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CHAPTER 11 

EXAMPLES: MISSING DATA 

MODELING AND BAYESIAN 

ANALYSIS 
 

Mplus provides estimation of models with missing data using both 

frequentist and Bayesian analysis.  Descriptive statistics and graphics are 

available for understanding dropout in longitudinal studies.  Bayesian 

analysis provides multiple imputation for missing data as well as 

plausible values for latent variables.   

 

With frequentist analysis, Mplus provides maximum likelihood 

estimation under MCAR (missing completely at random), MAR (missing 

at random), and NMAR (not missing at random) for continuous, 

censored, binary, ordered categorical (ordinal), unordered categorical 

(nominal), counts, or combinations of these variable types (Little & 

Rubin, 2002).  MAR means that missingness can be a function of 

observed covariates and observed outcomes.  For censored and 

categorical outcomes using weighted least squares estimation, 

missingness is allowed to be a function of the observed covariates but 

not the observed outcomes.  When there are no covariates in the model, 

this is analogous to pairwise present analysis.  Non-ignorable missing 

data (NMAR) modeling is possible using maximum likelihood 

estimation where categorical outcomes are indicators of missingness and 

where missingness can be predicted by continuous and categorical latent 

variables (Muthén, Jo, & Brown, 2003; Muthén et al., 2011).  This 

includes selection models, pattern-mixture models, and shared-parameter 

models (see, e.g., Muthén et al., 2011).  In all models, observations with 

missing data on covariates are deleted because models are estimated 

conditional on the covariates.  Covariate missingness can be modeled if 

the covariates are brought into the model and distributional assumptions 

such as normality are made about them.   With missing data, the standard 

errors for the parameter estimates are computed using the observed 

information matrix (Kenward & Molenberghs, 1998).  Bootstrap 

standard errors and confidence intervals are also available with missing 

data.   
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With Bayesian analysis, modeling with missing data gives 

asymptotically the same results as maximum-likelihood estimation under 

MAR.  Multiple imputation of missing data using Bayesian analysis 

(Rubin, 1987; Schafer, 1997) is also available.  For an overview, see 

Enders (2010).  Both unrestricted H1 models and restricted H0 models 

can be used for imputation.  Several different algorithms are available 

for H1 imputation, including sequential regression, also referred to as 

chained regression, in line with Raghunathan et al. (2001); see also van 

Buuren (2007).  Multiple imputation of plausible values for latent 

variables is provided.  For applications of plausible values in the context 

of Item Response Theory, see Mislevy et al. (1992) and von Davier et al. 

(2009).  Multiple data sets generated using multiple imputation can be 

analyzed with frequentist estimators using a special feature of Mplus.  

Parameter estimates are averaged over the set of analyses, and standard 

errors are computed using the average of the standard errors over the set 

of analyses and the between analysis parameter estimate variation 

(Rubin, 1987; Schafer, 1997).  A chi-square test of overall model fit is 

provided with maximum-likelihood estimation (Asparouhov & Muthén, 

2008c; Enders, 2010). 

 

Following is the set of frequentist examples included in this chapter:  

 

 11.1:  Growth model with missing data using a missing data 

correlate 

 11.2:  Descriptive statistics and graphics related to dropout in a 

longitudinal study 

 11.3:  Modeling with data not missing at random (NMAR) using the 

Diggle-Kenward selection model* 

 11.4:  Modeling with data not missing at random (NMAR) using a 

pattern-mixture model 

 

Following is the set of Bayesian examples included in this chapter:  

 

 11.5:  Multiple imputation for a set of variables with missing values  

 11.6:  Multiple imputation followed by the estimation of a growth 

model using maximum likelihood 

 11.7:  Multiple imputation of plausible values using Bayesian 

estimation of a growth model 

 11.8:  Multiple imputation using a two-level factor model with 

categorical outcomes followed by the estimation of a growth model  
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*  Example uses numerical integration in the estimation of the model.  

This can be computationally demanding depending on the size of the 

problem. 

 

EXAMPLE 11.1: GROWTH MODEL WITH MISSING DATA 

USING A MISSING DATA CORRELATE 
 

 
TITLE: this is an example of a linear growth 

model with missing data on a continuous 

outcome using a missing data correlate to 

improve the plausibility of MAR 

DATA: FILE = ex11.1.dat; 

VARIABLE: NAMES = x1 x2 y1-y4 z; 

 USEVARIABLES = y1-y4; 

 MISSING = ALL (999); 

 AUXILIARY = (m) z; 

ANALYSIS: ESTIMATOR = ML; 

MODEL: i s | y1@0 y2@1 y3@2 y4@3; 

OUTPUT: TECH1; 

 

 

 
 

 

In this example, the linear growth model at four time points with missing 

data on a continuous outcome shown in the picture above is estimated 

using a missing data correlate.  The missing data correlate is not part of 

the growth model but is used to improve the plausibility of the MAR 

assumption of maximum likelihood estimation (Collins, Schafer, & 

Kam, 2001; Graham, 2003; Enders, 2010).  The missing data correlate is 

allowed to correlate with the outcome while providing the correct 
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number of parameters and chi-square test for the analysis model as 

described in Asparouhov and Muthén (2008b).   

 
TITLE: this is an example of a linear growth 

model with missing data on a continuous 

outcome using a missing data correlate to 

improve the plausibility of MAR 

 

The TITLE command is used to provide a title for the analysis.  The title 

is printed in the output just before the Summary of Analysis. 

 
DATA: FILE = ex11.1.dat; 

 

The DATA command is used to provide information about the data set 

to be analyzed.  The FILE option is used to specify the name of the file 

that contains the data to be analyzed, ex11.1.dat.  Because the data set is 

in free format, the default, a FORMAT statement is not required. 

 
VARIABLE: NAMES = x1 x2 y1-y4 z; 

 USEVARIABLES = y1-y4; 

 MISSING = ALL (999);  

 AUXILIARY = (m) z;  

 

The VARIABLE command is used to provide information about the 

variables in the data set to be analyzed.  The NAMES option is used to 

assign names to the variables in the data set.  The data set in this 

example contains seven variables:  x1, x2, y1, y2, y3, y4, and z.  Note 

that the hyphen can be used as a convenience feature in order to generate 

a list of names.  If not all of the variables in the data set are used in the 

analysis, the USEVARIABLES option can be used to select a subset of 

variables for analysis.  Here the variables y1, y2, y3, and y4 have been 

selected for analysis.  They represent the outcome measured at four 

equidistant occasions.  The MISSING option is used to identify the 

values or symbol in the analysis data set that are treated as missing or 

invalid.  The keyword ALL specifies that all variables in the analysis 

data set have the missing value flag of 999.  The AUXILIARY option 

using the m setting is used to identify a set of variables that will be used 

as missing data correlates in addition to the analysis variables.  In this 

example, the variable z is a missing data correlate.  
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ANALYSIS: ESTIMATOR = ML; 

 

The ANALYSIS command is used to describe the technical details of the 

analysis.  The ESTIMATOR option is used to specify the estimator to be 

used in the analysis.  By specifying ML, maximum likelihood estimation 

is used. 

 
MODEL: i s | y1@0 y2@1 y3@2 y4@3; 

 

The MODEL command is used to describe the model to be estimated.  

The | symbol is used to name and define the intercept and slope factors 

in a growth model.  The names i and s on the left-hand side of the | 

symbol are the names of the intercept and slope growth factors, 

respectively.  The statement on the right-hand side of the | symbol 

specifies the outcome and the time scores for the growth model.  The 

time scores for the slope growth factor are fixed at 0, 1, 2, and 3 to 

define a linear growth model with equidistant time points.  The zero time 

score for the slope growth factor at time point one defines the intercept 

growth factor as an initial status factor.  The coefficients of the intercept 

growth factor are fixed at one as part of the growth model 

parameterization.  The residual variances of the outcome variables are 

estimated and allowed to be different across time and the residuals are 

not correlated as the default.  

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variables at the four time points are fixed at zero as the 

default.  The means and variances of the growth factors are estimated as 

the default, and the growth factor covariance is estimated as the default 

because the growth factors are independent (exogenous) variables.  The 

default estimator for this type of analysis is maximum likelihood.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.   

 
OUTPUT: TECH1; 

 

The OUTPUT command is used to request additional output not 

included as the default.  The TECH1 option is used to request the arrays 

containing parameter specifications and starting values for all free 

parameters in the model.  

 



CHAPTER 11 

 

 

 448 

EXAMPLE 11.2: DESCRIPTIVE STATISTICS AND GRAPHICS 

RELATED TO DROPOUT IN A LONGITUDINAL STUDY  
 

 
TITLE: this is an example of descriptive 

statistics and graphics related to dropout 

in a longitudinal study 

DATA: FILE = ex11.2.dat; 

VARIABLE: NAMES = z1-z5 y0 y1-y5; 

 USEVARIABLES = z1-z5 y0-y5 d1-d5; 

 MISSING = ALL (999); 

DATA MISSING: 

 NAMES = y0-y5; 

 TYPE = DDROPOUT; 

 BINARY = d1-d5; 

 DESCRIPTIVE = y0-y5 | * z1-z5; 

ANALYSIS: TYPE = BASIC; 

PLOT: TYPE = PLOT2; 

 SERIES = y0-y5(*); 

 

In this example, descriptive statistics and graphics related to dropout in a 

longitudinal study are obtained.  The descriptive statistics show the 

mean and standard deviation for sets of variables related to the outcome 

for those who drop out or not before the next time point.  These means 

are plotted to help in understanding dropout. 

 

The DATA MISSING command is used to create a set of binary 

variables that are indicators of missing data or dropout for another set of 

variables.  Dropout indicators can be scored as discrete-time survival 

indicators or dummy dropout indicators.  The NAMES option identifies 

the set of variables that are used to create a set of binary variables that 

are indicators of missing data.  In this example, they are y0, y1, y2, y3, 

y4, and y5.  These variables must be variables from the NAMES 

statement of the VARIABLE command.  The TYPE option is used to 

specify how missingness is coded.  In this example, the DDROPOUT 

setting specifies that binary dummy dropout indicators will be used.  The 

BINARY option is used to assign the names d1, d2, d3, d4, and d5 to the 

new set of binary variables.  There is one less dummy dropout indicator 

than there are time points.  The DESCRIPTIVE option is used in 

conjunction with TYPE=BASIC of the ANALYSIS command and the 

DDROPOUT setting to specify the sets of variables for which additional 

descriptive statistics are computed.  For each variable, the mean and 

standard deviation are computed using all observations without missing 
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on the variable and for those who drop out or not before the next time 

point.   

 

The PLOT command is used to request graphical displays of observed 

data and analysis results.  These graphical displays can be viewed after 

the analysis is completed using a post-processing graphics module.  The 

TYPE option is used to specify the types of plots that are requested.  The 

setting PLOT2 is used to obtain missing data plots of dropout means and 

sample means.  The SERIES option is used to list the names of the set of 

variables to be used in plots where the values are connected by a line.  

The asterisk (*) in parentheses following the variable names indicates 

that the values 1, 2, 3, 4, 5, and 6 will be used on the x-axis.   An 

explanation of the other commands can be found in Example 11.1. 

 

EXAMPLE 11.3: MODELING WITH DATA NOT MISSING AT 

RANDOM (NMAR) USING THE DIGGLE-KENWARD 

SELECTION MODEL 
 

 
TITLE: this is an example of modeling with data 

not missing at random (NMAR) using the 

Diggle-Kenward selection model         

DATA: FILE = ex11.3.dat; 

VARIABLE: NAMES = z1-z5 y0 y1-y5; 

 USEVARIABLES = y0-y5 d1-d5; 

 MISSING = ALL (999); 

 CATEGORICAL = d1-d5; 

DATA MISSING:  

 NAMES = y0-y5; 

 TYPE = SDROPOUT; 

 BINARY = d1-d5; 

ANALYSIS: ESTIMATOR = ML; 

 ALGORITHM = INTEGRATION; 

 INTEGRATION = MONTECARLO; 

 PROCESSORS = 2; 
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MODEL: i s | y0@0 y1@1 y2@2 y3@3 y4@4 y5@5; 

 d1 ON y0 (1) 

 y1 (2); 

 d2 ON y1 (1) 

 y2 (2); 

 d3 ON y2 (1) 

 y3 (2); 

 d4 ON y3 (1) 

 y4 (2); 

 d5 ON y4 (1) 

 y5 (2); 

OUTPUT: TECH1; 

 

 

 
 

 

In this example, the linear growth model at six time points with missing 

data on a continuous outcome shown in the picture above is estimated.  

The data are not missing at random because dropout is related to both 

past and current outcomes where the current outcome is missing for 

those who drop out.  In the picture above, y1 through y5 are shown in 

both circles and squares where circles imply that dropout has occurred 

and squares imply that dropout has not occurred.  The Diggle-Kenward 

selection model (Diggle & Kenward, 1994) is used to jointly estimate a 
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growth model for the outcome and a discrete-time survival model for the 

dropout indicators (see also Muthén et al, 2011). 

 

In this example, the SDROPOUT setting of the TYPE option specifies 

that binary discrete-time (event-history) survival dropout indicators will 

be used.  In the ANALYSIS command, ALGORITHM=INTEGRATION 

is required because latent continuous variables corresponding to missing 

data on the outcome influence the binary dropout indicators.   

INTEGRATION=MONTECARLO is required because the dimensions 

of integration vary across observations.  In the MODEL command, the 

ON statements specify the logistic regressions of a dropout indicator at a 

given time point regressed on the outcome at the previous time point and 

the outcome at the current time point.  The outcome at the current time 

point is latent, missing, for those who have dropped out since the last 

time point.  The logistic regression coefficients are held equal across 

time.  An explanation of the other commands can be found in Examples 

11.1 and 11.2. 

 

EXAMPLE 11.4: MODELING WITH DATA NOT MISSING AT 

RANDOM (NMAR) USING A PATTERN-MIXTURE MODEL 
 

 
TITLE: this is an example of modeling with data 

not missing at random (NMAR) using a 

pattern-mixture model         

DATA: FILE = ex11.4.dat; 

VARIABLE: NAMES = z1-z5 y0 y1-y5; 

 USEVARIABLES = y0-y5 d1-d5; 

 MISSING = ALL (999); 

DATA MISSING: 

 NAMES = y0-y5; 

 TYPE = DDROPOUT; 

 BINARY = d1-d5; 

MODEL: i s | y0@0 y1@1 y2@2 y3@3 y4@4 y5@5; 

 i ON d1-d5; 

 s ON d3-d5; 

 s ON d1 (1); 

 s ON d2 (1); 

OUTPUT: TECH1; 
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In this example, the linear growth model at six time points with missing 

data on a continuous outcome shown in the picture above is estimated.  

The data are not missing at random because dropout is related to both 

past and current outcomes where the current outcome is missing for 

those who drop out.  A pattern-mixture model (Little, 1995; Hedeker & 

Gibbons, 1997; Demirtas & Schafer, 2003) is used to estimate a growth 

model for the outcome with binary dummy dropout indicators used as 

covariates (see also Muthén et al, 2011).   

 

The MODEL command is used to specify that the dropout indicators 

influence the growth factors.  The ON statements specify the linear 

regressions of the intercept and slope growth factors on the dropout 

indicators.  The coefficient in the linear regression of s on d1 is not 

identified because the outcome is observed only at the first time point for 

the dropout pattern with d1 equal to one.  This regression coefficient is 

held equal to the linear regression of s on d2 for identification purposes.  

An explanation of the other commands can be found in Examples 11.1 

and 11.2. 
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EXAMPLE 11.5:  MULTIPLE IMPUTATION FOR A SET OF 

VARIABLES WITH MISSING VALUES 
 

 
TITLE: this is an example of multiple imputation  

 for a set of variables with missing values 

DATA: FILE = ex11.5.dat; 

VARIABLE: NAMES = x1 x2 y1-y4 v1-v50 z1-z5; 

 USEVARIABLES = x1 x2 y1-y4 z1-z5; 

 AUXILIARY = v1-v10; 

 MISSING = ALL (999); 

DATA IMPUTATION: 

 IMPUTE = y1-y4 x1 (c) x2; 

 NDATASETS = 10; 

 SAVE = missimp*.dat; 

ANALYSIS: TYPE = BASIC; 

OUTPUT: TECH8; 

 

In this example, multiple imputation for a set of variables with missing 

values is carried out using Bayesian analysis (Rubin, 1987; Schafer, 

1997).  The NAMES option is used to assign names to the variables in 

the original data set.  The variables on the USEVARIABLES list are 

used to create the imputed data sets.  The AUXILIARY option is used to 

specify the variables that are not used in the data imputation but that will 

be saved with the imputed data sets.   In the DATA IMPUTATION 

command, the IMPUTE option is used to specify the variables for which 

missing values will be imputed.  A c in parentheses following a variable 

indicates that it is categorical.  The NDATASETS option is used to 

specify the number of imputed data sets to create.  In this example, ten 

imputed data sets will be created.  The SAVE option is used to save the 

imputed data sets for further analysis using TYPE=IMPUTATION in the 

DATA command.  All variables on the USEVARIABLES and 

AUXILIARY lists are saved.  The asterisk in the data set name is 

replaced by the number of the imputation.  The data sets saved are 

missimp1.dat, missimp2.dat, etc.  The imputed data sets will contain the 

variables x1, x2, y1-y4, z1-z5, and v1-v10 in that order.  The data sets 

can be used in a subsequent analysis using TYPE=IMPUTATION in the 

DATA command.  See Example 13.13.  An explanation of the other 

commands can be found in Example 11.1.   
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EXAMPLE 11.6: MULTIPLE IMPUTATION FOLLOWED BY 

THE ESTIMATION OF A GROWTH MODEL USING 

MAXIMUM LIKELIHOOD 
 

 
TITLE: this is an example of multiple imputation 

followed by the estimation of a growth 

model using maximum likelihood  

DATA: FILE = ex11.6.dat; 

VARIABLE: NAMES = x1 y1-y4 z x2; 

 USEVARIABLES = y1-y4 x1 x2; 

 MISSING = ALL(999); 

DATA IMPUTATION: 

 IMPUTE = y1-y4 x1 (c) x2; 

 NDATASETS = 10; 

ANALYSIS: ESTIMATOR = ML; 

MODEL: i s | y1@0 y2@1 y3@2 y4@3; 

 i s ON x1 x2; 

OUTPUT: TECH1 TECH8; 
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In this example, multiple imputation for a set of variables with missing 

values is carried out using Bayesian analysis (Rubin, 1987; Schafer, 

1997).  The imputed data sets are used in the estimation of the growth 

model shown in the picture above using maximum likelihood estimation.   

 

The DATA IMPUTATION command is used when a data set contains 

missing values to create a set of imputed data sets using multiple 

imputation methodology.  Multiple imputation is carried out using 

Bayesian estimation.  Data are imputed using an unrestricted H1 model.  

The IMPUTE option is used to specify the analysis variables for which 

missing values will be imputed.  In this example, missing values will be 

imputed for y1, y2, y3, y4, x1, and x2.  The c in parentheses after x1 

specifies that x1 is treated as a categorical variable for data imputation.  

The NDATASETS option is used to specify the number of imputed data 

sets to create.  The default is five.  In this example, 10 data sets will be 

imputed.   

 

The maximum likelihood parameter estimates for the growth model are 

averaged over the set of 10 analyses and standard errors are computed 

using the average of the standard errors over the set of 10 analyses and 

the between analysis parameter estimate variation (Rubin, 1987; Schafer, 

1997).  A chi-square test of overall model fit is provided (Asparouhov & 

Muthén, 2008c; Enders, 2010).  The ESTIMATOR option is used to 

specify the estimator to be used in the analysis.  By specifying ML, 

maximum likelihood estimation is used.  An explanation of the other 

commands can be found in Examples 11.1 and 11.5. 

 

EXAMPLE 11.7: MULTIPLE IMPUTATION OF PLAUSIBLE 

VALUES USING BAYESIAN ESTIMATION OF A GROWTH 

MODEL 
 

 
TITLE: this is an example of multiple imputation 

of plausible values generated from a 

multiple indicator linear growth model for 

categorical outcomes using Bayesian 

estimation 

DATA: FILE = ex11.7.dat; 

VARIABLE: NAMES = u11 u21 u31 u12 u22 u32 u13 u23 

u33; 

 CATEGORICAL = u11-u33; 

ANALYSIS: ESTIMATOR = BAYES; 
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 PROCESSORS = 2; 

MODEL: f1 BY u11  

 u21-u31 (1-2); 

 f2 BY  u12  

 u22-u32 (1-2); 

 f3 BY  u13  

 u23-u33 (1-2); 

 [u11$1 u12$1 u13$1] (3); 

 [u21$1 u22$1 u23$1] (4); 

 [u31$1 u32$1 u33$1] (5); 

 i s | f1@0 f2@1 f3@2;  

DATA IMPUTATION:  

 NDATASETS = 20; 

 SAVE = ex11.7imp*.dat; 

SAVEDATA: FILE = ex11.7plaus.dat; 

 SAVE = FSCORES (20); 

 FACTORS = f1-f3 i s; 

 SAVE = LRESPONSES (20); 

 LRESPONSES = u11-u33; 

OUTPUT: TECH1 TECH8; 

 

 

 
 

 

In this example, plausible values (Mislevy et al., 1992; von Davier et al., 

2009) are obtained by multiple imputation (Rubin, 1987; Schafer, 1997) 

based on a multiple indicator linear growth model for categorical 

outcomes shown in the picture above using Bayesian estimation.  The 
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plausible values in the multiple imputation data sets can be used for 

subsequent analysis.   

 

The ANALYSIS command is used to describe the technical details of the 

analysis.  The ESTIMATOR option is used to specify the estimator to be 

used in the analysis.  By specifying BAYES, Bayesian estimation is used 

to estimate the model.  The DATA IMPUTATION command is used 

when a data set contains missing values to create a set of imputed data 

sets using multiple imputation methodology.  Multiple imputation is 

carried out using Bayesian estimation.  When a MODEL command is 

used with ESTIMATOR=BAYES, data are imputed using the H0 model 

specified in the MODEL command.  The IMPUTE option is used to 

specify the analysis variables for which missing values will be imputed.  

When the IMPUTE option is not used, no imputation of missing data for 

the analysis variables is done. 

   

In the DATA IMPUTATION command, the NDATASETS option is 

used to specify the number of imputed data sets to create.  The default is 

five.  In this example, 20 data sets will be imputed to more fully 

represent the variability in the latent variables.  The SAVE option is 

used to save the imputed data sets for subsequent analysis.  The asterisk 

(*) is replaced by the number of the imputed data set.  A file is also 

produced that contains the names of all of the data sets.  To name this 

file, the asterisk (*) is replaced by the word list.  In this example, the file 

is called ex11.7implist.dat.  The multiple imputation data sets named 

using the SAVE option contain the imputed values for each observation 

for the observed variables u11 through u33; the continuous latent 

response variables u11* through u33* for the categorical outcomes u11 

through u33; and the factor scores for the latent variables f1, f2, f3, i, 

and s. 

 

In the SAVEDATA command, the FILE option is used to specify the 

name of the ASCII file in which the individual-level data used in the 

analysis will be saved.  In this example, the file is called 

ex11.7plaus.dat.  When SAVE=FSCORES is used with 

ESTIMATOR=BAYES, a distribution of factor scores, called plausible 

values, is obtained for each observation.  The following summaries are 

saved along with the other analysis variables:  mean, median, standard 

deviation, lower 2.5% limit, and upper 97.5% limit.  The number 20 in 

parentheses is the number of imputations or draws that are used from the 

Bayesian posterior distribution to compute the plausible value 
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distribution for each observation.  The FACTORS option is used to 

specify the names of the factors for which the plausible value 

distributions will also be saved.  In this example, the plausible value 

distributions will be saved for f1, f2, f3, i, and s.     

 

When SAVE=LRESPONSES is used with ESTIMATOR=BAYES, a 

distribution of latent response variable scores is obtained for each 

observation.  The following summaries are saved along with the other 

analysis variables:  mean, median, standard deviation, lower 2.5% limit, 

and upper 97.5% limit.   The number 20 in parentheses is the number of 

imputations or draws that are used from the Bayesian posterior 

distribution to compute the latent response variable distribution for each 

observation.  The LRESPONSES option is used to specify the names of 

the latent response variables underlying categorical outcomes for which 

the latent response variable distributions will also be saved.  In this 

example, the latent response variable distributions will be saved for u11 

through u33.  An explanation of the other commands can be found in 

Examples 11.1 and 11.2. 

 

EXAMPLE 11.8: MULTIPLE IMPUTATION USING A TWO-

LEVEL FACTOR MODEL WITH CATEGORICAL OUTCOMES 

FOLLOWED BY THE ESTIMATION OF A GROWTH MODEL  
 

 
TITLE: this is an example of multiple imputation 

using a two-level factor model with 

categorical outcomes  

DATA: FILE = ex11.8.dat; 

VARIABLE: NAMES are u11 u21 u31 u12 u22 u32 u13 u23 

u33 clus; 

 CATEGORICAL = u11-u33; 

 CLUSTER = clus; 

 MISSING = ALL (999); 

ANALYSIS: TYPE = TWOLEVEL; 

 ESTIMATOR = BAYES; 

 PROCESSORS = 2; 
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MODEL: %WITHIN% 

 f1w BY u11  

 u21 (1) 

 u31 (2); 

 f2w BY u12  

 u22 (1) 

 u32 (2); 

 f3w BY u13  

 u23 (1) 

 u33 (2); 

 %BETWEEN% 

 fb BY u11-u33*1; 

 fb@1; 

DATA IMPUTATION: 

 IMPUTE = u11-u33(c); 

 SAVE = ex11.8imp*.dat; 

OUTPUT: TECH1 TECH8; 
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In this example, missing values are imputed for a set of variables using 

multiple imputation (Rubin, 1987; Schafer, 1997).  In the first part of 

this example, imputation is done using the two-level factor model with 

categorical outcomes shown in the picture above.  In the second part of 

this example, the multiple imputation data sets are used for a two-level 

multiple indicator growth model with categorical outcomes using two-

level weighted least squares estimation.   

 

The ANALYSIS command is used to describe the technical details of the 

analysis.  The TYPE option is used to describe the type of analysis.  By 

selecting TWOLEVEL, a multilevel model with random intercepts is 

estimated.  The ESTIMATOR option is used to specify the estimator to 

be used in the analysis.  By specifying BAYES, Bayesian estimation is 

used to estimate the model.   The DATA IMPUTATION command is 

used when a data set contains missing values to create a set of imputed 

data sets using multiple imputation methodology.  Multiple imputation is 

carried out using Bayesian estimation.  When a MODEL command is 

used, data are imputed using the H0 model specified in the MODEL 

command.  The IMPUTE option is used to specify the analysis variables 

for which missing values will be imputed.  In this example, missing 

values will be imputed for u11, u21, u31, u12, u22, u32, u13, u23, and 

u33.  The c in parentheses after the list of variables specifies that they 

are treated as categorical variables for data imputation.  An explanation 

of the other commands can be found in Examples 11.1, 11.2, and 11.5. 
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TITLE: this is an example of a two-level multiple 

 indicator growth model with categorical 

outcomes using multiple imputation data  

DATA: FILE = ex11.8implist.dat; 

 TYPE = IMPUTATION; 

VARIABLE: NAMES are u11 u21 u31 u12 u22 u32 u13 u23 

u33 clus; 

 CATEGORICAL = u11-u33; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL; 

 ESTIMATOR = WLSMV; 

 PROCESSORS = 2; 

MODEL: %WITHIN% 

 f1w BY u11  

        u21 (1) 

   u31 (2); 

 f2w BY u12  

   u22 (1) 

   u32 (2); 

 f3w BY u13  

   u23 (1) 

   u33 (2); 

 iw sw | f1w@0 f2w@1 f3w@2;     

  %BETWEEN% 

 f1b BY u11  

   u21 (1) 

   u31 (2); 

 f2b BY u12  

   u22 (1) 

   u32 (2); 

 f3b BY u13  

   u23 (1) 

   u33 (2); 

 [u11$1 u12$1 u13$1] (3); 

 [u21$1 u22$1 u23$1] (4); 

 [u31$1 u32$1 u33$1] (5); 

 u11-u33; 

 ib sb | f1b@0 f2b@1 f3b@2;     

 [f1b-f3b@0 ib@0 sb]; 

 f1b-f3b (6);    

OUTPUT: TECH1 TECH8; 

SAVEDATA: SWMATRIX = ex11.8sw*.dat;  
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In the second part of this example, the data sets saved in the first part of 

the example are used in the estimation of a two-level multiple indicator 

growth model with categorical outcomes.  The model is the same as in 

Example 9.15.  The two-level weighted least squares estimator described 

in Asparouhov and Muthén (2007) is used in this example.  This 

estimator does not handle missing data using MAR.  By doing Bayesian 

multiple imputation as a first step, this disadvantage is avoided given 

that there is no missing data for the weighted least squares analysis.  To 

save computational time in subsequent analyses, the two-level weighted 

least squares sample statistics and weight matrix for each of the imputed 

data sets are saved.   
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The ANALYSIS command is used to describe the technical details of the 

analysis.  The TYPE option is used to describe the type of analysis.  By 

selecting TWOLEVEL, a multilevel model with random intercepts is 

estimated.  The ESTIMATOR option is used to specify the estimator to 

be used in the analysis.  By specifying WLSMV, a robust weighted least 

squares estimator is used.  The SAVEDATA command is used to save 

the analysis data, auxiliary variables, and a variety of analysis results.  

The SWMATRIX option is used with TYPE=TWOLEVEL and 

weighted least squares estimation to specify the name of the ASCII file 

in which the within- and between-level sample statistics and their 

corresponding estimated asymptotic covariance matrix will be saved.  In 

this example, the files are called ex11.8sw*.dat where the asterisk (*) is 

replaced by the number of the imputed data set.  A file is also produced 

that contains the names of all of the imputed data sets.  To name this file, 

the asterisk (*) is replaced by the word list.  The file, in this case 

ex11.8swlist.dat, contains the names of the imputed data sets.  

 

To use the saved within- and between-level sample statistics and their 

corresponding estimated asymptotic covariance matrix for each 

imputation in a subsequent analysis, specify: 

 

DATA: 

FILE = ex11.8implist.dat; 

TYPE = IMPUTATION; 

SWMATRIX = ex11.8swlist.dat; 

 

An explanation of the other commands can be found in Examples 9.15, 

11.1, 11.2, and 11.5. 
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