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CHAPTER 10 

EXAMPLES: MULTILEVEL 

MIXTURE MODELING 
 

  

Multilevel mixture modeling (Asparouhov & Muthén, 2008a) combines 

the multilevel and mixture models by allowing not only the modeling of 

multilevel data but also the modeling of subpopulations where 

population membership is not known but is inferred from the data.  

Mixture modeling can be combined with the multilevel analyses 

discussed in Chapter 9.  Observed outcome variables can be continuous, 

censored, binary, ordered categorical (ordinal), unordered categorical 

(nominal), counts, or combinations of these variable types.   

 

With cross-sectional data, the number of levels in Mplus is the same as 

the number of levels in conventional multilevel modeling programs.  

Mplus allows two-level modeling.  With longitudinal data, the number of 

levels in Mplus is one less than the number of levels in conventional 

multilevel modeling programs because Mplus takes a multivariate 

approach to repeated measures analysis.  Longitudinal models are two-

level models in conventional multilevel programs, whereas they are one-

level models in Mplus.  Single-level longitudinal models are discussed in 

Chapter 6, and single-level longitudinal mixture models are discussed in 

Chapter 8.  Three-level longitudinal analysis where time is the first level, 

individual is the second level, and cluster is the third level is handled by 

two-level growth modeling in Mplus as discussed in Chapter 9.   

 

Multilevel mixture models can include regression analysis, path analysis, 

confirmatory factor analysis (CFA), item response theory (IRT) analysis, 

structural equation modeling (SEM), latent class analysis (LCA), latent 

transition analysis (LTA), latent class growth analysis (LCGA), growth 

mixture modeling (GMM), discrete-time survival analysis, continuous-

time survival analysis, and combinations of these models.     

 

All multilevel mixture models can be estimated using the following 

special features: 

 

 Single or multiple group analysis 

 Missing data 
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 Complex survey data 

 Latent variable interactions and non-linear factor analysis using 

maximum likelihood 

 Random slopes 

 Individually-varying times of observations 

 Linear and non-linear parameter constraints 

 Maximum likelihood estimation for all outcome types 

 Wald chi-square test of parameter equalities 

 Analysis with between-level categorical latent variables 

 Test of equality of means across latent classes using posterior 

probability-based multiple imputations 

 

For TYPE=MIXTURE, multiple group analysis is specified by using the 

KNOWNCLASS option of the VARIABLE command.  The default is to 

estimate the model under missing data theory using all available data.  

The LISTWISE option of the DATA command can be used to delete all 

observations from the analysis that have missing values on one or more 

of the analysis variables.  Corrections to the standard errors and chi-

square test of model fit that take into account stratification, non-

independence of observations, and unequal probability of selection are 

obtained by using the TYPE=COMPLEX option of the ANALYSIS 

command in conjunction with the STRATIFICATION, CLUSTER, 

WEIGHT, WTSCALE, BWEIGHT, and BWTSCALE options of the 

VARIABLE command.  Latent variable interactions are specified by 

using the | symbol of the MODEL command in conjunction with the 

XWITH option of the MODEL command.  Random slopes are specified 

by using the | symbol of the MODEL command in conjunction with the 

ON option of the MODEL command.  Individually-varying times of 

observations are specified by using the | symbol of the MODEL 

command in conjunction with the AT option of the MODEL command 

and the TSCORES option of the VARIABLE command.  Linear and 

non-linear parameter constraints are specified by using the MODEL 

CONSTRAINT command.  Maximum likelihood estimation is specified 

by using the ESTIMATOR option of the ANALYSIS command.  The 

MODEL TEST command is used to test linear restrictions on the 

parameters in the MODEL and MODEL CONSTRAINT commands 

using the Wald chi-square test.  Between-level categorical latent 

variables are specified using the CLASSES and BETWEEN options of 

the VARIABLE command.  The AUXILIARY option is used to test the 

equality of means across latent classes using posterior probability-based 

multiple imputations. 
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Graphical displays of observed data and analysis results can be obtained 

using the PLOT command in conjunction with a post-processing 

graphics module.  The PLOT command provides histograms, 

scatterplots, plots of individual observed and estimated values, and plots 

of sample and estimated means and proportions/probabilities.  These are 

available for the total sample, by group, by class, and adjusted for 

covariates.  The PLOT command includes a display showing a set of 

descriptive statistics for each variable.  The graphical displays can be 

edited and exported as a DIB, EMF, or JPEG file.  In addition, the data 

for each graphical display can be saved in an external file for use by 

another graphics program.  

 

Following is the set of cross-sectional examples included in this chapter: 

 

 10.1:  Two-level mixture regression for a continuous dependent 

variable* 

 10.2:  Two-level mixture regression for a continuous dependent 

variable with a between-level categorical latent variable* 

 10.3:  Two-level mixture regression for a continuous dependent 

variable with between-level categorical latent class indicators for a 

between-level categorical latent variable* 

 10.4:  Two-level CFA mixture model with continuous factor 

indicators* 

 10.5:  Two-level IRT mixture analysis with binary factor indicators 

and a between-level categorical latent variable* 

 10.6:  Two-level LCA with categorical latent class indicators with 

covariates* 

 10.7:  Two-level LCA with categorical latent class indicators and a 

between-level categorical latent variable 

 

Following is the set of longitudinal examples included in this chapter: 

 

 10.8:  Two-level growth model for a continuous outcome (three-

level analysis) with a  between-level categorical latent variable* 

 10.9:  Two-level GMM for a continuous outcome (three-level 

analysis)* 

 10.10:  Two-level GMM for a continuous outcome (three-level 

analysis) with a between-level categorical latent variable* 

 10.11:  Two-level LCGA for a three-category outcome* 

 10.12:  Two-level LTA with a covariate* 
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 10.13:  Two-level LTA with a covariate and a between-level 

categorical latent variable 

 

*  Example uses numerical integration in the estimation of the model.  

This can be computationally demanding depending on the size of the 

problem. 

 

EXAMPLE 10.1: TWO-LEVEL MIXTURE REGRESSION FOR 

A CONTINUOUS DEPENDENT VARIABLE 
 

 
TITLE: this is an example of a two-level mixture 

regression for a continuous dependent 

variable 

DATA: FILE IS ex10.1.dat; 

VARIABLE: NAMES ARE y x1 x2 w class clus; 

 USEVARIABLES = y x1 x2 w; 

 CLASSES = c (2); 

 WITHIN = x1 x2; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

 STARTS = 0; 

MODEL:  

 %WITHIN% 

 %OVERALL% 

 y ON x1 x2; 

 c ON x1; 

 %c#1% 

 y ON x2; 

 y; 

 %BETWEEN% 

 %OVERALL%  

 y ON w;   

 c#1 ON w;  

 c#1*1; 

 %c#1%  

 [y*2]; 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level mixture regression model for a continuous 

dependent variable shown in the picture above is estimated.  This 

example is the same as Example 7.1 except that it has been extended to 

the multilevel framework.  In the within part of the model, the filled 

circles at the end of the arrows from x1 to c and y represent random 

intercepts that are referred to as c#1 and y in the between part of the 

model.  In the between part of the model, the random intercepts are 

shown in circles because they are continuous latent variables that vary 
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across clusters.  The random intercepts y and c#1 are regressed on a 

cluster-level covariate w. 

 

Because c is a categorical latent variable, the interpretation of the picture 

is not the same as for models with continuous latent variables.  The 

arrow from c to the y variable indicates that the intercept of the y 

variable varies across the classes of c.  This corresponds to the 

regression of y on a set of dummy variables representing the categories 

of c.  The broken arrow from c to the arrow from x2 to y indicates that 

the slope in the linear regression of y on x2 varies across the classes of c.  

The arrow from x1 to c represents the multinomial logistic regression of 

c on x1.   

 
TITLE: this is an example of a two-level mixture 

regression for a continuous dependent 

variable 

 

The TITLE command is used to provide a title for the analysis.  The title 

is printed in the output just before the Summary of Analysis. 
 

DATA:  FILE IS ex10.1.dat; 

 

The DATA command is used to provide information about the data set 

to be analyzed.  The FILE option is used to specify the name of the file 

that contains the data to be analyzed, ex10.1.dat.  Because the data set is 

in free format, the default, a FORMAT statement is not required. 
 

VARIABLE: NAMES ARE y x1 x2 w class clus; 

  USEVARIABLES = y x1 x2 w; 

  CLASSES = c (2); 

  WITHIN = x1 x2; 

  BETWEEN = w; 

  CLUSTER = clus; 

 

The VARIABLE command is used to provide information about the 

variables in the data set to be analyzed.  The NAMES option is used to 

assign names to the variables in the data set.  The data set in this 

example contains six variables: y, x1, x2, w, c, and clus.  If not all of the 

variables in the data set are used in the analysis, the USEVARIABLES 

option can be used to select a subset of variables for analysis.  Here the 

variables y1, x1, x2, and w have been selected for analysis.  The 

CLASSES option is used to assign names to the categorical latent 

variables in the model and to specify the number of latent classes in the 

model for each categorical latent variable.  In the example above, there 
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is one categorical latent variable c that has two latent classes.  The 

WITHIN option is used to identify the variables in the data set that are 

measured on the individual level and modeled only on the within level.  

They are specified to have no variance in the between part of the model.  

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level and modeled only on the between 

level.  Variables not mentioned on the WITHIN or the BETWEEN 

statements are measured on the individual level and can be modeled on 

both the within and between levels.  The CLUSTER option is used to 

identify the variable that contains cluster information.   
 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

  STARTS = 0; 

 

The ANALYSIS command is used to describe the technical details of the 

analysis.  The TYPE option is used to describe the type of analysis that 

is to be performed.  By selecting TWOLEVEL MIXTURE, a multilevel 

mixture model will be estimated.  By specifying STARTS=0 in the 

ANALYSIS command, random starts are turned off. 
 

MODEL:  

  %WITHIN% 

  %OVERALL% 

  y ON x1 x2;  

  c ON x1; 

  %c#1% 

  y ON x2; 

  y; 

  %BETWEEN% 

  %OVERALL%  

  y ON w;   

  c#1 ON w;  

  c#1*1; 

  %c#1%  

  [y*2]; 

 

The MODEL command is used to describe the model to be estimated.  In 

multilevel models, a model is specified for both the within and between 

parts of the model.  For mixture models, there is an overall model 

designated by the label %OVERALL%.  The overall model describes the 

part of the model that is in common for all latent classes.  The part of the 

model that differs for each class is specified by a label that consists of 

the categorical latent variable name followed by the number sign (#) 

followed by the class number.  In the example above, the label %c#2% 



CHAPTER 10 

402 

refers to the part of the model for class 2 that differs from the overall 

model.   

 

In the overall model in the within part of the model, the first ON 

statement describes the linear regression of y on the individual-level 

covariates x1 and x2.  The second ON statement describes the 

multinomial logistic regression of the categorical latent variable c on the 

individual-level covariate x1 when comparing class 1 to class 2.  The 

intercept in the regression of c on x1 is estimated as the default.  In the 

model for class 1 in the within part of the model, the ON statement 

describes the linear regression of y on the individual-level covariate x2 

which relaxes the default equality of regression coefficients across 

classes.  By mentioning the residual variance of y, it is not held equal 

across classes.   

 

In the overall model in the between part of the model, the first ON 

statement describes the linear regression of the random intercept y on the 

cluster-level covariate w.  The second ON statement describes the linear 

regression of the random intercept c#1 of the categorical latent variable c 

on the cluster-level covariate w.  The random intercept c#1 is a 

continuous latent variable.  Each class of the categorical latent variable c 

except the last class has a random intercept.  A starting value of one is 

given to the residual variance of the random intercept c#1.  In the class-

specific part of the between part of the model, the intercept of y is given 

a starting value of 2 for class 1.  

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, two dimensions of integration are used with a 

total of 225 integration points.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.   

 

Following is an alternative specification of the multinomial logistic 

regression of c on the individual-level covariate x1 in the within part of 

the model:  

 

c#1 ON x1; 
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where c#1 refers to the first class of c.  The classes of a categorical latent 

variable are referred to by adding to the name of the categorical latent 

variable the number sign (#) followed by the number of the class.  This 

alternative specification allows individual parameters to be referred to in 

the MODEL command for the purpose of giving starting values or 

placing restrictions. 

 
OUTPUT: TECH1 TECH8; 

 

The OUTPUT command is used to request additional output not 

included as the default.  The TECH1 option is used to request the arrays 

containing parameter specifications and starting values for all free 

parameters in the model.  The TECH8 option is used to request that the 

optimization history in estimating the model be printed in the output.  

TECH8 is printed to the screen during the computations as the default.  

TECH8 screen printing is useful for determining how long the analysis 

takes.   
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EXAMPLE 10.2: TWO-LEVEL MIXTURE REGRESSION FOR 

A CONTINUOUS DEPENDENT VARIABLE WITH A 

BETWEEN-LEVEL CATEGORICAL LATENT VARIABLE 
 

 
TITLE: this is an example of a two-level mixture  

 regression for a continuous dependent 

variable with a between-level categorical 

latent variable 

DATA: FILE = ex10.2.dat; 

VARIABLE: NAMES ARE y x1 x2 w dummy clus; 

 USEVARIABLES = y-w; 

 CLASSES = cb(2); 

 WITHIN = x1 x2; 

 BETWEEN = cb w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE RANDOM; 

 PROCESSORS = 2; 

MODEL: 

 %WITHIN% 

 %OVERALL% 

 s1 | y ON x1; 

 s2 | y ON x2; 

 %BETWEEN% 

 %OVERALL%  

 cb y ON w; s1-s2@0; 

 %cb#1% 

 [s1 s2]; 

 %cb#2% 

 [s1 s2]; 
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In this example, the two-level mixture regression model for a continuous 

dependent variable shown in the picture above is estimated.  This 

example is similar to Example 10.1 except that the categorical latent 

variable is a between-level variable.  This means that latent classes are 

formed for clusters (between-level units) not individuals.  In addition, 

the regression slopes are random not fixed.  In the within part of the 

model, the random intercept is shown in the picture as a filled circle at 
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the end of the arrow pointing to y.  It is referred to as y on the between 

level.  The random slopes are shown as filled circles on the arrows from 

x1 and x2 to y.   They are referred to as s1 and s2 on the between level.  

The random effects y, s1, and s2 are shown in circles in the between part 

of the model because they are continuous latent variables that vary 

across clusters (between-level units).  In the between part of the model, 

the arrows from cb to y, s1, and s2 indicate that the intercept of y and the 

means of s1 and s2 vary across the classes of cb.  In addition, the random 

intercept y and the categorical latent variable cb are regressed on a 

cluster-level covariate w.  The random slopes s1 and s2 have no within-

class variance.  Only their means vary across the classes of cb.  This 

implies that the distributions of s1 and s2 can be thought of as non-

parametric representations rather than normal distributions (Aitkin, 

1999; Muthén & Asparouhov, 2009).  Another example of a non-

parametric representation of a latent variable distribution is shown in 

Example 7.26.   

 

The BETWEEN option is used to identify the variables in the data set 

that are measured on the cluster level and modeled only on the between 

level and to identify between-level categorical latent variables.  In this 

example, the categorical latent variable cb is a between-level variable.  

Between-level classes consist of clusters such as schools instead of 

individuals. The PROCESSORS option of the ANALYSIS command is 

used to specify that 2 processors will be used in the analysis for parallel 

computations.   

 

In the overall part of the within part of the model, the | symbol is used in 

conjunction with TYPE=RANDOM to name and define the random 

slope variables in the model.  The name on the left-hand side of the | 

symbol names the random slope variable.  The statement on the right-

hand side of the | symbol defines the random slope variable.  Random 

slopes are defined using the ON option.  The random slopes s1 and s2 

are defined by the linear regressions of the dependent variable y on the 

individual-level covariates x1 and x2.  The within-level residual variance 

in the regression of y on x is estimated as the default.     

 

In the overall part of the between part of the model, the ON statement 

describes the multinomial logistic regression of the categorical latent 

variable cb on the cluster-level covariate w and the linear regression of 

the random intercept y on the cluster-level covariate w.  The variances of 

the random slopes s1 and s2 are fixed at zero.  In the class-specific parts 
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of the between part of the model, the means of the random slopes are 

specified to vary across the between-level classes of cb.  The intercept of 

the random intercept y varies across the between-level classes of cb as 

the default.   

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, one dimension of integration is used with a 

total of 15 integration points.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Example 10.1. 

 

Following is an alternative specification of the MODEL command that is 

simpler when the model has many covariates and when the variances of 

the random slopes are zero: 

 
MODEL: 

 %WITHIN% 

 %OVERALL% 

 y ON x1 x2; 

 %cb#1% 

 y ON x1 x2; 

 %cb#2% 

 y ON x1 x2; 

 %BETWEEN% 

 %OVERALL%  

 cb ON w; 

 y ON w; 

 

In this specification, instead of the | statements, the random slopes are 

represented as class-varying slopes in the class-specific parts of the 

within part of the model.  This specification makes it unnecessary to 

refer to the means and variances of the random slopes in the between 

part of the model. 
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EXAMPLE 10.3: TWO-LEVEL MIXTURE REGRESSION FOR 

A CONTINUOUS DEPENDENT VARIABLE WITH BETWEEN-

LEVEL CATEGORICAL LATENT CLASS INDICATORS FOR 

A BETWEEN-LEVEL CATEGORICAL LATENT VARIABLE 
 

 
TITLE: this is an example of a two-level mixture  

 regression for a continuous dependent 

variable with between-level categorical 

latent class indicators for a between-

level categorical latent variable 

DATA: FILE = ex10.3.dat; 

VARIABLE: NAMES ARE u1-u6 y x1 x2 w dummy clus; 

 USEVARIABLES = u1-w; 

 CATEGORICAL = u1-u6; 

CLASSES = cb(2); 

 WITHIN = x1 x2; 

 BETWEEN = cb w u1-u6; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

 PROCESSORS = 2; 

MODEL: 

 %WITHIN% 

 %OVERALL% 

 y ON x1 x2; 

 %BETWEEN% 

 %OVERALL%  

 cb ON w; 

 y ON w; 

OUTPUT: TECH1 TECH8;  
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In this example, the two-level mixture regression model for a continuous 

dependent variable shown in the picture above is estimated.  This 

example is similar to Example 10.2 except that the between-level 

categorical latent variable has between-level categorical latent class 

indicators and the slopes are fixed.  In the within part of the model, the 

random intercept is shown in the picture as a filled circle at the end of 

the arrow pointing to y.  It is referred to as y on the between level.  The 
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random intercept y is shown in a circle in the between part of the model 

because it is a continuous latent variable that varies across clusters 

(between-level units).  In the between part of the model, the arrow from 

cb to y indicates that the intercept of y varies across the classes of cb.  In 

addition, the random intercept y and the categorical latent variable cb are 

regressed on a cluster-level covariate w.  The arrows from cb to u1, u2, 

u3, u4, u5, and u6 indicate that these variables are between-level 

categorical latent class indicators of the categorical latent variable cb.  

 

In the overall part of the between part of the model, the first ON 

statement describes the multinomial logistic regression of the categorical 

latent variable cb on the cluster-level covariate w.  The second ON 

statement describes the linear regression of the random intercept y on the 

cluster-level covariate w.  The intercept of the random intercept y and 

the thresholds of the between-level latent class indicators u1, u2, u3, u4, 

u5, and u6 vary across the between-level classes of cb as the default. 

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, one dimension of integration is used with a 

total of 15 integration points.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Examples 10.1 and 

10.2. 
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EXAMPLE 10.4: TWO-LEVEL CFA MIXTURE MODEL WITH 

CONTINUOUS FACTOR INDICATORS 
 

 
TITLE: this is an example of a two-level CFA 

mixture model with continuous factor 

indicators 

DATA: FILE IS ex10.4.dat; 

VARIABLE: NAMES ARE y1-y5 class clus; 

 USEVARIABLES = y1-y5; 

 CLASSES = c (2); 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

 STARTS = 0; 

MODEL:  

 %WITHIN% 

 %OVERALL% 

 fw BY y1-y5;  

 %BETWEEN% 

 %OVERALL% 

 fb BY y1-y5;  

 c#1*1; 

 %c#1% 

 [fb*2]; 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level confirmatory factor analysis (CFA) 

mixture model with continuous factor indicators in the picture above is 

estimated.  This example is the same as Example 7.17 except that it has 

been extended to the multilevel framework.  In the within part of the 

model, the filled circles at the end of the arrows from the within factor 

fw to y1, y2, y3, y4, and y5 represent random intercepts that vary across 

clusters.  The filled circle on the circle containing c represents the 

random mean of c that varies across clusters.  In the between part of the 

model, the random intercepts are referred to as y1, y2, y3, y4, and y5  

and the random mean is referred to as c#1 where they are shown in 

circles because they are continuous latent variables that vary across 

clusters.  In the between part of the model, the random intercepts are 

indicators of the between factor fb.  In this model, the residual variances 
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for the factor indicators in the between part of the model are zero.  If 

factor loadings are constrained to be equal across the within and the 

between levels, this implies a model where the mean of the within factor 

varies across the clusters.  The between part of the model specifies that 

the random mean c#1 of the categorical latent variable c and the between 

factor fb are uncorrelated.  Other modeling possibilities are for fb and 

c#1 to be correlated, for fb to be regressed on c#1, or for c#1 to be 

regressed on fb.  Regressing c#1 on fb, however, leads to an internally 

inconsistent model where the mean of fb is influenced by c at the same 

time as c#1 is regressed on fb, leading to a reciprocal interaction. 

 

In the overall part of the within part of the model, the BY statement 

specifies that fw is measured by the factor indicators y1, y2, y3, y4, and 

y5.  The metric of the factor is set automatically by the program by 

fixing the first factor loading to one.  This option can be overridden.  

The residual variances of the factor indicators are estimated and the 

residuals are not correlated as the default.  The variance of the factor is 

estimated as the default.   

 

In the overall part of the between part of the model, the BY statement 

specifies that fb is measured by the random intercepts y1, y2, y3, y4, and 

y5.  The residual variances of the random intercepts are fixed at zero as 

the default because they are often very small and each residual variance 

requires one dimension of numerical integration.  The variance of fb is 

estimated as the default.  A starting value of one is given to the variance 

of the random mean of the categorical latent variable c referred to as 

c#1.  In the model for class 1 in the between part of the model, the mean 

of fb is given a starting value of 2.   

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, two dimensions of integration are used with a 

total of 225 integration points.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Example 10.1. 
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EXAMPLE 10.5: TWO-LEVEL IRT MIXTURE ANALYSIS 

WITH BINARY FACTOR INDICATORS AND A BETWEEN-

LEVEL CATEGORICAL LATENT VARIABLE 
 

 
TITLE: this is an example of a two-level IRT 

mixture analysis with binary factor 

indicators and a between-level categorical 

latent variable 

DATA: FILE = ex10.5.dat; 

VARIABLE: NAMES ARE u1-u8 dumb dum clus; 

 USEVARIABLES = u1-u8; 

 CATEGORICAL = u1-u8; 

 CLASSES = cb(2) c(2); 

 BETWEEN = cb; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

 ALGORITHM = INTEGRATION; 

 PROCESSORS = 2; 

MODEL: 

 %WITHIN% 

 %OVERALL% 

 f BY u1-u8; 

 [f@0]; 

 %BETWEEN% 

 %OVERALL% 

 %cb#1.c#1% 

 [u1$1-u8$1]; 

 %cb#1.c#2% 

 [u1$1-u8$1]; 

 %cb#2.c#1% 

 [u1$1-u8$1]; 

 %cb#2.c#2% 

 [u1$1-u8$1]; 

MODEL c: 

 %WITHIN% 

 %c#1% 

 f; 

 %c#2% 

 f; 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level item response theory (IRT) mixture model 

with binary factor indicators shown in the picture above is estimated.  

The model has both individual-level classes and between-level classes.  

Individual-level classes consist of individuals, for example, students.  

Between-level classes consist of clusters, for example, schools.  The 

within part of the model is similar to the single-level model in Example 

7.27.  In the within part of the model, an IRT mixture model is specified 

where the factor indicators u1, u2, u3, u4, u5, u6, u7, and u8 have 

thresholds that vary across the classes of the individual-level categorical 
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latent variable c.  The filled circles at the end of the arrows pointing to 

the factor indicators show that the thresholds of the factor indicators are 

random.  They are referred to as u1, u2, u3, u4, u5, u6, u7, and u8 on the 

between level.  The random thresholds u1, u2, u3, u4, u5, u6, u7, and u8 

are shown in circles in the between part of the model because they are 

continuous latent variables that vary across clusters (between-level 

units).  The random thresholds have no within-class variance.  They vary 

across the classes of the between-level categorical latent variable cb.  

For related models, see Asparouhov and Muthén (2008a). 

 

In the class-specific part of the between part of the model, the random 

thresholds are specified to vary across classes that are a combination of 

the classes of the between-level categorical latent variable cb and the 

individual-level categorical latent variable c.  These classes are referred 

to by combining the class labels using a period (.).  For example, a 

combination of class 1 of cb and class 1 of c is referred to as cb#1.c#1.  

This represents an interaction between the two categorical latent 

variables in their influence on the thresholds. 

 

When a model has more than one categorical latent variable, MODEL 

followed by a label is used to describe the analysis model for each 

categorical latent variable.  Labels are defined by using the names of the 

categorical latent variables.  In the model for the individual-level 

categorical latent variable c, the variances of the factor f are allowed to 

vary across the classes of c. 

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, one dimension of integration is used with a 

total of 15 integration points.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Examples 7.27, 10.1, 

and 10.2. 
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EXAMPLE 10.6: TWO-LEVEL LCA WITH CATEGORICAL 

LATENT CLASS INDICATORS WITH COVARIATES 
 

 
TITLE: this is an example of a two-level LCA with 

categorical latent class indicators with 

covariates 

DATA:  FILE IS ex10.6.dat; 

VARIABLE: NAMES ARE u1-u6 x w class clus; 

 USEVARIABLES = u1-u6 x w; 

 CATEGORICAL = u1-u6; 

 CLASSES = c (3); 

 WITHIN = x; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

MODEL: 

 %WITHIN% 

 %OVERALL% 

 c ON x;  

 %BETWEEN% 

 %OVERALL%  

 f BY c#1 c#2; 

 f ON w; 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level latent class analysis (LCA) with 

categorical latent class indicators and covariates shown in the picture 

above is estimated (Vermunt, 2003).  This example is similar to Example 

7.12 except that it has been extended to the multilevel framework.  In the 
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within part of the model, the categorical latent variable c is regressed on 

the individual-level covariate x.  The filled circles at the end of the 

arrow from x to c represent the random intercepts for classes 1 and 2 of 

the categorical latent variable c which has three classes.  The random 

intercepts are referred to as c#1 and c#2 in the between part of the model 

where they are shown in circles instead of squares because they are 

continuous latent variables that vary across clusters.  Because the 

random intercepts in LCA are often highly correlated and to reduce the 

dimensions of integration, a factor is used to represent the random 

intercept variation.  This factor is regressed on the cluster-level covariate 

w.  

 

The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 

in the model and its estimation.  In the example above, the latent class 

indicators u1, u2, u3, u4, u5, and u6 are binary or ordered categorical 

variables.  The program determines the number of categories for each 

indicator. 

 

In the within part of the model, the ON statement describes the 

multinomial logistic regression of the categorical latent variable c on the 

individual-level covariate x when comparing classes 1 and 2 to class 3.  

The intercepts of the random intercepts in the regression of c on x are 

estimated as the default.  The random intercept for class 3 is zero 

because it is the reference class.  In the between part of the model, the 

BY statement specifies that f is measured by the random intercepts c#1 

and c#2.  The metric of the factor is set automatically by the program by 

fixing the first factor loading to one.  The residual variances of the 

random intercepts are fixed at zero as the default.  The ON statement 

describes the linear regression of the between factor f on the cluster-

level covariate w. 

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, one dimension of integration is used with 15 

integration points.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  An explanation of 

the other commands can be found in Example 10.1. 
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EXAMPLE 10.7: TWO-LEVEL LCA WITH CATEGORICAL 

LATENT CLASS INDICATORS AND A BETWEEN-LEVEL 

CATEGORICAL LATENT VARIABLE 
 

 
TITLE: this is an example of a two-level LCA with 

categorical latent class indicators and a 

between-level categorical latent variable 

DATA: FILE = ex10.7.dat; 

VARIABLE: NAMES ARE u1-u10 dumb dumw clus; 

 USEVARIABLES = u1-u10; 

 CATEGORICAL = u1-u10; 

           CLASSES = cb(5) cw(4); 

           WITHIN = u1-u10; 

           BETWEEN = cb; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE;  

 PROCESSORS = 2; 

 STARTS = 100 10; 

MODEL: 

 %WITHIN% 

 %OVERALL% 

 %BETWEEN% 

 %OVERALL% 

 cw#1-cw#3 ON cb; 

MODEL cw: 

 %WITHIN% 

 %cw#1% 

 [u1$1-u10$1]; 

 [u1$2-u10$2]; 

 %cw#2% 

 [u1$1-u10$1]; 

 [u1$2-u10$2]; 

 %cw#3% 

 [u1$1-u10$1]; 

 [u1$2-u10$2]; 

 %cw#4% 

 [u1$1-u10$1]; 

 [u1$2-u10$2]; 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level latent class analysis (LCA) with 

categorical latent class indicators shown in the picture above is 

estimated.  This example is similar to Example 10.6 except that the 

between level random means are influenced by the between-level 

categorical latent variable cb.  In the within part of the model, the filled 

circles represent the three random means of the four classes of the 

individual-level categorical latent variable cw.  They are referred to as 

cw#1, cw#2, and cw#3 on the between level.  The random means are 

shown in circles in the between part of the model because they are 

continuous latent variables that vary across clusters (between-level 

units).  The random means have means that vary across the classes of the 

categorical latent variable cb but the within-class variances of the 

random means are zero (Bijmolt, Paas, & Vermunt, 2004). 
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In the overall part of the between part of the model, the ON statement 

describes the linear regressions of cw#1, cw#2, and cw#3 on the 

between-level categorical latent variable cb.  This regression implies that 

the means of these random means vary across the classes of the 

categorical latent variable cb.   

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Examples 10.1, 10.2, 

and 10.6. 
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EXAMPLE 10.8: TWO-LEVEL GROWTH MODEL FOR A 

CONTINUOUS OUTCOME (THREE-LEVEL ANALYSIS) WITH 

A BETWEEN-LEVEL CATEGORICAL LATENT VARIABLE 
 

 
TITLE: this is an example of a two-level growth  

 model for a continuous outcome (three- 

 level analysis) with a between-level  

categorical latent variable 

DATA: FILE = ex10.8.dat; 

VARIABLE: NAMES ARE y1-y4 x w dummy clus; 

 USEVARIABLES = y1-w; 

 CLASSES = cb(2); 

 WITHIN = x; 

 BETWEEN = cb w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE RANDOM; 

 PROCESSORS = 2; 

MODEL: 

 %WITHIN% 

 %OVERALL% 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 y1-y4 (1); 

 iw sw ON x; 

 s | sw ON iw; 

 %BETWEEN% 

 %OVERALL% 

 ib sb | y1@0 y2@1 y3@2 y4@3; 

 y1-y4@0; 

 ib sb ON w; 

 cb ON w; 

 s@0; 

 %cb#1% 

 [ib sb s]; 

 %cb#2% 

 [ib sb s]; 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level growth model for a continuous outcome 

(three-level analysis) shown in the picture above is estimated.  This 

example is similar to Example 9.12 except that a random slope is 

estimated in the within-level regression of the slope growth factor on the 

intercept growth factor and a between-level latent class variable cb is 

part of the model.  This means that latent classes are formed for clusters 

(between-level units) not individuals.  In the within part of the model, 

the random slope is shown in the picture as a filled circle on the arrow 

from iw to sw.   It is referred to as s on the between level.  The random 

slope s is shown in a circle in the between part of the model because it is 

a continuous latent variable that varies across clusters (between-level 

units).  In the between part of the model, the arrows from cb to ib, sb, 

and s indicate that the intercepts of ib and sb and the mean of s vary 

across the classes of cb.  In addition, the categorical latent variable cb is 

regressed on a cluster-level covariate w.  The random slope s has no 

within-class variance.  Only its mean varies across the classes of cb.  

This implies that the distributions of s can be thought of as a non-

parametric representation rather than a normal distribution (Aitkin, 

1999; Muthén & Asparouhov, 2007). 

 

In the overall part of the within part of the model, the | statement is used 

to name and define the random slope s which is used in the between part 

of the model.  In the overall part of the between part of the model, the 

second ON statement describes the multinomial logistic regression of the 

categorical latent variable cb on a cluster-level covariate w.  The 

variance of the random slope s is fixed at zero.  In the class-specific parts 

of the between part of the model, the intercepts of the growth factors ib 

and sb and the mean of the random slope s are specified to vary across 

the between-level classes of cb.   

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, two dimensions of integration are used with a 

total of 225 integration points.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Examples 9.12, 10.1, 

and 10.2. 
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Following is an alternative specification of the MODEL command that is 

simpler when the variances of the random slopes are zero: 

 
MODEL: 

 %WITHIN% 

 %OVERALL% 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 y1-y4 (1); 

 iw ON x; 

 sw ON x iw; 

 %cb#1% 

 sw ON iw; 

 %cb#2% 

 sw ON iw; 

 %BETWEEN% 

 %OVERALL% 

 ib sb | y1@0 y2@1 y3@2 y4@3; 

 y1-y4@0; 

 ib sb ON w; 

 cb ON w; 

 %cb#1% 

 [ib sb]; 

 %cb#2% 

 [ib sb]; 

 

In this specification, instead of the | statement, the random slope is 

represented as class-varying slopes in the class-specific parts of the 

within part of the model.  This specification makes it unnecessary to 

refer to the means and variances of the random slopes in the between 

part of the model. 
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EXAMPLE 10.9: TWO-LEVEL GMM FOR A CONTINUOUS 

OUTCOME (THREE-LEVEL ANALYSIS) 
 

 
TITLE: this is an example of a two-level GMM for 

a continuous outcome (three-level 

analysis) 

DATA: FILE IS ex10.9.dat; 

VARIABLE: NAMES ARE y1-y4 x w class clus; 

 USEVARIABLES = y1-y4 x w; 

 CLASSES = c (2); 

 WITHIN = x; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

 STARTS = 0; 

MODEL:  

 %WITHIN% 

 %OVERALL% 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 iw sw ON x; 

 c ON x; 

 %BETWEEN% 

 %OVERALL% 

 ib sb | y1@0 y2@1 y3@2 y4@3; 

 y1-y4@0; 

 ib sb ON w; 

 sb@0; 

 c#1 ON w; 

 c#1*1; 

 %c#1% 

 [ib sb]; 

 %c#2% 

 [ib*3 sb*1]; 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level growth mixture model (GMM; Muthén, 

2004; Muthén & Asparouhov, 2009) for a continuous outcome (three-

level analysis) shown in the picture above is estimated. This example is 

similar to Example 8.1 except that it has been extended to the multilevel 
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framework.  In the within part of the model, the filled circles at the end 

of the arrows from the within growth factors iw and sw to y1, y2, y3, and 

y4 represent random intercepts that vary across clusters.  The filled 

circle at the end of the arrow from x to c represents a random intercept.  

The random intercepts are referred to in the between part of the model as 

y1, y2, y3, y4, and c#1.  In the between-part of the model, the random 

intercepts are shown in circles because they are continuous latent 

variables that vary across clusters.    

 

In the within part of the model, the | statement names and defines the 

within intercept and slope factors for the growth model.  The names iw 

and sw on the left-hand side of the | symbol are the names of the 

intercept and slope growth factors, respectively.  The values on the right-

hand side of the | symbol are the time scores for the slope growth factor.  

The time scores of the slope growth factor are fixed at 0, 1, 2, and 3 to 

define a linear growth model with equidistant time points.  The zero time 

score for the slope growth factor at time point one defines the intercept 

growth factor as an initial status factor.  The coefficients of the intercept 

growth factor are fixed at one as part of the growth model 

parameterization.  The residual variances of the outcome variables are 

estimated and allowed to be different across time and the residuals are 

not correlated as the default.  The first ON statement describes the linear 

regressions of the growth factors on the individual-level covariate x.  

The residual variances of the growth factors are free to be estimated as 

the default.  The residuals of the growth factors are correlated as the 

default because residuals are correlated for latent variables that do not 

influence any other variable in the model except their own indicators.  

The second ON statement describes the multinomial logistic regression 

of the categorical latent variable c on the individual-level covariate x 

when comparing class 1 to class 2.  The intercept in the regression of c 

on x is estimated as the default.   

 

In the overall model in the between part of the model, the | statement 

names and defines the between intercept and slope factors for the growth 

model.  The names ib and sb on the left-hand side of the | symbol are the 

names of the intercept and slope growth factors, respectively.  The 

values of the right-hand side of the | symbol are the time scores for the 

slope growth factor.  The time scores of the slope growth factor are fixed 

at 0, 1, 2, and 3 to define a linear growth model with equidistant time 

points.  The zero time score for the slope growth factor at time point one 

defines the intercept growth factor as an initial status factor.  The 
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coefficients of the intercept growth factor are fixed at one as part of the 

growth model parameterization.  The residual variances of the outcome 

variables are fixed at zero on the between level in line with conventional 

multilevel growth modeling.  This can be overridden.  The first ON 

statement describes the linear regressions of the growth factors on the 

cluster-level covariate w.  The residual variance of the intercept growth 

factor is free to be estimated as the default.  The residual variance of the 

slope growth factor is fixed at zero because it is often small and each 

residual variance requires one dimension of numerical integration.  

Because the slope growth factor residual variance is fixed at zero, the 

residual covariance between the growth factors is automatically fixed at 

zero.  The second ON statement describes the linear regression of the 

random intercept c#1 of the categorical latent variable c on the cluster-

level covariate w.  A starting value of one is given to the residual 

variance of the random intercept of the categorical latent variable c 

referred to as c#1.   

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variable at the four time points are fixed at zero as the 

default.  The growth factor intercepts are estimated as the default in the 

between part of the model.  In the model for class 2 in the between part 

of the model, the mean of ib and sb are given a starting value of zero in 

class 1 and three and one in class 2.    

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, two dimensions of integration are used with a 

total of 225 integration points.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Example 10.1. 

 



Examples: Multilevel Mixture Modeling 

                                                                                                               431 

EXAMPLE 10.10: TWO-LEVEL GMM FOR A CONTINUOUS 

OUTCOME (THREE-LEVEL ANALYSIS) WITH A BETWEEN-

LEVEL CATEGORICAL LATENT VARIABLE 
 

 
TITLE: this is an example of a two-level GMM for 

a continuous outcome (three-level 

analysis) with a between-level categorical 

latent variable 

DATA: FILE = ex10.10.dat; 

VARIABLE: NAMES ARE y1-y4 x w dummyb dummy clus; 

 USEVARIABLES = y1-w; 

 CLASSES = cb(2) c(2); 

 WITHIN = x; 

 BETWEEN = cb w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

 PROCESSORS = 2; 

MODEL: 

 %WITHIN% 

 %OVERALL% 

 iw sw | y1@0 y2@1 y3@2 y4@3; 

 iw sw ON x; 

 c ON x; 

 %BETWEEN% 

 %OVERALL% 

 ib sb | y1@0 y2@1 y3@2 y4@3; 

 ib2 | y1-y4@1; 

 y1-y4@0; 

 ib sb ON w; 

 c#1 ON w; 

 sb@0; c#1; 

 ib2@0; 

 cb ON w; 

MODEL c: 

 %BETWEEN% 

 %c#1% 

 [ib sb]; 

 %c#2% 

 [ib sb]; 

MODEL cb: 

 %BETWEEN% 

 %cb#1% 

 [ib2@0]; 

 %cb#2% 

 [ib2]; 

OUTPUT: TECH1 TECH8;  
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In this example, the two-level growth mixture model (GMM; Muthén & 

Asparouhov, 2009) for a continuous outcome (three-level analysis) 

shown in the picture above is estimated.  This example is similar to 

Example 10.9 except that a between-level categorical latent variable cb 

has been added along with a second between-level intercept growth 

factor ib2.  The second intercept growth factor is added to the model so 
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that the intercept growth factor mean can vary across not only the classes 

of the individual-level categorical latent variable c but also across the 

classes of the between-level categorical latent variable cb.  Individual-

level classes consist of individuals, for example, students.  Between-

level classes consist of clusters, for example, schools. 

 

In the overall part of the between part of the model, the second | 

statement names and defines the second between-level intercept growth 

factor ib2.  This growth factor is used to represent differences in 

intercept growth factor means across the between-level classes of the 

categorical latent variable cb. 

 

When a model has more than one categorical latent variable, MODEL 

followed by a label is used to describe the analysis model for each 

categorical latent variable.  Labels are defined by using the names of the 

categorical latent variables.  In the model for the individual-level 

categorical latent variable c, the intercepts of the intercept and slope 

growth factors ib and sb are allowed to vary across the classes of the 

individual-level categorical latent variable c.  In the model for the 

between-level categorical latent variable cb, the means of the intercept 

growth factor ib2 are allowed to vary across clusters (between-level 

units).  The mean in one class is fixed at zero for identification purposes.   

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, two dimensions of integration are used with a 

total of 225 integration points.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Examples 10.1, 10.2, 

and 10.4. 
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EXAMPLE 10.11: TWO-LEVEL LCGA FOR A THREE-

CATEGORY OUTCOME 
 

 
TITLE: this is an example of a two-level LCGA for 

a three-category outcome 

DATA: FILE IS ex10.11.dat; 

VARIABLE: NAMES ARE u1-u4 class clus; 

 USEVARIABLES = u1-u4; 

 CATEGORICAL = u1-u4; 

 CLASSES = c(2); 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

MODEL: 

 %WITHIN% 

 %OVERALL% 

 i s | u1@0 u2@1 u3@2 u4@3; 

 i-s@0;  

 %c#1% 

 [i*1 s*1]; 

 %c#2% 

 [i@0 s]; 

 %BETWEEN% 

 %OVERALL% 

 c#1*1; 

 [u1$1-u4$1*1] (1); 

 [u1$2-u4$2*1.5] (2); 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level latent class growth analysis (LCGA) 

shown in the picture above is estimated.  This example is the same as 

Example 8.10 except that it has been extended to the multilevel 

framework.  A growth model is not specified in the between part of the 

model because the variances of the growth factors i and s are zero in 

LCGA.  The filled circle on the circle containing the categorical latent 

variable c represents the random mean of c.  In the between part of the 

model, the random mean is shown in a circle because it is a continuous 

latent variable that varies across clusters.  

 

The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 

in the model and its estimation.  In the example above, the latent class 

indicators u1, u2, u3, u4, u5, and u6 are binary or ordered categorical 

variables.  The program determines the number of categories for each 

indicator.  In this example, u1, u2, u3, and u4 are three-category 

variables.  
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In the overall part of the of the within part of the model, the variances of 

the growth factors i and s are fixed at zero because latent class growth 

analysis has no within class variability.  In the overall part of the of the 

between part of the model, the two thresholds for the outcome are held 

equal across the four time points.  The growth factor means are specified 

in the within part of the model because there are no between growth 

factors.     

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, one dimension of integration is used with 15 

integration points.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  An explanation of 

the other commands can be found in Example 10.1. 

 

EXAMPLE 10.12: TWO-LEVEL LTA WITH A COVARIATE 
 

 
TITLE: this is an example of a two-level LTA with 

a covariate  

DATA: FILE = ex10.12.dat; 

VARIABLE: NAMES ARE u11-u14 u21-u24 x w dum1 dum2 

clus; 

 USEVARIABLES = u11-w; 

 CATEGORICAL = u11-u14 u21-u24; 

 CLASSES = c1(2) c2(2); 

 WITHIN = x; 

 BETWEEN = w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

 PROCESSORS = 2; 

MODEL: 

 %WITHIN% 

 %OVERALL% 

 c2 ON c1 x; 

 c1 ON x; 

 %BETWEEN% 

 %OVERALL% 

 c1#1 ON w; 

 c2#1 ON c1#1 w;  

 c1#1 c2#1; 
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MODEL c1: 

 %BETWEEN% 

 %c1#1% 

 [u11$1-u14$1] (1-4); 

 %c1#2% 

 [u11$1-u14$1] (5-8); 

MODEL c2: 

 %BETWEEN% 

 %c2#1% 

 [u21$1-u24$1] (1-4); 

 %c2#2% 

 [u21$1-u24$1] (5-8); 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level latent transition analysis (LTA) with a 

covariate shown in the picture above is estimated.  This example is 

similar to Example 8.13 except that the categorical latent variables are 

allowed to have random intercepts that vary on the between level.  This 

model is described in Asparouhov and Muthén (2008a).  In the within 

part of the model, the random intercepts are shown in the picture as 

filled circles at the end of the arrows pointing to c1 and c2.  They are 

referred to as c1#1 and c2#1 on the between level.  The random 

intercepts c1#1 and c2#1 are shown in circles in the between part of the 

model because they are continuous latent variables that vary across 

clusters (between-level units). 

 

In the overall part of the between part of the model, the first ON 

statement describes the linear regression of the random intercept c1#1 on 

a cluster-level covariate w.  The second ON statement describes the 

linear regression of the random intercept c2#1 on the random intercept 

c1#1 and the cluster-level covariate w.  The residual variances of the 

random intercepts c1#1 and c2#1 are estimated instead of being fixed at 

the default value of zero.  

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, two dimensions of integration are used with a 

total of 225 integration points.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Examples 8.13, 10.1, 

and 10.2. 
 



Examples: Multilevel Mixture Modeling 

                                                                                                               439 

EXAMPLE 10.13: TWO-LEVEL LTA WITH A COVARIATE 

AND A BETWEEN-LEVEL CATEGORICAL LATENT 

VARIABLE 
 

 
TITLE: this is an example of a two-level LTA with 

a covariate and a between-level 

categorical latent variable 

DATA: FILE = ex10.13.dat; 

VARIABLE: NAMES ARE u11-u14 u21-u24 x w dumb dum1 

dum2 clus; 

 USEVARIABLES = u11-w; 

 CATEGORICAL = u11-u14 u21-u24; 

 CLASSES = cb(2) c1(2) c2(2); 

 WITHIN = x; 

 BETWEEN = cb w; 

 CLUSTER = clus; 

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 

 PROCESSORS = 2; 

MODEL: 

 %WITHIN% 

 %OVERALL% 

 c2 ON c1 x; 

 c1 ON x; 

 %BETWEEN% 

 %OVERALL% 

 c1#1 ON cb; 

 c2#1 ON cb; 

 cb ON w; 

MODEL cb: 

 %WITHIN% 

%cb#1% 

 c2 ON c1; 

MODEL c1: 

 %BETWEEN% 

 %c1#1% 

 [u11$1-u14$1] (1-4); 

 %c1#2% 

 [u11$1-u14$1] (5-8); 

MODEL c2: 

 %BETWEEN% 

 %c2#1% 

 [u21$1-u24$1] (1-4); 

 %c2#2% 

 [u21$1-u24$1] (5-8); 

OUTPUT: TECH1 TECH8; 
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In this example, the two-level latent transition analysis (LTA) with a 

covariate shown in the picture above is estimated.  This example is 

similar to Example 10.12 except that a between-level categorical latent 

variable cb has been added, a random slope has been added, and the 

random intercepts and random slope have no variance within the classes 

of the between-level categorical latent variable cb (Asparouhov & 

Muthén, 2008a).  In the within part of the model, the random intercepts 

are shown in the picture as filled circles at the end of the arrows pointing 

to c1 and c2.  The random slope is shown as a filled circle on the arrow 

from c1 to c2.   In the between part of the model, the random intercepts 

are referred to as c1#1 and c2#1 and the random slope is referred to as s. 

The random intercepts c1#1 and c2#1 and the random slope s are shown 

in circles in because they are continuous latent variables that vary across 
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clusters (between-level units).  In the between part of the model, the 

arrows from cb to c1#1, c2#1, and s indicate that the means of c1#1, 

c2#1, and s vary across the classes of cb.   

 

In the overall part of the between part of the model, the first two ON 

statements describe the linear regressions of c1#1 and c2#1 on the 

between-level categorical latent variable cb.  These regressions imply 

that the means of the random intercepts vary across the classes of the 

categorical latent variable cb.  The variances of c1#1 and c2#1 within 

the cb classes are zero as the default. 

 

When a model has more than one categorical latent variable, MODEL 

followed by a label is used to describe the analysis model for each 

categorical latent variable.  Labels are defined by using the names of the 

categorical latent variables.  In the class-specific part of the within part 

of the model for the between-level categorical latent variable cb, the ON 

statement describes the multinomial regression of c2 on c1.  This implies 

that the random slope s varies across the classes of cb.  The within-class 

variance of s is zero as the default.   

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Examples 8.13, 10.1, 

10.2, and 10.12. 
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