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Abstract

This paper proposes three graphical methods for diagnosing general growth mixture models

(GGMM; see Muthén and Shedden, 1999; Muthén et al., in press). GGMMs are built on

a finite mixture of growth trajectory classes with individuals’ scores deviating around the

mean of one such curve. GGMM allows for covariates to predict class membership and to

influence a curve’s trajectory over time. They can be used to assess differential effects of an

intervention on repeated measurements as well as on more distal outcomes (Muthén et al., in

press). We develop new diagnostic methods to detect misspecification in GGMM regarding

growth trajectory, covariance structure, and the number of classes. Our procedure applies

the pseudo class technique (Bandeen-Roche, Miglioretti, Zeger, and Rathouz, 1997) to impute

multiple class membership for individuals in the sample, and then for each pseudo class, forms

diagnostic plots based on the empirical Bayes residuals at both level one and level two of the

GGMM hierarchy. These methods are tested in simulation studies involving two classes of linear

growths, each having a distinct covariance structure. They are then applied to longitudinal

data from a randomized field intervention trial that tested whether children’s trajectories of

aggressive behavior could be changed elementary and middle school. Our diagnostics lead to

a solution involving a mixture of three classes of growth curves.

Key words: Mixture modeling, growth modeling, preventive interventions, latent variables,

trajectory classes, pseudo classes, maximum likelihood, empirical Bayes.
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1 Introduction

Growth modeling has become a standard tool in the examination of intervention impact across

time. Growth trajectories can be fitted using random effect modeling (REM; Laird and Ware,

1982; Longford, 1993), hierarchical modeling (Bryk and Raudenbush, 1992), or latent growth

modeling (Muthén, 1983; Muthén, 1984; Muthén, 1996; Muthén, 1997; Muthén and Curran,

1997). These overlapping literatures use random effects to represent an individual’s linear or

otherwise smooth growth curve; covariates, such as intervention conditions, can be used to

account for variations in these smooth curves. Recently, new methods have been developed

to examine multiple developmental pathways in a population (Muthén and Shedden, 1999;

Nagin, 1999; Muthén et al., in press). Such modeling of growth mixtures is consisted of three

levels: level 1 involving individual level measurement errors at each point in time across time,

level 2 involving continuous latent variables that specify the variation within each growth

class, and level 3 involving discrete latent classes that represent different growth patterns.

Different covariates may be included at all three levels. This approach thus provides an explicit

way to identify different patterns of growth trajectories and the impact of an intervention

on different subsets of a population. General growth mixture modeling provides a broad

class of models to accommodate both time dependent and independent predictors as well as

continuous, categorical, or time to event distal outcomes (GGMM; see Muthén et al., in press).

However, model checking for these growth mixture models are inherently challenging because

their involvement with both unobserved latent discrete and continuous variables.

There are different ways that model fit can be assessed, including overall goodness-of-fit

indices (e.g., the likelihood ratio test), model comparison measures (e.g., Bayesian information

criterion; Schwarz, 1978 and Cp, Mallows, 1973), and residual diagnostics, the subject of this
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paper. Residual diagnostics involve identifying patterns of model departures, detecting specific

forms of model misspecification, and directing analysts towards to a better fitting model. Such

methods have been well developed for linear regression models (Cook and Weisberg, 1982;

Hoaglin, Mosteller and Tukey, 1982), generalized linear models (McCullagh and Nelder, 1989),

as well as for REMs (Waternaux, Laird, and Ware, 1989; Bates and Pinheiro, 1998). They can

be effective for probing the influence of single observation (Beckman, et al., 1987; Lange and

Ryan, 1989; Bradlow and Zaslavsky, 1997; Cook and Weisberg, 1982), collinearity or lack of

covariates (Hodge, 1998; Cook, 1998; Atkinson and Riani, 1998), and departure from normality

(Dempster and Ryan, 1985; Lange and Ryan, 1989) or variance assumptions (McCullagh and

Nelder, 1989, pp. 400-401). These cited techniques cannot be applied directly to GGMM

because the growth classes are not observed. We adapt the pseudo class technique (Bandeen-

Roche, Miglioretti, Zeger, and Rathouz; 1997; Nagin, 1999), and extend its use to our GGMM

framework.

Model diagnostics have also been used to detect a single or a cluster of outliers (Waternaux,

Laird, and Ware, 1989; Weiss and Lazaro, 1992; Longford and Lewis, 1998), and guide the fit

for these outlying data. Often outliers form a cluster which in GGMM, can be represented

by a new latent growth class. Consequently our approach relies on checking the adequacy of

the mixture components rather than testing for outlying observations, a perspective similar to

that in Lindsay and Roeder (1992).

Section 2 presents the GGMM formulation using notations similar to that of Laird and

Ware (1982) for REMs. This differs from the original GGMM framework (Muthén et al.,

2001), which was developed from the structural equation tradition (Bollen, 1989).

The major contribution of this paper includes deriving asymptotic properties associated
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with pseudo classes in the GGMM context and developing diagnostic procedures for exam-

ining GGMM misspecification in growth trajectories, covariance structures, and the number

of growth classes. Section 3 presents the calculation for pseudo class probabilities and resid-

uals based on empirical Bayes methods. We also examine the asymptotic distributions of

pseudo-class adjusted residuals. In Section 4, three graphical tools are developed to examine

the distributions of pseudo class adjusted residuals: one being the time trend plot for resid-

uals, and two involving the quantile-quantile plot technique (Chambers, Cleveland, Kleiner,

and Tukey, 1983). These methods have also been tested in simulations (see Section 4), and

were then applied to longitudinal data from a randomized preventive trial aimed at reducing

aggression in elementary school children (see Section 5).

We adopt the following notational convention throughout the paper: i.i.d. for “indepen-

dently and identically distributed”; p.d.f. for “probability density function”; p.m.f. for “prob-

ability mass function”; Ep(.) for “expectation of . with respect to probability measure p”; 0l

for the l × 1 zero vector; Il for the identity matrix of dimension l × l; χl for a Chi-square

variable with degree of freedom l; stac(., · · · , .) for a vector that stacks all elements in the

parentheses; MN (u,V) for the multivariate normal distribution with mean u and covariance

V; φ(u,V) ≡ {(
√

2π)lu |V|}−.5 exp{−1
2u

′V−1u}, where lu is the length of u;
L→ for “converges

in law to as n→ ∞”;
c→ for “converges completely as n→ ∞”; and

a.s.→ for “ converges almost

surely to as n→ ∞”.
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2 The General Growth Mixture Model

The general growth mixture model (GGMM; Muthén et al., 2001) can be used to examine

multiple developmental trajectories within a population. It assumes a mixture of parametric

distributions to characterize a population’s multiple growth trajectories. The discrete develop-

mental pathways are labelled as latent trajectory classes since they are all unknown. Within

each trajectory class, it also hypothesizes that individuals’ curves depart from the class average

by the makeup of their unique measurement errors and the so-called latent growth variables.

We assume measurement times are the same for everyone, and initially assume no missing

data. Denote yi (ly × 1) as the longitudinal outcomes for subject i for i = 1, · · · , n. Let

Ci represent the discrete latent growth class for subject i, which takes values of 1, · · · ,K for

i = 1, · · · , n. At the first level in the model, let each yi, given Ci = k, be modeled as a sum of

a fixed component µik, a random component rik associated with within class variation, and a

random error component eik

yi|[Ci=k] = µik + rik + eik, (1)

where eik
i.i.d.∼ MN (0ly ,Θk).

The second level involves modeling µik and rik as functions of level two covariates Xik and

Zik, and their associated fixed parameters αk (lαk
×1) and latent growth variables bik (lbk

×1),

respectively, such that

µik = Xikαk, and rik = Zikbik, (2)

where bik
i.i.d.∼ MN (βk,Ψk).

Using polytomous logistic modeling, the marginal probability of Ci is expressed in terms

5



of individual level covariates Wc
i = (Wc

i1, · · · ,Wc
iK) and unknown fixed parameters γ =

(γ1, · · · ,γK) such that

Pr(Ci = k|Wc
i ,γ) =

exp(Wc
ikγk)

K
∑

k′=1
exp(Wc

ik′γk′)

, (3)

where γ1 = 0lγ1
is set to assure model identifiability. We also assume that C1, · · · , Cn are

mutually independent given (Wc
1, · · · ,Wc

n) and γ1.

In addition, we write for i = 1, · · · , n, and k = 1, · · · ,K,

Xik = Λ
f
kW

f
ik and Zik = Λr

kW
r
ik, (4)

where Λ
f
k and Λr

k are time measurements associated with µik and rik, and W
f
ik and Wr

ik are

individual level covariate matrices associated with these effects.

In situations where some yis contain missing values due to an ignorable missing mechanism

(Little and Rubin, 1987), we replace equations in (2) and (4) with their appropriate marginal

structures for the nonmissing components. Thus in general, we write (1), (2) and (4) together

as

yik = µik + rik, µik = Λ
f
ikW

f
ikαk, and rik = Λr

ikW
r
ikbk, (5)

where eik ∼ MN (0ly ,Θik) and bik ∼ MN (βk,Ψk).

Unless otherwise mentioned, we will assume (5) and (3).

As an example, we construct a K-class GGMM for the intervention study involving treat-

ment and control groups. Let wi denote the indicator of intervention status for individual i,

where wi = 1 if the ith individual is assigned to the intervention setting, and wi = 0 otherwise.

Let 0, 1, · · · , (ly−1) be the time points at which the outcomes are measured. Suppose that data
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are completely observed at all ly occasions. Assume quadratic growth curves for all trajectory

classes, and that both intercepts and slopes to be random and quadratics to be fixed. Then

the GGMM components in (1)-(3) are given as follows:

yi =













yi1

yi2
...

yi(ly−1)













. Θk =













θk11 θk12 · · · θk1ly

θk21 θk22 · · · θk2ly
...

...
...

...
θkly1 θkly2 · · · θklyly













. Ψk =

[

ψk11 ψk12

ψk21 ψk22

]

.

Λ
f
ik =













1 0 0
1 1 1
...

1 (ly − 1) (ly − 1)2













. W
f
ik =







1 0 0 wi 0 0
0 1 0 0 wi 0
0 0 1 0 0 wi






. αk =



















αk1

αk2

αk3

αk4

αk5

αk6



















.

Λr
ik =













1 0
1 1
...
1 (ly − 1)













. Wr
ik =

[

1 0
0 1

]

. βk =

[

βk1

βk2

]

.

Wc
ik = [wi]. γk = [γk].

In the above specification, (βk1+αk1, αk2+βk2, αk3)
′ corresponds to the class-k mean growth

factors (intercepts, slopes and quadratics) for the control group; (αk4, αk5, αk6)
′ corresponds

to the vector of intervention impact on class-k growth; and γk is interpreted as the log-odds

of class k probability relative to class 1 probability. For randomized trials, we would typically

assume that intervention and control groups have the same baseline distributions by setting

αk4 = 0.
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All GGMMs considered in this paper can be fitted using Mplus software (Muthén and

Muthén, 1999), which applies the EM algorithm (Dempster, Laird, and Rubin, 1985) to com-

pute maximum likelihood estimates (MLE) for parameters based on the marginal likelihood,

L(γ,α,β,Θ,Ψ;y) =
n

∏

i=1

f(yi|Xi,Zi,W
c
i ,Ξ), (6)

where Ξ = stac(Ξ1, · · · ,ΞK), Ξk = stac(αk,βk,γk,Ψk,Θk), Xi = stac(Xi1, · · · ,XiK), Zi =

stac(Zi1, · · · ,ZiK), and Ωik = X′

ikΨkXik+Θik, f(yi|Xi,Zi,W
c
i ,Ξ) =















K
∑

k=1









e
W

c
ik
γk

K
∑

k′=1

e
W

c
ik′

γ
k′

fk(yi)























,

and fk(yi|Xi,Zi,W
c
i ,Ξ) = φ(yi − Zikβk −Xikαk,Ωik).

3 Pseudo Classes and Empirical Bayes Residuals

3.1 Pseudo Classes

To obtain residual diagnostics for GGMM, we will need to assign growth classes to individu-

als. The “pseudo class” technique (Bandeen-Roche et al.; 1997) is employed for such estima-

tion. Originally introduced in the latent class framework, it assigns individuals to classes with

weights determined by the conditional probability that a subject comes from that class given

the data, with unknown parameters being evaluated at their maximum likelihood solution.

That is, if C∗

i (≡ Ci|[yi]) denotes the pseudo class for subject i, then its p.m.f. under (3) and

(5) is given by

Pr(C∗

i = k|Xi,Zi,Wi, Ξ̂)

=
φ(yi −Xikβ̂k − Zikα̂k, Ω̂ik)Pr(Ci = k|Wc

i , γ̂)
K
∑

k′=1
φ(yi −Xik′β̂k′ − Zik′α̂k′ , Ω̂ik′)Pr(Ci = k′|Wc

i , γ̂)

. (7)

The asymptotic properties associated with a single replication of C∗ has been examined

8



by Bandeen-Roche et al. (1997) in the latent class model context; data from each pseudo

class behave just like samples drawn from the true classes if the model is correctly specified.

As shown below, their result can be extended to our GGMM diagnostics. In addition, we

demonstrate the improvement by using multiple C∗.

Theorem Suppose that yi, · · · ,yn are independently distributed according to (3) and

(5), where the parameters Ξ indexing these distributions belong to a set Q and satisfy the

standard identifiability condition (up to permutation of mixture components). Consider fitting

a model for yi, · · · ,yn by obtaining Ξ̂ that maximizes (6) within the interior of Q. Define a

general diagnostic transformation τ such that τi = τ(yi, Ci,Xi,Zi,Ξ) for i = 1, · · · , n, where

τi|[Ci=k,Ξ]
i.i.d.∼ Gk. Also, assume that τ is continuous with respect to yis and Ξ. Denote G̃kh

as the empirical c.d.f. of τi|
[C∗

ih
=k,Ξ̂]

, and ξ̃kh as the associated pth quantiles. Then

G̃kh
c→ Gk, (8)

and

n
1
2 (ξ̃kh − ξk)

L→ N (0, σ2
ξ ) (9)

if |∂gk

∂Ξ
| <∞ a.s., where σ2

ξ = [∂ξk

∂Ξ
]′Ef [∂

2 log(6)

∂Ξ
2 ][∂ξk

∂Ξ
] and gk(.) = ∂Gk

∂.
.

Moreover, denote µk =
∫

τ dGk(τ) and µ̃kh =
∫

τ dG̃kh(τ), where τ is uniformally integrable

with respect to both Gk and G̃kh, and both µk and µ̃kh are continuous with respect to Ξ. Then

for 1 ≤ h ≤ H and 1 ≤ k ≤ K,

µ̃kh
a.s.→ µk. (10)

A proof is given in the Appendix.
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To apply the theorem to our residual diagnostics, we consider special τs such that for each

yi, τi|[Ci=k] = m′

ik[yi − Efk
(yi)] or τi|[Ci=k] = [yi − Efk

(yi)]
′Mik[yi − Efk

(yi)], where mik

and Mik are a weight vector of length ly and a weight matrix of rank ly, respectively. Results

given in (8) and (10) imply that for each class k, its associated residual distribution Gk and

the residual mean µk can be well approximated via G̃kh and µ̃kh despite the absence of C.

Further, to improve diagnostics, we recommend using the residuals averaged over multiple

pseudo class draws, similar in spirit to multiple imputation. According to Rubin (1987) and

Schafer (1997), 2 to 5 multiple imputations are usually sufficient to achieve satisfactory relative

efficiency (RE) for most missing data problems where the fraction of missing information λ

(Orchard and Woodbury, 1972) is below 0.2; the asymptotic RE associated with H imputation

is given as (1 + λ/H)−1. Such is not the case here since completely missingness of C results

in a high λ. In the examples discussed in Sections 3 and 4, λs range from 0.5 to 0.8, and

therefore, taking 20 pseudo class draws will ensure to achieve 95% relative efficiency (RE).

Next we establish appropriate τ for our GGMM diagnostics.

3.2 Residuals at Level 1 and Level 2

In line with the approach by Gruttola, Ware, and Louis (1987) and Weiss (1995), we consider

decomposing yi − Xikαk − Zikβk as R
(1)
ik + Λr

ikR
(2)
ik , where R

(1)
ik = yi − Xikαk − Zikbik and

R
(2)
ik = Wr

ikbik −Wr
ikβk. We define R

(1)
ik and R

(2)
ik as level 1 residuals and level 2 residuals for

individual i with respect to class k.

Note that each component of R
(1)
ik and R

(2)
ik constitutes a valid τ stated in the above

Theorem provided W
f
1k = · · · = W

f
nk, Λ

f
1k = · · · ,Λf

nk, Wr
1k = · · · = Wr

nk, and Λr
1k = · · · =
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Λr
nk for all k. We therefore consider rescaling these residuals so that the resulting τs (i.e., S (.)

... s

and D(.)
.. s defined later in this Section) have distributions that are free from W .

..s and Λ.
..s.

Since the calculation for R
(1)
ik and R

(2)
ik involves unknown quantities {bik : i = 1, · · · , n, k =

1, · · · ,K}, we use the EB formula given in Lange and Ryan (1989) to calculate these estimates.

The posterior distribution of R
(2)
ik under (3) and (5) is

R
(2)
ik |[yi,Xi,Zi,W

c
ik

,Ξk,Ci=k] ∼ MN (Wr
ikb

B
ik −Wr

ikβk,V
(2)
ik (yi)), (11)

where

Wr
ikb

B
ik = V(2)

ik

(

{BikΘik[Bik]′}−1Bik[yi −Xikαk] + {Wr
ikΨk[W

r
ik]

′}−1Wr
ikβk

)

,

V
(2)
ik (yi) =

(

{BikΘik[Bik]
′}−1 + {Wr

ikΨk[W
r
ik]

′}−1
)

−1
.

Bik = {[Λr
ik]

′Λr
ik}−1[Λr

ik]
′.

Using (11) and the asymptotic property of Ξ̂, we have

[V̂
(2)
ik ]−

1
2 R̂

(2)
ik |[Ci=k]

L→ MN (0lbk
, Ilbk

), (12)

where R̂
(2)
ik = Wr

ikb̂
B
ik −Wr

ikβ̂k and

V̂
(2)
ik =

(

[V
(2)
ik (yi)]

−1{BikΘ̂ik[Bik]′}−1Bik

)

Ω̂ik

(

[V
(2)
ik (yi)]

−1{BikΘ̂ik[Bik]′}−1Bik

)

′

.

We standardize these level 2 residual estimates in two ways based on (12). For each

subject i, we define the componentwise standardization for level 2 residuals R̂
(2)
ik to be Ŝ

(2)
ik =

(V̂
(2)
ik )−

1
2 Ilbk

R̂
(2)
ik . The multivariate standardization for R̂

(2)
ik is defined as D̂

(2)
ik = [R̂

(2)
ik ]′[V̂

(2)
ik ]−1[R̂

(2)
ik ],

which is also the Mahalanobis distance for R̂
(2)
ik .

Similarly, the EB level 1 residuals are distributed as

R
(1)
ik |[yi,Xi,Zi,W

c
ik

,Ξk,Ci=k] ∼ MN (yi −Xikαk − Zikb
B
ik,V

(1)
ik (yi)), (13)
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where V
(1)
ik (yi) =

(

[Θik]
−1 + {ZikΨk[Zik]

′}−1
)−1

.

Consequently, their associated EB estimates are R̂
(1)
ik = yi −Xikα̂k − Zikb̂

B
ik, and

[V̂
(1)
ik ]−

1
2 R̂

(1)
ik |[Ci=k]

L→ MN (0ly , Ily), (14)

for i = 1, · · · , n and k = 1, · · · ,K, where V̂
(1)
ik = [Aik] Ω̂ik [Aik]

′ and

Aik = Ily −Λr
ikV

(1)
ik (yi){BikΘik[Bik]′}−1Bik.

The componentwise standardization for level 1 residuals R̂
(1)
ik and its corresponding Maha-

lanobis distance are defined as Ŝ
(1)
ik = (V̂

(1)
ik )−

1
2 Ilyi

R̂
(1)
ik and D̂

(1)
ik = [R̂

(1)
ik ]′[V̂

(1)
ik ]−1R̂

(1)
ik .

Note that the multivariate Mahalanobis residuals are asymptotically multiples of chi-

square with degree of freedom depending on the amount of data observed for that case.

To overcome this problem, we recommend applying the Wilson-Hilferty (W-H) transforma-

tion (Johnson and Kotz, 1970) to D̂(.)
.. . Specifically, W-H cube-root transformation yields

D̂(j)
ik =

(

(
D̂

(j)
ik

ν
)

1
3 − 1 + 2

9ν

)

∗ (9ν
2 )

1
2 , where ν is the number of elements in the residual vec-

tor, and D̂(j)
ik |[Ci=k]

L→ MN (0, 1) for all possible i, k, j when the assumed model is correct.

This transformation also reduces clear skewness in the Mahalanobis residuals and improves

the readability of Q-Q plots.

In what follows, we rely on the pseudo-class adjusted residuals R̂
(.)
.k |[C∗

. =k], Ŝ
(.)
.k |[C∗

. =k], and

D̂(.)
.k |[C∗

. =k] to make inference about R
(.)
.k |[C.=k], S

(.)
.k |[C.=k], and D(.)

.k |[C.=k], respectively.

4 Methods and Simulation Studies

Three types of diagnostic plots are proposed to detect model misspecification in growth trajec-

tory, covariance structure, and the number of classes. All the diagnostic quantities calculated
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below are the average of multiple pseudo class draws with H chosen to be sufficient for 95%

RE. Details of these methods are described below.

We use three simulation studies to test each particular model misspecification. The GGMM

that generated the simulated data (of size 500) assumes γ1 = γ2 = 0, β1 = (0, .3)′, β2 = (2, 1)′,

Θ1 = .70∗ I5, Θ2 = .35∗ I5, Ψ1 =

[

0.30 0
0 0.15

]

, Ψ2 =

[

0.15 0
0 0.075

]

, and µi1 = µi2 = 05,

W
f
i1 = Wr

i1 = Wc
i1 = W

f
i2 = Wr

i2 = Wc
i2 = I2, and (Λr

i1)
′ = (Λr

i2)
′ =

[

1 1 1 1 1
0 1 2 3 4

]

, for

i = 1, · · · , n.

These data have been fitted with both correct and incorrect models using Mplus (Muthén

and Muthén, 1999, Appendix 8). In our Mplus program, we placed no restrictions on βs

and γs for the correct model while forcing both Θs and Ψs to be arbitrary diagonal matrices

that may vary by class. The specifications for the incorrect models are given in the following

subsections.

4.1 Examining Growth Trajectories

Two diagnostic procedures are proposed to determine whether the existing growth factors are

adequate for characterizing the data trajectories. In the illustrative example, the incorrect

model assumes no slope growth factor in both classes, that is, β12 = β22 = 0 and ψ1,22 =

ψ2,22 = 0.

The first method examines the time trends of level 1 residual means averaging over H

pseudo class draws, ¯̃µk = H−1

{

H
∑

h=1
µ̃kh

}

, for k = 1, · · · ,K, where µ̃kh =

n
∑

i=1

R̂
(1)
ik

1[C∗

ih
=k]

n
∑

i=1

1[C∗

ih
=k]

, and

R̂
(1)
ik = R

(1)
ik |

[Ci=k,
ˆΞ]

. For each growth class k, the vector µk is plotted against the time axis.

To address the variability of these estimates, we also add error bars to represent the variation
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associated with both within and between pseudo class draws using the calculation by Rubin

and Schenker’s (1986; see equation (1.3)). Should any of ¯̃µk exhibit noticeable departure from

0 , this points to misspecified fitting of time dependence on growth for that class.

The second method aims at examining the entire distribution of each element of R̂
(1)
ik |[Ci=k]

using the quantile-quantile (Q-Q) norm plot. To do so, we compute empirical quantiles for each

class 1. According to (8), each of such, say the p−quantile for class k, can be well approximated

by
¯̃
ξk = H−1

H
∑

h=1
ξ̃kh, where ξ̃kh = inf



















R̂
(1)
ik. :

∑

C∗

i′
h

=k

1
[R̂

(1)

i′k.
<R̂

(1)
ik.

]

n
∑

i′=1

1[C∗

i′
h

=k]

= p



















. Then for k = 1, · · · ,K,

the Q-Q norm curves are formed by plotting those mean quantiles (¯̃ξks) against their standard

normal counter parts. Associated with each u, such curve should align with y =
√

[V̂
(1)
ik ]uu x

(i.e, the straight line crossing the origin with slope
√

[V̂
(1)
ik ]uu) if the assumed model is correct.

Otherwise, we suggest considering alternative growth curves. This approach, compared with

the former, thus can be more insightful since it reveals the information that is beyond the first

two moments of R̂(1)
... (see Section 4.3).

Note that the result based on R̂
(.)
.k |[C∗

. =k] is trustworthy in our simulations since it assumes

W
f
1k = · · · ,Wf

nk and Λ
f
1k = · · · ,Λf

nk, Wr
1k = · · · ,Wr

nk and Λr
1k = · · · ,Λr

nk, for k = 1, · · · ,K.

Simulation Results

Figure 1 presents the time trend plots for µ̄ks derived from the incorrect model (the error

bars that present the total variation however, are too slim to be acknowledged). The result

suggested that residual means at the first two time points were remarkedly lower than expected,

1The number of points chosen for producing the Q-Q plots is either the class size for the class-specific

calculation (e.g., Sections 4.1 and 4.3), or the size of the smaller class when involving two classes (e.g., Section

4.2).
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and the opposite for the last two time points. Figure 2 presents Q-Q norm plots for R̂
(1)
iku|[C∗

ih
=k]s

under the incorrect model. It concluded similarly as Figure 1. Both time trend plots and Q-Q

norm plots behave appropriately under the correct model.

[Insert Figures 1 & 2 Here.]

In accordance with the usual advice on these departure patterns, one may consider to add

linear time predictors for model improvement, especially for the trajectory class associated

with β2, Ψ2, and Θ2.

Notice that GGMM incorrectly concludes that level 1 variance estimates are quadratic in

time despite no improper constraints on the covariances being imposed in our Mplus program

(see Table 1). In fact, such aliasing effect is common to all procedures in fitting longitudinal

data not just GGMM when the underlying growth trajectories is incorrectly specified (Laird

and Lange, 1989). In this example, the quadratic pattern in θ̂k,uu is due to the absolute bias

|βk,2(u− ly−1
2 )| in estimating the mean of yiu given Ci = k.

[Insert Table 1 Here.]

4.2 Examining Covariance Structure

We proposed the paired-class empirical Q-Q plot (E-Q-Q plot) to investigate whether co-

variance structures should vary by growth class. The three incorrect models considered in

our demonstration are called level 1 homogeneous GGMM, level 2 homogeneous GGMM, and

two-level homogeneous GGMM. The term homogeneous is referred to equal covariances across

trajectory class, while the within class covariances can be any that is positive definite.
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This method was derived based on the comparison of {D̂(j)
ik : C∗

ih
= k}s between possible

class pairs. We justify this approach with the following observations. First, note that each D̂(j)
ik

represents a weighted sum of squares of yi −Efk
(yi|Ξ̂), where the weight functions depend on

Ψ̂ and Θ̂. According to Lange and Laird (1989) and our simulation result shown in Table 2,

the impact on (Ψ̂, Θ̂) due to misspecification of Ψ and Θ can be quite substantial, and that

may vary across growth classes. This impact then passes immediately on to D̂(j)
ik . The test

based on univariate type of residuals, such as Ŝ(.)
... , however, has been found not to be helpful

for the diagnostics. Second, these quantities, irrespect to growth classes, all have a common

asymptotic distribution MN (0, 1) when the GGMM is correctly specified. This thus motivates

the paired-class comparison.

For each level j (j = 1, 2) and class pair (k, k ′), our E-Q-Q method draws the mean quantiles

obtained from {D̂(j)
ik : C∗

i1
= k}, . . ., {D̂(j)

ik : C∗

iH
= k} against those from {D̂(j)

ik′ : C∗

i1
= k′} ,

. . ., {D̂(j)
ik′ : C∗

iH
= k′}. The mean quantile calculation and the Q-Q plot technique follow the

instruction given in Section 4.1. If such a curve deviates from y = x, it suggests that assuming

Θk = Θk′ or Ψk = Ψk′ can be questionable.

Simulation Results

The results of paired-class E-Q-Q comparison based on D̂(.)
.. s are given in Figure 3. It shows

that our method has faithfully reflected the source of heterogeneity (from either Θs or Ψs)

that was not adequately addressed by the model. More evidential departure from y = x was

found in the comparison between D̂(1)
1. and D̂(1)

2. for the level 1 homogeneous model, while such

evidence was marked in the comparison between D̂(2)
1. and D̂(2)

2. for the level 2 homogeneous

model.
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[Insert Figure 3 and Table 2 Here.]

4.3 Examining The Number of Growth Classes K

The class-specific Q-Q norm method is employed for testing the adequacy of K based on the

hypothesis that the normality of the standardized residuals Ŝ
(j)
iku|[C∗

ih
=k] (j = 1, 2) could be

perturbed if K being under-specified. Also, we anticipate that such impact on level 1 or level

2 may depend on the degree each attributing to the mixture nature.

The incorrect model considered below is a 1-class growth model reduced from the correct

model.

Simulation Results

The incorrect model discussed below is a 1-class growth model reduced from the 2-class

correct model. The level 2 Q-Q norm diagnostic result for the 1-class model is given in Figure

4. Unlike those Q-Q norm curvatures that present a pure shift in location parameter or scale

parameter from the standard normal (e.g., Figure 2), these, in fact, can be recognized as

Q-Q norm curves for a mixture of normal variables. However, the level 1 assessment hardly

informed any evidence regarding class inadequacy. This result, in conjuction with Table 3,

suggests that misspecification at level 3 has stronger impact on level 2 than that on level 1

since the distinguishable nature among the growth classes arises mainly from level 2, which

also happens to be a realistic assumption for most application data.

[Insert Figure 4 and Table 3 Here.]
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4.4 Computation

The residual calculation and diagnostic plots were carried out using the statistical software

Splus 2000 (1999). We have posted our Splus codes for these work under the Prevention

Science Methodology Group website at

http : //www.biostat.coph.usf.edu/research/psmgold/ggmmdiag/ggmmdiagplot.html.

In the next Section, we demonstrate how these methods can be extended to more complex

GGMMs involving missing data, covariates, and three classes.

5 An Application Example

In 1985 a large randomized field trial, involving 1196 children from the Baltimore City Public

School System, was initiated through a partnership between the school system and Johns

Hopkins University. For two years, children received the same intervention, either a classroom-

based Good Behavior Game (GBG) intervention designed to reduce aggression and disruption,

an enhanced classroom-based Mastery Learning intervention, or a control condition. Prior

to the intervention, during the intervention, and at follow-up we obtained teacher ratings of

aggressive behavior using the Teachers’ Observation of Classroom Adaptation-Revised (TOCA-

R; Kellam et al., 1975). Being the average of ten items, this scale ranged from 1 to 6 with

higher scores indicating higher aggression. These were measured once in first grade before

the intervention began, and three times during the intervention period of first and second

grade: Spring of first grade and Fall and Spring of second grade. Thereafter until grade seven

we interviewed teachers to obtain annual aggressive behavior ratings on the TOCA-R. Thus
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except for missing data, children were measured 9 times on the same aggression measure. For

the purposes of this paper, we will focus on the 119 males who received the GBG intervention

and their 80 matched controls. Previous analyses had revealed an early beneficial impact of the

GBG intervention by the end of first grade.GBG reduced aggressive behavior more in boys who

began the year as aggressive compared to boys who were less aggressive. Longer term impact

was also seen at the sixth grade follow-up (ref??). Additional growth analyses had suggested

that GBG’s improvement in aggression was strongest among those who initially began with

high aggression and essentially negligible for those with low aggression (Muthén and Curran,

1997). These effects are elucidated in this paper through the comprehensive GGMM analyses.

5.1 Setting Up A Preliminary GGMM for the Baltimore Prevention Trial

Again, we use w1, · · · , wn to denote the indicators of individual’s intervention statuses. We

labeled 0 as the entry time and 1 as the increment between adjacent school years. The 9

time points thus were coded as 0, 0.5, 1, 1.5, 2.5, 3.5, 4.5, 5.5 ,6.5, accordingly. To form a

GGMM for analyzing this prevention trial, we first screened through individual development

trajectories using the usual technique for data exploring. This preliminary result suggested

the following: the growth shape should be no simpler than a quadratic; level 1 measurement

errors may change with time; and variances of both intercept(s) and slope(s) at level 2 are

nonzeros. At level one, we also posited autocorrelation(s) between Fall and Spring semesters

of the first two grades to address the rater effect. No autocorrelation was assumed anywhere

else.
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5.2 Determining Number of Growth Class and Covariance Structures

We started with a 1-class latent growth model (or a standard random effect model). In this

case, checking for the number of growth class was of primary interest. We used the Q-Q norm

method to examine distributions of Ŝ(2)
... . Since violation of level two normality was profound

(see Figure 5), we investigated both 2-class and 3-class GGMMs for improvement. Here we

only inspect the 3-class solutions since they appeared to fit the data better than the 2-class

ones.

Below we entertain three potential 3-class GGMM candidates. All the three growth classes

described below are termed as “high” class, “medium” class, and “low” class according to

their overall TOCA-R scores (see Figure 10). Model 1 assumed homogeneous covariances at

both level 1 and level 2. Model 2 differed from Model 1 by allowing the “low” class to have

different variances than the other two. Model 3 further relaxed the homogeneous restriction

put on Model 2. The differences among these three models are given in Table 4 in terms of

the constrains specified for their parameters.

[Insert Figure 5 & 10 Here.]

Diagnosis for Model 1. Using the level 2 class-specific Q-Q norm plot, we first tested K = 3

assumption. Since there exhibited no dramatic violation in normality among residuals from

either intervention group, increasing K beyond 3 was not strongly encouraged (see Figures 6

and 7).

We then examined the homogeneous covariance assumption using the paired-class E-Q-Q

method based on D̂(1)
.. s (see Figure 8). Among these comparisons, we found sound evidence
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indicating that level 1 covariance structure for the “low” class (Θ3) was likely to be different

from those of the rest two classes (Θ1 and Θ2), while such evidence was not significant at level

2 (see Figure 9).

Diagnosis for Model 2. Similar to our finding in Model 1, the result again showed decent

support for K = 3 (see Figures 6 and 7). As being expected by our previous diagnosis, the

modification in the covariance had turned to a better fit model (see Figures 8 and 9).

Diagnosis for Model 3. To confirm the adequacy of Model 2, Model 3 was further investi-

gated. In fitting this model using Mplus, it was suggested that the likelihood was maximized

when slope variance for the “high” class was zero (θ̂1,22 = 0). Thus this optimization is sought

in a confined parameter space differing from that for Model 2 (see Table 4). This effort, ac-

cording to Figures 8 and 9, did not seem to add new improvement from Model 2, but eluded

that choosing proper constraints among parameters could be a crucial step in the search for

an optimal model.

Based on the above evidence, we concluded Model 2 as our final model.

[Insert Figures 6, 7, 8, and 9 Here.]

Tables 5 and 6 summarize parameter estimates and their associated standard errors for the

three fitted 3-class GGMMs.

[Insert Tables 5 & 6 Here.]
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6 Discussion

The diagnostic methods proposed in this paper were developed based on pseudo-class adjusted

residuals at level 1 and level 2 of GGMM and the theorem associated with these quantities (see

Section 3). The argument established for multiple draws (or imputation, the terminology used

in the missing data literature) of pseudo classes contrasts somewhat from the general property

of multiple imputations whereby increasing the number of imputations beyond 5 does not

result in much improvement for standard model parameter inferences (Rubin and Schenker,

1986). The reason we chose a large number of pseudo class draws was because we found it

to be beneficial, particularly, for estimating extreme residual quantiles, whose distributions

often tended to have wide spread due to their highly sensitivity to class assignments. However,

by taking the results averaged across multiple draws, we can improve the reliability of such

estimation, hence the quality of the diagnostics.

As demonstrated in Section 4, these diagnostic methods vary in terms of their abilities to

tackle different types of model misspecification. Both time trend plot and class-specific Q-Q

norm plot based on
˜̂
R

(1)

ik |[C∗

i
=k] are useful for correcting growth trajectories. The paired-class

comparison based on D̂(1)
ik |C∗

i
=k and D̂(2)

ik |C∗

i
=k is most helpful for checking the homogeneity

of covariances across growth classes. The class-specific Q-Q norm plot based on Ŝ
(2)
ik |C∗

i
=k

can be used to check the sufficiency of growth classes. Specially, with the employment of W-

H transformed Mahalanobis distances, our methods can be suitable even when the different

patterns and percentages of missingness, due to some missing at random mechanism, are

present in the data.

We would like to point out some features possessed by our residual diagnostics that are
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designated to complement those overall model fit indices. In terms of robustness, our methods

are applicable for testing models that are not completely nested or parameter values are set

at the boundary of their support while theory falls short to approve the likelihood ratio test

(LRT) used in either instance. In addition to a model sorting mechanism built in most model

fit indices, our methods carry the strength to point specific form(s) of model departure and

to help correct the misspecification. Assume for the moment that LRT is roughly valid for

testing the three 3-class GGMMs considered in Section 5. Formal MLE calculation for the

three 3-class GGMMs yielded (−2)∗(log-likelihood) equal to 3436.8, 3206.8, and 3186.4 with

number of parameters 32, 41, and 53, respectively. This, according to LRT, suggests that the

latter two models with varying covariances are far superior for the application data than the

first one. In this sense, Both LRT and our laborious approach reach the same conclusion.

What is gained from our residual plots are the rich insights about the model deficiency.

However, diagnostics for models involving both discrete and continuous random effects,

like GGMM, are often more complicated than those for models containing simply fixed effects.

Although this paper has demonstrated its appropriateness for examining certain features of

growth mixture models, we consider that this and other related works (Nagin, 1999; Bandeen-

Roche et al., 1997) are not the last word. For example, one promising avenue in line with our

approach is to explore the use of generalized residuals as described by Dempster and Ryan

(1985) and Lange and Ryan (1989). Also, a general procedure for determining the number of

mixture components can be constructed upon Garel (2001) Lo, Mendell, and Rubin (2001),

Ishwaran, James, and Sun (2001), and the references cited within.

Another concern is that many of our methods rely on the normality assumption. Serious

departure from these assumptions may lead to erroneous results. For an example, Carlin et
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al. (2001) found a mixture of a point mass at infinity and a smooth distribution that best

described the underlying random effects for smoking. Our methods would be hard pressed to

identify such a model. Secondly, although not being found in our work, the ceiling or floor

effects can be of concern for datasets when measurement scales are subject to bounds. For

such situations, the modeling technique that includes such bounds, such as provided by Jones,

Nagin, and Roeder (2001), may better compensate for certain departures from normality.
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Appendix: Proof of our Theorem

Preceeding the main proof, we derive the following six propositions.

(i) Ξ̂ exists uniquely (up to the permutation of the mixture components), and Ξ̂
a.s.→ Ξ. This

is due to the assumption on f(.) and Render (1981).

(ii) Pr(C∗

ih
= k|yi,Wi, Ξ̂)

a.s.→ Pr(Ci = k|yi,Wi,Ξ). This follows from (i), the invariance

property of MLE, and continuity of f(.) and Pr(Ci|Wi,Ξ).

(iii) Pr(C∗

ih
= k|Wi, Ξ̂)

a.s.→ Pr(Ci = k|Wi,Ξ). This is derived from

Pr(C∗

ih
= k|Wi, Ξ̂)

≡
∫

Pr(C∗

ih
= k|yi = v,Wi, Ξ̂)f(v|Wi, Ξ̂) dv

=

∫

fk(v|Wi, Ξ̂)Pr(Ci = k|Wi, Ξ̂) dv

= Pr(Ci = k|Wi, Ξ̂)

a.s.→ Pr(Ci = k|Wi,Ξ) (according to (i)).

(iv) yi|
[C∗

ih
=k,

ˆΞ]
∼ Fk(.|Wi, Ξ̂). That is because

Pr(yi = v, C∗

ih
= k|Wi, Ξ̂)

= Pr(C∗

ih
= k|yi = v,Wi, Ξ̂)f(v|Wi, Ξ̂)

= fk(v|Wi, Ξ̂)Pr(Ci = k|Wi, Ξ̂)

= Pr(yi = v, Ci = k|Wi, Ξ̂).

(v) τi|
[C∗

ih
=k,

ˆΞ]
∼ Ĝk, where Ĝk(.) denotes the c.d.f. of τi|

[Ci=k,
ˆΞ]

. This is due to (iv), the

continuity of τ (with respect to yi), and for every measurable A

Pr(yi ∈ A, C∗

ih
= k,Wi, Ξ̂)
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=

∫

v∈A Pr(C∗

ih
= k|yi = v,Wi, Ξ̂)f(v|Wi, Ξ̂) dv

Pr(C∗

ih
= k|Wi, Ξ̂)

=

∫

v∈A
fk(v|Wi, Ξ̂)Pr(Ci = k|Wi, Ξ̂) dv.

(vi) τi|
[C∗

ih
=k,

ˆΞ]

L→ τi|[Ci=k,Ξ]. It follows

Pr(yi ∈ A|C∗

ih
= k,Wi, Ξ̂)

=

∫

v∈A f(v|Ci = k,Wi, Ξ̂)Pr(Ci = k|Wi, Ξ̂) dv

Pr(C∗

ih
= k|Wi, Ξ̂)

a.s.→
∫

v∈Ay
f(v|Ci = k,Wi,Ξ)Pr(Ci = k|Wi,Ξ) dv

Pr(Ci = k|Wi,Ξ)

= Pr(yi ∈ A|Wi,Ξ, Ci = k),

according to (i)-(v), 0 < Pr(C∗

ih
= k|Wi,Ξ) < 1, and that f is tight.

The three main results follow from (i)-(vi) as shown below.

First, applying the Glivenko-Cantelli theorem based on (v) and (vi), one has

sup
ω

|G̃kh(ω) − Ĝk(ω)| a.s.→ 0,

for h = 1, · · · ,H.Stretching this result further according to (i), one obtains

sup
ω

|G̃kh(ω) −Gk(ω)| ≤ sup
ω

|G̃kh(ω) − Ĝk(ω)| + sup
ω

|Ĝk(ω) −Gk(ω)| a.s.→ 0, (15)

which immediately implies (8).

Based on Bahadur’s (1966) representation for ξ̃kh, we write

ξ̃kh − ξk

= (ξ̃kh − ξ̂k) + (ξ̂k − ξk)

=
p− G̃kh(ξ̂k)

gk(ξ̂k)
+ op(n

−
1
2 ) + (ξ̂k − ξk)
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Then due to the continuity of ξ̂k, we can find an ellipsoid E which contains both ξ̂k and ξk

and G̃kh(ξ0) = G̃kh(ξ̂k) = G̃kh(ξk) for every ξ0 ∈ E . Thus

ξ̃kh − ξk

=
p− G̃kh(ξ0)

gk(ξk)
+ (Ξ̂ −Ξ)′





−{p− G̃kh(ξ0)}∂gk(ξk)

∂Ξ
(gk(ξk))2

+
∂ξk
∂Ξ



 + op(n
−

1
2 )

= (Ξ̂−Ξ)′
∂ξk
∂Ξ

+ op(n
−

1
2 ).

The last equality holds true since p − G̃kh(ξ0) = O(n−1) according to (15), and (Ξ̂ − Ξ) =

Op(n
−

1
2 ). Therefore, (9) is concluded.

Lastly, result (10) follows (8) and the uniform integrability of τ .

27



References

[1] Atkinson, A. and Riani, M. (2000). Robust Diagnostic Regression Analysis. New York:

Springer.

[2] Beckman, R. J., Nachtsheim, C. J., and Cook, R. D. (1987) Diagnostics for mixed model

analysis of variance. Technometrics, 29, 412-426.

[3] Bandeen-Roche, K., Miglioretti, D. L., Zeger, S. L., and Rathoutz, P. J. (1997). Latent

variable regression for multiple discrete outcomes. Journal of the American Statistical As-

sociation, 92, 1375-1386.

[4] R. R. Bahadur R. R. (1966). A Note on Quantiles in Large Samples. Annals of Mathematical

Statistics, 37, 577-580.

[5] Bollen, K.A. (1989). Structural equations with latent variables. New York: John Wiley.

[6] Browne, M.W., and Arminger, G. (1995). Specification and estimation of mean-and-

covariance structure models. In G. Arminger, C.C.

[7] Bradlow, E. T. and Zaslavsky, A. M. (1997). Case influence analysis in Bayesian inference.

J. Compute. Graph. Statist., 6, 1-18.

[8] Bryk, A. S. and Raudenbush, S. W. (1992). Hierarchical linear models: applications and

data analysis methods. Sage Publications. International Educational and Professional Pub-

lisher. Newsbury Park, CA.

[9] Carlin, J. B., Wolfe, R., Brown, C. H., Gelman, A. (2001). A case study on the choice, inter-

pretation and checking of multilevel models for longitudinal binary outcomes. Biostatistics,

2, 397-416.

28



[10] Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983). Graphical Meth-

ods for Data Analysis. Wadsworth, Belmont, California.

[11] Cook, R. D. and Weisberg, S. (1982). Residuals and Influence in Regression. New York:

Chapman and Hall.

[12] Cook R. D. (1998). Regression graphics: ideals for studying regressions through graphics.

New York: John & Sons Wiley.

[13] Data Analysis Products Division of Mathsoft (1999). Splus 2000 Programmer’s Guide.

Mathsoft Inc..

[14] Dempster, A. P. and Ryan, L. M. (1985). Weighted normal plots. Journal of the American

Statistical Association, 80 845-850.

[15] Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995). Bayesian Data Analysis.

Boca Raton: C R C Press LLC.

[16] Gruttola, V. D., Ware, J. H., and Louis, T. A. (1987). Influence Analysis of Generalized

Least Squares Estimates. Journal of the American Statistical Association, 82, 911-917.

[17] Goldstein, H. (1995). Multilevel Statistical Models, 2nd edn. London: Arnold.

[18] Hoaglin, D. C., Mosteller, F., and Tukey, J. W. (1982). Understanding Robust and Ex-

ploratory Data Analysis. New York: John Wiley & Sons.

[19] Hodge, J. (1998). Some algebra and geometry for hierarchical models, applied to diagnos-

tics. J. R. Statist. Soc. B, 60, 497-536.

29



[20] Ishwaran, H., James, L. F., and Sun, J. (2001).Bayesian model selection in finite mixtures

by marginal density decompositions. Journal of the American Statistical Association, 96,

1316-1332.

[21] Jones, B. L., Nagin, D. S., and Roeder, K. (2001). A SAS Procedure Based on Mixture

Models for Estimating Developmental Trajectories. Sociological Methods and Research. 29,

374-393.

[22] Schwarz, G. (1978). Estimating the dimension of a model. Annals Statistics, 6, 461-464.

[23] Kellam, S. G., Branch, J. D., Agrawal, K. C., and Ensminger, M. E. (1975). Mental

health and going to school: The Woodlawn program of assessment, early intervention, and

evaluation. Chicago: University of Chicago Press.

[24] Laird, M. N. and Ware, J. H (1982). Random effects models for longitudinal data. Bio-

metrics, 38, 963-974.

[25] Lange, N. and Ryan, L. (1989). Assessing normality in random effects models. The Annals

of Statistics, 17, 624-642.

[26] Lindsay, G. L. and Roeder, K. (1992). Residual diagnostics for mixture models. Journal

of the American Statistical Association, 87, 985-794.

[27] Little, R. J. A. and Rubin, D. B. (1987). Statistical Analysis with Missing Data. J. Wiley

& Sons, New York.

[28] Lo, Y., Mendell, N., and Rubin, D. B. (2001). Testing the number of components in a

normal mixture. Biometrika, 88, 767-778.

[29] Longford, N. T. (1993). Random coefficient models. New York: Oxford University Press.

30



[30] Longford, I. H. and Lewis, T. (1998). Outliers in multilevel data. Journal of the Royal

Statistical Society, A, 161, 121-160.

[31] Mallows, C. L. (1973). Some comments on Cp. Technometrics, 15, 661-676.

[32] McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Model 2nd Ed. New York :

Chapman and Hall.

[33] Muthén, B. O. (1983). Latent variable structure equation modeling with categorical data.

Journal of Econometrics Psychological Methods, 22, 48-65.

[34] Muthén, B. O. (1984). A general structure equation model with dichomotous, ordered

categorical and continuous latent variable indicators. Psychometrika, 49, 115-132.

[35] Muthén, B. O. (1996). Growth modeling with binary responses. In A.V. Eye and C. Clogg,

Categorical variables in developmental research: Methods of analysis (pp. 37-54). San Diego

CA: Academic Press.

[36] Muthén, B. O. (1997). Latent variable modeling with longitudinal and multilevel data. In

A. Raftery, Sociological Methodology (pp. 453-480). Boston: Blackwell Publishers.

[37] Muthén, B. O. and Curran, P. (1997). General longitudinal modeling of individual differ-

ences in experimental designs: A latent variable framework for analysis and power estima-

tion. Psychological Methods, 2, 371-402.

[38] Muthén, B. O. and Curran, P. (1997). General longitudinal modeling of individual differ-

ences in experimental designs: A latent variable framework for analysis and power estima-

tion. Psychological Methods, 2, 371-402.

31



[39] Muthén, B., Brown, C. H., Masyn, K., Jo, B., Khoo, S.-T., Yang, C. C., Wang, C.-P.,

Kellam, S. G., Carlin, J. B., and Liao, J. (2001). General growth mixture modeling for

randomized preventive interventions. To be appeared in Biostatistics.

[40] Muthén, L. K. and Muthén, B. O. (1999). Mplus user’s guide. Muthén and Muthén Pub-

lisher.

[41] Muthén, B. O. and Shedden, K.(1999). Finite mixture modeling with mixture outcomes

using the EM algorithm. Biometrics, 55, 463-469.

[42] Nagin, D. S. (1993). Analyzing developmental trajectories: a semiparametric, grouped-

based approach (1999). Psychological Methods, 4, 139-157.

[43] Redner R. A. (1981). Note on the consistency of the maximum likelihood estimate for

nonidentifiable distributions. Annals of Statistics., 9, 225-228.

[44] Rubin, B. R., and Schenker, N. (1986). Multiple imputation for interval estimation from

simple random samles with ignorable nonresponse. Journal of the American Statistical As-

sociation, 81, 366-374.

[45] Schafer, J., L. (1997). Analysis of incomplete multivariate data. Chapman and Hall, New

York.

[46] Wald R. A. (1949). Note on the consistency of the maximum likelihood estimate. Annals

of Mathematical Statistics., 9, 595-601.

[47] Waternaux, C., Laird N. M., and Ware, J. H. (1989). Methods for analysis of longitudi-

nal data: blood lead concentrations and cognitive development. Journal of the American

Statistical Association, 84, 33-41.

32



[48] Weiss, R. E. and Lazaro, C. G. (1992). Residual plots for repeated measures. Statistics in

Medicine, 11, 115-124.

[49] Weiss, R. E. (1995). Residuals and outliers in repeated measures random effects models.

Technical Report, University of California at Los Angeles, Department of Biostatistics.

[50] Weisberg, S. (1985). Applied Linear Regression, 2nd.. New York : John Wiley & Sons.

33



Table 1: GGMM parameter values that generate independent 100 simulated datasets, and

parameter estimates and standard errors fitting for the simulated data (averaged over 100

simulations) under the correct GGMM and a GGMM missing the linear growth factors (No-

slope)

Class 1

Model True Correct No-slope

β1,1 0.000 0.005 (0.070) 0.401 (0.113)
β1,2 0.300 0.302 (0.019) 0.000 (0.000)

φ1,11 0.300 0.291 (0.069) 0.288 (0.060)
φ1,22 0.150 0.147 (0.019) 0.000 (0.000)
θ1,11 0.700 0.720 (0.074) 1.064 (0.123)
θ1,22 0.700 0.711 (0.073) 0.682 (0.087)
θ1,33 0.700 0.694 (0.069) 0.652 (0.084)
θ1,44 0.700 0.717 (0.077) 1.269 (0.156)
θ1,55 0.700 0.702 (0.118) 2.094 (0.255)

p1 0.500 0.500 (0.048) 0.460 (0.059)

Class 2

Model True Correct No-slope

β2,1 2.000 2.006 (0.035) 3.880 (0.121)
β2,2 1.000 0.997 (0.010) 0.000 (0.000)

φ2,11 0.150 0.151 (0.033) 0.350 (0.059)
φ2,22 0.075 0.073 (0.010) 0.000 (0.000)
θ2,11 0.350 0.352 (0.047) 5.029 (0.247)
θ2,22 0.350 0.351 (0.036) 1.730 (0.131)
θ2,33 0.350 0.352 (0.033) 0.153 (0.043)
θ2,44 0.350 0.348 (0.038) 1.730 (0.131)
θ2,55 0.350 0.351 (0.042) 4.915 (0.278)

p2 0.500 0.500 (0.048) 0.540 (0.059)
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Table 2: GGMM parameter values that generate independent 100 simulated datasets, and

parameter estimates and standard errors fitting for the simulated data (averaged over 100

simulations) under three GGMMs with misspecified covariances

Class 1

Model True Level 1 Level 2 Two-level
Homogeneous Homogeneous Homogeneous

β1,1 0.000 0.021 (0.059) -0.039 (0.054) -0.059 (0.051)
β1,2 0.300 0.305 (0.030) 0.285 (0.028) 0.279 (0.027)

φ1,11 0.300 0.395 (0.071) 0.196 (0.032) 0.210 (0.035)
φ1,22 0.150 0.155 (0.018) 0.104 (0.010) 0.108 (0.011)

θ1,11 0.700 0.504 (0.044) 0.746 (0.084) 0.529 (0.046)
θ1,22 0.700 0.521 (0.039) 0.729 (0.075) 0.525 (0.040)
θ1,33 0.700 0.524 (0.040) 0.699 (0.077) 0.522 (0.040)
θ1,44 0.700 0.535 (0.047) 0.719 (0.092) 0.531 (0.048)
θ1,55 0.700 0.517(0.065) 0.789 (0.013) 0.528 (0.067)

p1 0.500 0.506 (0.049) 0.481 (0.046) 0.471 (0.047)

Class 2

Model True Level 1 Level 2 Two-level
Homogeneous Homogeneous Homogeneous

β2,1 2.000 2.012 (0.043) 1.972 (0.042) 1.954 (0.048)
β2,2 1.000 1.003 (0.023) 0.987 (0.024) 0.984 (0.026)

φ2,11 0.150 0.082 (0.034) 0.196 (0.032) 0.210 (0.035)
φ2,22 0.075 0.070 (0.011) 0.104 (0.010) 0.108 (0.011)

θ2,11 0.350 0.504 (0.044) 0.335 (0.047) 0.529 (0.046)
θ2,22 0.350 0.521 (0.039) 0.343 (0.043) 0.525 (0.040)
θ2,33 0.350 0.524 (0.040) 0.357 (0.037) 0.522 (0.040)
θ2,44 0.350 0.535 (0.047) 0.360 (0.045) 0.531 (0.048)
θ2,55 0.350 0.517 (0.065) 0.335 (0.066) 0.528 (0.067)

p2 0.500 0.494 (0.049) 0.529 (0.046) 0.529 (0.047)
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Table 3: GGMM parameter values that generate independent 100 simulated datasets, and pa-

rameter estimates and standard errors (averaged over 100 simulation) fitting for the simulated

data under a GGMM with inadequate growth classes

Model True 1-Class

Class= k k = 1 k = 2 k = 1

βk,1 0.000 2.000 1.000 (0.058)
βk,2 0.300 1.000 0.650 (0.025)

φk,11 0.300 0.150 1.448 (0.108)
φk,22 0.150 0.075 0.276 (0.020)

θk,11 0.700 0.350 0.395 (0.055)
θk,22 0.700 0.350 0.534 (0.044)
θk,33 0.700 0.350 0.534 (0.041)
θk,44 0.700 0.350 0.539 (0.051)
θk,55 0.700 0.350 0.465 (0.075)

36



Table 4: Model restrictions for the three selected 3-class GGMMs fitting for the Baltimore

Prevention Research data

Model 1 Model 2 Model 3 Remark

αk,2 = αk,3 = αk,4 = 0 αk,2 = αk,3 = αk,4 = 0 αk,2 = αk,3 = αk,4 = 0 k = 1, 2, 3

θ1,uu = θ2,uu = θ3,uu θ1,uu = θ2,uu − u = 1, · · · , 9
θ1,uu′ = θ2,uu′ = θ3,uu′ θ1,uu′ = θ2,uu′ = θ3,uu′ θ1,uu′ = θ2,uu′ (u, u′) = (1, 2) or (3, 4)

Ψ1 = Ψ2 = Ψ3 Ψ1 = Ψ2 ψ1,22 = 0 −
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Table 5: Mplus estimates for α, β, γ, and Pr(Ci|γ) and their standard errors under the three

selected 3-class GGMMs fitting for the Baltimore Prevention Research data

Parameters Model 1 Model 2 Model 3

β1,1 4.438 (0.190) 4.275 (0.420) 3.242 (0.341)
β1,2 0.148 (0.206) 0.288 (0.405) 0.438 (0.245)
α1,1 -0.058 (0.033) -0.072 (0.046) -0.066 (0.031)
α1,2 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
α1,3 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
α1,4 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
α1,5 -0.567 (0.229) -0.411 (0.247) -0.212 (0.384)
α1,6 0.092 (0.038) 0.057 (0.040) 0.019 (0.079)
γ1 -2.188 (0.449) -0.969 (0.325) -0.391 (5.300)

Pr(Ci = 1) 0.143 (0.014) 0.135 (0.065) 0.308 (0.065)

β2,1 1.906 (0.208) 2.386 (0.127) 2.256 (0.470)
β2,2 0.741 (0.185) 0.190 (0.123) 0.067 (0.195)
α2,1 -0.058 (0.028) -0.018 (0.016) -0.003 (0.023)
α2,2 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
α2,3 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
α2,4 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
α2,5 0.573 (0.264) -0.070 (0.135) -0.121 (0.154)
α2,6 -0.154 (0.045) 0.008 (0.022) 0.022 (0.028)
γ2 -1.679 (0.417) 0.361 (0.263) 0.135 (3.231)

Pr(Ci = 2) 0.114 (0.014) 0.510 (0.091) 0.383 (0.081)

β3,1 1.991 (0.070) 1.477 (0.063) 1.458 (0.065)
β3,2 -0.003 (0.064) 0.047 (0.092) -0.006 (0.065)
α3,1 -0.002 (0.010) -0.007 (0.012) -0.003 (0.009)
α3,2 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
α3,3 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
α3,4 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
α3,5 0.013 (0.085) -0.039 (0.104) 0.022 (0.068)
α3,6 -0.002 (0.010) 0.009 (0.014) -0.003 (0.009)
γ3 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Pr(Ci = 3) 0.743 (0.104) 0.355 (0.128) 0.309 (0.092)
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Table 6: Mplus estimates for Ψ & Θ and their standard errors under the three selected GGMMs

fitting for the Baltimore Prevention Research data

Parameters Model 1 Model 2 Model 3

ψ1,11 0.248 (0.048) 0.079 (0.053) 0.245 (0.080)
ψ1,22 0.004 (0.002) 0.010 (0.005) 0.000 (0.000)
θ1,11 0.473 (0.074) 0.941 (0.279) 1.584 (0.601)
θ1,22 0.381 (0.061) 0.597 (0.125) 0.840 (0.609)
θ1,33 0.499 (0.070) 0.593 (0.088) 1.161 (0.302)
θ1,44 0.604 (0.086) 0.722 (0.102) 0.998 (0.187)
θ1,55 0.902 (0.144) 1.277 (0.231) 1.274 (0.523)
θ1,66 0.642 (0.092) 0.942 (0.152) 0.193 (0.197)
θ1,77 0.506 (0.081) 0.773 (0.140) 1.219 (0.362)
θ1,88 0.831 (0.116) 1.128 (0.147) 1.493 (0.409)
θ1,99 0.621 (0.105) 0.932 (0.199) 1.153 (0.580)
θ1,12 0.049 (0.052) 0.136 (0.031) 0.229 (0.139)
θ1,34 0.258 (0.063) 0.183 (0.045) 0.388 (0.080)

ψ2,11 0.248 (0.048) 0.079 (0.053) 0.003 (0.468)
ψ2,22 0.004 (0.002) 0.010 (0.005) 0.016 (0.044)
θ2,11 0.473 (0.074) 0.941 (0.279) 0.818 (1.000)
θ2,22 0.381 (0.061) 0.597 (0.125) 0.574 (0.466)
θ2,33 0.499 (0.070) 0.593 (0.088) 0.570 (0.145)
θ2,44 0.604 (0.086) 0.722 (0.102) 0.535 (0.115)
θ2,55 0.902 (0.144) 1.277 (0.231) 1.028 (0.532)
θ2,66 0.642 (0.092) 0.942 (0.152) 0.567 (0.168)
θ2,77 0.506 (0.081) 0.773 (0.140) 0.353 (0.120)
θ2,88 0.831 (0.116) 1.128 (0.147) 0.964 (0.254)
θ2,99 0.621 (0.105) 0.932 (0.199) 0.820 (0.319)
θ2,12 0.049 (0.052) 0.136 (0.031) 0.229 (0.139)
θ2,34 0.258 (0.063) 0.183 (0.045) 0.388 (0.080)

ψ3,11 0.248 (0.048) 0.004 (0.027) 0.005 (0.018)
ψ3,22 0.004 (0.002) 0.005 (0.002) 0.001 (0.001)
θ3,11 0.473 (0.074) 0.161 (0.032) 0.149 (0.033)
θ3,22 0.381 (0.061) 0.190 (0.032) 0.173 (0.028)
θ3,33 0.499 (0.070) 0.239 (0.046) 0.192 (0.053)
θ3,44 0.604 (0.086) 0.247 (0.050) 0.209 (0.049)
θ3,55 0.902 (0.144) 0.197 (0.067) 0.170 (0.054)
θ3,66 0.642 (0.092) 0.320 (0.154) 0.267 (0.085)
θ3,77 0.506 (0.081) 0.210 (0.088) 0.226 (0.109)
θ3,88 0.831 (0.116) 0.154 (0.063) 0.124 (0.101)
θ3,99 0.621 (0.105) 0.104 (0.047) 0.077 (0.056)
θ3,12 0.049 (0.052) 0.136 (0.031) 0.119 (0.029)
θ3,34 0.258 (0.063) 0.183 (0.045) 0.136 (0.053)
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