
For example, the maximum-likelihood (ML) fitting function in the generally

available LISCOMP program (Muthen, 1987) is expressed as

P
G Y (Np[InIZpl+tr(ZTp)-IniSyl-r]} N,
p=1

(38) T, = Sp+ (Xp-Hp) (Xp-Hp).

In (37), independent random samples from P populations with sample sizes Np

and total sample size N are considered. Here, an r—dimensional vector x, say, is

observed with sample covariance matrix S_, sample mean vector Xp, population

p
covariance matrix Z‘p’ and population mean vector |.Lp The terms containing

In | Sp | — r are offsets so that a perfectly fitting model has the function value of
zero. The sample covariance matrices Sp are the ML estimates of the

unrestricted Z.p matrices and are therefore divided by Np, not Np — &
Multiplying the minimum value for any model by 2 x N then gives the value of
the likelihood—ratio chi—square test of the Hy model against the H; model of

unrestricted mean vectors p.p and covariance matrices ):p

177




The structural modeling ML expression of (37) shows that from a structural
modeling point of view, the hierarchical data ML fitting function of (35) can be
viewed as that corresponding to a simultaneous analysis of independent
observations from D + 1 populations. The D between—group populations are
viewed as having sample sizes G4 with sample covariance matrices Sy 4 fitted to

the population covariance structures
(39)

Nd Zzz syminetric

Ng Zyz Iw + Nd ZB

while the within—group population has sample size N — G with the sample

covariance matrix SPW fitted to the covariance structure Ew The mean vectors
of the D between—group populations are viewed as all having the form VNg x

with sample counterparts ¥¥4, while the mean vector for the within population is
viewed as being zero in tlﬁe population and in the sample. A dummy variable

arrangement can accommodate the fact that the first D populations have

VA 18
Ly



observations on q + p variables, whereas the last population has observations on
only p variables. In the balanced case the analysis is particularly simple in that
only two populations would be needed, but even in the unbalanced case the
number of groups with distinct group sizes may be rather small in any given

application.

Since the hierarchical data structure fits into the framework of maximum
likelihood estimation with conventional structural modeling software, it follows
that there is no need to specifically derive and program first- and second—order
derivatives for getting estimates or expressions for estimated standard errors. In
addition to the Hyy model, a separate analysis of an H; model is needed to obtain a
likelihood—ratio chi~square test of model fit. Usually, the H; model would be
the model where no restrictions are placed on the mean vectors and covariance
matrices of (1) — (5). A separate analysis is needed because the corresponding Hy
model assumed in the use of conventional software would incorrectly neglect to
impose equality restrictions on common mean vector and covariance matrix
parameters across groups as inciicated in (35). Longford and Muthen (1990)

considers a simplification to the calculation of the Hy likelihood value.

The use of conventional structural models in capturing mean and covariance

19



structures for hierarchical data will be discussed in Section 4, showing that the
structural modeling framework enables very general hierarchical data models to
be specified. In fact, multiple populations of group units may be studied in a
simultaneous analysis where each (factual) population is represented by the D + 1

imaginary populations just discussed. Structured means models can be included.

The analyses to be presented below in Section 6 were computed by a slightly
revised version of LISCOMP (Muthen, 1987). Conventional structural modeling
software usually applies offsets as in (37). In (35) it should be noted that the
between sample covariance matrices may be singular due to being created by
summation over fewer units than variables. This may prevent the use of certain
conventional structural modeling software where positive definite matrices are
assumed. Relatively modest revisions of conventional software could simplify
the software use for hierarchical data. For example, by making the equation (35)
division into D parts of the between structure of the model internal to the
program, the user would only have to specify one between structure in addition

to the within structure.

20



3. A simple ad hoc estimator

Consider balanced data as a special case of the ML fitting function of (35). Here,

D=1,Gy4=G, and Ny = N/G for all groups. When z,'s are absent and ygi's are

g
the only observed variables, SB is the usual between—group covariance matrix,
apart from dividing by G and not G4 — 1. For the special case of z variables
being absent and the case of a model with no mean structure, (35) reduces to the

maximum-likelihood fitting function considered in Schmidt (1969) and Schmidt

and Wisenbaker (1986).

Consider again the balanced case and the common special case of a model with no
mean structure, including both z and y variables. Here, the ML fitting function

of (35) simplifies as

(40)

cX;z symmetric i (03 0 symimnetric 1
Czyz Zw+C>:B Czyz Zw+CZB
+(N-G){InIZwl+t[Z%Spew]],

G{ In Sp } +

21



where c is the common group size, Sg is the single between—group covariance
matrix obtained as the special balanced case of (36), and Spyy is as in (32). In the
balanced case the ML estimates for the unrestricted model are according to

standard ML theory

(41)

cXyz symmetrﬂ
= 98,

————

Zw = Spw ,

giving the ML estimate for the between matrix

(42)

S0 symmetriﬂ (S, _[ 0  symmetric )

Zye Zp

Spw

Given the ML estimators in (41) the customary test of H against an unrestricted

H,; model is automatically carried out by conventional software using the

22



standard offsets shown in (37). Hence, in this case, an additional analysis of H, is

not needed to obtain a chi—square test of model fit.

The expression of (40) suggests a simple ad hoc estimator for the general
unbalanced case with z and y variables and a model without mean structure. As
indicated in (40), this estimator would use only one between model part in

addition to the within model part. We may define a new Sy matrix as
(43)

cZ(zg-i)(zg-i)' symmetric
3
Sg=(G-1)"

ch/NZ Ng(¥g-y)(zg-2) ENg(S’-g'?)(Vg'S")'
g 2

where the lower right-hand parf of the partitioned matrix is the regular between
matrix for unbalanced data on y. Letting Spy, be the regular pooled—within
sample covariance matrix as before, it may be shown in line with Muirhead

(1982, pp. 16 — 17) that the expected values are obtained as

23



(44)

cX,; symmetric

E(Sg)=

45) E(Spyw ) =Zyw

where in this general unbalanced case the constant ¢ is expressed as (see also

Graybill, 1961, p. 354)

(46)

G
c=[N>- Y NZ][N(G-1)]'.
g=1

In the balanced case, c reduces to the common group size.

Since Sy and Spyy tend to the corresponding population covariance matrices in
(40) as the sample size increases, this means that using c of (46) and Sg of (43)
in the fitting function of (40) gives a consistent estimator. When the data are

balanced it is the ML estimator. When the data are in some sense not too far

24



from being balanced, the estimator may not only give estimates close to those of
ML but also approximations to the ML parameter estimate standard errors and
the ML chi-square test of model fit. The estimator is simple to use. The sample
covariance matrices Sp and Spyy can be obtained from standard software
packages. The analysis of Hy can be carried out in generally available
conventional structural modeling software without modifications. And the
analysis also provides a quasi chi-square test of H() against the unrestricted model
of H{. Inthe examples presented below we will use both the ML estimator and
this ad hoc estimator for comparison purposes. While these results are

encouraging, a more thorough study of the estimator seems warranted.

4. Modeling

A general covariance structure model will first be presented as an abstract
framework within which particular models for hierarchical data will be

discussed.

25



4.1 A general covariance structure framework
In line with the conventional structural equation modeling framework of Muthen

(1984, 1987), consider the measurement model for the vector x' = (z', y') of

length q + p,

2

4 x=v + A1Nn +¢,
together with the structural equations
48 mNn=a+Bn+{,

suchthat withE (M) =a, V(e)= 8, V() =¥, usual assumptions give

(49) E(x)=v+A(I-B) a,
500 V@ =Ad-Bylwa-8) AY+e.

In (47) and (48) N1 is a vector of random latent variables (factors), € is a vector

of random measurement errors, and § is a vector of random residuals in the

26



structural equations. The other arrays contain (non—random) parameters. This
model framework is considered for several populations, where the populations
may have some parameters in common, a feature which is captured by equality
constraints on the parameters. This is the structural modeling framework for
continuous variables used in the LISCOMP computer program. The ML fitting
function was given in (37). The LISREL program can also fit such structures

(see e.g. Joreskog, 1977, Muthen, 1983).

For purposes of modeling hierarchical data it is convenient to denote the parts of

the parameter arrays according to three parts of 1] ,

(51) T\' = (T'Z' ’TIB' s nw') ’

where 7, is related to the between—group variation in z and Tlg and My are
related to between—group and within—group variation in y, respectively. In this
way, the summation of Zy; and Zy in the between covariance structure terms
(populations) of the hierarchical' data ML fitting function of (35) can be
accomodated. The ad hoc estimation is approached in the same way. The

parameter arrays are then partitioned as

27



0
(52) A:{ Az AmB Aw
Ayz Ayp Ayw
Bzz BzB BzW
(53) B= Bs: Bgp Brw | >

BWz BWB BWW

n b Y, symmetric
}5 4) l}, = ‘PBZ \PBB »
‘I"Wz ‘PWB ‘Fow

and similarly for ©. For the within covariance structure term, arrays with
subscript B are set to zero. Section 5 contains a graphic display of this model
structure as applied to a particular data set and-Appendix 2 gives examples of

ifications.

In the model types to be considered below, the following parameter arrays are

28



not used for the between or within structures, but are assumed to be set at zero:

Wy

(55) Az Az Ayp ByyBip By Bpw, Byg Byg -

The fact that these parameter arrays are also available for special applications
reflects the richness of the possibilities of hierarchical data modeling in the

structural modeling framework.

The hierarchical data ML fitting function of (35) shows that in the D first

between terms the between parameter matrices ., ., Zg, are scaled by the

yZ
distinct group size constants N, while p, and ].Ly are scaled by “/ﬁd. The last
term only involves the within matrix Zy, without scaling. The ad hoc estimator
has analogous features. This scaling can be taken into account in the
specification of A, and A'yB for the between terms. As an example, consider the
scaling for matrices related to the y variables. With m variables in ng, and

letting c represent the group size constant,

(56) AyB=[c1/2Ipxp Opxml>

29



Opxp ABpxm

(57) Bpe~= :
Omxp BBmxm
BByszq
(58) BBZ = ,
BBT]meq
W\ lPBprp symmetric
(39) Wes=
Omxm LIIBT]

The unrestriced H; model can be simply captured by letting Zp be represented
by the ¥ matrix and X, by the © matrix. The scaling by the constant is handled

by diagonal loading matrices for the between parts.

Identification issues will not be considered in this paper. We note however, that a
model is identified if within—level parameters can be identified in terms of the
Iy clements and between—level parameters can be identified in terms of Zg
elements. This is a helpful observation since it brings the identification issue into

the framework of conventional covariance structure analysis.
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Some examples of model specifications are given in the appendices.
4.2 Specific models for hierarchical data

In this section we present some basic model variations, stressing their
interpretation. Section 4.3 gives a discussion of further, more complex

variations.
4.2.1 The Muthen—-Satorra model for varying factor means

Muthen and Satorra (1989) and Muthen (1989) proposed a factor analysis model
for hierarchical data where variations in factor means across groups was
accounted for. Their motivating example was the same as the one to be analyzed
in Section 5. Responses to achievement items are modeled as a factor analysis
model. It is reasonable to assume that there is considerable heterogeneity in the
achievement factor level since students come from classes with a variety of

~ instructional histories. The model may be expressed as

(60) ygi=v + A ng1+8g1 .

31



(62) a,= « + B Z, *Npog >

where O isa group—level random component, Mwgi 18 @ random vector with
zero expectation and constant covariance matrix ¥y across g and i, MBag isa
random vector with zero expectation and constant covariance matrix ‘¥, across

g and uncorrelated with nti and z_,. Expressing 1 gi as in (61) and (62)

g
emphasizes that the model may be viewed as a random intercept (mean) model
for the factors of M. Conditional on group membership, expected factor values
for an individual vary across groups. Consider first the special case of the model
where there is no z. Group (classroom) membership is assumed to bring with it
a latent class—level (between) component nBag which influences the outcome
measures of Ygi through an influence on the individual factor values of 1 gi For
example, nBag may reflect the part of the achievement factor level which is due
to class—specific subject—matter training. Adding z, we may bring in

explanatory variables describing part of the class—specific variation, such as class

records of instruction.

32



The model specifies

(63) V(y)= Sy +Zg,

where

(64) Ty = A Ty A' + 8,

while the between parts contain the covariance matrix for z, EZZ, the covariance

matrix fory,

(65) Zg=AB, Z,B, A +A¥, A

and the covariances between y and z variables

(66) Zy,=A By X, .

Let us now express this model in terms of the general framework of Section 4.1,
particularly (52) — (55) and (56) — (59). It suffices to consider the specification

for the between terms. The between—group covariance matrices are
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parameteriZEd as AZZ = 01/2 I, AB =A W = A, BBZ = B, BBB = 0, BWW = 0,

y
TBZ = 0, \PWZ = 0, ‘PWZ = O, \PWB = 0, \PZZ;- EZZ, ‘PBy = 0, \PBT-I = ‘Paa N
Yyww = ‘¥yww, and as is customary in factor analysis, taking © to be diagonal

with zeros in the first q diagonal entries and containing the variances of the £'s in

the next p elements.

4.2.2 The factor model with varying factor means and measurement intercepts.
Assume the model

67) =Vg +A T HE

Ygi= Vg gi’

(68) vg=v +B,, zg+nvg,
and M gi defined as in our first Iﬁodel, Section 4.2.1. Here, the measurement
intercepts of v g are allowed to vary randomly across the groups. To continue
the achievement example, certain of the y variables may correspond to subject—
matter content which is relatively easier for students from classes which have
isa

obtained more training on these topics. We may assume that v(n,) = ¥,y
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diagonal matrix and that 7,, g is uncorrelated with nag and z g While the

within—group covariance matrix for y is still

69 Ew=AY¥ywA +0,

the between group covariance matrix for y is now

(70) Zp=B,Z,, B+ B, X, B,/A'+AB, z,, B, +

+ A BazzzBa A'+ A ‘I‘(mA + ¥, -
If there are no z variables, only the last two terms of 'ZB remain and we note that
the model implies that 5, and X follow the same type of factor model with
different factor covariance matrix, different measurement error covariance

matrix, but the same factor loading matrix.

. \ A
This type of model is a natural extension of some work on measurement . )
modeling in heterogeneous populations discussed in Muthen (1989), where it was\
argued that failure to take into account group—differences in-measurement \_j

intercepts may lead to a distorted factor analys/iv.’ "The model may be fitted into
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the general framework by letting BByz = Bv’ Ban =B o and ‘I’By = ‘I’vv,
whereas other matrices are as for the model of varying factor means only in

Section 4.2.1.

4.2.3. Structural equation modeling with varying levels

The model of the previous section may be directly generalized to include not only
the measurement part relating y to 7, but also permitting linear structural
relations among the variables of 1. The model is then as above, except that we
write

(71) My =g +B'r|gi+§gi,

where B has zero diagonal elements and (I - B)—1 is nonsingular. This permits

randomly varying means for both independent (exogenous) and dependent latent

variable constructs.

In terms of the general framework, we have the same model as in 4.2.2., except

that we now have By = B and wa =B.
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4.2.4 Structural equation modeling with varying levels and different between—

and within—group slopes.

The structural eqation model of 4.2.3 may be written as

s — -1 —_— -1 .
(72)  ygi=Vy+AT-Byla,+AI-B)y!{,+e

g gl

This expression shows that the slopes of A and B are taken to be the same for
group— and individual-level variation in 1} and y. If one hypothesizes that group
components may have different influence than individual components, one should

instead consider the model with

(73) ygizvg+AB I - Bp)! Qg+

+ Ay (I- Byl Cgi + Egi-

The model may be fitted into the general framework in an obvious way by

relaxing equality restrictions related to A and B.
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This was the model used by Schmidt (1969), Schmidt and Wisenbaker (1986), and
also considered by McDonald and Goldstein (1988). These authors were
particularly interested in studying a multilevel model (Burstein, 1980) with
separate relationships such that the full A and B matrices of (52) and (53) may be

used.

Instead of viewing the model of (73) as having randomly varying parameters of
factor means and measurement intercepts, one may in line with Schmidt (1969)
simply view the model as having group— and individual variation in the random
variables of the factors and the measurement errors. Excluding z variables for
simplicity, we may specify a measurement and a structural model for both the
between and the within level
.\ﬁc

(7%) Ypg =V + Ap Mgy + Epg,

nB=a+BBnt+CBg,

Ywegi = Aw Mwgi + Ewgis

Mwei = Bw Mwgi + Swei
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4.3 Model extensions

In section 4.2.1 we considered the varying factor means model

(75) ygi =V + A Mpog + A Mwgi + egi ,

whereas in section 4.2.4 we used the measurement model

(76)  ygi =V +Ap Mg+ Aw Nygj +€g; -

In (75) we view the group-level factor component 'nBag’ or T'Bg' as influencing
the y variables only indirectly through a change in N gi- Explicitly allowing for a

direct effect of nt on the y variables leads to an alternative way to view the

model of (76),

7 ¥gi=V +A ngi+ADnt +Egi s

(78) Mg =Tpg *Mwgi-

where we note that Ay = A, Ag = (A + Ap) .
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These model variations show that one issue to consider is if and how the

mmm%parametcgg of the loadings (slopes) vam@ever, that none
of the above models specifies a random parameter model for the loadings as was
done for the measurement parameters of the intercepts. For certain applications

randomly varying loadings could be of importance. This may be viewed as DR le )

tr DA
analogous to random slopes in regular multilevel regression models. However,
randomly varying loadings lead to considerably more complex modeling than in

the regression case since the independent variables of the factors are random,

whereas in regression they are fixed, or conditioned upon.

Let us briefly outline how a randomly varying loadings model could be specified.
Consider for simplicity a one~factor model with varying loadings and factor

means,

(79) =V +A

Yei gi Ngi * Egj.

(80) T =Tpg +Nwgi -

8D  hy=A+L,
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where all latent vanable variance components may be taken to be uncorrelated.

It may be shown that this model gives the covariance matrix components for y
(82) Zyw= A V() A +V(n,) V() +8,
(82) Zg=A V) A + V() Ving).

Such models need special consideration in terms of parameterization,
identification, and estimation. In terms of parameterization, it appears that at
least some such covariance structures could be fitted in general structural
equation modeling framework. We note, however, that if the Egi’ Npg> Mwgis
and G g terms are taked to be normally distributed the resulting distribution for y
is not normal. The robustness of nevertheless using the ML fitting function for
estimation and testing is of intefest. Nonnormal variable estimators such as ADF
(see e.g. Browne, 1984) could be attempted, fitting the model to two types of
sample covariance matrices, between and within groups, in line with the ad hoc
estimator. However, small numbers of groups may be an obstacle to good

performance. One may also attempt true maximum likelihood estimation, e.g. by
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the EM approach. These and other issues will be considered in the author's

future research.
5. An achievement example

To illustrate some of the possibilities of the new methodology for hierarchical
data analysis, we will use data from the Second Intemational Mathematics Study
(Crosswhite, Dossey, Swafford, McKnight, & Cooney, 1985). We will be
concerned with a subset of data from the population of U.S eighth—grade
students.ll'/A national probability sample of school districts was selected
proportibnal to size within school district; two classes were randomly slelected
within each school. An achievement test was administered at the end of Spring
1982 containing a total of 180 items in the areas of arithmetic, algebra, geometry,
and measurement. There were four test forms. Each student responded to a core
test (40 items) and one of four randomly assigned rotated forms (35 items). Our
analyses will consider the core and rotated form A items taken by 819 students
from 179 different classrooms./ bata of this kind are typically analyzed as a
simple random sample. In our analyses we will take into account that students are

hierarchically observed within classrooms. For simplicity, however, we will

ignore the level of hierarchies corresponding to school districts and schools, and
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assume simple random sampling of classrooms.

Eight achievement variable sums were created from the 75 right—wrong scored
items corresponding to two sums for each of arithmetic, algebra, measurement,
and geometry with the topic classifications: Ratio, proportion, percent (11 items);
Common and decimal fractions (12 items); Equations and expressions (10 items);
Integers, numbers (9 items); Standard units, estimation (6 items); Area, volume

(5 items); Coordinates, vizualization (9 items); Plane figures (8 items).

'The mathematics curriculum is very varied for U.S. 13—year olds. Comparing
individuals, classrooms, schools, or school districts with respect to the total sum
of correct answers may to a large extent reflect differences in opportunity to

(o7t)
leamn /{ather than achievement in areas taught. In this sense there is a risk of test
bias due to instructional differences. /From this point of view it is interesting that
the data also contains information on such instructional differences across
classrooms. A class—-level varia?ble categorizes the math classes into four types:
basic or remedial; general or typical; pre—algebra or enriched; and algebra.

Enriched and algebra classes are taught much more advanced topics than typical

classes. In particular, more advanced topics related to algebra and geometry are

introduced. Ll’he classification into class types was made based on both the text
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books reportedly used and by teacher—reported opportunity—to—learn (OTL).
OTL was recorded for each item. For the purposes of the present analyses OTL
was scored 1 if the teacher stated that the mathematics needed to answer the item
correctly had been taught during eighth grade. For typical classes this means that
almost all O's imply that the topic had never been taught, while for enriched and
algebra classes almost all 0's correspond to coverage during previous years.
These dichotomous variables were summed up into eight OTL scores
corresponding to the summing of the achievement items. For typical classes we
expect positive effects on achievement from each of these OTL sums. However,
for enriched and algebra classes we might obtain negative effects for less
advanced topics since the fact that the topic was not sufficiently covered already

before may indicate a low—achieving class.

Based on previous item-level analyses (see, e.g. Muthen, 1988), a one—factor
model is expected for the eight student—level achievement variables. While
several minor, topic—specific factors have been identified, the responses are
dominated by a single general félctor and the effect of this dominant factor is
strengthened by the aggregation into eight scores. A conventional ML factor
analysis of all 819 students ignoring class membership and the hierarchical nature

of the data gave a chi-square test of fit of 35.72 with 20 degrees of freedom. In
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addition to this analysis of the total covariance matrix, we also analyzed the
regular pooled—within classroom covariance matrix line with the suggestion in
Muthen (1989). Here, the one—factor model obtained a chi-square of 26.28,
specifying the sample size of N - G = 819 — 179 = 640. The corresponding
analysis of the regular between matrix, specifying a sample size of 179, gave a
chi~square of 37.50. We regard this fit as reasonably good, although there is
some room for improvement. Although these conventional chi—square values are
not completely trustworthy they do appear to indicate a relatively better fit on the
within level than the between level. The corresponding three chi-square values
for the 474 students in the 105 typical classes were 30.80 (sample size 474), 28.38

(sample size 369), and 36.09 (sample size 105).

Turning to hierarchical data modeling of the eight student—level achievement
variables, we will specify the following model in line with the model variation in

7L
t4),

£F

(83) Ygi=V+ Ag MBg + Aw Nwei + Epg *+ Ewgi -

Here, a single factor 1) is specified on both the group level and the individual

level, where the group component captures contributions to an individual's
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achievement level from the class. The two components are allowed to have
different loadings. As in conventional factor analysis, the metric of the factor
can be set by fixing a loading to unity. This will be done for the first variable
for both the between and within loadings. A test of equality across levels of the
remaining loadings will be performed. If equality cannot be rejected, the factor
part of the model can be interpreted as a varying factor means model in line with
the Muthen—Satorra model of Section 4.2.1. In this case it is of interest to
compare the between and within vanance contributions to 1. In particular, we
will focus on the ratio of the between factor variance relative to the sum of
between and within factor variances. The size of this ratio is an interesting
indicator of the heterogeneity in achievement level across classrooms. A group—
level component is also specified for the variable—specific residuals of € to
capture the anticipated classroom variation in variable—specific topic coverage.
As discussed in Section 4, this variation may alternatively be seen as classroom
variation in measurement intercepts corresponding to the perceived difficulty

level of the respective set of items.

The specification of this model can be illustrated by a diagram such as that in
Figure 1. In line with structural modeling conventions, squares denote observed

variables and circles denote latent variables. The part of the model below the
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squares refer to the within structure, while the part above refers to the between
structure. For the between terms of the hierarchical data ML fitting function of
(35), both parts are involved, while for the within term only the bottom part is
involved. This is in line with the parameter array arrangement discussed in

Section 4.1.

Insert Figure 1

The LISCOMP input for the ad hoc estimator is given in Appendix 1. The setup
for the ML estimator generalizes in a relatively straightforward fashion, adding
the means. In the case of analyzing all 179 classrooms, there are 10 distinct class
sizes, ranging from 1 to 10. Typical and Algebra/enriched classes are similar in

this respect.

Table 1 gives the estimated model using both the ML estimator and the ad hoc
estimator. The ML chi-square is 62.42 with 40 degrees of freedom and the ad
hoc estimator quasi chi-square is 62.47. Adding the restrictions of equal

loadings across levels gives a chi-square of 92.31 (93.90) with 47 degrees of
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freedom for the ML (ad hoc) estimator. Considering the chi-square difference,
equality is rejected in this case. Table 1 presents estimates for the model with
unequal loadings. The ML and ad hoc estimates and standard errors are close.

We note that the between factor variance is strongly significant.

Insert Table 1

As in the conventional analysis, the model fit is marginal since the p value is just
less than .01. As we will see in subsequent analyses, this may be due to the need
for a more complex between structure. This is also in line with the relatively
better fit to the pooled—within covariance matrix than the total or between

matrices seen in the conventional analyses.

It is now of interest to bring in the available information on classroom
differences in instruction. The class type categorization classified the 179
classrooms (819 students) into 105 typical and 56 algebra/enriched classes (474

and 285 students, respectively). A hierarchical data factor analysis by the same
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model was also carried out for each of these two types of classrooms separately.

with about the same model fit as in the total set of classes.

For typical classes the ML chi—square was 65.389 for the 40 degree of freedom
model with unequal loadings across groups and 72.30 with equality of loadings.
As opposed to the analysis of the total set of classes, equality of loadings appears
to fit very well, perhaps due to the larger degree of homogeneity of classes. It is
then relevant to consider the between to total factor variance ratio. The between
and within factor variances are estimated as 2.09 and 2.77, respectively, giving a
ratio of 0.43. This indicates that a large degree of heterogeneity exists also

among typical classes.

The analysis of algebra/enriched classes gave a ML chi—square of 48.66 with 40
degrees of freedom and adding equality of loadings gave a value of 65.98. Here,
the seven—degree of freedom difference is significant, perhaps due to the larger
differences among classes than in the typical category. The model with unequal
loadings estimated the between .a.nd within factor variances as 2.01 and 2.98,

respectively.

These analyses indicate that particularly for typical classes there is a large amount
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of heterogeneity in class achievement level. It is therefore of interest to
investigate how much of this heterogeneity can be further accounted for by the

teacher-reported OTL variables.

The class—level OTL variables may be seen as influencing the class—level part of
the students' achievement scores indirectly through the class—level factor
component in ¢8%), Mg For example, for typical classes we expect that the OTL
scores increase the class level of overall achievement. However, as indicated in
Table 1, the variable—specific variation in students’ achievement across
classrooms is strong and it is quite possible that each OTL variable has a direct
effect on its corresponding achievement variable beyond any indirect effect
through the factor ng. In related, item—-level analyses of the same data set
Muthen, Kao and Burstein §1990) and Kao (1990) have investigated the extent of
such direct effects, viewed as evidence of instructional item sensitivity. Muthen
et al used dichotomous variables for both achievement items and OTL, while Kao
aggregated topic—specific OTL variables. It is of interest to see if the present
analysis, aggregating both achievement items and OTL items gives a different
picture of instructional sensitivity. If there are large direct effects the use of the
total test score for comparisons across groups of students with different amount

of OTL may give a misleading achievement comparison.
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The hierarchical data model with both student-level achievement vanables and
class—level OTL variables is shown in Figure 2. As for Figure 1, Figure 2 can be

directly translated into the general modeling framework of Section 4.1.

Insert Figure 2

To aid in understanding the LISCOMP input for the ad hoc estimator, Appendix
2 gives the arrangement of the parameter arrays. The LISCOMP input is given in
Appendix 3. Since the OTL variable part of the within covariance matrix has
fixed values, the degrees of freedom given by LISCOMP will be too large. In
this example, there are 100 such artificial restrictions. From a structural
modeling point of view, the between part (top part) of Figure 2 corresponds to
that of a MIMIC (multiple indicators, multiple causes) model (see also Muthen,
1989). While the within part of the model is that of a regular one—factor model
for the achievement variables, the between part allows for correlations among the
between components of the achievement variables that are explained not only by a
single between factor, but also by correlations via the OTL variables and their

direct effects. Given that the OTL variables are correlated, the existence of two
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or more direct OTL effects implies that a single factor does not explain all of the
between correlation among the achievement variables, which could in tumn

contribute to the marginal fit observed in earlier analyses.

The hierarchical data model of Figure 2 was applied to the students of both
typical and enriched/algebra classes. For simplicity, model fit is gauged
approximately by the ad hoc estimator, alleviating the H; ML analysis. In both
types of classes reasonably well-fitting models appear to have been found. For
typical classes the ad hoc estimator quasi chi—square tests of fit were 143.76 and
137.38 for the models with and without loading constraints. The model with
loading constraints does not fit significantly worse and will be presented (the ML
chi—-square difference from these two H(y models was 7.33 and so agrees with this
decision). The model has 95 degrees of freedom. The corresponding quasi chi-
square values for algebra/enriched classes were 163.01 and 142.77, still

indicating loading inequality.

We will now present the estimates for the model for typical classes. Table 2
shows the ML and ad hoc estimates of central parameters and their (quasi)
significance. For ease of interpretation, the between—level structural estimates

are given in standardized form corresponding to unit variances for the between—
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level variables (the circles above the squares in Figure 2).

Insert Table 2

Table 2 shows that when holding class type constant, only four of the eight OTL
variables have any explanatory power. The variable OTL (Integers, Numbers) is
the only OTL variable that has an effect on the between—level factor, while the
variables OTL (Equations, expression), OTL (Area, volume), and OTL (Plane
figures) have direct effects on their corresponding between—level achievement
components. The estimated model says that OTL (Integers, Numbers) influences
all the achievement variables indirectly through the class—level factor component.
This OTL variable represents standard algebra topics for eighth grade students
typical classes. The estimated R? for the class—level factor is 0.14. The more
interesting OTL effects are the three direct ones; all three of these OTL variables
correspond to topics that are us{xally new to eighth grade students in typical
classes. OTL (Plane figures) correlates 0.51 and 0.54 with OTL (Equations,
expression) and OTL (Area, volume), respectively. The existence of these three

direct effects shows that the between—level variation cannot be properly explained
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by a single—factor construct. And it suggests that using a single total test score
for comparison of students across classrooms is inappropriate if one wants to

disentangle exposure from achievement on studied topics.

The between—level R?'s for the achievement variables are high, ranging from
0.78 for Coordinate, vizualization to 0.98 for Common and decimal fractions.
The loadings indicate strong effects on the between components from the class—
level factor, except on the Area, volume component. Arithmetic topics, followed
by algebra topics, seem to dominate the class—level factor. However, as we have
seen the OTL variables explain rather little of the class—level factor variation;
other class—level characteristics will have to be sought for typical classes. The
previously analyzed model without OTL variables obtained the between to total
factor variance ratio of 0.43. In this model the between and within factor
variances obtain ML estimates of 2.06 and 2.78, respectively, maintaining the
ratio of 0.43. The corresponding residual variance ratio, holding OTL constant,

is only reduced to 0.39.

The marginal fit of the hierarchical MIMIC model for typical classes was further

investigated and this will

outlined since the strategy is of more general interest

for hierarchical modeling. IncluEﬁng further direct effects did not improve the
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fit in any major way. Neither did the respecification allowing the influence of all

the‘(\)TL variables to all the achievement variable—specific between components,

™ . . o
excluding the influence on the factor. This latter respecification relaxes all
~

N
between-level restrictions on correlations between OTL variables and
N

achievement variable—specific between components. Since we have found the
~.

one—factor structure on the within level to fit well, the remaining model part to

investigate is the one—factor specification for the between components of the
achievement variables. Already our conventional.between analysis pointed to the
possibility of one-factor misfit, although the first eigenvalue was clearly

dominant. It may be the case that a more complex model structure is warranted

for this between model part. This question will not be pursued here, however.

mimchical MIMIC analysis of algebra/enriched classes, using the ad hoc
estimator\ for simplicity, pointed to both positive and negative OTL effects on the
class-level components. Five out of the eight OTL variables had strong positive
direct effects on its conespondmg_aghievement variable, OTL (Equations,
expression), OTL (Standard uni'ts, estimation), OTL (Area, volume), OTL

(Coordinate, vizualization), and OTL (Plane figures). OTL (Integers, numbers)

\\

was again found to have an effect on the class—level factor and in addition OTL

~
™~

(Common and decimal fractions) had such an effect. Both of mégé Jatter two

55



effects, however, were negative. This is presumable because these topics are of
~_

rather low level for these types of classes and coverage during eighth grade and

not earlier may reflect lower student achievement. In these classes the class—level

factor R2 obtains a high value 8‘0.\’%8\

In summary, the hierarchical data analysis of this example uses a latent variable
model that not only takes the hierarchical data nature into account, but is able to

uncover class—level relationships that would be ignored by conventional analyses.
6. Conclusion

This paper has shown how covariance structure models can be formulated for
hierarchical data and how they can be analyzed by maximum likelihood using a
simple adaptation of conventional covariance structure software. A simple ad hoc
estimator which can be carried out without change of existing software was also
presented. This estimator gave results that were very close to those of the
maximum likelihood estirnator,‘ but further research is needed before the
estimator can be adapted for general use. The maximum likelihood estimator was
applied to an educational example with students nested within classrooms. This

analysis shows that new information is uncovered that conventional analysis
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would not be able to properly describe. v {w\\:\ c*vw’@.,-;k_\ o (QW )
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Appendix 2

LISCOMP parameter array arrangement for the ad hoc estimator

using eight achievement variables and eight OTL variables

Note:

The eight OTL variables are given as the first eight y variables. The latent

variables are arranged in line with Figure 2. The matrix By, = 0.
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Appendix 3

LISCOMP input for the ad hoc estimator using eight achievement variables

and eight OTL variables
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Figure 1

Path diagram for a one—factor model

using within— and between—level components
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Figure 2

Path diagram for a two—level structural equation model

using individual- and class—level observations
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