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CHAPTER 8 

EXAMPLES: MIXTURE 

MODELING WITH 

LONGITUDINAL DATA 
 

 

Mixture modeling refers to modeling with categorical latent variables 

that represent subpopulations where population membership is not 

known but is inferred from the data.  This is referred to as finite mixture 

modeling in statistics (McLachlan & Peel, 2000).  For an overview of 

different mixture models, see Muthén (2008).  In mixture modeling with 

longitudinal data, unobserved heterogeneity in the development of an 

outcome over time is captured by categorical and continuous latent 

variables.  The simplest longitudinal mixture model is latent class 

growth analysis (LCGA).  In LCGA, the mixture corresponds to 

different latent trajectory classes.  No variation across individuals is 

allowed within classes (Nagin, 1999; Roeder, Lynch, & Nagin, 1999; 

Kreuter & Muthén, 2008).  Another longitudinal mixture model is the 

growth mixture model (GMM; Muthén & Shedden, 1999; Muthén et al., 

2002; Muthén, 2004; Muthén & Asparouhov, 2009).  In GMM, within-

class variation of individuals is allowed for the latent trajectory classes.  

The within-class variation is represented by random effects, that is, 

continuous latent variables, as in regular growth modeling.  All of the 

growth models discussed in Chapter 6 can be generalized to mixture 

modeling.  Yet another mixture model for analyzing longitudinal data is 

latent transition analysis (LTA; Collins & Wugalter, 1992; Reboussin et 

al., 1998), also referred to as hidden Markov modeling, where latent 

class indicators are measured over time and individuals are allowed to 

transition between latent classes.  With discrete-time survival mixture 

analysis (DTSMA; Muthén & Masyn, 2005), the repeated observed 

outcomes represent event histories.  Continuous-time survival mixture 

modeling is also available (Asparouhov et al., 2006).  For mixture 

modeling with longitudinal data, observed outcome variables can be 

continuous, censored, binary, ordered categorical (ordinal), counts, or 

combinations of these variable types.    
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All longitudinal mixture models can be estimated using the following 

special features: 

 

 Single or multiple group analysis 

 Missing data 

 Complex survey data 

 Latent variable interactions and non-linear factor analysis using 

maximum likelihood 

 Random slopes 

 Individually-varying times of observations 

 Linear and non-linear parameter constraints 

 Indirect effects including specific paths 

 Maximum likelihood estimation for all outcome types 

 Bootstrap standard errors and confidence intervals 

 Wald chi-square test of parameter equalities 

 Test of equality of means across latent classes using posterior 

probability-based multiple imputations 

 

For TYPE=MIXTURE, multiple group analysis is specified by using the 

KNOWNCLASS option of the VARIABLE command.  The default is to 

estimate the model under missing data theory using all available data.  

The LISTWISE option of the DATA command can be used to delete all 

observations from the analysis that have missing values on one or more 

of the analysis variables.  Corrections to the standard errors and chi-

square test of model fit that take into account stratification, non-

independence of observations, and unequal probability of selection are 

obtained by using the TYPE=COMPLEX option of the ANALYSIS 

command in conjunction with the STRATIFICATION, CLUSTER, and 

WEIGHT options of the VARIABLE command. The 

SUBPOPULATION option is used to select observations for an analysis 

when a subpopulation (domain) is analyzed.  Latent variable interactions 

are specified by using the | symbol of the MODEL command in 

conjunction with the XWITH option of the MODEL command.  Random 

slopes are specified by using the | symbol of the MODEL command in 

conjunction with the ON option of the MODEL command.  Individually-

varying times of observations are specified by using the | symbol of the 

MODEL command in conjunction with the AT option of the MODEL 

command and the TSCORES option of the VARIABLE command.  

Linear and non-linear parameter constraints are specified by using the 

MODEL CONSTRAINT command.  Indirect effects are specified by 

using the MODEL INDIRECT command.  Maximum likelihood 
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estimation is specified by using the ESTIMATOR option of the 

ANALYSIS command.  Bootstrap standard errors are obtained by using 

the BOOTSTRAP option of the ANALYSIS command.  Bootstrap 

confidence intervals are obtained by using the BOOTSTRAP option of 

the ANALYSIS command in conjunction with the CINTERVAL option 

of the OUTPUT command.  The MODEL TEST command is used to test 

linear restrictions on the parameters in the MODEL and MODEL 

CONSTRAINT commands using the Wald chi-square test.  The 

AUXILIARY option is used to test the equality of means across latent 

classes using posterior probability-based multiple imputations. 

 

Graphical displays of observed data and analysis results can be obtained 

using the PLOT command in conjunction with a post-processing 

graphics module.  The PLOT command provides histograms, 

scatterplots, plots of individual observed and estimated values, plots of 

sample and estimated means and proportions/probabilities, and plots of 

estimated probabilities for a categorical latent variable as a function of 

its covariates.  These are available for the total sample, by group, by 

class, and adjusted for covariates.  The PLOT command includes 

a display showing a set of descriptive statistics for each variable.  The 

graphical displays can be edited and exported as a DIB, EMF, or JPEG 

file.  In addition, the data for each graphical display can be saved in an 

external file for use by another graphics program.  

 

Following is the set of GMM examples included in this chapter: 

 

 8.1:  GMM for a continuous outcome using automatic starting values 

and random starts 

 8.2:  GMM for a continuous outcome using user-specified starting 

values and random starts 

 8.3:  GMM for a censored outcome using a censored model with 

automatic starting values and random starts* 

 8.4:  GMM for a categorical outcome using automatic starting values 

and random starts* 

 8.5:  GMM for a count outcome using a zero-inflated Poisson model 

and a negative binomial model with automatic starting values and 

random starts* 

 8.6:  GMM with a categorical distal outcome using automatic 

starting values and random starts 

 8.7:  A sequential process GMM for continuous outcomes with two 

categorical latent variables 
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 8.8:  GMM with known classes (multiple group analysis)  

 

Following is the set of LCGA examples included in this chapter: 

 

 8.9:  LCGA for a binary outcome 

 8.10:  LCGA for a three-category outcome 

 8.11:  LCGA for a count outcome using a zero-inflated Poisson 

model 

 

Following is the set of hidden Markov and LTA examples included in 

this chapter: 

 

 8.12:  Hidden Markov model with four time points 

 8.13:  LTA for two time points with a binary covariate influencing 

the latent transition probabilities 

 8.14:  LTA for two time points with a continuous covariate 

influencing the latent transition probabilities 

 8.15:  Mover-stayer LTA for three time points using a probability 

parameterization 

 

Following are the discrete-time and continuous-time survival mixture 

analysis examples included in this chapter: 

 

 8.16:  Discrete-time survival mixture analysis with survival 

predicted by growth trajectory classes 

 8.17:  Continuous-time survival mixture analysis using a Cox 

regression model 

 

*  Example uses numerical integration in the estimation of the model.  

This can be computationally demanding depending on the size of the 

problem. 
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EXAMPLE 8.1: GMM FOR A CONTINUOUS OUTCOME 

USING AUTOMATIC STARTING VALUES AND RANDOM 

STARTS 
 

 
TITLE: this is an example of a GMM for a 

continuous outcome using automatic 

starting values and random starts  

DATA: FILE IS ex8.1.dat; 

VARIABLE: NAMES ARE y1–y4 x; 

 CLASSES = c (2); 

ANALYSIS: TYPE = MIXTURE; 

 STARTS = 40 8; 

MODEL:  

 %OVERALL% 

 i s | y1@0 y2@1 y3@2 y4@3; 

 i s ON x; 

 c ON x; 

OUTPUT: TECH1 TECH8; 

 

 

 
 

 

In the example above, the growth mixture model (GMM) for a 

continuous outcome shown in the picture above is estimated.  Because c 

is a categorical latent variable, the interpretation of the picture is not the 

same as for models with continuous latent variables.  The arrows from c 
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to the growth factors i and s indicate that the intercepts in the regressions 

of the growth factors on x vary across the classes of c.  This corresponds 

to the regressions of i and s on a set of dummy variables representing the 

categories of c.  The arrow from x to c represents the multinomial 

logistic regression of c on x.  GMM is discussed in Muthén and Shedden 

(1999), Muthén (2004), and Muthén and Asparouhov (2009). 

 
TITLE: this is an example of a growth mixture 

model for a continuous outcome 

 

The TITLE command is used to provide a title for the analysis.  The title 

is printed in the output just before the Summary of Analysis. 

 
DATA:  FILE IS ex8.1.dat; 

 

The DATA command is used to provide information about the data set 

to be analyzed.  The FILE option is used to specify the name of the file 

that contains the data to be analyzed, ex8.1.dat.  Because the data set is 

in free format, the default, a FORMAT statement is not required. 

 
VARIABLE: NAMES ARE y1–y4 x; 

  CLASSES = c (2); 

 

The VARIABLE command is used to provide information about the 

variables in the data set to be analyzed.  The NAMES option is used to 

assign names to the variables in the data set.  The data set in this 

example contains five variables:  y1, y2, y3, y4, and x. Note that the 

hyphen can be used as a convenience feature in order to generate a list of 

names.  The CLASSES option is used to assign names to the categorical 

latent variables in the model and to specify the number of latent classes 

in the model for each categorical latent variable.  In the example above, 

there is one categorical latent variable c that has two latent classes.    

 
ANALYSIS: TYPE = MIXTURE; 

  STARTS = 40 8; 

 

The ANALYSIS command is used to describe the technical details of the 

analysis.  The TYPE option is used to describe the type of analysis that 

is to be performed.  By selecting MIXTURE, a mixture model will be 

estimated.  
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When TYPE=MIXTURE is specified, either user-specified or automatic 

starting values are used to create randomly perturbed sets of starting 

values for all parameters in the model except variances and covariances. 

In this example, the random perturbations are based on automatic 

starting values.  Maximum likelihood optimization is done in two stages. 

In the initial stage, 20 random sets of starting values are generated.  An 

optimization is carried out for 10 iterations using each of the 20 random 

sets of starting values.  The ending values from the 4 optimizations with 

the highest loglikelihoods are used as the starting values in the final 

stage optimizations which is carried out using the default optimization 

settings for TYPE=MIXTURE.  A more thorough investigation of 

multiple solutions can be carried out using the STARTS and 

STITERATIONS options of the ANALYSIS command.  In this example, 

40 initial stage random sets of starting values are used and 8 final stage 

optimizations are carried out.   

 
MODEL:  

 %OVERALL% 

 i s | y1@0 y2@1 y3@2 y4@3; 

 i s ON x; 

 c ON x; 

 

The MODEL command is used to describe the model to be estimated.  

For mixture models, there is an overall model designated by the label 

%OVERALL%.  The overall model describes the part of the model that 

is in common for all latent classes.  The | symbol is used to name and 

define the intercept and slope growth factors in a growth model.  The 

names i and s on the left-hand side of the | symbol are the names of the 

intercept and slope growth factors, respectively.  The statement on the 

right-hand side of the | symbol specifies the outcome and the time scores 

for the growth model.  The time scores for the slope growth factor are 

fixed at 0, 1, 2, and 3 to define a linear growth model with equidistant 

time points.  The zero time score for the slope growth factor at time 

point one defines the intercept growth factor as an initial status factor.  

The coefficients of the intercept growth factor are fixed at one as part of 

the growth model parameterization.  The residual variances of the 

outcome variables are estimated and allowed to be different across time 

and the residuals are not correlated as the default.  

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variable at the four time points are fixed at zero as the 

default.  The intercepts and residual variances of the growth factors are 
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estimated as the default, and the growth factor residual covariance is 

estimated as the default because the growth factors do not influence any 

variable in the model except their own indicators.  The intercepts of the 

growth factors are not held equal across classes as the default.  The 

residual variances and residual covariance of the growth factors are held 

equal across classes as the default.   

 

The first ON statement describes the linear regressions of the intercept 

and slope growth factors on the covariate x.  The second ON statement 

describes the multinomial logistic regression of the categorical latent 

variable c on the covariate x when comparing class 1 to class 2.  The 

intercept of this regression is estimated as the default. The default 

estimator for this type of analysis is maximum likelihood with robust 

standard errors.  The ESTIMATOR option of the ANALYSIS command 

can be used to select a different estimator. 

 

Following is an alternative specification of the multinomial logistic 

regression of c on the covariate x: 

 

c#1 ON x; 

 

where c#1 refers to the first class of c.  The classes of a categorical latent 

variable are referred to by adding to the name of the categorical latent 

variable the number sign (#) followed by the number of the class.  This 

alternative specification allows individual parameters to be referred to in 

the MODEL command for the purpose of giving starting values or 

placing restrictions. 

 
OUTPUT: TECH1 TECH8; 

 

The OUTPUT command is used to request additional output not 

included as the default.  The TECH1 option is used to request the arrays 

containing parameter specifications and starting values for all free 

parameters in the model.  The TECH8 option is used to request that the 

optimization history in estimating the model be printed in the output.  

TECH8 is printed to the screen during the computations as the default.  

TECH8 screen printing is useful for determining how long the analysis 

takes.   
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EXAMPLE 8.2: GMM FOR A CONTINUOUS OUTCOME 

USING USER-SPECIFIED STARTING VALUES AND RANDOM 

STARTS 
 

 
TITLE: this is an example of a GMM for a 

continuous outcome using user-specified 

starting values and random starts  

DATA: FILE IS ex8.2.dat; 

VARIABLE: NAMES ARE y1–y4 x; 

 CLASSES = c (2); 

ANALYSIS: TYPE = MIXTURE; 

MODEL:  

 %OVERALL% 

 i s | y1@0 y2@1 y3@2 y4@3; 

 i s ON x; 

 c ON x; 

 %c#1% 

 [i*1 s*.5]; 

 %c#2% 

 [i*3 s*1]; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 8.1 is that user-

specified starting values are used instead of automatic starting values.  In 

the MODEL command, user-specified starting values are given for the 

intercepts of the intercept and slope growth factors.  Intercepts are 

referred to using brackets statements.  The asterisk (*) is used to assign a 

starting value for a parameter.  It is placed after the parameter with the 

starting value following it.  In class 1, a starting value of 1 is given for 

the intercept growth factor and a starting value of .5 is given for the 

slope growth factor.  In class 2, a starting value of 3 is given for the 

intercept growth factor and a starting value of 1 is given for the slope 

growth factor.  The default estimator for this type of analysis is 

maximum likelihood with robust standard errors.  The ESTIMATOR 

option of the ANALYSIS command can be used to select a different 

estimator. An explanation of the other commands can be found in 

Example 8.1.  
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EXAMPLE 8.3: GMM FOR A CENSORED OUTCOME USING A 

CENSORED MODEL WITH AUTOMATIC STARTING 

VALUES AND RANDOM STARTS 
 

 
TITLE: this is an example of a GMM for a censored 

outcome using a censored model with 

automatic starting values and random 

starts  

DATA: FILE IS ex8.3.dat; 

VARIABLE: NAMES ARE y1-y4 x; 

 CLASSES = c (2); 

 CENSORED = y1-y4 (b); 

ANALYSIS: TYPE = MIXTURE; 

 ALGORITHM = INTEGRATION; 

MODEL:  

 %OVERALL% 

 i s | y1@0 y2@1 y3@2 y4@3; 

 i s ON x; 

 c ON x; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 8.1 is that the 

outcome variable is a censored variable instead of a continuous variable.  

The CENSORED option is used to specify which dependent variables 

are treated as censored variables in the model and its estimation, whether 

they are censored from above or below, and whether a censored or 

censored-inflated model will be estimated.  In the example above, y1, y2, 

y3, and y4 are censored variables.  They represent the outcome variable 

measured at four equidistant occasions.  The b in parentheses following 

y1-y4 indicates that y1, y2, y3, and y4 are censored from below, that is, 

have floor effects, and that the model is a censored regression model.  

The censoring limit is determined from the data.   

 

By specifying ALGORITHM=INTEGRATION, a maximum likelihood 

estimator with robust standard errors using a numerical integration 

algorithm will be used.  Note that numerical integration becomes 

increasingly more computationally demanding as the number of factors 

and the sample size increase.  In this example, two dimensions of 

integration are used with a total of 225 integration points.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.   
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In the parameterization of the growth model shown here, the intercepts 

of the outcome variable at the four time points are fixed at zero as the 

default.  The intercepts and residual variances of the growth factors are 

estimated as the default, and the growth factor residual covariance is 

estimated as the default because the growth factors do not influence any 

variable in the model except their own indicators.  The intercepts of the 

growth factors are not held equal across classes as the default.  The 

residual variances and residual covariance of the growth factors are held 

equal across classes as the default.  An explanation of the other 

commands can be found in Example 8.1. 

 

EXAMPLE 8.4: GMM FOR A CATEGORICAL OUTCOME 

USING AUTOMATIC STARTING VALUES AND RANDOM 

STARTS 
 

 
TITLE: this is an example of a GMM for a 

categorical outcome using automatic 

starting values and random starts  

DATA: FILE IS ex8.4.dat; 

VARIABLE: NAMES ARE u1–u4 x; 

 CLASSES = c (2); 

 CATEGORICAL = u1-u4; 

ANALYSIS: TYPE = MIXTURE; 

 ALGORITHM = INTEGRATION; 

MODEL:  

 %OVERALL% 

 i s | u1@0 u2@1 u3@2 u4@3; 

 i s ON x; 

 c ON x; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 8.1 is that the 

outcome variable is a binary or ordered categorical (ordinal) variable 

instead of a continuous variable.  The CATEGORICAL option is used to 

specify which dependent variables are treated as binary or ordered 

categorical (ordinal) variables in the model and its estimation.  In the 

example above, u1, u2, u3, and u4 are binary or ordered categorical 

variables.  They represent the outcome variable measured at four 

equidistant occasions.   

 

By specifying ALGORITHM=INTEGRATION, a maximum likelihood 

estimator with robust standard errors using a numerical integration 
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algorithm will be used.  Note that numerical integration becomes 

increasingly more computationally demanding as the number of factors 

and the sample size increase.  In this example, two dimensions of 

integration are used with a total of 225 integration points.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  

 

In the parameterization of the growth model shown here, the thresholds 

of the outcome variable at the four time points are held equal as the 

default.  The intercept of the intercept growth factor is fixed at zero in 

the last class and is free to be estimated in the other classes.  The 

intercept of the slope growth factor and the residual variances of the 

intercept and slope growth factors are estimated as the default, and the 

growth factor residual covariance is estimated as the default because the 

growth factors do not influence any variable in the model except their 

own indicators.  The intercepts of the growth factors are not held equal 

across classes as the default.  The residual variances and residual 

covariance of the growth factors are held equal across classes as the 

default.  An explanation of the other commands can be found in 

Example 8.1. 

 

EXAMPLE 8.5: GMM FOR A COUNT OUTCOME USING A 

ZERO-INFLATED POISSON MODEL AND A NEGATIVE 

BINOMIAL MODEL WITH AUTOMATIC STARTING VALUES 

AND RANDOM STARTS 
 

 
TITLE: this is an example of a GMM for a count 

outcome using a zero-inflated Poisson 

model with automatic starting values and 

random starts  

DATA: FILE IS ex8.5a.dat; 

VARIABLE: NAMES ARE u1–u8 x; 

 CLASSES = c (2); 

 COUNT ARE u1-u8 (i); 

ANALYSIS: TYPE = MIXTURE; 

 STARTS = 40 8; 

 STITERATIONS = 20; 

 ALGORITHM = INTEGRATION; 
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MODEL:  

 %OVERALL% 

 i s q | u1@0 u2@.1 u3@.2 u4@.3 u5@.4 u6@.5  

 u7@.6 u8@.7; 

 ii si qi | u1#1@0 u2#1@.1 u3#1@.2 u4#1@.3 

u5#1@.4 u6#1@.5 u7#1@.6 u8#1@.7; 

 s-qi@0; 

 i s ON x; 

 c ON x; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 8.1 is that the 

outcome variable is a count variable instead of a continuous variable.  In 

addition, the outcome is measured at eight occasions instead of four and 

a quadratic rather than a linear growth model is estimated.  The COUNT 

option is used to specify which dependent variables are treated as count 

variables in the model and its estimation and the type of model that will 

be estimated.  In the first part of this example a zero-inflated Poisson 

model is estimated.  In the example above, u1, u2, u3, u4, u5, u6, u7, and 

u8 are count variables.  They represent the outcome variable measured at 

eight equidistant occasions.  The i in parentheses following u1-u8 

indicates that a zero-inflated Poisson model will be estimated.   

 

A more thorough investigation of multiple solutions can be carried out 

using the STARTS and STITERATIONS options of the ANALYSIS 

command.  In this example, 40 initial stage random sets of starting 

values are used and 8 final stage optimizations are carried out.  In the 

initial stage analyses, 20 iterations are used instead of the default of 10 

iterations.  By specifying ALGORITHM=INTEGRATION, a maximum 

likelihood estimator with robust standard errors using a numerical 

integration algorithm will be used.  Note that numerical integration 

becomes increasingly more computationally demanding as the number of 

factors and the sample size increase.  In this example, one dimension of 

integration is used with 15 integration points.   The ESTIMATOR option 

of the ANALYSIS command can be used to select a different estimator.   

 

With a zero-inflated Poisson model, two growth models are estimated.  

The first | statement describes the growth model for the count part of the 

outcome for individuals who are able to assume values of zero and 

above. The second | statement describes the growth model for the 

inflation part of the outcome, the probability of being unable to assume 

any value except zero.  The binary latent inflation variable is referred to 



CHAPTER 8 

 234 

by adding to the name of the count variable the number sign (#) followed 

by the number 1.   

 

In the parameterization of the growth model for the count part of the 

outcome, the intercepts of the outcome variable at the eight time points 

are fixed at zero as the default.  The intercepts and residual variances of 

the growth factors are estimated as the default, and the growth factor 

residual covariances are estimated as the default because the growth 

factors do not influence any variable in the model except their own 

indicators.  The intercepts of the growth factors are not held equal across 

classes as the default.  The residual variances and residual covariances 

of the growth factors are held equal across classes as the default.  In this 

example, the variances of the slope growth factors s and q are fixed at 

zero.  This implies that the covariances between i, s, and q are fixed at 

zero.  Only the variance of the intercept growth factor i is estimated. 

 

In the parameterization of the growth model for the inflation part of the 

outcome, the intercepts of the outcome variable at the eight time points 

are held equal as the default.  The intercept of the intercept growth factor 

is fixed at zero in all classes as the default.  The intercept of the slope 

growth factor and the residual variances of the intercept and slope 

growth factors are estimated as the default, and the growth factor 

residual covariances are estimated as the default because the growth 

factors do not influence any variable in the model except their own 

indicators.  The intercept of the slope growth factor, the residual 

variances of the growth factors, and residual covariance of the growth 

factors are held equal across classes as the default.  These defaults can 

be overridden, but freeing too many parameters in the inflation part of 

the model can lead to convergence problems.  In this example, the 

variances of the intercept and slope growth factors are fixed at zero.  

This implies that the covariances between ii, si, and qi are fixed at zero.  

An explanation of the other commands can be found in Example 8.1. 

 
TITLE: this is an example of a GMM for a count  

 outcome using a negative binomial model 

with automatic starting values and random 

starts  

DATA: FILE IS ex8.5b.dat; 

VARIABLE: NAMES ARE u1-u8 x; 

 CLASSES = c(2); 

  COUNT = u1-u8(nb); 

ANALYSIS: TYPE = MIXTURE; 

 ALGORITHM = INTEGRATION; 
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MODEL: 

 %OVERALL% 

 i s q | u1@0 u2@.1 u3@.2 u4@.3 u5@.4 u6@.5 

u7@.6 u8@.7; 

 s-q@0;  

 i s ON x; 

 c ON x; 

OUTPUT: TECH1 TECH8; 

 

The difference between this part of the example and the first part is that 

a growth mixture model (GMM) for a count outcome using a negative 

binomial model is estimated instead of a zero-inflated Poisson model.    

The negative binomial model estimates a dispersion parameter for each 

of the outcomes (Long, 1997; Hilbe, 2011). 

 

The COUNT option is used to specify which dependent variables are 

treated as count variables in the model and its estimation and which type 

of model is estimated.  The nb in parentheses following u1-u8 indicates 

that a negative binomial model will be estimated.  The dispersion 

parameters for each of the outcomes are held equal across classes as the 

default.  The dispersion parameters can be referred to using the names of 

the count variables.   An explanation of the other commands can be 

found in the first part of this example and in Example 8.1. 

 

EXAMPLE 8.6: GMM WITH A CATEGORICAL DISTAL 

OUTCOME USING AUTOMATIC STARTING VALUES AND 

RANDOM STARTS 
 

 
TITLE: this is an example of a GMM with a 

categorical distal outcome using automatic 

starting values and random starts 

DATA: FILE IS ex8.6.dat; 

VARIABLE: NAMES ARE y1–y4 u x; 

 CLASSES = c(2); 

 CATEGORICAL = u; 

ANALYSIS: TYPE = MIXTURE; 

MODEL:  

 %OVERALL% 

 i s | y1@0 y2@1 y3@2 y4@3; 

 i s ON x; 

 c ON x; 

OUTPUT: TECH1 TECH8; 
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The difference between this example and Example 8.1 is that a binary or 

ordered categorical (ordinal) distal outcome has been added to the model 

as shown in the picture above.  The distal outcome u is regressed on the 

categorical latent variable c using logistic regression.  This is 

represented as the thresholds of u varying across classes.   

 

The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 

in the model and its estimation.  In the example above, u is a binary or 

ordered categorical variable.  The program determines the number of 

categories for each indicator.  The default is that the thresholds of u are 

estimated and vary across the latent classes.  Because automatic starting 

values are used, it is not necessary to include these class-specific 

statements in the model command.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Example 8.1. 
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EXAMPLE 8.7: A SEQUENTIAL PROCESS GMM FOR 

CONTINUOUS OUTCOMES WITH TWO CATEGORICAL 

LATENT VARIABLES 
 

 
TITLE:      this is an example of a sequential   

            process GMM for continuous outcomes with  

            two categorical latent variables 

DATA:       FILE IS ex8.7.dat; 

VARIABLE:   NAMES ARE y1-y8; 

            CLASSES = c1 (3) c2 (2); 

ANALYSIS:   TYPE = MIXTURE; 

MODEL: 

            %OVERALL% 

            i1 s1 | y1@0 y2@1 y3@2 y4@3; 

            i2 s2 | y5@0 y6@1 y7@2 y8@3; 

            c2 ON c1;  

MODEL c1: 

            %c1#1% 

            [i1 s1]; 

 

            %c1#2% 

            [i1*1 s1]; 

 

            %c1#3% 

            [i1*2 s1]; 

MODEL c2: 

            %c2#1% 

            [i2 s2]; 

 

            %c2#2% 

            [i2*-1 s2]; 

OUTPUT: TECH1 TECH8; 
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In this example, the sequential process growth mixture model for 

continuous outcomes shown in the picture above is estimated.  The latent 

classes of the second process are related to the latent classes of the first 

process.  This is a type of latent transition analysis.  Latent transition 

analysis is shown in Examples 8.12, 8.13, and 8.14. 

 

The | statements in the overall model are used to name and define the 

intercept and slope growth factors in the growth models.  In the first | 

statement, the names i1 and s1 on the left-hand side of the | symbol are 

the names of the intercept and slope growth factors, respectively. In the 

second | statement, the names i2 and s2 on the left-hand side of the | 

symbol are the names of the intercept and slope growth factors, 

respectively.   In both | statements, the values on the right-hand side of 

the | symbol are the time scores for the slope growth factor.  For both 

growth processes, the time scores of the slope growth factors are fixed at 

0, 1, 2, and 3 to define linear growth models with equidistant time 

points.  The zero time scores for the slope growth factors at time point 

one define the intercept growth factors as initial status factors.  The 

coefficients of the intercept growth factors i1 and i2 are fixed at one as 

part of the growth model parameterization.  In the parameterization of 

the growth model shown here, the means of the outcome variables at the 

four time points are fixed at zero as the default.  The intercept and slope 

growth factor means are estimated as the default.  The variances of the 

growth factors are also estimated as the default.  The growth factors are 
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correlated as the default because they are independent (exogenous) 

variables.  The means of the growth factors are not held equal across 

classes as the default.  The variances and covariances of the growth 

factors are held equal across classes as the default.   

 

In the overall model, the ON statement describes the probabilities of 

transitioning from a class of the categorical latent variable c1 to a class 

of the categorical latent variable c2.  The ON statement describes the 

multinomial logistic regression of c2 on c1 when comparing class 1 of c2 

to class 2 of c2.  In this multinomial logistic regression, coefficients 

corresponding to the last class of each of the categorical latent variables 

are fixed at zero.  The parameterization of models with more than one 

categorical latent variable is discussed in Chapter 14.  Because c1 has 

three classes and c2 has two classes, two regression coefficients are 

estimated.  The means of c1 and the intercepts of c2 are estimated as the 

default.  

 

When there are multiple categorical latent variables, each one has its 

own MODEL command.  The MODEL command for each latent 

variable is specified by MODEL followed by the name of the latent 

variable.  For each categorical latent variable, the part of the model that 

differs for each class is specified by a label that consists of the 

categorical latent variable followed by the number sign followed by the 

class number.  In the example above, the label %c1#1% refers to the part 

of the model for class one of the categorical latent variable c1 that 

differs from the overall model.  The label %c2#1% refers to the part of 

the model for class one of the categorical latent variable c2 that differs 

from the overall model.  The class-specific part of the model for each 

categorical latent variable specifies that the means of the intercept and 

slope growth factors are free to be estimated for each class.  The default 

estimator for this type of analysis is maximum likelihood with robust 

standard errors.  The ESTIMATOR option of the ANALYSIS command 

can be used to select a different estimator.  An explanation of the other 

commands can be found in Example 8.1. 

 

Following is an alternative specification of the multinomial logistic 

regression of c2 on c1: 

 

c2#1 ON c1#1 c1#2; 
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where c2#1 refers to the first class of c2, c1#1 refers to the first class of 

c1, and c1#2 refers to the second class of c1.  The classes of a 

categorical latent variable are referred to by adding to the name of the 

categorical latent variable the number sign (#) followed by the number 

of the class.  This alternative specification allows individual parameters 

to be referred to in the MODEL command for the purpose of giving 

starting values or placing restrictions. 

 

EXAMPLE 8.8: GMM WITH KNOWN CLASSES (MULTIPLE 

GROUP ANALYSIS) 
 

 
TITLE: this is an example of GMM with known 

classes (multiple group analysis) 

DATA: FILE IS ex8.8.dat; 

VARIABLE: NAMES ARE g y1-y4 x; 

 USEVARIABLES ARE y1-y4 x; 

 CLASSES = cg (2) c (2); 

 KNOWNCLASS = cg (g = 0 g = 1); 

ANALYSIS: TYPE = MIXTURE; 

MODEL: 

 %OVERALL% 

 i s | y1@0 y2@1 y3@2 y4@3; 

 i s ON x; 

 c ON cg x; 

 %cg#1.c#1% 

 [i*2 s*1]; 

 %cg#1.c#2% 

 [i*0 s*0]; 

 %cg#2.c#1% 

 [i*3 s*1.5]; 

 %cg#2.c#2% 

 [i*1 s*.5]; 

OUTPUT: TECH1 TECH8; 
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The difference between this example and Example 8.1 is that this 

analysis includes a categorical latent variable for which class 

membership is known resulting in a multiple group growth mixture 

model.  The CLASSES option is used to assign names to the categorical 

latent variables in the model and to specify the number of latent classes 

in the model for each categorical latent variable.  In the example above, 

there are two categorical latent variables cg and c.  Both categorical 

latent variables have two latent classes. The KNOWNCLASS option is 

used for multiple group analysis with TYPE=MIXTURE to identify the 

categorical latent variable for which latent class membership is known 

and is equal to observed groups in the sample.  The KNOWNCLASS 

option identifies cg as the categorical latent variable for which class 

membership is known.   The information in parentheses following the 

categorical latent variable name defines the known classes using an 

observed variable.  In this example, the observed variable g is used to 

define the known classes.  The first class consists of individuals with the 

value 0 on the variable g.  The second class consists of individuals with 

the value 1 on the variable g.   

 

In the overall model, the second ON statement describes the multinomial 

logistic regression of the categorical latent variable c on the known class 

variable cg and the covariate x.  This allows the class probabilities to 

vary across the observed groups in the sample.  In the four class-specific 
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parts of the model, starting values are given for the growth factor 

intercepts.  The four classes correspond to a combination of the classes 

of cg and c.  They are referred to by combining the class labels using a 

period (.).  For example, the combination of class 1 of cg and class 1 of c 

is referred to as cg#1.c#1.  The default estimator for this type of analysis 

is maximum likelihood with robust standard errors.  The ESTIMATOR 

option of the ANALYSIS command can be used to select a different 

estimator.  An explanation of the other commands can be found in 

Example 8.1. 

 

EXAMPLE 8.9: LCGA FOR A BINARY OUTCOME 
 

 
TITLE:      this is an example of a LCGA for a binary  

            outcome 

DATA:       FILE IS ex8.9.dat;  

VARIABLE:   NAMES ARE u1-u4; 

            CLASSES = c (2); 

            CATEGORICAL = u1-u4; 

ANALYSIS:   TYPE = MIXTURE; 

MODEL: 

            %OVERALL% 

            i s | u1@0 u2@1 u3@2 u4@3; 

OUTPUT:     TECH1 TECH8; 
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The difference between this example and Example 8.4 is that a LCGA 

for a binary outcome as shown in the picture above is estimated instead 

of a GMM.  The difference between these two models is that GMM 

allows within class variability and LCGA does not (Kreuter & Muthén, 

2008; Muthén, 2004; Muthén & Asparouhov, 2009). 

 

When TYPE=MIXTURE without ALGORITHM=INTEGRATION is 

selected, a LCGA is carried out.  In the parameterization of the growth 

model shown here, the thresholds of the outcome variable at the four 

time points are held equal as the default.  The intercept growth factor 

mean is fixed at zero in the last class and estimated in the other classes.  

The slope growth factor mean is estimated as the default in all classes.  

The variances of the growth factors are fixed at zero as the default 

without ALGORITHM=INTEGRATION.  Because of this, the growth 

factor covariance is fixed at zero.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator. An explanation of the other commands can be 

found in Examples 8.1 and 8.4. 

 

EXAMPLE 8.10: LCGA FOR A THREE-CATEGORY 

OUTCOME 
 

 
TITLE: this is an example of a LCGA for a three-

category outcome 

DATA: FILE IS ex8.10.dat; 

VARIABLE: NAMES ARE u1-u4; 

 CLASSES = c(2); 

 CATEGORICAL = u1-u4; 

ANALYSIS: TYPE = MIXTURE; 

MODEL:  

 %OVERALL% 

 i s | u1@0 u2@1 u3@2 u4@3; 

! [u1$1-u4$1*-.5] (1); 

! [u1$2-u4$2* .5] (2); 

! %c#1% 

!  [i*1 s*0]; 

! %c#2%  

! [i@0 s*0]; 

OUTPUT: TECH1 TECH8; 
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The difference between this example and Example 8.9 is that the 

outcome variable is an ordered categorical (ordinal) variable instead of a 

binary variable.  Note that the statements that are commented out are not 

necessary.  This results in an input identical to Example 8.9.  The 

statements are shown to illustrate how starting values can be given for 

the thresholds and growth factor means in the model if this is needed.  

Because the outcome is a three-category variable, it has two thresholds.  

An explanation of the other commands can be found in Examples 8.1, 

8.4 and 8.9. 

 

EXAMPLE 8.11: LCGA FOR A COUNT OUTCOME USING A 

ZERO-INFLATED POISSON MODEL 
 

 
TITLE: this is an example of a LCGA for a count  

 outcome using a zero-inflated Poisson  

 model 

DATA: FILE IS ex8.11.dat; 

VARIABLE: NAMES ARE u1-u4; 

 COUNT = u1-u4 (i); 

 CLASSES = c (2); 

ANALYSIS: TYPE = MIXTURE; 

MODEL: 

 %OVERALL% 

 i s | u1@0 u2@1 u3@2 u4@3; 

 ii si | u1#1@0 u2#1@1 u3#1@2 u4#1@3; 

OUTPUT:  TECH1 TECH8; 

 

The difference between this example and Example 8.9 is that the 

outcome variable is a count variable instead of a continuous variable. 

The COUNT option is used to specify which dependent variables are 

treated as count variables in the model and its estimation and whether a 

Poisson or zero-inflated Poisson model will be estimated.  In the 

example above, u1, u2, u3, and u4 are count variables and a zero-inflated 

Poisson model is used.  The count variables represent the outcome 

measured at four equidistant occasions.   

 

With a zero-inflated Poisson model, two growth models are estimated.  

The first | statement describes the growth model for the count part of the 

outcome for individuals who are able to assume values of zero and 

above. The second | statement describes the growth model for the 

inflation part of the outcome, the probability of being unable to assume 

any value except zero.  The binary latent inflation variable is referred to 
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by adding to the name of the count variable the number sign (#) followed 

by the number 1.   

 

In the parameterization of the growth model for the count part of the 

outcome, the intercepts of the outcome variable at the four time points 

are fixed at zero as the default.  The means of the growth factors are 

estimated as the default.   The variances of the growth factors are fixed 

at zero.  Because of this, the growth factor covariance is fixed at zero as 

the default.  The means of the growth factors are not held equal across 

classes as the default.   

 

In the parameterization of the growth model for the inflation part of the 

outcome, the intercepts of the outcome variable at the four time points 

are held equal as the default.  The mean of the intercept growth factor is 

fixed at zero in all classes as the default.  The mean of the slope growth 

factor is estimated and held equal across classes as the default.  These 

defaults can be overridden, but freeing too many parameters in the 

inflation part of the model can lead to convergence problems.  The 

variances of the growth factors are fixed at zero.  Because of this, the 

growth factor covariance is fixed at zero.  The default estimator for this 

type of analysis is maximum likelihood with robust standard errors.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Examples 8.1 and 8.9. 

 

EXAMPLE 8.12: HIDDEN MARKOV MODEL WITH FOUR 

TIME POINTS 
 

 
TITLE: this is an example of a hidden Markov  

 model with four time points 

DATA: FILE IS ex8.12.dat; 

VARIABLE: NAMES ARE u1-u4; 

 CATEGORICAL = u1-u4; 

 CLASSES = c1(2) c2(2) c3(2) c4(2); 

ANALYSIS: TYPE = MIXTURE; 

MODEL: 

 %OVERALL% 

 [c2#1-c4#1]  (1); 

 c4 ON c3 (2);  

 c3 ON c2 (2); 

 c2 ON c1 (2); 
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MODEL c1: 

 %c1#1% 

 [u1$1] (3); 

 %c1#2% 

 [u1$1] (4); 

MODEL c2: 

 %c2#1% 

 [u2$1] (3); 

 %c2#2% 

 [u2$1] (4); 

MODEL c3: 

 %c3#1% 

 [u3$1] (3); 

 %c3#2% 

 [u3$1] (4); 

MODEL c4: 

 %c4#1% 

 [u4$1] (3); 

 %c4#2% 

 [u4$1] (4); 

OUTPUT: TECH1 TECH8; 

 

 

 
 

 

In this example, the hidden Markov model for a single binary outcome 

measured at four time points shown in the picture above is estimated.  

Although each categorical latent variable has only one latent class 

indicator, this model allows the estimation of measurement error by 

allowing latent class membership and observed response to disagree. 

This is a first-order Markov process where the transition matrices are 

specified to be equal over time (Langeheine & van de Pol, 2002).  The 

parameterization of this model is described in Chapter 14. 

 

The CLASSES option is used to assign names to the categorical latent 

variables in the model and to specify the number of latent classes in the 
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model for each categorical latent variable.  In the example above, there 

are four categorical latent variables c1, c2, c3, and c4.  All of the 

categorical latent variables have two latent classes.  In the overall model, 

the transition matrices are held equal over time.  This is done by placing 

(1) after the bracket statement for the intercepts of c2, c3, and c4 and by 

placing (2) after each of the ON statements that represent the first-order 

Markov relationships.  When a model has more than one categorical 

latent variable, MODEL followed by a label is used to describe the 

analysis model for each categorical latent variable.  Labels are defined 

by using the names of the categorical latent variables.  The class-specific 

equalities (3) and (4) represent measurement invariance across time.  An 

explanation of the other commands can be found in Example 8.1. 

 

EXAMPLE 8.13: LTA FOR TWO TIME POINTS WITH A 

BINARY COVARIATE INFLUENCING THE LATENT 

TRANSITION PROBABILITIES 
 

 
TITLE:  this is an example of a LTA for two time 

points with a binary covariate influencing 

the latent transition probabilities 

DATA: FILE = ex8.13.dat; 

VARIABLE: NAMES = u11-u15 u21-u25 g; 

 CATEGORICAL = u11-u15 u21-u25; 

 CLASSES = cg (2) c1 (3) c2 (3); 

 KNOWNCLASS = cg (g = 0 g = 1); 

ANALYSIS: TYPE = MIXTURE; 

MODEL: %OVERALL% 

 c1 c2 ON cg; 

MODEL cg: %cg#1% 

 c2 ON c1; 

 %cg#2%  

 c2 ON c1; 

MODEL c1: %c1#1%  

 [u11$1] (1);  

 [u12$1] (2); 

 [u13$1] (3); 

 [u14$1] (4); 

 [u15$1] (5); 

 %c1#2% 

 [u11$1] (6);  

 [u12$1] (7); 

 [u13$1] (8); 

 [u14$1] (9); 

 [u15$1] (10); 
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 %c1#3% 

 [u11$1] (11);  

 [u12$1] (12); 

 [u13$1] (13); 

 [u14$1] (14); 

 [u15$1] (15); 

MODEL c2: 

 %c2#1%  

 [u21$1] (1);  

 [u22$1] (2); 

 [u23$1] (3); 

 [u24$1] (4); 

 [u25$1] (5); 

 %c2#2% 

 [u21$1] (6);  

 [u22$1] (7); 

 [u23$1] (8); 

 [u24$1] (9); 

 [u25$1] (10); 

 %c2#3% 

 [u21$1] (11);  

 [u22$1] (12); 

 [u23$1] (13); 

 [u24$1] (14); 

 [u25$1] (15); 

OUTPUT: TECH1 TECH8 TECH15; 
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In this example, the latent transition analysis (LTA; Mooijaart, 1998; 

Reboussin et al., 1998; Kaplan, 2007; Nylund, 2007; Collins & Lanza, 

2010) model for two time points with a binary covariate influencing the 

latent transition probabilities shown in the picture above is estimated.   

The same five latent class indicators are measured at two time points.  

The model assumes measurement invariance across time for the five 

latent class indicators.  The parameterization of this model is described 

in Chapter 14. 

 

The KNOWNCLASS option is used for multiple group analysis with 

TYPE=MIXTURE to identify the categorical latent variable for which 

latent class membership is known and is equal to observed groups in the 

sample.  The KNOWNCLASS option identifies cg as the categorical 

latent variable for which class membership is known.   The information 

in parentheses following the categorical latent variable name defines the 

known classes using an observed variable.  In this example, the observed 

variable g is used to define the known classes.  The first class consists of 

individuals with the value 0 on the variable g.  The second class consists 

of individuals with the value 1 on the variable g.   

 

In the overall model, the first ON statement describes the multinomial 

logistic regression of the categorical latent variables c1 and c2 on the 

known class variable cg.  This allows the class probabilities to vary 

across the observed groups in the sample. 

 

When there are multiple categorical latent variables, each one has its 

own MODEL command.  The MODEL command for each categorical 

latent variable is specified by MODEL followed by the name of the 

categorical latent variable.  In this example, MODEL cg describes the 

group-specific parameters of the regression of c2 on c1.  This allows the 

binary covariate to influence the latent transition probabilities.  MODEL 

c1 describes the class-specific measurement parameters for variable c1 

and MODEL c2 describes the class-specific measurement parameters for 

variable c2.  The model for each categorical latent variable that differs 

for each class of that variable is specified by a label that consists of the 

categorical latent variable name followed by the number sign followed 

by the class number.  For example, in the example above, the label 

%c1#1% refers to class 1 of categorical latent variable c1.   

 

In this example, the thresholds of the latent class indicators for a given 

class are held equal for the two categorical latent variables.  The (1-5), 
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(6-10), and (11-15) following the bracket statements containing the 

thresholds use the list function to assign equality labels to these 

parameters.  For example, the label 1 is assigned to the thresholds u11$1 

and u21$1 which holds these thresholds equal over time.   

 

The TECH15 option is used to obtain the transition probabilities for 

each of the two known classes.  The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 

estimator option of the ANALYSIS command can be used to select a 

different estimator.  An explanation of the other commands can be found 

in Example 8.1. 

 

Following is the second part of the example that shows an alternative 

parameterization.  The PARAMETERIZATION option is used to select 

a probability parameterization rather than a logit parameterization.  This 

allows latent transition probabilities to be expressed directly in terms of 

probability parameters instead of via logit parameters.  In the overall 

model, only the c1 on cg regression is specified, not the c2 on cg 

regression.  Other specifications are the same as in the first part of the 

example.  

 
ANALYSIS: TYPE = MIXTURE; 

 PARAMETERIZATION = PROBABILITY; 

MODEL: %OVERALL% 

 c1 ON cg; 

MODEL cg: %cg#1% 

 c2 ON c1; 

 %cg#2%  

 c2 ON c1; 

 

EXAMPLE 8.14:  LTA FOR TWO TIME POINTS WITH A 

CONTINUOUS COVARIATE INFLUENCING THE LATENT 

TRANSITION PROBABILITIES  
 

 
TITLE: this is an example of a LTA for two time 

points with a continuous covariate 

influencing the latent transition 

probabilities  

DATA: FILE = ex8.14.dat; 

VARIABLE: NAMES = u11-u15 u21-u25 x; 

 CATEGORICAL = u11-u15 u21-u25; 

 CLASSES = c1 (3) c2 (3); 
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ANALYSIS: TYPE = MIXTURE;  

 PROCESSORS = 8;  

MODEL: %OVERALL% 

 c1 ON x; 

 c2 ON c1; 

MODEL c1: %c1#1%  

 c2 ON x;  

 [u11$1] (1);  

 [u12$1] (2); 

 [u13$1] (3); 

 [u14$1] (4); 

 [u15$1] (5); 

 %c1#2% 

 c2 ON x; 

 [u11$1] (6);  

 [u12$1] (7); 

 [u13$1] (8); 

 [u14$1] (9); 

 [u15$1] (10); 

 %c1#3% 

 c2 ON x; 

 [u11$1] (11);  

 [u12$1] (12); 

 [u13$1] (13); 

 [u14$1] (14); 

 [u15$1] (15); 

MODEL c2: %c2#1%  

 [u21$1] (1);  

 [u22$1] (2); 

 [u23$1] (3); 

 [u24$1] (4); 

 [u25$1] (5); 

 %c2#2% 

 [u21$1] (6);  

 [u22$1] (7); 

 [u23$1] (8); 

 [u24$1] (9); 

 [u25$1] (10); 

 %c2#3% 

 [u21$1] (11);  

 [u22$1] (12); 

 [u23$1] (13); 

 [u24$1] (14); 

 [u25$1] (15); 

OUTPUT: TECH1 TECH8; 
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In this example, the latent transition analysis (LTA; Reboussin et al., 

1998; Kaplan, 2007; Nylund, 2007; Collins & Lanza, 2010) model for 

two time points with a continuous covariate influencing the latent 

transition probabilities shown in the picture above is estimated.   The 

same five latent class indicators are measured at two time points.  The 

model assumes measurement invariance across time for the five latent 

class indicators.  The parameterization of this model is described in 

Chapter 14. 

 

In the overall model, the first ON statement describes the multinomial 

logistic regression of the categorical latent variable c1 on the continuous 

covariate x.  The second ON statement describes the multinomial logistic 

regression of c2 on c1.  The multinomial logistic regression of c2 on the 

continuous covariate x is specified in the class-specific parts of MODEL 

c1.  This follows parameterization 2 discussed in Muthén and 

Asparouhov (2011).  The class-specific regressions of c2 on x allow the 

continuous covariate x to influence the latent transition probabilities.  

The latent transition probabilities for different values of the covariates 

can be computed by choosing LTA calculator from the Mplus menu of 

the Mplus Editor. 

 

When there are multiple categorical latent variables, each one has its 

own MODEL command.  The MODEL command for each categorical 

latent variable is specified by MODEL followed by the name of the 

categorical latent variable.  MODEL c1 describes the class-specific 
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multinomial logistic regression of c2 on x and the class-specific 

measurement parameters for variable c1.  MODEL c2 describes the 

class-specific measurement parameters for variable c2.  The model for 

each categorical latent variable that differs for each class of that variable 

is specified by a label that consists of the categorical latent variable 

name followed by the number sign followed by the class number.  For 

example, in the example above, the label %c1#1% refers to class 1 of 

categorical latent variable c1.   

 

In this example, the thresholds of the latent class indicators for a given 

class are held equal for the two categorical latent variables.  The (1-5), 

(6-10), and (11-15) following the bracket statements containing the 

thresholds use the list function to assign equality labels to these 

parameters.  For example, the label 1 is assigned to the thresholds u11$1 

and u21$1 which holds these thresholds equal over time.  The default 

estimator for this type of analysis is maximum likelihood with robust 

standard errors.  The estimator option of the ANALYSIS command can 

be used to select a different estimator.  An explanation of the other 

commands can be found in Example 8.1. 

 

EXAMPLE 8.15:  MOVER-STAYER LTA FOR THREE TIME 

POINTS USING A PROBABILITY PARAMETERIZATION 
 

 
TITLE: this is an example of a mover-stayer LTA 

for three time points using a probability 

parameterization 

DATA: FILE = ex8.15.dat; 

VARIABLE: NAMES = u11-u15 u21-u25 u31-u35; 

 CATEGORICAL = u11-u15 u21-u25 u31-u35; 

 CLASSES = c(2) c1(3) c2(3) c3(3); 

ANALYSIS: TYPE = MIXTURE; 

 PARAMETERIZATION = PROBABILITY; 

 STARTS = 100 20; 

 PROCESSORS = 8; 

MODEL: %OVERALL% 

 c1 ON c; 

MODEL c: %c#1% !mover class 

 c2 ON c1; 

 c3 ON c2; 

 %c#2% ! stayer class 

 c2#1 ON c1#1@1; c2#2 ON c1#1@0; 

 c2#1 ON c1#2@0; c2#2 ON c1#2@1; 

 c2#1 ON c1#3@0; c2#2 ON c1#3@0; 
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 c3#1 ON c2#1@1; c3#2 ON c2#1@0; 

 c3#1 ON c2#2@0; c3#2 ON c2#2@1; 

 c3#1 ON c2#3@0; c3#2 ON c2#3@0; 

MODEL c1: %c1#1%  

 [u11$1] (1); 

 [u12$1] (2); 

 [u13$1] (3); 

 [u14$1] (4); 

 [u15$1] (5); 

 %c1#2% 

 [u11$1] (6);  

 [u12$1] (7); 

 [u13$1] (8); 

 [u14$1] (9); 

 [u15$1] (10); 

 %c1#3% 

 [u11$1] (11); 

  [u12$1] (12); 

 [u13$1] (13); 

 [u14$1] (14); 

 [u15$1] (15); 

MODEL c2:   

 %c2#1%  

 [u21$1] (1); 

 [u22$1] (2); 

 [u23$1] (3); 

 [u24$1] (4); 

 [u25$1] (5); 

 %c2#2% 

 [u21$1] (6);  

 [u22$1] (7); 

 [u23$1] (8); 

 [u24$1] (9); 

 [u25$1] (10); 

 %c2#3% 

 [u21$1] (11); 

 [u22$1] (12); 

 [u23$1] (13); 

  [u24$1] (14); 

 [u25$1] (15); 

MODEL c3: 

 %c3#1%  

 [u31$1] (1); 

 [u32$1] (2); 

 [u33$1] (3); 

 [u34$1] (4); 

 [u35$1] (5); 

 %c3#2% 

 [u31$1] (6);  

 [u32$1] (7); 

 [u33$1] (8); 
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 [u34$1] (9); 

  [u35$1] (10); 

 %c3#3% 

 [u31$1] (11); 

 [u32$1] (12); 

 [u33$1] (13); 

 [u34$1] (14); 

 [u35$1] (15); 

OUTPUT: TECH1 TECH8 TECH15; 

 

 

 

 
 

 

In this example, the mover-stayer (Langeheine & van de Pol, 2002) 

latent transition analysis (LTA) for three time points using a probability 

parameterization shown in the picture above is estimated.  The same five 

latent class indicators are measured at three time points.  The model 

assumes measurement invariance across time for the five latent class 

indicators.  The parameterization of this model is described in Chapter 

14. 

  

The PARAMETERIZATION option is used to select a probability 

parameterization rather than a logit parameterization.  This allows latent 

transition probabilities to be expressed directly in terms of probability 

parameters instead of via logit parameters.  The alternative logit 
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parameterization of mover-stayer LTA is described in the document 

LTA With Movers-Stayers (see FAQ, www.statmodel.com). 

 

In the overall model, the ON statement describes the multinomial 

logistic regression of the categorical latent variable c1 on the mover-

stayer categorical latent variable c.  The multinomial logistic regressions 

of c2 on c1 and c3 on c2 are specified in the class-specific parts of 

MODEL c.   

 

When there are multiple categorical latent variables, each one has its 

own MODEL command.  The MODEL command for each categorical 

latent variable is specified by MODEL followed by the name of the 

categorical latent variable.  MODEL c describes the class-specific 

multinomial logistic regressions of c2 on c1 and c3 on c2 where the first 

c class is the mover class and the second c class is the stayer class.  

MODEL c1 describes the class-specific measurement parameters for 

variable c1; MODEL c2 describes the class-specific measurement 

parameters for variable c2; and MODEL c3 describes the class-specific 

measurement parameters for variable c3.  The model for each categorical 

latent variable that differs for each class of that variable is specified by a 

label that consists of the categorical latent variable name followed by the 

number sign followed by the class number.  For example, in the example 

above, the label %c1#1% refers to class 1 of categorical latent variable 

c1.   

 

In class 1, the mover class of MODEL c, the two ON statements specify 

that the latent transition probabilities are estimated.  In class 2, the stayer 

class, the ON statements specify that the latent transition probabilities 

are fixed at either zero or one.  A latent transition probability of one 

specifies that an observation stays in the same class across time. 

 

In this example, the thresholds of the latent class indicators for a given 

class are held equal for the three categorical latent variables.  The (1-5), 

(6-10), and (11-15) following the bracket statements containing the 

thresholds use the list function to assign equality labels to these 

parameters.  For example, the label 1 is assigned to the thresholds 

u11$1, u21$1, and u31$1 which holds these thresholds equal over time.   

 

The TECH15 option is used to obtain the transition probabilities for both 

the mover and stayer classes. The default estimator for this type of 

analysis is maximum likelihood with robust standard errors.  The 
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estimator option of the ANALYSIS command can be used to select a 

different estimator.  An explanation of the other commands can be found 

in Example 8.1. 

 

EXAMPLE 8.16: DISCRETE-TIME SURVIVAL MIXTURE 

ANALYSIS WITH SURVIVAL PREDICTED BY GROWTH 

TRAJECTORY CLASSES 
 

 
TITLE: this is an example of a discrete-time 

survival mixture analysis with survival 

predicted by growth trajectory classes 

DATA: FILE IS ex8.16.dat; 

VARIABLE: NAMES ARE y1-y3 u1-u4; 

 CLASSES = c(2); 

 CATEGORICAL = u1-u4; 

 MISSING = u1-u4 (999); 

ANALYSIS: TYPE = MIXTURE; 

MODEL:  

 %OVERALL% 

 i s | y1@0 y2@1 y3@2; 

 f BY u1-u4@1; 

OUTPUT: TECH1 TECH8; 
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In this example, the discrete-time survival mixture analysis model shown 

in the picture above is estimated.  In this model, a survival model for u1, 

u2, u3, and u4 is specified for each class of c defined by a growth 

mixture model for y1-y3 (Muthén & Masyn, 2005).  Each u variable 

represents whether or not a single non-repeatable event has occurred in a 

specific time period.  The value 1 means that the event has occurred, 0 

means that the event has not occurred, and a missing value flag means 

that the event has occurred in a preceding time period or that the 

individual has dropped out of the study.  The factor f is used to specify a 

proportional odds assumption for the hazards of the event.  The arrows 

from c to the growth factors i and s indicate that the means of the growth 

factors vary across the classes of c.    

 

In the overall model, the | symbol is used to name and define the 

intercept and slope growth factors in a growth model.  The names i and s 

on the left-hand side of the | symbol are the names of the intercept and 

slope growth factors, respectively.  The statement on the right-hand side 

of the | symbol specifies the outcomes and the time scores for the growth 

model.  The time scores for the slope growth factor are fixed at 0, 1, and 

2 to define a linear growth model with equidistant time points.  The zero 

time score for the slope growth factor at time point one defines the 

intercept growth factor as an initial status factor.  The coefficients of the 

intercept growth factor are fixed at one as part of the growth model 

parameterization.  The residual variances of the outcome variables are 

estimated and allowed to be different across time and the residuals are 

not correlated as the default.  

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variable at the four time points are fixed at zero as the 

default.  The means and variances of the growth factors are estimated as 

the default, and the growth factor covariance is estimated as the default 

because they are independent (exogenous) variables.  The means of the 

growth factors are not held equal across classes as the default.  The 

variances and covariance of the growth factors are held equal across 

classes as the default.   

 

In the overall model, the BY statement specifies that f is measured by 

u1, u2, u3, and u4 where the factor loadings are fixed at one.  This 

represents a proportional odds assumption.  The mean of f is fixed at 

zero in class two as the default.  The variance of f is fixed at zero in both 

classes.  The ESTIMATOR option of the ANALYSIS command can be 
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used to select a different estimator.  An explanation of the other 

commands can be found in Example 8.1. 

 

EXAMPLE 8.17:  CONTINUOUS-TIME SURVIVAL MIXTURE 

ANALYSIS USING A COX REGRESSION MODEL   
 

 
TITLE: this is an example of a continuous-time 

survival mixture analysis using a Cox 

regression model 

DATA: FILE = ex8.17.dat; 

VARIABLE: NAMES = t u1-u5 x tc; 

 CATEGORICAL = u1-u5; 

 CLASSES = c (2); 

 SURVIVAL = t (ALL); 

 TIMECENSORED = tc (0 = NOT 1 = RIGHT); 

ANALYSIS: TYPE = MIXTURE; 

MODEL: %OVERALL% 

 t ON x;  

 c ON x; 

 %c#1% 

 [u1$1-u5$1]; 

 t ON x; 

 %c#2% 

 [u1$1-u5$1]; 

 t ON x; 

OUTPUT: TECH1 TECH8; 
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In this example, the continuous-time survival analysis model shown in 

the picture above is estimated.  This is a Cox regression mixture model 

similar to the model of Larsen (2004) as discussed in Asparouhov et al. 

(2006).  The profile likelihood method is used for estimation.  

 

The SURVIVAL option is used to identify the variables that contain 

information about time to event and to provide information about the 

number and lengths of the time intervals in the baseline hazard function 

to be used in the analysis.  The SURVIVAL option must be used in 

conjunction with the TIMECENSORED option.  In this example, t is the 

variable that contains time-to-event information.  By specifying the 

keyword ALL in parenthesis following the time-to-event variable, the 

time intervals are taken from the data.  The TIMECENSORED option is 

used to identify the variables that contain information about right 

censoring.  In this example, the variable is named tc.  The information in 

parentheses specifies that the value zero represents no censoring and the 

value one represents right censoring.  This is the default.   

 

In the overall model, the first ON statement describes the loglinear 

regression of the time-to-event variable t on the covariate x.  The second 

ON statement describes the multinomial logistic regression of the 

categorical latent variable c on the covariate x.  In the class-specific 

models, by specifying the thresholds of the latent class indicator 

variables and the regression of the time-to-event t on the covariate x, 

these parameters will be estimated separately for each class.  The non-

parametric baseline hazard function varies across class as the default. 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors.  The estimator option of the ANALYSIS 

command can be used to select a different estimator.  An explanation of 

the other commands can be found in Example 8.1. 


