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1 Overview

Suppose that Yij is an observed dependent variable for individual i in cluster
j and suppose that Xij is an observed predictor for that individual. The
standard two level regression model is concerned with determining the ef-
fect the variable X has on the dependent variable Y , however in multilevel
settings we are also interested in distinguishing between purely individual
effects and a group effect, see Raudenbush & Bryk (2002) page 139-141. For
example if Yij is a student performance measurement and Xij is the student
socioeconomic status (SES) for student i in school j we would be interested
in the effect of the school average SES and also the effect of the individual
SES (individual deviation from the average). It is conceivable that the school
average SES effect could be positive while the individual SES effect could be
zero or even negative. Often a small number of students are sampled from
each school and thus the individual SES variable is available for a small num-
ber of students. The school average SES variable we would like to use in the
model is not available but it is often approximated by the average of the
sampled students SES variables

X̄.j =
1

l

l∑
i=1

Xij

where l is the number of sampled units from cluster j. The two level regres-
sion model with separate individual and group level effects is then given by
(see the group-mean centered model of Raudenbush-Bryk (2002), Table 5.11,
page 140)

Yij = β0j + βw(Xij − X̄.j) + εij (1)

β0j = µ+ βbX̄.j + εj (2)

In this note we discuss the implications of approximating the true cluster
average covariate by the sample cluster average covariate X̄.j. We describe
three alternative estimation approaches available in Mplus for models that
include cluster average covariates.

Each variable in two-level settings can be decomposed as the sum of the
cluster average plus the individual deviation from the cluster average. For
example for the dependent variable Y we have

Yij = Yjb + Yijw (3)
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where Yjb is the cluster average variable and Yijw is the individual deviation
of the cluster average. The subscripts w and b indicate the within and the
between parts in this decomposition. Similarly

Xij = Xjb +Xijw (4)

where Xjb would be the cluster average (such as cluster average SES status)
and Xijw is the individual deviation from the cluster average. The observed
variables are Yij and Xij while Yjb, Yijw, Xjb, Xijw are all unobserved. A linear
two-level regression models with separate individual and group level effects
is defined by the following equations

Yijw = βwXijw + εij (5)

Yjb = µ+ βbXjb + εj. (6)

Using equation (5) we can substitute Yijw in equation (3) to get

Yij = Yjb + βwXijw + εij (7)

It is now easy to see that equations (1) and (2) are designed to approximate
equations (7) and (6) respectively. Note that the random intercept β0j in
equations (1) and (2) has the same interpretation as cluster average Yjb in
equations (7) and (6).
The basic assumptions for this model are as follows:

(i) the variables in equation (5) are independent of the variables in
equation (6)

(ii) εij is a mean 0 residual independent of Xijw

(iii) εj is a mean 0 residual independent of Xjb

In addition to these assumptions a fourth assumption is frequently made

(iv) all of the variables in equation (5) and (6) are normally distributed.

This fourth assumption however in not really needed. This is because nor-
mality is not an assumption that is needed for mean and variance/covariance
structure estimation such as the one defined by equation (6) and (5). Central
limit theorem guarantees that the ML estimates are consistent even when the
variables are non-normal. In addition robust ML estimation (given by Mplus
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MLR estimator) produces standard error estimates that are valid even when
the variables are non-normal.

The parameters of interest in the two-level regression model are the in-
tercept µ, and the regression coefficients βw and βb as well as the resid-
ual variance parameters V ar(εij) = θw and V ar(εj) = θb. There are also
three auxiliary parameters in the model µx = E(Xij), V ar(Xijw) = ψw and
V ar(Xjb) = ψb. Given the regression model (5) and (6) the following equa-
tions hold

βw =
Cov(Yijw, Xijw)

V ar(Xjw)
(8)

βb =
Cov(Yjb, Xjb)

V ar(Xjb)
(9)

In the following sections we will describe three different ways for specify-
ing this model in Mplus and will discussed the merits of the corresponding
estimates. The main difference between the three approaches is in how they
specify the unobserved covariates Xijw and Xjb. We do not provide refer-
ences for these approaches but our experience is that all three are somewhat
frequently used. For simplicity we assume that the sample is balanced, i.e.,
that there are k clusters all of size l and the total sample size is n = kl.

2 Latent Variable Covariates

With this approach we treat Xijw and Xjb as latent (unobserved) covariates.
This is the default setting in Mplus. In this case the X and Y variables have
the within-between status, i.e., the variables X and Y can be used on both
levels in the model description. The two-level regression model is specified as

%WITHIN%
y ON x;
%BETWEEN%
y ON x;

In the within level section y and x refer to Yijw and Xijw while in the be-
tween level section y and x refer to Yjb and Xjb. This model specification
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corresponds exactly to the one given in equations (5) and (6) and maximum
likelihood estimation implemented in Mplus gives consistent estimates.

Note however that if the two-level regression model described here is a
part of a bigger model and is estimated simultaneously with other model
components that require numerical integration then this specification is not
the default. This is done so that the covariate decomposition does not in-
crease the dimensions of numerical integration, which can result in substan-
tially slower model estimation. When a model is estimated with numerical
integration, each covariate has to be specified as a within or between only
variable. It is possible to specify latent variable covariates within the numer-
ical integration estimation but this is not done automatically because it will
increases the computational time.

3 Fixed Covariates

It is possible to estimate the unobserved covariates Xijw and Xjb and to use
these observed estimates in the regression equations (5) and (6). In general
one could hope that the errors in these estimates will cancel out and that the
regression coefficients in (5) and (6) will remain consistent, however we will
see below that this is not the case. We considerer two different approaches
to covariance estimation both of which have been described in Raudenbush
& Bryk (2002).

3.1 Group-Mean Centering

Consider the group-mean centering approach described in Raudenbush-Bryk
(2002), Table 5.11, page 140. With this approach we estimate Xjb by Zjb

Zjb = X̄.j =
1

l

l∑
i=1

Xij = Xjb +
1

l

l∑
i=1

Xijw

and Xijw by Zijw

Zijw = Xij − X̄.j = Xijw −
1

l

l∑
i=1

Xijw

We then use the observed covariates Zijw and Zjb instead of the unobserved
covariates Xijw and Xjb in the regression equations (5) and (6). The ob-
served covariate can be constructed in Mplus through the define command
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or outside of Mplus, for example in Excel. The two-level regression model is
specified by first declaring Zijw and Zjb as a within-only and between-only
covariates via the variable section commands

WITHIN=zw;
BETWEEN=zb;

The model is then defined by

%WITHIN%
y ON zw;
%BETWEEN%
y ON zb;

The parameter estimates however obtained this way will be biased. This bias
is not due to the Mplus estimator, but it is due to the fact that we replace the
unobserved covariates with approximate observed quantities. This approx-
imation is the source of the bias and using alternative multilevel modeling
software such as HLM will produce exactly the same bias. The bias on the
between level is computed as follows

E(β̂b)−βb =
Cov(Yij, Zjb)

V ar(Zjb)
−βb =

Cov(Yjb, Zjb) + Cov(Yijw, Zjb)

V ar(Zjb)
−βb = (10)

βbψb + βwψw/l

ψb + ψw/l
− βb =

(βw − βb)ψw/l

ψb + ψw/l
(11)

The bias on the within level is 0 however since

E(β̂w) =
Cov(Yijw, Zijw)

V ar(Zijw)
=
Cov(Yijw, Xijw)

V ar(Xijw)
= βw

Note that the between level regression bias decreases to 0 when the clus-
ter size l increases to infinity but will not disappear if the sample size n
increases while the cluster size l is held constant. Also note that this bias is
particularly large when the ICC of the X covariate is small, a rather com-
mon situation. Essentially replacing the latent covariates with their observed
analogues results in shrinking the between level effect of that covariate. The
smaller the covariate’s ICC is the bigger the shrinking factor.
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3.2 Grand-Mean Centering

Consider the grand-mean centering approach described in Raudenbush-Bryk
(2002), Table 5.11, page 140. With this approach we estimate Xjb again by
Zjb as in the previous section and Xijw by Zij

Zij = Xij − X̄..

where

X.. =
1

k

k∑
j=1

X.j

We then use the observed covariates Zij and Zjb instead of the unobserved
covariates Xijw and Xjb in the regression equations (5) and (6). The two-level
regression model is specified by first declaring Zij and Zjb as a within-only
and between-only covariates via the variable section commands

WITHIN=z;
BETWEEN=zb;

The model is then defined by

%WITHIN%
y on z;
%BETWEEN%
y on zb;

Since assumption (i) is not valid here the parameter estimates will not satisfy
equations (8) and (9). However there is a simple algebraic transformation
between the model estimated in this section and the model estimated in the
previous section.

Yij = Yijw + Yjb = µ+ β̂wZij + β̂bZjb + εij + εj =

µ− β̂wX̄.. + β̂wZijw + (β̂b + β̂w)Zjb + εij + εj

Therefore the bias for the within level regression will be zero while the bias
for the between level regression will be

βw +
(βw − βb)ψw/l

ψb + ψw/l
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Note that even when l increases to infinity this bias will not disappear. Quan-
tities such as the ICC of the Y variable will be severely biased. Additional
problems can arise from the violation of assumption (i). For example us-
ing expected information matrix while violating assumption (i) could lead to
very poor standard error estimates.

Note also that the grand mean centering in this estimation has only a
marginal role. The centering affects only the intercept estimates but doesn’t
affect the slope estimates. This centering is similar to the grand-mean cen-
tering for regular linear regression, which also affects only the intercept esti-
mates but not the slope estimates. Thus if we estimate Xijw by the uncen-
tered Xij instead of the centered Zij we will obtain the exact same bias in
the slope estimates.
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