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A general latent variable model is given which includes the specification of a missing data 
mechanism. This framework allows for an elucidating discussion of existing general multivariate 
theory bearing on maximum likelihood estimation with missing data. Here, missing completely at 
random is not a prerequisite for unbiased estimation in large samples, as when using the tradi- 
tional listwise or pairwise present data approaches. The theory is connected with old and new 
results in the area of selection and factorial invariance. It is pointed out that in many applications, 
maximum likelihood estimation with missing data may be carried out by existing structural 
equation modeling software, such as LISREL and LISCOMP. Several sets of artifical data are 
generated within the general model framework. The proposed estimator is compared to the two 
traditional ones and found superior. 
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1. Introduction 

Confirmatory factor analysis and structural equation modeling (see e.g., J6reskog, 
1969, 1977) need often be applied in situations where data are missing on certain variables 
and it cannot be realistically assumed that the data are missing completely at random. 
Ordinary methods would in these cases give estimates that are both inefficient and have 
large sample bias. Existing missing data theory that provide better alternatives (see e.g., 
Anderson, 1957; Beale & Little, 1975; Little & Rubin, 1987; Rubin, 1974, 1976) does not 
seem to have been adapted in factor analysis and structural equation modeling practice. 
Reasons for this may include lack of familiarity with missing data theory and the fact that 
general maximum likelihood estimation requires special computational routines as in 
Finkbeiner (1979); see also Dempster, Laird, & Rubin (1977). 

This paper has several aims. A formulation is given for a possible extension of a 
latent variable structural equation model to include missingness. Estimation will not be 
attempted for all the parameters of the extended model. Within this framework, however, 
one aim is to explicate some parts of missing data theory regarding maximum likelihood 
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inference. The common assumption of missing completely at random is often quite unre- 
alistic and correct maximum likelihood inference can be obtained under the much less 
restrictive assumption of the missing data mechanism being "ignorable" (Rubin, 1976). We 
will both consider missingness being predicted by observed variables and by latent factors 
and make connections with classical results on inference in selective samples and factorial 
invariance (see e.g., Meredith, 1964; Muth~n & J6reskog, 1983). The aim of the paper is 
also to show that for many missing data situations the proposed likelihood approach may 
be carried out with existing structural equation modeling software, such as the generally 
available LISREL (J6reskog & S6rbom, 1984) and L I S C O M P  (Muth6n, 1987) programs. 
The aim of our study is furthermore to use the above missing data structural equation 
model framework to illustrate situations where missingness is strongly selective rather 
than completely at random, as in the factor analysis studies of Finkbeiner (1979) and 
Brown (1983). Hence, the loss of efficiency in the classical missing data methods of the 
listwise deletion and pairwise present approaches will be overshadowed by concerns 
about  size of parameter bias. These two estimators will be compared to the alternative 
likelihood approach in a set of artificial data situations. 

2. A Simple Model for Missingness 

Consider the confirmatory factor analysis model for a vector of p continuous, latent 
response variables y* (c.f.e.g., Muthen, 1984) measuring a vector of m latent variables 11, 

y* = v + A~I + ~. (1) 

Let E(tl) = •. We may expand this to a general structural equation model by letting 

tl = at + B~7 + ~. (2) 

We may also generalize the model to include several groups. 
Although the latent y*'s are potentially available for each sample unit, we consider a 

selection variable s* for each y* variable that decides if the latent value is actually selected 
for observation as y, or is missing. A simple extension of the model is to specify linear 
relations for the vector of latent selection variables s*, 

s* = F .  rl + F r y*  + 6. (3) 

(Parenthetically, we note that we may simplify (3) by deleting the Fyy* term, since 
observed predictors can be handled by the U,q  term, defining some of the r/'s to be 
identical to the y*'s; the formulation of (3) is chosen for clarity.) Let there be a threshold 
parameter z~ for variable s*. For  sample unit i, let s o = 1 for s~ > z~. This denotes that 
the i-th unit's y~j value is selected to be observed, that is, Yo is not missing. If s o = 0 
(s~ < z~), y~j is missing. While the y parameters influence the strength of selectivity of the 
miss-ingness, the T parameters influence the amount of missingness. The variables of y* 
and s* are taken to be multivariate normal. 

We assume random sampling of the (y*' s*') vector, but will only consider the 
likelihood of the (not missing) observations on y*, which does not in general correspond 
to a random sample of observations on y*. 

In the population, using ordinary assumptions, we have in the confirmatory factor 
analysis (CFA) formulation 

It = E(y) = v + AK, ~2 = V(y) = ATA'  + O~. (4) 

The parameters of the original model are (with the more general structural equation 
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model parameters in parentheses) 

v, A, O , ,  T (or B, ~), K (or at, K). (5) 

Let these parameters be stacked in the vector 0. The parameters related to  the missingness 
mechanism are 

F, 066,  O ~  (and O6¢), ~, (6) 

allowing 6 to be correlated with ¢ (and ~) residuals. Let these parameters be stacked in the 
parameter vector ~b. 

It should be noted that many other specifications of the missing data mechanism are 
possible and can lead to the same conclusions. This specification is chosen for simplicity. 

3. Likelihood and Estimators 

In this paper we will consider maximum likelihood estimation of the 0 parameters, 
while estimation of the d~ parameters will not be attempted. The likelihood of the sample 
of the y observations is in general a function of 0 and ~ and may be written as (Rubin, 
1976; Little, 1982, 1983) 

G 
log L(0, ~b; y) = ~ log ~bg(0; y) + log f(0,  ~b; y). (7) 

g=l  

Here, 

log ~bg(0; y) = constant - ½N g log I~gl 

- ½ N  ° tr ~ g - ' [ S  g + (~g - pg)(~g - pg)'], (8) 

giving the log of the regular multivariate normal likelihood for the group of N g sample 
units that exhibit the g-th missing data pattern by deleting appropriate rows and columns 
in the mean vectors and covariance matrices for y. The second term of (7) is due to the 
missingness mechanism and will be explicated below in sections 3.1 and 3.2. The likeli- 
hood of (7) will be termed "the true likelihood," while for the purposes 0f this paper the 
first term of (7) will be termed "the quasi-likelihood," since it ignores the missingness 
mechanism. It may be noted that the term "quasi-likelihood" is not used in the same sense 
as in Wedderburn's (1974) work. 

Given the model of section 2, we will first explicate the missing data theory con- 
ditions of "ignorability of the missing data mechanism." Under this condition the true 
likelihood is such that when maximizing the quasi-likelihood with respect to 0, correct 
maximum likelihood estimates of 0 are obtained. The estimator that maximizes the quasi- 
likelihood will be termed the FQL (full, quasi-likelihood) estimator and will be of primary 
interest to us. It was used, for example, by Trawinski and Bargman (1964) and Hartley 
and Hocking (1971) for the estimation of p and ]g, and by Finkbeiner (1979) for factor 
analysis estimation of 0. 

The FQL estimator will be compared to the standard listwise present (deletion) 
approach, which does not use the full quasi-likelihood, but only the part corresponding to 
the group with no missingness. This will be called the LQL estimator, for listwise (present) 
quasi-likelihood. The LQL estimator will in general give biased estimates even in infi- 
nitely large samples, unless the s*'s are uncorrelated with the y*'s (this condition will be 
referred to below as MCAR, or missing completely at random). The bias is clearly realized 
when applying the classic selection formulas of Pearson (1912) and Lawley (1943-1944) to 
our model; see also Johnson & Kotz (1972, p. 70). Here, selection takes place on s*, 
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affecting the distribution of y. Due to normality, the required linear and homoskedastic 
regression of y on s* holds, and 

s - 1  s 
Pr = Pr + Zy~. Z , . , . ( p ,  - p~.), 

]~yy ~ y y  - 1 s - t , 
' - Es.s.)X**s. X , . .  (9) = + E , .  X . . . ( Z , . .  

Here, ItS. and ~ . , .  are the mean vector and covariance matrix of a truncated normal s* 
distribution. In the case of the LQL estimator, the superscript s refers to the subpopula- 
tion for which all s*'s exceed their z's. LQL estimation effectively assumes random sam- 
pling of y in thi s subpopulation, which in large samples gives a mean vector and covari- 
ance matrix that tend to ItS, ~y.,respectively. 

F Q L  and LQL will also be compared to the pairwise present approach (PPA) which 
does not in general maximize any proper likelihood. Indeed, the covariance matrix is 
sometimes not positivedefinite. 

Below, we consider certain components of the true likelihood for the special Case of 
the s* missingness predictors being a subset of the latent response variables of y* and the 
special case of the missingness predictors being a subset of the latent variables of 11. 
Substantive interpretations of these different forms of missingness will be given in section 
6, In each case we will furthermore consider the special situation where for y' = (y'~, y~), 
the variables of Yl have probability zero of being missing, that is, the corresponding z's 
are  minus infinity, and the variables of Y2 have nonzero probabilities of being missing. In 
studying these special cases, the more general situation should be clear. 

311 Missingness Predicted by the Latent Response Variables 

Here, F ,  = 0 and (dropping the y subscript on Fy) 

s* = Fy* + 6, (10) 

so that with ordinary assumptions using the CFA formulation, 

kr(v + AK)} 

( : : )  = (  A , A '  + O , ,  symmetric ) (11) 
V \U(AIPA ' + 0, , )  + On, U(A~A' + Oe,)r'  + 0,~,~ " 

Consider first the true likelihood component for a sample unit where all variables of 
y~ are observed. Let 

Pr (s* > z 1, s~'2 > z2 . . . . .  s* > zply,) = z, .  (12) 

Integrating over the latent s*'s, we may write this component  as 

L, - ~b(yx,)~ i . . . .  q~(Y2,, s*l Yxi) ds*, (13) 
1 p 7 [ i  

where the term inside the integrals is the density of the truncated normal Y2, s* distri- 
bution conditional on Y l~, where the s*'s are truncated from below at z; . . . .  , xp. Then, 

L i = q~(yll)~b(y211 ylt " "  s*Iyl~, Y21) ds* 
1 t / ~ p  

--- q~(Yl) "'" 4)(s* l Yi) ds*. (14) 
1 p 
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We note from (10) and (11) that only if O~ = 0 does the conditional normal density inside 
the integrals not involve model parameters 0 but only missingness parameters ~. If this 
holds, the true likelihood component for this sample unit may be written symbolically as 
the product tp(0; y~)f(~; y~), where the first term is the ordinary normal density term when 
ignoring missingness (a function of 0 only), and the second term is a component due to 
missingness which does not involve 0; see (7). We also assume that we have "distinctness" 
in the Rubin (1976, p. 582) sense. "The parameter ¢p is distinct from 0 if there are no a 
priori ties, via parameter space restrictions or prior distributions, between ~ and 0." We 
would not in general impose, for instance, equality restrictions between any 0 and 
parameters. Consequently, when differentiating the true likelihood component of (14) to 
get maximum likelihood estimates of 0, the second term does not contribute. 

Consider next the true likelihood component for a sample unit where none of the 
variables of y* are observed. Redefining rr~ in an obvious way, L~ is obtained by inte- 
grating over the latent y*'s, 

Li = q~(Yl/)zi - ~  "'" ~o rot 

Writing 

~p 

= ~(Yll "'" ~b(s* I yl,) ds*. (15) 
oO oo 

s* = F l y *  + F 2 y~ + 8, (16) 

we note that only if 1" 2 = 0 and O~ = 0 does the conditional normal density in (15) not 
involve 0 but only d?. If this holds, the second term of (15) does not enter into the 
differentiation with respect to 0. 

It follows that when missingness is predicted by latent response variables of y*, 
ignoring the missingness terms of the true likelihood components when differentiating 
with respect to model parameters 0 is only correct when F 2 = 0 and O~e = 0. These two 
requirements explicate the Rubin (1976) "missing at random" (MAR) definition: "The 
missing data are missing at random if for each possible value of the parameter ~, the 
conditional probability of the observed pattern of missing data, given the missing data 
and the value of the observed data, is the same for all possible values of the missing data" 
(p. 582). In our formulation, the observed pattern of missing data is determined by s*, 
which when 1"2 = 0 and O~ = 0 only depends on the value of the observed data on Yr. 
Conditional on Yl, s* and y~ are uncorrelated. We conclude that MAR and distinctness of 
0 and ~ gives correct maximum likelihood estimation of 0 when using the F Q L estimator, 
that is, ignoring the missingness mechanism (see Rubin, sec. 7). 

We may also note that if in addition to 1"2 = 0 and O~ = 0, we have F 1 = 0, that is, 
s* -- 5, then we have "missing completely at random" (MCAR). MCAR is obtained when 
MAR holds in addition to "observed at random" (OAR): "The observed data are ob- 
served at random if for each possible value of the missing data and the parameter ~b, the 
conditional probability of the observed pattern of missing data, given the missing data 
and the observed data, is the same for all possible values of the observed data" (Rubin, 
1976, p. 582). We may note that MCAR is what is usually meant when imprecisely using 
the expression "missing at random." It is clear that MCAR is a considerably stronger 
requirement than MAR. MCAR implies that £ys, = 0 in (9). It should be emphasized that 
only under MCAR will the LQL and PPA estimators have no large sample bias. 

When 1"2 = 0 and O6~ = 0 does not hold, MAR does not hold and the response 
mechanism is not ignorable. To obtain correct maximum likelihood estimation in this 
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case, a model such ,as the present one must be specified and the maximization carried out 
with respect to the parameters of 0 and d~ jointly. For  special cases of structural equation 
models without latent variables, this has been attempted in econometric modeling by, for 
example, Hausman and Wise (1979) and Heckman (1976). Here, s* and y* are allowed to 
correlate conditional on Yl. As emphasized, however, by Little (1982, 1985), such mod- 
eling is relatively sensitive to model misspecification, since rather strong, largely unverifi- 
able assumptions have to be made about this conditional distribution. For  instance, in 
Hausman and Wise (1979), maximum likelihood estimation is carried out under the 
normality assumptions given above. In  contrast, the F Q L estimator merely utilizes the 
normality of y, an assumption to which parameter estimates have been found rather 
robust in complete data settings (see e.g., Boomsma, 1983; Muth6n & Kaplan, 1985). 

Our view is that even when MAR does not hold, it may be preferable to act as if the 
response mechanism js ignorable, and to employ the FQ L estimator anyway. We expect it 
to often reduce the bias of the LQL and PPA alternatives. The study of artificial data in 
section 6 generally supports this proposal. If possible, one may try to include observable 
covariates that are likely to reduce the conditional s*, y~ correlation, so that MAR is 
more closely approximated. 

3.2 Missingness Predicted by the Latent Variables 

Here, Fy = 0 and (dropping the r/subscript on F,) 

s* = Fq + ~i, (17) 

so that with ordinary assumptions using the CFA formulation 

FK J '  

v fy*  ~ = ( A ~ A '  + O~. symmetric ~ (18) 
\ s * , ]  \ F ~ A '  + O6~ FTF' + 06~,1" 

Consider again the true likelihood component for a sample unit when all variables of 
y~ are observed. Integrating over the latent ~/'s and s*'s, 

Li . . . .  ~b(ll, yli)Tcl . . .  t~(y21 , s* In, yl,) ds* dq, (19) 

where in this case 

ni = Pr (s* 1 > z t . . . . .  s* > Tpl111 , Yli)" (20) 

Changing the order of integration and integrating out the latent r/variables, we have 

L~ = tp(yl) . . .  4'(s* I Yi) as*. (21) 
1 p 

It is clear from (18) that the conditional normal s* density in (21) will, in general, involve 
both 0 and d~ parameters, unless MCAR is at hand so that F = 0 and O6~ = 0. MAR will 
not hold even if missingness is predicted by latent variables measured only by Yl vari- 
ables. 

The same conclusion is reached when considering a likelihood component for a 
sample unit when all variables of y* are missing. Having integrated out the latent q and 
y* variables, we are left with the expression of (21), except that Yi is replaced by Yli- 

When missingness is predicted by the latent variables, MAR is not at hand so that 
the response mechanism is not ignorable and the FQ L estimator will not give maximum 
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likelihood estimation. Both FQL and the classic missing data approaches of LQL and 
PPA will then exhibit large sample bias at least for some parameters. As we will see, 
however, the FQL estimator may in this case still be preferable. 

3.3 Testing Restricted Versus Unrestricted Models. 

At this point we may introduce the term the "unrestricted" model to refer to the 
model with the p parameters of It and the p(p + 1)/2 parameters of 2~, while the term the 
"restricted" model will refer to the model where the !~ and X elements are viewed as 
functions of 0 parameters as in CFA. Assuming ignorability, a correct large sample 
chi-square test of CFA model fit is obtained for the F Q L estimator via the Ordinary 
likelihood ratio criterion, comparing the likelihood of the null hypothesis Ho for the 
restricted model with the likelihood of the H~ hypothesis for the unrestricted model (see 
also Rubin, 1976, section 7). Below, however, we will also refer to tests of model fit when 
the likelihood ratio approach is used incorrectly so that it does not yield a true chi-square 
variate, as with FQL when ignorability is not at hand, and with LQL and PPA when 
MCAR is not at hand. The phrase "perfect model fit" will refer to such a "quasi-chi- 
square" value being zero. With LQL and PPA, this also means that there are zero 
residuals between sample statistics and model predicted counterparts, but with F Q L there 
is not a single such set of residuals, as is clear from (8). 

4. Some Special Cases 

Consider for simplicity the ease of only two missing data patterns; sample units that 
have no missing data and sample units that have missing data on Y2 but no missingness 
on y~. For  concreteness we may think of the y subscripts as referring to Time 1 and Time 
2 measurements of the same variables, where we have missingness due to attrition at Time 
2. This missing data situation is exhibited in Figure 1. Figure 2 gives a path diagram for a 
longitudinal structural equation model exemplifying the model to be estimated. Here, 
Y'l = (Yl lY21YalY22 Y32), Y~ = (Yl 3 Y23 Ya3). This model will be discussed in detail in section 
6 under missingness case I. 

4.1 The Unrestricted Model 

Let NNA be the number of sample units that do not attrit, while N is the total sample 
size. Then, the log likelihood of (7) can be simply written as 

NNA N 

log L = Z log tb(yl~, Y2i) + E log ~b(y:i) + logf(y),  (22) 
i= 1 i=]¢NA + 1 

or, alternatively as 

N NNA 

log L = Z log tk(yll) + ~ log ~b(y2ilYll ) + logf(y).  (23) 
i=1  i=1  

Anderson (1957) noted that FQL estimation of the unrestricted model can be carried out 
via (23) in a simple, noniterative way, due to the factoring of the quasi-likelihood into two 
parts involving distinct sets of parameters. Rubin (1974) generalized this approach, allow- 
ing for simplified estimation with other missing data patterns and distributions as well; 
for an application, see, for example, Marini, Olsen, and Rubin (1980). 

In (23), we have the usual unrestricted ML estimates ~11 = St1, 1~: = Yl, where no 
superscript for y~ and S: ~ refer to using the whole sample at time point one. Maximiza- 
tion of the second term on the right-hand side of (23) gives estimates of the linear 
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regression parameters. Reverting to the original parameters, we have the F Q L estimates 

~2 = ~ A  ~"A~N~-~,.~.A 
-~21~'11  ~yl - Y l ) ,  

~ 2 1  ~NA ~ N A -  t ~  
= ~'21 ba'l l  ~'11~ 

__. ~NA~I~NA- l (~NA ~ ~ N A -  1 ~NA'  (24) 
~ 2 2  s N A  - -  "~ '21~11 ~,~' 1 1 -  ~ 1 1 1 ~ 1 1  ~ 2 1 "  

We note from (24) the well-known difference between the F Q L  estimator and the LQL 
estimator in the unrestricted case. LQL only considers the first term of (22) and does not 
utilize the fact that time 1 attriter observations on Yl contribute to full likelihood esti- 
mation of both time 1 and time 2 parameters. 

It is interesting to note that the equations of (24) also appear in the Pearson (1912) 
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(11 (21 (31 
and Lawley (1943-1944) selection context discussed in section 2. Pearson and Lawley 
obtained the population counterpart  of (24) for the case where selection takes place on y~, 
indirectly influencing the Y2 distribution, where the NA group of (24) would correspond to 
the subpopulation of selected units. 

4.2 The Restricted Model Under Missingness Predicted by the Latent Variables 

Meredith (1964) and Olsson (1978), see also Muth6n and J6reskog (1983), used the 
selection formulas of (9) to study factor analysis on selected subpopulations. Their results 
will be used below to study the LQL and F Q L  estimators for some special cases of our 
model. Here, we will assume a CFA model where there are no restrictions placed on the 
parameters  of K or ~ .  
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As in section 3.2 we will consider missingness predicted by the latent variables, 
s* = F~i + 6. Consider a subpopulation of units obtained by truncating s* at x. Meredith 
(1964), Olsson (1978), and Muth~n and J6reskog (1983) show that for this missingness 
case, the general selection formulas imply that the CFA model of (4) still holds in the 
subpopulation of selected units, with 

v s = v ,  A s = A ,  O ~  c = O** ,  

t - 1  s 
K • = K + ~I 'F  ~ . . . .  ( I t s .  - -  p s , ) ,  

= - ~ , , ~ , ) ~ : ~ , , , r q , .  ( 2 5 )  

Here, Its. and I;s.s, are as in (18), and Its. and Y~.s. are given by the truncated multivariate 
normal distribution (with ~'s as truncation points). Hence, v, A, and O~ are invariant 
under this form of selection. 

It is clear that in the restricted CFA model, the LQL estimator, using the NA group, 
would in infinitely large samples obtain perfect model fit and consistently estimate v, A, 
O , ,  K s, and ~s, so that K and T estimates are, in general, biased. 

To study the FQL estimator, consider again the case where there are two missing 
data patterns, no missingness and missingness on Y2 but not Yl. Furthermore, assume that 
our CFA model may be partitioned as 

Y --  Y2 v2 \ 0 2  A2,]  \ !12 , /  \1~2,/ 
(26) 

E ( Y l ~  = ( v 1 - 1 -  A I K I ~  

\ y 2 , /  V 2 -I- A 2 K 2 J '  

v(yl~=(AIWllA'1+011 symmetric '~ (27) 
\Y2/ \ A2 ltl12 tA'I  A2 ltP22 A 2 + O 2 2 J "  

The attrition situation of Figure 2 gives an example where this holds. In this situation, 
unrestricted and restricted FQL estimation will in large samples lead to the same mean 
vector and covariance matrix estimates. Hence, the CFA model gives perfect fit. This 
result is obtained as follows. Consider the population counterparts of (24) and (25). After 
some algebra, it can be shown that unrestricted estimation using F Q L in infinitely large 
samples gives 

~1 = V1 "~ A1KI ,  '~'11 = A1WllA'l + Ol l ,  

02 = V2 -I- A 2 a, ~21 = A2 BA'x, ~22  ---- A2 C A ~  --t- 0 2 2  , (28) 

where 

a ~ 1K~ A - klJNAAI ~',NA-I( NA 
a 2 , f f i l~ l l  ~.K1 - -  K1). 

B ~- IilrNA(ltl/NA --  ~PI 1)- I(A'l]E1-lXA1 + (~IJ~ A - -  t ~ 1 1 ) -  1) - 1 ,  a 2 1 k a 1 1  

IIIINAAt ~"~NA-I/~'~ NA ~F* ~F~NA-1A ltl/NA' (29) C = t~N2A - -  - -21"~1--11 ~,--11 - - - - 1 1 / - - 1 1  "ffil Jt 21 " 

We note that time two parameter estimates exhibit large sample bias, which is due to the 
fact that missingness was not predicted by Yx so that ignorability was not at hand. 
Equations (28) and (29) show that restricted F Q L estimation will in infinitely large sam- 
ples give the same likelihood value as the unrestricted analysis, that is, give perfect CFA 
model fit. Restricted FQL analysis will consistently estimate v, A, Oe~, K 11, ~11, whereas 
K 2 , T21, and ~t'22 will be estimated as a, B, and C in (26). The large sample F Q L bias in 
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the latter parameters may not always be smaller than the corresponding LQL bias, 
although as artificial data studies in section 6 will show, the results are encouraging. 

We note that the above F Q L  results do not, in general, hold without the assumed 
missing data patterns and the model partitioning of (26) and (27). For  example, when 
missingness occurs on one variable, but not the entire set of indicators for a certain factor, 
it is not possible to build on the Anderson (1957) results, since the "missingness part" of 
the likelihood (23), that is, the second part, involves parameters that are also involved in 
the full data part. This is the situation in missingness case II to be studied in section 6. 

5. FQL Estimation via LISREL 

The F QL estimator maximizes the quasi-likelihood part of the true likelihood of (7), 

1 
- ~ Z N°[l°g I Eg [ + tr (~g-lT°-l)], (30) 

gw-1 

where 

T g = S g + (ya _ pa)(~,a _ pg),, (31) 

arranging the sample units into G groups corresponding to distinct missing data patterns. 
We will now show that for many cases, FQL estimation may be carried out with existing 
structural equation modeling software, in which mean and eovariance structure modeling 
is allowed for in a simultaneous analysis of multiple groups. As an example, we will 
consider the popular LISREL program. We will also show that large sample chi-square 
testing of model fit can be carried out, just as in situations with no missing data. 

In the LISREL program the following function is effectively minimized 

0 = 1 -N- [log I I~ ° I + tr (I~ ° - ' T  °) - l o g  I S°  I - P ] ,  ( 32 )  

although, equivalently (see J6reskog & S6rbom, 1980), the fitting function (32) with M 
instead of S and 1"~ instead of r. is the one actually utilized, where M is the sample 
moment matrix for moments around zero of the observations with a constant unit vari- 
able added in order to include the mean vector, and ~ is the corresponding population 
matrix (J6reskog & S/Srbom, 1984). 

In an ordinary LISREL analysis, the index g corresponds to different groups (sub- 
populations) in which independent, random sampling has been carried out. The restricted 
analysis usually corresponds to a set of parameter equality restrictions across the groups, 
which have similar model structure. The standard unrestricted analysis estimates each 
group's unrestricted p" and ~0, separately. N times the minimum value of the LISREL 
fitting function for the restricted analysis gives the usual, large sample likelihood ratio 
chi-square test of model fit, since terms corresponding to the likelihood value for the 
unrestricted analysis does not involve any restrictions on the G p0 vectors, the estimation 
need only utilize information from the sample covariance matrices, since terms involving 
mean vector residuals will vanish. 

Let us now return to FQL estimation in a single population with a sample involving 
missing data. We will assume that the number of distinct missing data patterns, G, is 
relatively small, so that for each pattern group g there are more than p + 1 sample units, 
yielding positive definite S g matrices. It is clear from (30) and (32) that FQL estimation 
can be carried out by a LISREL multiple group run with G groups. As opposed to the 
case in (30), the LISREL analysis will not involve reduced-sized mean vectors and eovari- 
ance matrices corresponding to missing variables, but instead uses a dummy variable 



442 PSYCHOMETRIKA 

approach. In terms of the special case of section 4, the LISREL approach builds on the 
log L version of (22) and does not utilize (23). It should be emphasized that the LISREL 
multiple group feature is only a technical convenience, since the model concerns a single 
population. This fact will affect how the H 1 analysis is carried out. If FQL estimation 
were to be carried out in a multiple population mOdel, the corresponding LISREL analy- 
sis would technically involve as many groups as there are missing data patterns in all the 
different samples. Below, we will only consider single population analyses. 

Consider first restricted, H 0 estimation by F Q L using LISREL. The parameters are 
those of 0. This is carried out by imposing equality restrictions across the missing data 
pattern groups for common parameters. The fact that different numbers of variables are 
observed in the different groups is handled by using dummy variables in the groups with 
deficient numbers, the influence of which on the fitting function is made to be nil (see also 
J6reskog, 1971). (The actual LISREL setup will not be given here, but is available upon 
request from the first author. A simple setup using L IS CO MP is also available.) 

It is important to note that even if H o does not impose any restrictions on It, as is 
commonly the case in single population analyses, the FQ L LISREL analysis must still 
include th e specification of equality of mean vector parameters across missing data pat- 
tern groups for common variables. This is because the mean residuals of (31) will not 
vanish under the equality constraints on common elements of It. As we will discuss in the 
context of the FQL H1, common elements of ~g are not, in general, expected to be equal 
across the G groups, even in infinitely large samples. 

To permit a large sample chi-square test of model fit, we also need the likelihood 
value for the FQL unrestricted, H~ hypothesis. As opposed to ordinary LISREL analysis, 
this requires a second LISREL run. Under the F Q L  H~, the parameters are the elements 
of It and I2. In the LISREL analysis, equality constraints for these elements are again 
imposed across missing data groups, using the dummy variable approach. From (32), 
however, we note that this LISREL run will actually produce a chi-square test of H 1 
against what we will call H z ,  where H 2 is the hypothesis of an unrestricted, multiple 
population model. Hence, H 2 is not relevant to the present analysis, but will be discussed 
below. For  our purposes, the second LISREL run is used to get a chi-square value, which 
we will subtract from the chi-square of the restricted run. Thisgives a correct test of H 0 
against H~, since we note that the chi-square of the restricted run is also obtained by 
testing against H 2 , so that the H 2 likelihood component cancels out in the subtraction. 
The difference in degrees of freedom on the two LISREL runs produces the correct 
degrees of freedom for testing H o against Hi: This is the same degree of freedom that 
would have been used in the corresponding analysis without missing data. 

It is of interest to further consider the unrestricted F Q L LISREL run and the H~ and 
H z hypotheses. Unless MCAR is at hand, the common elements of the G sample mean 
vectors and covariance matrices of (32) are not expected to be equal even in infinitely 
large samples. Hence, the test of H~ against H 2 is a test of MCAR, where the problem has 
been reformulated in terms of multiple populations. When MAR, but not MCAR holds, 
this test is expected to lead to rejection. Our experience with real data indicates that 
MCAR is frequently rejected. Nevertheless, this test may be of interest to carry out as an 
initial analysis step. If it is not rejected and MCAR holds, the simpler LQL estimator is 
an alternative that gives consistent, although less efficient estimates than FQL,  which is 
then the correct ML estimator. 

We also note that unless MCAR is at hand, the elements of the G sample mean 
vectors and covariance matrices of (32) are not consistent estimates of the corresponding 
single population quantities. It seems somewhat paradoxical that given ignorabili ty-- 
assuming MAR and distinctness, but not MCAR--unrestr icted F Q L  estimation gives 
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correct ML estimates of la and 12 by a LISREL analysis with equality restrictions across 
groups, none of which uses consistent sample statistic estimators. This comes about by 
weighting the information from the different groups in a way that was explicated for a 
special two-group situation in (24) of section 3. 

The idea of using multiple group LISREL analysis to analyze missing data situations 
is not new; see, for example, Werts, Rock, and Grandy (1979). In previous approaches, 
however, the original problem has been reformulated as one of multiple populations 
modeling. While this may also lead to useful analyses, it does not recognize the con- 
nection with the true likelihood of (7) for a single population as does the F Q L LISREL 
approach. For  instance, Werts et al. test equality for common parts of a CFA model 
across two populations Corresponding to two missing data patterns. When MAR but not 
MCAR holds, we would expect this hypothesis to be rejected, whereas the original model 
may well not be, using our FQL approach. Also, Since the F Q L estimator always requires 
inclusion of mean parameter equalities in the LISREL run, the estimates would generally 
be different, unless the model common to the two groups also involves a mean structure 
in addition to the covariance structure (as it did in the Werts et al. case). 

6. Illustrations 

In this section we will use some artificial data generated by our section 2 model to 
exemplify the above methodology and to compare the behavior of the FQL, LQL, and 
PPA estimators. These estimators have been previously studied in the context of factor 
analysis by Finkbeiner (1979) and Brown (1983), but only under MCAR, concentrating on 
issues of et~ciency. We will almost exclusively deal with data for which MCAR does not 
hold, but where there are strong correlations between the selection variables of s* and the 
y* variables. We wilt study cases where MAR and distinctness holds, so that FQL is 
correct ML, but concentrate on the perhaps most realistic case where not even MAR 
holds. We will be particularly interested in parameter estimate bias, but will also consider 
model fit and standard errors of estimates. A Monte Carlo study will not be performed, 
but analyses will instead be carried out on population quantities. Throughout  we will use 
models that emanate from that of Figure 2. We will consider two basic models for the y's, 
each with two variations, and two basic missing data cases, each with several variations. 

The y-part models that will be studied are as follows. The first model involves all y's 
of Figure 2. One version considers a CFA model, where the r/l, r/2, ~/3 part is parame- 
terized as a 3 × 3 covariance matrix. Another, equivalent, version considers the structural 
equation model (SEM) parameterization indicated. The actual (e-) parameter values 
chosen for the model of Figure 2 were created on the basis of a subset of the Wheaton, 
Muthen, Alwin, and Summers (1977) longitudinal model, as reported in J6reskog and 
S6rbom (1984), adding an extra indicator per factor, deleting correlated measurement 
errors, and for simplicity, standardizing the parameters to correspond to y and r/variables 
with unit variances. Here, ~/1 represented a socioeconomic background factor, whereas r/2 
and % were time one and time two alienation constructs. It is noteworthy that we have 
chosen a single poPulation model that only imposes restrictions on the covariance matrix 
and not on the mean vector (mean vector restrictions could, for instance, arise by im- 
posing measurement parameter equality restrictions across time for the time one and time 
two alienation indicators, estimating a factor mean change between ~/2 and r/a ). 

The second model is the marginal part of Figure 2 that corresponds to (YI2Y22Y32 
Y13 Y23 Y33)" One version considers this as a CFA model, where the r/2, r/3 part is parame- 
terized as a 2 x 2 covariance matrix, while the other version retains the structural regres- 
sion parameterization indicated in the figure. 
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T a b l e  1 

F u l l  Popu la t ion  and MAR N o n - A t t r i t e r  

Subpopulat ion Nean Vectors and Covarlance Mat r ices  a 

V a r i a b l e  

F u l l  Sub-  
P o p u l a t i o n  C o v a r t a n c e  M a t r i x  P o p u l a t i o n  

Means Means 

Y l l  Y21 Y31 Yt2 Y22 Y32 Y13 Y23 Y33 

Y l l  0 .0  -15 -23 -29 -33 -34 -39 -27 -27 -27 .240 

Y21 0.0 0.858 -16 -28 -31 -32 -37 -26 -26 -26 ,248 

Y31 0 .0  0.455 0.495 -12 -39 -40 -46 -32 -32 -32 .214 

Y12 0.0 -0 .366 -0 .398 -0 .276 -10 -15 -17 -15 -15 -15 - .194 

Y22 0.0 -0 .340 -0 .369 -0 .255 0.642 - 9 -17 -16 -16 -16 - .105  

Y32 0.0 -0 .239 -0 .260 -0.180 0.452 0.419 - 6 -18 -18 -18 - .150  

Y13 0.0 -0 .310 -0 .338 -0 .233 0.437 0.405 0,285 - 5 - 8 - 8 - .134 

Y23 0.0 -0 .275 -0 .299 -0 .207 0.387 0.358 0.252 0,511 - 4 - 8 - .119  

Y33 0.0 -0 .203 -0.221 -0 ,153 0.286 0.285 0,187 0.378 0.335 - 2 - .088  

a The f u l l  p o p u l a t i o n  c o v a r l a n c e  m a t r i x  I s  g i v e n  i n  t h e  l o wer  t r i a n g u l a r  p a r t ,  e x c l u d i n g  I t s  

u n l t  d i a g o n a l  e l e m e n t s .  The d i a g o n a l  and u p p e r  t r i a n g u l a r  p a r t  c o n t a i n s  p e r c e n t  b l a s  In  the  

n o n - a t t r l t e r  v a r i a n c e s  and  c o v a r l a n c e s  ( ( s u b - p o p u l a t l o n  v a l u e - f u l l  p o p u l a t i o n  v a l u e ) / f u l l  

p o p u l a t i o n  v a l u e  x 100) a t  an  a t t r i t i o n  r a t e  o f  25~ and  an  R 2 o f  50~.  

An interesting feature of the marginal model is that for all of the missing data 
situations to be considered, some variables related to the prediction of missingness are 
always absent in the model studied. Hence, the F Q L  estimator is expected to exhibit 
rather large bias in this case, but it will be of interest to compare its performance to that 
of LQL and PPA. When comparing the marginal model results with those of the full 
model, we can gain knowledge about the bias reduction obtained when expanding a 
model beyond the set of variables which are of primary interest, to include variables that 
are likely to explain missingness well. Background variables related to socioeconomic 
status is a good example, see, for example, Marini, Olsen, and Rubin (1980, p. 315-316). 

The artificial data were generated as follows. Given the Wheaton et al. (1977) in- 
spired choices of 0 parameters, and the d~ parameter values for a particular missing data 
situation, the population covariance matrix for the nine y's and the s*'s, was calculated. 
The corresponding mean vector was set to zero. The 9 x 9 population covariance matrix 
is given in the tower-triangular part of Table 1, where it should be noted that the unit 
diagonal elements are excluded. The subpopulation y mean vectors and covariance 
matrices were then created for the subpopulations corresponding to the missing data 
patterns generated by truncating the s*'s at the threshold values. These were obtained 
using the selection formulas (9). The means, variances and covariances of the truncated 
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normal  s* distribution were obtained from Muth6n (1985); see also Rosenbaum (1961) 
and TaUis (1961). For  the marginal model, the subpopulation mean vectors and covari- 
ance matrices were reduced down to six variables, and for both the full and the marginal 
model variables were deleted corresponding to each pattern of missingness. 

L ISREL maximum likelihood estimation was then applied to carry out FQL,  LQL,  
and PPA estimation, using population values in place of sample statistics. The F Q L  
estimator uses the subpopulation mean vectors and covariance marices corresponding to 
all missing data patterns for its H o and H 1 runs in a multiple group, mean and covariance 
structure run, L Q L  uses only the covariance matrix for the subpopulation corresponding 
to the complete data pattern in a single group, covariance structure only run. PPA uses a 
single group, covariance structure only run with covariance matrix elements that are 
obtained from the subpopulations that make for the largest possible subset of the full 
population. 

For  each case, a table will be given for the CFA and the SEM estimates, in raw and 
standardized form, including percentage bias. In addition, "population chi-square" values 
will be reported, referring to the regular chi-square measure as calculated using our 
population mean vectors and covariance matrices and a sample size of 600. These are 
then not chi-square model fit statistics in the usual sense, but do give a measure of 
distortion of the original model structure. For  FQL,  two chi-square values are given; one 
refers to the "test" of the model we are interested in, while the other refers to the "test" of 
MCAR discussed in section 5, obtained as a biproduct of the F Q L  HI  run. The latter test 
value may be viewed as an indication of deviation from MCAR, or strength of selectivity. 

The results will first be presented for missingness case I and then for missingness ease 
II. Within each of these missingness situations we will first study the full model and then 
compare  with the marginal model. 

6.1 Results for Missingness Case I 

Here, missing data may occur for Y13, Y23, Yaa in the longitudinal framework dis- 
cussed in section 4. Missingness is determined by a single s*, reflecting the notion of 
attrition and not variable specific missingness. 

6.1.1 M A R :  Missinffness Predicted by the Six Time One Observed Variables. The 
first missingness variation we will consider is 

s* = zsy(y* 1 + y*~ + Y*I) - ~Y(YI*2 + Y2"2 + Y~3) + t$, (33) 

such that the background indicators are twice as influential as the time one indicators. 
The y*'s  of (33) are identical to the corresponding y's in this missingness case. In terms of 
the Wheaton et al. (1977) example, an increased value of any of the socioeconomic 
background indicators is taken to yield an increased propensity not to attrit (a high s* 
value), while an increased value of the time one alienation indicators is taken to yield a 
decreased propensity not to attrit (i.e., an increase of the propensity to attrit). Hence, the 
observed variables at time one are assumed to be the only relevant predictors, so that 
alienation feelings at time two are irrelevant. 

We note that this missingness situation fulfills the assumption of MAR and also 
ignorability, so that F Q L  gives correct maximum likelihood estimation. To  determine the 
degree of selectivity in the missingness, an s* R 2 of 50% was chosen by setting ~ = 0.329 
in (33). Throughout,  s* variables are taken to have zero means and unit variances. A 
value of -0 .675  was chosen for s* to give an attrition rate of 25%. To illustrate the 
strong selectivity of the missingness, the percentage difference between the covariance 
matrix analyzed by LQL,  obtained for the non-attriter group by (9), and the full popu- 
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tation covariance matrix is given in the diagonal and upper-triangular portion of Table 1. 
Means are also given. 

The F Q L  "population chi-squar¢ test" of model fit, comparing H o to H 1, turns out to 
be zero as it should. H o involves 30 parameters, where the v vector is included and the 
latent variable means are fixed at zero. The latent variable metrics are futher determined 
by fixing one loading per factor. Since H 1 involves 9 mean vector parameters and 45 
covariance matrix parameters, the model test has 24 degrees of freedom (it should be 
noted that the dummy variable approach in LISREL does not give the correct degrees of 
freedom). As a biproduct of the F Q L  analysis, we also get the test of MCAR discussed in 
section 5, comparing H1 to  H 2 with 27 degrees of freedom in a multiple population 
framework. This yields the value 189.68. Since MCAR does not hold, the L Q L  and PPA 
model test values are not zero, but 0.16 and 0.36, respectively. 

The results of the estimation are given in Table 2. Despite the strong deviation from 
MCAR, the F Q L  estimator exhibits no bias, as was expected since MAR is at hand. (For 
certain CFA parameters, a very slight bias is obtained in the LISREL results; this could 
be avoided if it were  possible to sharpen the convergence criterion.) The L Q L  and PPA 
estimators are seen to be seriously biased. (In our opinion, a bias of less than 10-15% 
may not be serious in most latent variable modeling contexts.) It is interesting to note 
that the bias is almost exclusively occurring in the structural parameters, which may be 
deemed the most important  part  of a latent variable model. Also of interest is that in 
terms of unstandardized values, the L Q L  estimator does relatively better in the SEM 
metric than in the CFA metric. One cause of this is perhaps that s* is to a large portion 
predicted by indicators of the latent variable r/I, which is exogenous in the structural 
regressions, resulting in relatively lower structural regression parameter  bias (this reason- 
ing builds on the well-known fact that in ordinary regression there i s n o  bias if selection 
takes place on x). While PPA outperforms L Q L  in terms of overall bias in the CFA 
metric, the reverse is true in the SEM metric. 

The standard errors of the estimates are given in parentheses. The standard errors 
given in connection with the  true population values refer to the situation where there is 
no missingness, but a full sample is used. The F Q L  standard errors are somewhat larger 
than these values as is expected, although not to any great degree. For  the L Q L  and PPA 
estimators, two standard error entries are given. The top one refers to the actual analysis, 
where it should be kept in mind that since the assumptions underlying the est imator do 
not h01d, the values are not correct and will not represent actual sampling variation. As 
an added piece of information, the second standard error entry for the L Q L  and PPA 
estimators refers to what would have been obtained if MCAR held but there were miss- 
ingness on the same variables with the same attrition rate (in this case, L Q L  and PPA 
would show no bias). These values may be compared to the full sample and F Q L  values, 
where the latter would remain the same under MCAR as under the present MAR situ- 
ation. For  instance, the SEM standard errors for L Q L  under MCAR show slightly higher 
values than FQL due to ignoring the 25% nonattriters. Such issues of estimate variability 
under MCAR were discussed by Brown (1983) and Finkbeiner (1979). However, we will 
not study this topic further since in all caSes that follow none of the estimators will be 
consistent due to violation of MCAR and MAR, so that the sampling variability will not 
be adequately represented by the population standard errors. Also, the amount  of large 
sample bias will be of primary importance. 

6.1.2 Missingness Predicted by all Nine Latent Response Variables. We will now 
allow the partly missing time two alienation indicators to also influence the attrition. 
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Table  2 

M i s s i n g n e s s  Case I :  

M t s s i n g n e s s  P r e d i c t e d  by t h e  S ix  Time One Observed V a r i a b l e s  (MAR) 

FQL LQL ......... PPA 
Parameter { • { { ~ { { 

Parameter Value Estimate Bias Estimate Bias Estimate 
% 

Bias 

Measurement P a r a m e t e r s  

A l l  0 .788  0 .778  a 0 0 .788  a 0 0 .788  a 

~21 0 .846  ~ 0 .846  0 0 .866  2 0 .848  
(0 .051)  ~ ( 0 . 0 5 1 ) c  ( 0 . 0 7 7 ) ~  t0 .052~c  

(0 .058)  u 10 .051/d  

A31 0.585 0.585 0 0.551 - 6 0.585 
(0 .044)  (0.044) (0 .060)  (0 .044)  

(0 .051)  (0 .044)  

A12 0.832 0.832 a 0 0.832 a 0 0.832 a 

X22 0.771 0 .771 0 0 .765  - 1 0.769 
(0 .045)  (0 .046)  ( 0 . 0 6 0 )  (0 .046)  

(0.052) (0.045) 

X32 0 .543 0 .543 0 0 .524 - 3 0.541 
(0 .044)  (0 .044)  (0.056) (0 .044)  

( 0 . 0 5 0 )  (0 .044)  

~13 0 .759  0 .759  a 0 0 .759  a 0 0 .759  a 

A23 0 .672  0 .672  0 0 .672 0 0 .672 
(0.053) (0.061) (0.066) (0.061) 

(0.061) (0.053) 

k33 0 .497  0 ,497  0 0 .497  0 0 .497 
(0.049) (0 ,057)  (0.061) (0.054) 

(0.057) (0.049) 

811 0,395 0.395 0 0.397 1 0.396 
(0.037) (0.037) (0.044) (0.037) 

(0.043) (0.037) 

821 0 .284 0 .284 0 0 .280  - 1 0 .283  
(0.037) (0.038) (0.046) (0.038) 

(0 .043)  (0 .037)  

031 0.658 0.658 0 0.654 1 0.659 
(0.043) 0.043 (0.048) (0.043) 

( 0 . 0 4 9 )  ( 0 . 0 4 3 )  

e12 0.308 0.308 o 0.305 - 1 o.3o5 
(0.036) (0 ,037)  (0.043) (0 .037)  

(0.041) (0.036) 

622 0.405 0.405 0 0.406 0 0.406 
(0.036) (0.037) (0.043) (0.037) 

(0.042) (0.036) 

832 0 .705  0 .705  0 0 .705  0 0 .707  
(0.045) (0.045) (0.051) (0.045) 

(0.052) (o .o45)  

813 0.423 0.423 0 0.423 0 0.423 
(0.044) (0.051) (0.052) (0,048) 

(0.051) (0.044) 

623 0 .547  0 .547  0 0 .547  0 0 .547  
(0 .044)  (0 .050)  ( 0 . 0 5 1 )  (0 .046)  

( 0 . 0 5 0 )  (0 .044)  

833 0 .752  0 .752  0 0 .752 0 0 .752  
(0.049) (0.056) (0.056) (0.049) 

(0.056) ( 0 . 0 4 9 )  

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

- 1 

O 

0 

0 

0 

0 
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Table  2 ( c o n t i n u e d )  

FQL LqL PPA 
P a r a m e t e r  [ ~ l I ~ I [ 

P a r a m e t e r  Value E s t i m a t e  Blas E s t i m a t e  Bias  E s t i m a t e  Bias 

S t r u c t u r a l  P a r a m e t e r s  - Conf i rma to ry  F a c t o r  A n a l y s i s  Model 

U n s t a n d a r d i z e d  S o l u t i o n  

V(~I )  1.000 1.000 0 0.749 -25 1.000 
(0.100) (0.100) (0.100) (0.100) 

(0.115) (0.100) 

V(~2) 1.000 1.000 0 0.863 -14 1.004 
(0 .091)  (0 .092)  (0 .099)  (0 .092)  

(0.105) (0.091) 

V(~3) 1.000 1.002 0 0.921 - 8 01921 
(0.111) (0.128) (0.125) (0.111) 

(0.128) (0.111) 

C(n2.q l )  -0.566 -OlSSB O -01376 -34 -0.566 
(0.061) (0.061) (0.057) (0.061) 

(0.070) (0.061) 

C(~3,q l )  -0.526 -0.525 0 -0.383 -27 -0.385 
(0.063) (0.069) (0.062) (0.058) 

10.073) (0.063) 

C(~3,~2) 0.691 0.691 0 0.585 -15 0.582 
(0.067) (0.073) (0.070) (0.063) 

(0,078) (0.067) 
S t a n d a r d i z e d  S o l u t i o n  

p ( ~ 2 , ~ l  ) - 0 .566  -0.566 0 -0 .467  -17 -0.566 

p(R3,q l )  -0.526 -0.525 0 -0.461 -12 -0.401 

p(~3.~2 ) 0.691 0.690 0 0.656 - 5 0.605 

S t r u c t u r a l  P a r a m e t e r s  - S t r u c t u r a l  Equa t ion  Model 

Unstandardized So lu t ion  

~21 -0.566 -0.566 0 -0.502 -11 -0.597 
(0.051) (0.051) (0.068) (0.051) 

(0.059) (o.o51) 

~31 -0.198 -0.198 0 -0.219 11 -0.083 
(0.060) (0.069) (0.075) (0,061) 

(0.070) (o,o6o) 

~32 0 .579 0 .579 0 0 .582 1 0 .533 
(0 .066)  (0 .076)  (0 .079)  (0 .068)  

(0.077) (0.066) 

V(q l )  1.000 1.000 0 0 .749  -25 1.000 
(O.lOO) (O.lOO) (o(°~1°1) (O.lOO) 

115) (O.lOO) 

V(f2)  0.680 0.680 0 0 .675 - 1 0.683 
(0 .071)  (0 .071)  ( 0 . 0 8 4 )  (0 .071)  

(0.082) (o.o71) 

V(~3) 0.498 0 .498 0 0.407 0 0.579 
(0 .073)  (0 .084)  (0 .087)  (0 .083)  

(0.084) (0.073) 

Standardized So lu t ion  

~21 -0.566 -0.566 0 -0.467 -17 -0.566 

~31 -0.198 -0.198 0 -0.198 0 -0.087 

~32 0.579 0.579 0 0.564 - 1 0.556 

R2(~2 ) 0.320 0.320 0 0.218 -31 0.320 

R2(~3 ) 0.503 0.503 0 0.461 - 7 0 .372 

0 

0 

- 8 

0 

-27 

-16 

0 

-24 

-12 

0 

-58 

- 8 

0 

0 

16 

0 

- 5 5  

- 3  

0 

- 2 5  

a Fixed p a r a m e t e r .  

b F u l l  sample s t a n d a r d  e r r o r  (no m t s s i n g n e s s ) .  

c MAR s t a n d a r d  e r r o r .  

d MCAR s t a n d a r d  e r r o r .  

A t t r i t i o n  r a t e  i s  25~, R 2 i s  50~. 
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Similar to (33), we let 

S* 2 , 37(Yll + Y~I + Y*I) -- ~V(Y*2 + Y~2 + Y*2 + Y~3 + Y~3 + Y~a) + t~. (34) 

Due to the influence of the time two variables, the missingness mechanism is not ignor- 
able in this case and the F Q L  estimator will show large-sample bias. In order to get a 
more comprehensive comparison of bias among the three estimators, both the strength of 
selectivity in the missingness and the attrition rate was varied. Strength of selectivity was 
varied by using 75%, 50%, and 25% s* R 2, with 7 values of 0.331, 0.270, and 0.19t. 
Attrition rates of 25% and 33% were studied. In the table below, however, only results for 
25% attrition wilt be given, since the 33% case yielded very similar conclusions. 

For  75% R 2, the chi-square model tests for FQL, LQL, PPA, and the MCAR test 
gave the values of 0.29, 0.53, 1.24, and 219.17, respectively. For  50%, the values were 0.10, 
0.17, 0.53, and 175.73, while 25% gave 0.02, 0.03, 0.13, and 80.91. The degrees of freedom 
are as before. Table 3 gives the estimates and the percentage bias for 75%, 50%, 25%, 
respectively. Again, none of the estimators show a considerable amount of bias in the 
measurement parameters. In the CFA metric, the F Q L estimator dearly outperforms 
both LQL and PPA and this is true for all three levels of R 2. This is noteworthy since 
ignorability of the missingness is not at hand here. In most cases, FQL certainly does 
reduce the LQL/PPA bias as was conjectured. PPA shows less bias than LQL in the CFA 
metric. In terms of total percentage bias for the unstandardized SEM parameters, LQL 
outperforms PPA. It is noteworthy that both the FQ L and PPA estimators show almost 
no bias for parameters involved in parts of the model where there is no missingness. The 
relative performance of the three estimators is not altered by the changes in R 2. We note 
that at 50% and 25% R 2, the FQL bias is in no case substantially larger than the best 
contender, and in most cases the bias is considerably smaller. This range of R 2 may be the 
most realistic in social science data. In the tables that follow, we will only consider R 2's of 
50%. 

6.1.3 Missin#ness Predicted by the Latent Variables. In the context of latent vari- 
able models it may be relevant to consider missingness predicted by the latent variables 
instead of the observed ones. For  instance, people may "self-select" themselves out of the 
sample after the time one measurement occasion as predicted by their "true" socioecono- 
mic or alienation status rather than any combination of fallible measurements of such 
constructs. On the other hand, this may not be relevant if missingness is for instance 
related to a particular variable which involves a sensitive issue or if selection into the 
sample is judged by observed scores (e.g., pretest scores). 

Consider the case of missingness predicted by all three latent variables 

s* = z3Vr/1 - lay(r/2 + r/3 ) + 6, (35) 

and the case of missingness predicted by the time one factors ~/1 and r/2 , 

s* = 3z~/1 -- 3~/2 + 6. (36) 

Throughout  this section, an R 2 of 50% is chosen with an attrition rate of 25%. In (35) 
= 0.619, while in (36) ~ = 0.787. The chi-square model test values for FQL, LQL, and 

PPA are in these two cases all zero, with zero bias in the measurement parameters. This is 
in line with the theory of section 4.27 This is noteworthy since with real sample data there 
is then no indication of a misfitting model, while at the same time quite large LQL and 
PPA bias may be obtained in the structural parameters. The MCAR test values are 
153.46 and 160.54. 



450 PSYCHOMETRIKA 

Table 3 

Nisslngness Case I: 

Nissingness Predicted by All Nine Variables 

FQL 
Parameter [ 

Parameter Value Estimate Bias 

L~L 
1 I ~ ........... I I 

Estimate Bias 

Measurement Parameters 

A l l  0 . 7 7 8  0 . 7 7 8  a - 0 . 7 7 8  a - 
0 . 7 7 8  0 . 7 7 8  - 
0 . 7 7 8  - 0 . 7 7 8  - 

A21 0 . 8 4 6  0 . 8 4 7  0 0 . 8 7 9  4 
0 . 8 4 7  0 0 . 8 6 4  2 
0 . 8 4 6  0 0 . 8 5 3  1 

A31 0 . 5 8 5  0 . 5 8 5  0 0 . 5 3 9  - 8 
0 . 5 8 5  0 0 . 5 5 8  - 5 
0 . 5 8 5  0 0 . 5 7 3  - 2 

A12 0 . 8 3 2  0 . 8 3 2  a - 0 . 8 3 2  a - 
0 . 8 3 2  0 . 8 3 2  - 
0 . 8 3 2  - 0 . 8 3 2  - 

~22 0.771 0.770 0 0 , 7 6 0  - 1 
0 . 7 7 0  0 0 . 7 6 5  - 1 
0 . 7 7 1  0 0 . 7 6 8  0 

A32 0.543 0.542 0 0.513 - 6 
0 . 5 4 2  0 0 . 5 2 5  - 3 
0 , 5 4 3  0 0 , 5 3 5  - 1 

A13 0 . 7 5 9  0 . 7 5 9  a - 0 . 7 5 9  a - 
0 . 7 5 9  0 . 7 5 9  - 
0 . 7 5 9  - 0 . 7 5 9  - 

A23 0 . 6 7 2  0 . 6 5 6  - 2 0 . 6 5 6  - 2 
0 . 6 6 3  0 0 . 6 6 3  - 1 
0 . 6 6 8  0 0 . 6 6 8  - 1 

A33 0 , 4 9 7  0 . 4 6 7  - 6 0 . 4 6 7  - 6 
0 . 4 7 9  - 4 0 . 4 7 9  - 4 
0 . 4 8 9  - 1 0 . 4 8 9  - 2 

811  0 . 3 9 5  0 . 3 9 5  0 0 . 4 0 0  1 
0 . 3 9 5  0 0 . 3 9 8  1 
0 . 3 9 5  0 0 . 3 9 6  0 

821  0 . 2 8 4  0 . 2 8 3  0 0 . 2 7 4  - 4 
0 . 2 8 4  0 0 . 2 7 9  2 
0.284 0 0 . 2 8 2  - 1 

831 0.658 0.658 o 0.655 o 
0.658 o 0.657 o 
0 . 6 5 8  0 0 . 6 5 7  0 

812  0 . 3 0 8  0 . 3 0 6  1 0 . 3 0 2  - 2 
0 . 3 0 7  0 0 . 3 0 4  - 1 
0 , 3 0 7  0 0 , 3 0 6  - 1 

822  0 , 4 0 5  0 , 4 0 6  0 0 , 4 0 8  1 
0 , 4 0 6  0 0 . 4 0 7  0 
0 . 4 0 5  0 0 . 4 0 6  0 

8 3 2  0 . 7 0 5  0 . 7 0 6  0 0 . 7 0 6  0 
0 . 7 0 6  0 0 . 7 0 6  0 
0 . 7 0 5  0 0 . 7 0 6  0 

813  0 . 4 2 3  0 . 4 1 6  - 2 0 . 4 1 6  - 2 
0 . 4 1 8  1 0 . 4 1 8  - 1 
0 . 4 2 1  0 0 . 4 2 1  0 

823 0 . 5 4 7  0 . 5 5 0  1 0 . 5 5 0  1 
0 . 5 4 9  0 0 . 5 4 9  0 
0 . 5 4 8  0 0 . 5 4 8  0 

8 3 3  0 . 7 5 2  0 . 7 5 2  0 0 . 7 5 5  0 
0 . 7 5 4  0 0 . 7 5 4  0 
0 . 7 5 3  0 0 . 7 5 3  0 

PPA 

Estimate 

0 . 7 7 8  a 
0 . 7 7 8  
0 . 7 7 8  

0 . 8 4 7  
0 . 8 4 8  
0 . 8 4 7  

0 . 5 8 5  
0 . 5 8 5  
0 . 5 8 5  

0 . 8 3 2  a 
0 . 8 3 2  
0 . 8 3 2  

0 . 7 6 8  
0 . 7 6 9  
0 . 7 7 0  

0 . 5 3 9  
0 . 5 4 0  
0.542 

0 . 7 5 9  a 
0 . 7 5 9  
0 . 7 5 9  

0 . 6 5 8  
0 . 6 6 4  
0 . 6 6 8  

0 . 4 6 9  
0 . 4 8 0  
0 . 4 8 9  

0 . 3 9 5  
0 . 3 9 6  
0 . 3 9 5  

0 . 2 8 3  
0 . 2 8 3  
0 . 2 8 3  

0 . 6 5 9  
0 . 6 5 9  
0 . 6 5 9  

0 . 3 2 0  
0 . 3 0 5  
0 . 3 0 6  

0 . 4 0 7  
0 . 4 0 6  
0 . 4 0 6  

0 . 7 0 7  
0 . 7 0 7  
0 . 7 0 6  

0 . 4 1 8  
0 . 4 1 9  
0 , 4 2 1  

0 . 5 4 9  
0 . 5 4 9  
0 . 5 4 8  

0 , 7 5 3  
0 . 7 5 3  
0 , 7 5 3  

B i a s  

0 
o 
0 

o 
0 
o 

o 
0 
0 

- 1 

- I 

0 

- 2 

- 1 

- 1 

- 6 

3 
- 2 

o 
o 
o 

0 
o 
o 

0 
o 
0 

- 1 

- 1 

- 1 

0 
0 
0 

o 
0 
o 

- 1 

- 1 

0 

o 
o 
0 

o 
o 
0 
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Table 3 ( c o n t i n u e d )  

P a r a m e t e r  
P a r a m e t e r  V a l u e  

V ( O l )  
0 . 9 9 9  
1,000 

V ( ~ 2 )  1 . 0 0 0  1 . 0 0 2  
1 , 0 0 1  
1 . 0 0 1  

v ( ~ 3 )  1 . 0 0 0  0 , 8 7 3  
0 , 9 2 6  
0 , 9 6 8  

C ( ~ 2 o ~ 1 )  - 0 . 5 6 6  - 0 . 5 6 6  
- 0 . 5 6 6  
- 0 . 5 6 6  

C ( ~ 3 , ~ 1  ) - 0 . 5 2 6  -0.414 
-0.462 
-0.498 

C ( ~ 3 , ~ 2 )  0 . 6 9 1  0 . 6 0 0  
0 . 6 3 9  
0 . 6 6 8  

p ( ~ 2 , ~ 1 )  - 0 . 5 6 6  - 0 . 5 6 5  
- 0 , 5 6 6  
- 0 . 5 6 6  

p ( W 3 , ~ l )  - 0 . 5 2 5  - 0 . 4 4 3  
- 0 . 4 8 0  
- 0 . 5 0 6  

p ( ~ 3 , 7 2 )  0 . 6 9 1  0 . 6 4 2  
0 . 6 6 4  
0 . 6 7 9  

Structural 

~21 - 0 . 5 6 6  - 0 . 5 6 6  
- 0 , 5 6 6  
- 0 . 5 6 6  

~31 - 0 . 1 9 8  -0.III 
-0.148 
-0,176 

~32 0 . 5 7 9  0 , 5 3 7  
0 . 5 5 5  
0 . 5 6 8  

V ( ~ l )  1 , 0 0 0  0 , 9 9 9  
0 , 9 9 9  
1 , 0 0 0  

V ( ~ 2 )  0 . 6 8 0  0 , 6 8 2  
0 , 6 8 1  
0 , 6 8 0  

V ( ~ 3 )  0 . 4 9 8  0 . 5 0 5  
0 . 5 0 3  
0 . 5 0 0  

~21 - 0 . 5 6 6  - 0 . 5 6 5  
- 0 . 5 6 6  
- 0 . 5 6 6  

~31 - 0 . 1 9 8  - 0 . 1 1 8  
- 0 . 1 5 4  
- 0 . 1 7 9  

~32  0 . 5 7 9  0 . 5 7 5  
0 . 5 7 7  
0 . 5 7 8  

R 2 ( ~ 2  ) 0 . 3 2 0  0 . 3 2 0  
0 . 3 2 0  
0 . 3 2 0  

R 2 ( ~ 3  ) 0 . 5 0 3  0 . 4 2 1  
0.457 
0.483 

FQL LQL PPA 

Bias [ Estlmate Bias Estimate Bias 

Structural Parameters - Confirmatory Factor Analysis Model 
Unstandardized Solution 

1 . 0 0 0  0 . 9 9 8  0 0 . 6 5 9  - 3 3  1 . 0 0 0  
0 0 . 7 7 4  - 2 2  1 . 0 0 0  
0 0 . 8 8 7  - 1 0  1 . 0 0 0  

0 0 . 7 8 0  - 2 2  1 . 0 0 6  
0 0 . 8 5 3  - 1 5  1 . 0 0 4  
0 0 . 9 2 6  - 7 1 . 0 0 2  

- 1 3  0 . 7 9 0  -21  0 . 7 8 7  
- 7 0 . 8 6 0  - 1 4  0 . 8 5 9  
- 3 0 . 9 3 1  - 7 0 . 9 3 1  

0 - 0 . 2 8 6  - 4 9  - 0 . 5 6 7  
0 - 0 . 3 8 0  - 3 3  - 0 . 5 6 6  
0 - 0 . 4 7 3  - 1 6  - 0 . 5 6 6  

- 2 1  - 0 . 2 4 7  - 5 3  - 0 . 2 4 9  
- 1 2  ~ 0 . 3 4 0  - 3 5  - 0 . 3 4 2  
- 5 - 0 . 4 3 3  - 1 8  - 0 . 4 3 4  

- 1 3  0 . 4 6 5  - 3 3  0 . 4 6 0  
- 8 0 , 5 4 0  - 2 2  0 , 5 3 7  
- 3 0 . 6 1 6  - i i  0 . 6 1 5  

S t a n d a r d i z e d  S o l u t i o n  

0 - 0 , 3 9 9  - 3 0  - 0 . 5 6 6  
0 - 0 . 4 6 7  - 1 7  - 0 . 5 6 6  
0 - 0 . 5 2 2  - 8 - 0 . 5 6 6  

- 1 6  - 0 . 3 4 3  - 3 5  - 0 . 2 8 1  
- 9 - 0 . 4 1 7  - 2 1  - 0 . 3 6 9  
- 4 - 0 . 4 7 7  - 9 - 0 . 4 5 0  

- ? 0 . 5 9 2  - 1 4  0 . 5 1 7  
- 4 0 . 6 3 1  - 9 0 . 5 7 9  
- 2 0 . 6 6 3  - 4 0 . 6 3 6  

Parameters - Structural E q u a t i o n  Nodel 

0 
0 
0 

1 
0 
0 

- 2 1  
- 1 4  
- 7  

0 
0 
0 

- 5 3  
- 3 5  
- 1 7  

- 3 3  
- 2 2  
- 1 1  

0 
0 
0 

- 4 6  
- 3 0  
- 1 4  

- 2 5  
- 1 6  
- 8 

Unstandardized Solution 

0 - 0 , 4 3 5  - 2 3  - 0 . 5 6 7  0 
0 - 0 , 4 9 1  - 1 3  - 0 . 5 6 ?  0 
0 - 0 . 5 3 3  - 6  - 0 . 5 6 ?  0 

- 4 4  - 0 . 1 3 8  - 3 0  - 0 . 0 1 4  - 9 3  
- 2 5  - 0 . 1 6 5  - 1 7  - 0 . 0 5 7  - 7 1  
-11 -0.184 - 7 -0.128 -35 

- 7 0 . 5 4 5  - 6 0 . 4 6 5  - 2 0  
- 4 0 . 5 6 0  - 3 0 . 5 0 3  - 1 3  
- 2 0 . 5 7 1  - 1 0 , 5 4 1  - 7 

0 0 . 6 5 9  - 3 4  1 . 0 0 0  0 
0 0 . 7 7 4  - 2 3  1 . 0 0 0  0 
0 0 . 8 8 7  - 1 1  1 . 0 0 0  0 

0 0 . 6 5 6  - 4 0 . 6 8 4  1 
0 0 . 6 8 7  - 2 0 . 6 8 3  0 
0 0 , 6 7 4  - I 0 . 6 8 2  0 

1 0 . 5 0 3  1 0 . 5 7 7  16 
1 0 . 5 0 2  1 0 . 5 6 9  14 
0 0 , 5 0 0  0 0 . 5 4 3  9 

Standardized Solution 

0 - 0 . 3 9 9  - 3 0  - 0 . 5 6 6  0 
0 - 0 . 4 6 8  - 1 7  - 0 . 5 6 6  0 
0 - 0 . 5 2 2  - 8 - 0 . 5 6 6  0 

- 4 0  - 0 , 1 2 6  - 3 6  - 0 . 0 1 6  - 9 2  
- 2 2  - 0 . 1 5 6  -21  - 0 . 0 6 2  - 6 9  
- 1 0  - 0 . 1 8 0  - 9 - 0 . 1 3 2  - 3 3  

- 1 0 . 5 4 1  - 6 0 . 5 2 6  - 9 
0 0 . 5 5 8  - 3 0 . 5 4 4  - 6 
0 0 , 5 7 0  0 0 . 5 6 1  - 3 

0 0 . 1 5 9  - 5 0  0 . 3 2 0  0 
0 0 , 2 1 9  - 3 2  0 . 3 2 0  0 
0 0 . 2 7 2  - 1 5  0 . 3 2 0  0 

- 1 6  0 . 3 6 4  - 2 8  0 . 2 6 ?  - 4 7  
- 9 0 , 4 1 7  - 1 7  0 . 3 3 7  - 3 3  
- 4 0 , 4 6 3  - 8 0 . 4 1 7  - 1 7  

a Fixed parameter. 

The three entries for each parameter estimate 

75~, 50~, and 25~. Attrition rate Is 25~. 

correspond to mlsslngness R 2 o f  
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The bias in the structural parameters is shown in Table 4, where the top entry 
corresponds to (35) and the bottom entry corresponds to (36). 

We may compare the biases for the case of three factors (top entries of Table 4) with 
that of missingness predicted by their nine observed indicators in the middle (50%) entries 
of Table 3, and the two factor results (bottom entries of Table 4) with that of their six 
observed indicators (the MAR case) in Table 2. These comparisons show that the results 
are affected rather little by the distinction between latent and observed variables. For 
instance, in the two factor case the loss of MAR when moving from missingness predicted 
by the six observed variables to missingness predicted by the corresponding two factors, 
results in a maximum FQL bias of 8%. 

6.1.4 The Marginal Model. Let us now consider estimation in the marginal model 
for Yt2, Y22, Y23, Y13, Y23, and Y33. The missingness situations to be studied were taken 
to be the 6.t.2 case of missingness predicted by all nine variables and the 6.1.1 case of 
missingness predicted by the six times one variables. An s* R 2 of 50% with 25% attrition 
was used. This illustrates the presumably common occurrence of missingness predictors 
left out of the model to be estimated. The model of (1) and (3) is then misspecified, so that 
the 6 residuals of the s* relations are not uncorrelated with the predictors. 

The test values for the nine/six predictor cases with eight degrees of freedom were 
0.03/0.00, 0.02/0.00, and 0.11/0.07 for FQL, LQL, and PPA, while the MCAR test values 
with nine degrees of freedom were 97.27/91.17. Table 5 gives the bias values. Regarding 
the SEM metric it should be noted that the r/3 , J/2 structural regression is misspecified due 
to the left-out variable ~/1. In order not to confound this bias with the bias caused by 
missing data, the population parameter values are here changed to those of the misspeci- 
fled regression. 

FIGURE 3 

A SPECIAL CASE OF MISSINGNESS ( I I )  a 

VAR I ABLE 

MISSING DATA 

PATTERN 

Y] 1 Y2I Y3I Yl 2 Y22 Y32 Yl 3 Y23 Y33 

1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 0 1 1 1 1 

3 1 1 1 1 1 0 1 1 1 

4 1 1 1 1 0 0 1 1 1 

al'S DENOTE NOT MISSING 

O'S DENOTE MISSING 
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Table 4 

Mlsslngness Case I: 

Misslngness Predicted by Latent Variables 

SqL 
Pa rame te r  ! 

Parameter Value ........... Estimate Bias 

LQL PPA 
I 

[Estimate Bias Estimate Blas 

Structural Parameters - Confirmatory Factor 

Unstandardized Solution 

V(q 1) 1.000 1.000 0 0.810 
1.000 0 0.789 

V(~ 2) 1.000 1.000 0 0.843 
1.000 0 0.855 

V(~ 3) 1,000 0.916 - 8 0.853 
0.976 - 2 0.905 

C(q2,R 1) -0 .566  -0 ,568  0 -0 .393  
-0.566 0 -0 .391 

C(~3 ,~  1) -0 .526  -0 .466  -11 -0 .358  
-0 .504  - 4 -0 .383  

C(~3,R 2) 0.691 0.637 - 8 0.538 
0.673 - 3 0.572 

S tanda rd i zed  S o l u t i o n  

P(q2,R1)  -0 .566  -0 .566  0 -0 .476  
-0 .566  0 -0 .476  

P ~ 3 , R 1 )  -0 .525  -0 .448  -15 -0 .430  
-0 .511  - 3 -0 .453  

P(~3,R2)  0.890 0.666 - 3 0.634 
0.682 - 1 0.651 

S t r u c t u r a l  

A n a l y s i s  Model 

-19 1.000 0 
-21 1.000 0 

-16 1.000 0 
-15 1.000 0 

-15 0.853 -15 
-10 0.905 -10 

-31 -0 .586  0 
-31 -0 .566  0 

-32 -0 .358  -32 
-27 -0 .382  -27 

-22 0.538 -22 
-17 0.572 -17 

-16 -0 .566  0 
-16 -0 .566  0 

-18 -0 .38?  -26 
-14 -0 .402  -23 

- 8 0.582 -16 
- 6 0.601 -13 

Parameters - Structural Equation Model 

Uns tandard ized  S o l u t i o n  

~21 -0 .586  -0 .566  0 -0 .485  -14 -0 .566  0 
-0 .566  0 -0 .495  -13 -0 .566  0 

~31 -0 .198  -0 .156  -21 -0 .170  -14 -0 .079  -60 
-0 .182  - 8 -0 .198  0 -0 .086  -57 

~32 0,579 0.549 - 5 0.559 - 3 0.493 -15 
0.571 - 1 0.579 0 0.523 -10 

V(R1) 1.000 1.000 0 0.810 -19 1.000 0 
1.000 0 0.789 -21 1.000 0 

V(¢ 2) 0.880 0.680 0 0.652 - 4 0.680 0 
0.680 0 0.661 - 3 0.680 0 

V ( {  3) 0.498 0.493 - 1 0.492 - 1 0 . 5 6 0  0 
0.500 0 0.498 0 0.573 15 

Standardized Solution 

~21 -0 ,566  -0.566 0 -0 ,476  -16 -0 .566  0 
-0,566 0 -0 .476  -16 -0 .566  0 

~31 -0 .198  -0 ,163  -18 -0 ,186  -16 -0 .085  -57 
-0 .184  - 7 -0 .185  - 7 -0 .091 -54 

~32 0.579 0,574 - 1 0.555 - 4 0.534 - 8 
0,578 0 0,563 - 3 0.550 - 5 

R2(~2)  0 .320 0.320 0 0.226 -29 0,320 0 
0,320 0 0.226 -29 0 ,320 0 

R2(~3)  0.503 0.461 - 8 0,424 -16 0.344 -32 
0 .488 - 3 0.450 -11 0.344 -27 

The two e n t r i e s  f o r  each  p a r a m e t e r  e s t i m a t e  c o r r e s p o n d  to  m i s s l a g n e s s  p r e d i c t e d  

by all three latent variables, and by ~I and ~2. Attrition rate Is 25~ and R 2 

Is 5 0 ~ .  
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Table 5 

Misslngness Case I :  

Marglnal Model 

FQL LQL PPA 
P a r a m e t e r  I ~ I [ ~ [ ] 

Parameter Value .Estimate. Bias .......... Estlmate B.las Estlmate Bias 

Measurement Parameters 

A12 0 . 8 3 2  0 . 8 3 2  a 0 . 8 3 2  a 0 - 8 3 2  a 
0 . 8 3 2  0 . 8 3 2  0 . 8 3 2  - 

A22 0 . 7 7 1  0 . 7 7 0  0 0 , 7 6 6  - 1 0 . 7 6 8  0 
0 . 7 7 0  0 0 , 7 6 6  - 1 0 , 7 6 8  0 

A32 0.543 0.541 0 0.527 - 3 0.540 - 1 
0 . 5 4 2  0 0 , 5 2 6  - 3 0 . 5 4 0  - 1 

A I 3  0 , 7 5 9  0 . 7 5 9  a 0 , 7 5 9  a 0 . 7 5 9  a 
0 . 7 5 9  0 , 7 5 9  0 . 7 5 9  

A23 0 . 6 7 2  0 . 6 6 4  - 1 0 , 6 6 4  - 1 0 . 6 6 4  - 1 
0 , 6 7 2  0 0 , 6 7 2  0 0 . 6 7 2  0 

A33 0 . 4 9 7  0 . 4 8 0  - 3 0 . 4 8 1  - 3 0 . 4 8 1  - 3 
0 . 4 9 7  - 0 0 . 4 9 7  0 0 . 4 9 7  0 

812 0 . 3 0 8  0 . 3 0 6  - 1 0 . 3 0 6  - 1 0 , 304  - 1 
0 , 3 0 7  - 0 0 . 3 0 7  0 0 . 3 0 4  - 1 

822 0 . 4 0 5  0 . 4 0 6  0 0 . 4 0 6  0 0 . 4 0 7  0 
0 . 4 0 6  0 0 , 4 0 6  0 0 . 4 0 7  0 

932 0 . 7 0 5  0 . 7 0 6  0 0 . 7 0 5  0 0 . 7 0 7  0 
0 . 7 0 6  0 0 , 7 0 4  0 0 . 7 0 7  0 

813 0 . 4 2 3  0 . 4 2 0  - 1 0 . 4 2 0  - 1 0 . 420  - l 
0 . 4 2 3  - 0 0 . 4 2 3  0 0 . 4 2 3  0 

823 0 . 5 4 7  0 . 5 4 8  0 0 . 5 4 8  0 0 . 5 4 8  0 
0 . 5 4 7  0 0 , ~ 4 7  0 0 . 5 4 7  0 

033 0 . 7 5 2  0 . 7 5 3  0 0 . 7 5 3  0 0 . 7 5 3  0 
0 , 7 5 2  0 0 , 7 5 2  0 0 . 7 5 2  0 

S t r u c t u r a l  P a r a m e t e r s  - C o n f i r m a t o r y  F a c t o r  A n a l y s i s  Model  

U n s t a n d a r d i z e d  S o l u t i o n  

V ( ~  2)  1 . 0 0 0  1 . 0 0 3  0 0 . 8 5 1  - 1 5  1 . 0 0 6  1 
1 .001  0 0 . 8 6 1  -14 1 . 0 0 5  0 

V ( ~ 3 )  1 . 0 0 0  0 , 8 9 7  - 1 0  0.858 - 1 4  0 . 8 5 7  - 1 4  
0 , 9 6 4  - 4 0 . 9 2 1  - 8 0 . 9 2 1  - 8 

C ( ~ 3 , ~ 2 )  0 . 6 9 1  0 . 6 1 6  -11  0 . 5 3 9  - 2 2  0 . 5 3 7  - 2 2  
0 . 6 6 1  - 4 0 . 5 8 4  - 1 5  0 . 5 8 2  - 1 6  

Standardized Solution 

P ( ~ 3 , ~ 2 )  0 , 6 9 1  0 . 7 4 9  9 0 , 6 3 1  - 9 0 . 5 7 9  - 1 6  
0 . 7 7 6  13 0 . 6 5 6  - 5 0 , 6 0 5  - 1 2  

Structural Parameters - Structural Equation Model 

Unstandardized Solution 

~32 0 . 6 9 1  0 . 6 1 4  - 1 1  0 . 6 3 4  - 8 0 . 5 3 4  - 2 3  
0 . 6 6 0  - 5 0 , 6 7 9  ~ 2 0 . 5 7 9  - 1 6  

V ( q 2 )  1 , 0 0 0  1 . 0 0 3  0 0 . 8 5 1  - 1 5  1 . 0 0 6  1 
1 . 0 0 1  0 0 . 8 6 1  - 1 4  1 , 0 0 5  0 

V ( { 3 )  0 , 5 2 5  0 . 5 1 9  - 1 0 . 5 1 6  ~ 2 0 . 5 7 0  9 
0 . 5 2 7  0 0 , 5 2 4  0 0 . 5 8 3  11 

S t a n d a r d i z e d  S o l u t i o n  

~32 0 . 6 9 1  0 . 7 4 9  9 0 . 6 3 i  - 9 0 , 5 7 9  - 1 6  
0 . 7 7 6  13 0 , 6 5 6  - 5 0 , 6 0 5  - 1 2  

R 2 ( ~ 3 )  0 . 4 7 7  0 . 4 2 1  - 1 2  0 . 3 9 8  - 1 7  0 , 3 3 5  - 3 0  
0 , 4 5 3  - 5 0 , 4 3 1  - 1 0  0 . 3 6 6  - 2 3  

a Fixed parameter. 

The two entries for each parameter estimate correspond to mlssingness 

predicted by all nine variables and by the six time one observed variables. 

In both cases, attrition rate is 25~ and R 2 is 50~. 
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We may compare the top entries of Table 5 with the middle, 50% R 2, entries of 
Table 3, and the bottom entries with those of Table 2. It is noteworthy that the bias 
increase in FQL is not that large when going from the full to the marginal model. In the 
two cases there is a maximum bias increase of 3% in the CFA structural parameters, and 
7% in the SEM structural parameters. The bias increase for LQL and PPA is somewhat 
smaller. Overall, however, it is still true that F Q L  performs best. PPA is slightly better 
than LQL in the CFA metric, while the reverse is true in the SEM metric. 

6.2 Results for Missingness Case II 

In this case missingness occurs for Y22 and Y32- This may, for instance, be thought of 
as a cross-sectional situation, where these variables involve particularly sensitive aspects 
of t/2 . The two variables are taken to have different s* missingness relations, so that we 
have four possible data patterns, as depicted in Figure 3. We note that these patterns are 
not monotone (nested), see e.g., Little (1983, p. 357), as are the data patterns under 
missingness case I. For  each of the variables we assume that the y* value that would have 
been observed influences the s* missingness propensity, so that the missingness mecha- 
nism is not ignorable for this reason alone. For  Y22 we assume the s* 2 relation 

S~2 = a~22 ill -- b)~22 Y~2 -1- 622, (37) 

while for Y32 we assume 

S~2 = ay32 t/1 -- b732 Y~2 + ~32" (38) 

We will study both (a, b ) =  (2/3, 1/3) and (a, b ) =  (1/3, 2/3), varying the relative impor- 
tance of background and the specific variable. In each s* relation an R 2 of 50% was 
chosen by setting ~22 ~--- 0.817 and 732 = 0.850. The univariate rates of missingness were 
set at 15% for both variables. A medium sized s~2, s~' 2 correlation of 0.5 was chosen by 
a l lowing  622 and 332 to correlate 0.044 and 0.178, respectively for the two (a, b) choices. 
This results in the expectation of about 76% of the sample having no missingness, that is, 
a number comparable to that of missingness case I. The exact probabilities of each of the 
data patterns as numbered in Figure 3 are: 0.758, 0.092, 0.092, 0.058. 

6.2.1 The Full Model. For (a, b ) =  (2/3, 1/3) the full model test values with 24 
degrees of freedom for FQL, LQL, and PPA were 0.95, 0.39, 10.56, while for (a, b) = (1/3, 
2/3) they were 1.04, 0.45, 11.37. In these two cases the MCAR test values were 189.47 and 
126.69 with 123 degrees of freedom. The entries of Table 6 give results for parameter 
estimates in the same order. Compared to missingness case I, the bias in the measurement 
parameters is somewhat larger here. Overall, FQ L is clearly the best estimator. Regarding 
the LQL and PPA comparison, LQL performs slightly better overall for measurement 
parameters, while PPA is clearly better in terms of CFA structural parameters, and in this 
case also slightly better overall in terms of SEM structural parameters. Again, PPA and 
FQL share the property of giving almost zero bias for parameters in parts of the model 
where there is no missingness, but in other parts FQ L dominates PPA. There is little 
influence in the results by the change of (a, b) values. We furthermore replaced the r/1 
variable as a predictor of missingness by its three indicators, but this also had little effect 
on the overall picture. 

6.2.2 The Marginal Model. The marginal model for Y12, Y22, Y32, Y13, Y23, and 
Y33 was estimated under both of the missingness conditions above. The results will be 
given in the order (a, b) = (2/3, 1/3), (a, b) = (1/3, 2/3). The model test values were 0.06 and 
0.13 for FQL,  0.02 and 0.04 for LQL, and 3.72 and 6.32 for PPA. The degrees of freedom 
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T a b l e  6 

M l s s i n g n e s s  C a s e  I I :  

F u l l  Mode l  

EqL 
Parameter 1 

Parameter Value Estimate Bias 

LQL 

I I 
E s t i m a t e  

PPA 

B i a s  E s , t l m a t e  B i a s  

M e a s u r e m e n t  

h l l  0 . 7 7 8  0 , 7 7 8  a 
0 , 7 7 8  

A21 0 . 8 4 6  0 . 8 4 6  0 
0 , 8 4 6  0 

A31 0 . 5 8 5  0 . 5 8 5  0 
0 . 5 8 5  0 

~12  0 . 8 3 2  0 . 8 3 2  a - 
0 , 8 3 2  

~22 0 . 7 7 1  0 . 7 2 1  - 6 
0 . 6 8 7  - 1 t  

~ 3 2  0 . 5 4 3  0 , 4 8 9  - 1 0  
0 . 4 5 4  - 1 6  

X13 0 . 7 5 9  0 . 7 5 9  a - 
0 . 7 5 9  

~ 2 3  0 . 6 7 2  0 . 6 7 2  0 
0 . 6 7 2  0 

X33 0 . 4 9 7  0 . 4 9 7  0 
0 . 4 9 7  0 

8 1 1  0 . 3 9 5  0 . 3 9 5  0 
0 . 3 9 5  0 

0 2 1  0 . 2 8 4  0 . 2 8 4  0 
0 . 2 8 4  0 

8 3 1  0 . 6 5 8  0 . 6 5 8  0 
0 . 6 5 8  0 

012 0 . 3 0 8  0 . 2 9 0  - 6 
0 . 2 9 2  - 5 

8 2 2  0 . 4 0 5  0 . 4 1 2  2 
0 . 3 9 6  - 2 

932 0 . 7 0 5  0 , 6 9 5  - 1 
0 . 6 4 6  - 8 

6 1 3  0 . 4 2 3  0 . 4 2 3  0 
0 . 4 2 3  0 

8 2 3  0 . 5 4 7  0 . 5 4 7  0 
0 . 5 4 7  0 

0 3 3  0 . 7 5 2  0 . 7 5 2  0 
0 , 7 5 2  0 

P a r a m e t e r s  

0 . 7 7 8  a - 0 , 7 7 8  a - 
0 . 7 7 8  0 , 7 7 8  - 

0 . 8 4 6  0 0 , 8 4 6  0 
0 . 8 4 6  0 0 . 8 4 6  0 

0 . 5 8 5  0 0 . 5 8 5  0 
0 . 5 8 5  0 0 . 5 8 5  0 

0 . 8 3 2  a - 0 . 8 3 2  a - 
0 . 8 3 2  - 0 . 8 3 2  - 

0 . 7 4 4  - 4 0 . 6 6 7  - 1 3  
0 . 7 2 2  - 6 0 . 6 5 7  - 1 5  

0 . 5 0 7  - 7 0 , 4 7 1  - 1 3  
0 . 4 8 2  - 1 1  0 . 4 6 7  - 1 4  

0 . 7 5 9  a - 0 . 7 5 9  a - 
0 . 7 5 9  0 , 7 5 9  - 

0 . 6 7 2  0 0 . 6 7 2  0 
0 . 6 7 2  0 0 . 6 7 2  0 

0 . 4 9 7  0 0 . 4 9 7  0 
0 . 4 9 7  0 0 , 4 9 7  0 

0 . 3 9 5  0 0 . 3 9 5  0 
0 . 3 9 5  0 0 . 3 9 5  0 

0 . 2 8 4  0 0 . 2 8 4  0 
0 . 2 8 4  0 0 . 2 8 4  0 

0 . 6 5 8  0 0 . 6 5 8  0 
0 . 6 5 8  0 0 . 6 5 8  0 

0 . 2 9 9  - 3 0 . 2 9 2  - 5 
0 . 3 0 0  - 3 0 . 3 2 3  5 

0 . 4 0 6  0 0 . 4 5 2  12 
0 . 3 9 1  - 3 0 , 4 2 0  - 4 

0 . 6 9 4  - 2 0 , 6 9 9  - 1 
0 . 6 5 0  - 8 0 , 6 3 4  - 1 0  

0 . 4 2 3  0 0 . 4 2 3  0 
0 . 4 2 3  0 0 . 4 2 3  0 

0 . 5 4 7  0 0 . 5 4 7  0 
0 . 5 4 7  0 0 , 5 4 7  0 

0 . 7 5 2  0 0 . 7 5 2  0 
0 . 7 5 2  0 0 . 7 5 2  0 
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T a b l e  6 

( c o n t i n u e d )  

FqL LQL PPA 
P a r s a e t e r  ~ t I ~ 1 . . . . . . . . . . . .  

Paramet , e r  Value  ~ E s t l u a t e  B ia s  E s t i m a t e  B i a s  | E s t i m a t e  B ia s  

S t r u c t u r a l  P a r a m e t e r s  - C o n f i r m a t o r y  F a c t o r  A n a l y s i s  Nodel  

V ( q l )  1 . 0 0 0  1 . 0 0 0  0 0 . 7 6 4  - 2 4  1 . 0 0 0  0 
1 . 0 0 0  0 0 . 8 7 2  - 1 3  1 . 0 0 0  0 

V ( ~ 2 )  1 . 0 0 0  1 . 0 2 5  3 0 . 8 7 8  - 1 2  1 . 0 2 3  2 
1 . 022  2 0 .861  -14  0 , 9 7 8  - 2 

V ( ~ 3 )  1 . 0 0 0  1 .O02  O 0 . 9 0 7  - 9 1 . 0 0 2  0 
1 . 0 0 2  0 0 . 9 1 5  - 9 1 . 0 0 2  0 

C ( ~ 2 , ~  1 )  0 . 5 6 6  - 0 . 5 5 5  - 2 - 0 . 4 9 8  - 1 2  - 0 . 5 2 9  - ? 
- 0 . 5 5 5  - 2 - 0 . 4 8 0  - 1 5  - 0 . 5 2 7  - 7 

C ( ~ 3 , ~ 1 )  - 0 . 5 2 6  - 0 . 5 2 5  0 - 0 . 4 9 2  - 6 ~ 0 , 5 2 6  0 
- 0 . 5 2 5  0 - 0 . 4 8 2  - 8 0 . 5 2 5  0 

C ( ~ 3 , ~ 2  ) 0 . 6 9 1  0 . 6 8 0  - 2 0 . 6 7 3  - 3 0 . 6 7 3  - 3 
0 . 6 8 0  - 2 0 . 6 6 9  - 3 0 . 6 7 4  - 2 

S t a n d a r d i z e d  S o l u t i o n  

p ( ~ 2 , ~ l  ) - 0 . 5 6 6  - 0 . 5 4 9  - 3 - 0 . 4 6 4  - 1 8  - 0 . 5 2 3  - 8 
- 0 . 5 4 9  - 3 - 0 . 4 8 4  - 1 4  - 0 . 5 2 7  - 7 

p ( q 3  q l )  - 0 . 5 2 6  - 0 . 5 2 5  0 - 0 . 4 5 2  - 1 4  - 0 . 5 2 5  0 
- 0 . 5 2 5  O - 0 . 4 7 1  - 1 0  - 0 . 5 2 6  0 

p ( ~ 3 , ~ 2 )  0 . 6 9 1  0 . 6 8 4  - 1 0 . 6 4 9  - 6 0 . 6 7 7  - 2 
0 . 6 8 4  - 1 0 . 6 5 0  - 6 0 . 6 8 ?  - 1 

S t r u c t u r a l  P a r a m e t e r s  - S t r u c t u r a l  E q u a t i o n  Model 

U n s t a n d a r d i z e d  S o l u t i o n  

~21 - 0 . 5 6 6  - 0 , 5 5 5  - 2 - 0 , 4 9 8  - 1 2  - 0 . 5 2 9  - 7 
- 0 , 5 5 5  - 2 - 0 , 4 8 0  - 1 5  - 0 . 5 3 1  - 8 

~31  - 0 . 1 9 8  - 0 . 2 1 4  8 - 0 . 2 0 9  6 - 0 . 2 3 6  19 
- 0 . 2 1 4  8 - 0 . 2 0 9  6 - 0 . 2 2 6  14 

~32  0 . 5 7 9  0 . 5 6 1  - 3 0 . 5 6 9  - 2 0 . 5 4 8  - 5 
0 . 5 6 1  - 3 0 . 5 6 9  - 2 0 . 5 6 4  - 3 

V ( q l )  1 . 0 0 0  1 . 0 0 0  0 0 . 7 6 4  - 2 4  1 . 0 0 0  0 
1 . 0 0 0  0 0 . 8 7 2  - 1 3  1 . 0 0 0  0 

V ( ~ 2 )  0 . 6 8 0  0 . 7 1 7  5 0 . 6 8 9  1 0.744 9 
0 . 7 1 4  5 0 . 6 6 0  - 3 0 . 7 0 0  3 

V ( ~ 3 )  0 , 4 9 8  0 , 5 0 1  1 0 . 4 9 9  0 0 . 5 0 3  1 
0 . 5 0 1  1 0 . 4 9 9  0 0 . 5 0 1  I 

S t a n d a r d i z e d  S o l u t l o n  

~21 -0.566 - 0 . 5 4 9  - 3 - 0 , 4 6 4  -18  - 0 . 5 2 3  - 8 
- 0 . 5 4 9  - 3 - 0 . 4 8 4  -14  - 0 . 5 2 7  - 7 

~31 - 0 . 1 9 8  - 0 . 2 1 4  8 - 0 . 1 9 2  - 3 - 0 . 2 3 6  19 
- 0 . 2 1 4  8 - 0 . 2 0 4  3 - 0 . 2 2 7  15 

~32  0 . 5 7 9  0 . 5 6 7  - 2 0 . 5 6 0  - 3 0 . 5 5 4  - 4 
0 . 5 6 7  - 2 0 . 5 5 2  - 5 0 . 5 6 ?  - 2 

R 2 ( ~ 2  ) 0 . 3 2 0  0 . 3 0 1  - 6 0 . 2 1 5  - 3 2  0 . 2 7 3  - 1 5  
0 . 3 0 2  - 6 0 . 2 3 4  - 2 7  0 . 2 8 4  - 1 1  

R 2 ( ~ 3  ) 0 . 5 0 3  0 . 5 0 0  0 0 . 4 5 0  - 1 0  0 . 4 9 9  - 1 
0 . 5 0 0  0 0 . 4 5 5  - 9 0 . 5 0 0  0 

a F i x e d  p a r a e e t e r .  

The two e n t r i e s  f o r  e a c h  p a r a m e t e r  e s t i m a t e  c o r r e s p o n d  t o  t h e  ( a , b )  c h o i c e  

( a / s  , I / a )  and ( I / a  , a / s )  ; s e e  t e x t .  Both v a r l a b l e s  h a v e  a m l s s l n g n e s s  

r a t e  o f  1S~ w i t h  an  R z o f  50~. 
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Table 7 

Nissingness Case II: 

Marginal Model 

FQL LQL PPA. 
Parameter [ • [ [ • [ [ .... 

Parameter Value Estimate Bl~s Estimate Bias Estimate Bias 

Measurement Parameters 

A 2 2  0 . 8 3 2  0 . 8 3 2  a - 0 . 8 3 2  a - 0 . 8 3 2  a 
0 . 8 3 2  - 0 . 8 3 2  0 . 8 3 2  

A 2 2  0 . 7 7 1  0 . 7 2 6  - 6 0 . 7 5 1  - 3 0 . 7 0 6  - 8 
0 . 6 9 5  - 1 0  0 . 7 3 0  - 5 0 . 6 9 5  - 1 0  

A 3 2  0 . 5 4 3  0 . 4 9 4  - 9 0 , 5 1 3  - 6 0 . 498  - 8 
0 . 4 6 2  - 1 5  0 . 4 8 8  - 1 0  0 . 4 9 4  - 9 

~13  0 . 7 5 9  0 . 7 5 9  a - 0 . 7 5 9  a - 0 . 7 5 9  a 
0 . 7 5 9  - 0 . 7 5 9  0 . 7 5 9  

A23 0 . 6 7 2  0 . 6 7 2  0 0 . 6 7 2  0 0 . 6 7 2  0 
0 . 6 7 2  0 0 . 6 7 2  0 0 . 6 7 2  0 

~33  0 . 4 9 7  0 . 4 9 7  0 0 . 4 9 7  0 0 . 4 9 7  0 
0 . 4 9 7  0 0 . 4 9 7  0 0 . 4 9 7  0 

0 1 2  0 . 3 0 8  0 , 3 0 3  - 2 0 . 3 0 6  - 1 0 . 3 3 4  8 
0 . 3 0 7  0 0 . 3 0 8  0 0 . 3 6 2  18 

8 2 2  0 . 4 0 5  0 . 4 0 6  0 0 . 4 0 2  - 1 0 . 4 2 6  5 

0 . 3 8 9  - 4 0 . 3 8 6  - 5 0 . 3 9 7  - 2 

632 0 , 7 0 5  0 , 6 9 1  - 2 0 . 6 9 1  - 2 0 . 6 8 6  - 3 

0 , 6 4 2  - 9 0 , 6 4 7  - 6 0 . 6 2 1  -12  

- 0 1 3  0 . 4 2 3  0 . 4 2 3  0 0 . 4 2 3  0 0 . 4 2 3  0 
0 . 4 2 3  0 0 , 4 2 3  0 0 . 4 2 3  0 

823 0.547 0 . 5 4 7  0 0 . 5 4 7  0 0 , 5 4 7  0 
0 . 5 4 7  0 0 . 5 4 7  0 0 . 5 4 7  0 

033  0 . 7 5 2  0 . 7 5 2  0 0 . 7 5 2  0 0 . 7 5 2  0 
0 , 7 5 2  0 0 . 7 5 2  0 0 , 7 5 2  0 

S t r u c t u r a l  P a r a m e t e r s  - C o n f i r m a t o r y  F a c t o r  A n a l y s i s  Model  

Unstandardized Solution 

V ( ~ 2 )  1 . 0 0 0  1 . 0 0 6  1 0 . 8 6 9  - 1 3  0 . 9 6 3  - 4 
1 . 0 0 1  0 0 . 8 5 0  - 1 5  0 . 9 2 1  - 8 

V ( ~ 3 )  1 . 0 0 0  1 . 0 0 2  0 0 . 9 0 7  - 9 1 . 0 0 2  0 
1 . 0 0 2  0 0 . 9 0 7  - 9 1 . 0 0 2  0 

C ( ~ 3 , ~ 2  ) 0 . 6 9 1  0 . 6 8 5  1 0 . 6 6 4  - 4 0 , 6 9 4  0 
0 . 6 8 7  1 0 . 6 5 1  - 1 0 . 7 1 0  3 

S t a n d a r d i z e d  S o l u t i o n  

- - -  -~-°(n3,n~) 0 . 6 9 1  0 . 6 8 6  - 1 0 . 6 5 0  - 6 0 . 6 8 0  - 2 
0 . 6 8 7  - 1 0 . 6 7 6  - 2 0 . 6 8 1  - 1 

Structural Parameters - Structural Equation Model 

Unstandardized Solution 

~ 3 2  0 . 6 9 1  0 . 6 8 5  - 1 0 . 6 6 4  - 4 0 . 694  0 
0 . 6 8 7  - 1 0 . 6 7 6  - 2 0 . 7 1 0  3 

V ( n  2 ) _ _  - 1 . 0 0 0  1 . 0 0 6  1 0 . 8 6 9  - 1 3  0 , 9 6 3  - 4 
1 . 0 0 1  0 0 . 8 5 0  - 1 5  0 . 9 2 1  - 8 

V ( ~ 3 )  0 . 5 2 2  0 . 5 3 1  2 0 . 5 2 4  0 0 . 5 3 9  3 
0 . 5 3 0  2 0 . 5 2 ?  1 0 . 5 3 8  3 

S t a n d a r d i z e d  S o l u t i o n  

~ 3 2  0 . 6 9 1  0 . 6 8 6  - 1 0 . 6 5 0  - 6 0 . 680  - 2 
0 . 6 8 7  - 1 0 . 6 5 1  - 6 0 . 6 8 ]  - 1 

R 2 ( ~ 3  ) .  0 . 4 7 7  0 . 4 7 1  - 1 0 . 4 2 2  - 1 2  0 . 4 6 2  - 3 
0 . 4 7 0  - 2 0 . 4 2 4  - 1 1  0 . 4 6 4  - 3 

a Fixed parameter. 

The two entries for each parameter estimate correspond to the (a,b) choice 

(2/s , 11a) and ('/~ . 21~) ; see text. Both variables have a missingness 

rate of 15~ wlth an R 2 of 50~. 
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is eight. The MCAR test values were 90.04 and 95.13 with 54 degrees of freedom. Table 7 
gives the bias values. 

The general conclusion is that for all three estimators the bias increases rather little 
when going from the full to the marginal model. F Q L  still performs dearly best overall. 
PPA outperforms LQL in the CFA metric, while in this case the reverse is true in the 
SEM metric. 

As a final analysis, let each of the two s*'s instead be a function of ~/2 only, with an 
R 2 of 50% (~'s = 0.707) and the same amount of missingness as earlier. This situation 
illustrates the important case where missingness is predicted by a factor and there is 
missingness for some of the factor's indicators. The FQL, LQL, and PPA test values with 
eight degrees of freedom are 0.00, 0.00, and 0.29, respectively, while the MCAR test value 
with 54 degrees of freedom is 62.05. The estimates are given in Table 8. In accordance 
with the theory of section 4.2, LQL gives perfect model fit with no measurement parame- 
ter bias. The outcome for the FQL estimator can not be predicted by the theory of that 
section since the assumed partitioning of (26) and (27) does not hold for missingness case 
II. It is, therefore, interesting to note that F Q L has almost no bias, not even in the 
structural part. 

7. Conclusions 

In the artificial data studied the traditional estimation methods have been shown 
inferior to a likelihood estimator that uses all available information in terms of large- 
sample bias. We studied situations involving data that were not missing completely at 
random. The FQL likelihood estimator was superior even in situations that did not fulfill 
the prerequisites for it to be maximum likelihood. Since it is often possible to carry out 
such estimation using existing structural equation modeling packages, this finding has 
important practical implications. 

The usual caution about limited generalizability from any artificial data study 
should, however, be kept in mind. The generalizability of the results may not only be 
limited by the latent variable models and the missingness situations studied, but also the 
particular specification of the missingness mechanism. From our experience, however, the 
models and mechanisms chosen seem to be common and plausible representations in 
latent variable contexts. 

The approach of using a general structural equation modeling software package, 
such as LISREL, opens up the possibility for a variety of analyses with missing data. For  
instance, not only is confirmatory factor analysis possible, but also exploratory factor 
analysis (by imposing the appropriate number of restrictions), where the rotations would 
have to be done in a separate program. A multitude of common mean vector and 
covariance structure problems can also be handled, such as variance component esti- 
mation, testing of equality of covariance matrices, and so on (see e.g., Joreskog & Sorbom, 
1984). A limitation to this computational approach is, however, the fact that in real data 
there are usually a very large number of missing data patterns, where the number of 
observations in each group frequently falls below the number of variables. In practice it 
may then be necessary to delete some parts of the data, much like the approach of listwise 
deletion, so that a feasible number of groups with large sample sizes remain (see also 
Marini, et al., 1980). Unless this loss of data introduces strongly selective missingness that 
is not predictable by observed variables for which there are no missingness, not much bias 
may result. In any case, using information from a few major missing data pattern groups 
will most likely yield better results than using only the complete data group. A possible 
alternative is to first estimate the mean vector and covariance matrix by maximum 
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Parameter 

)~12 

k22 

k32 

k13 

~23 

~33 

012 

022 

032 

0 1 3  

823 

933 

v(~ 2) 

v(R 3) 

c(q3,R 2 ) 

P(n3,n 2) 
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T a b l e  8 

N l s s l n g n e s s  Case  I f :  

Mlss lngness  P r e d i c t e d  by ~2' M a r g i n a l  Model 

FQL LQL 
Parameter  I ~ I I ~ I I 

Value Estimate Bias Estimate Blas 

Neesurement Parameters 

0.832 0 .832 a 0.832 a 0.832 a 

0 . 7 7 1  0 . 7 6 0  - 1 0 . 7 7 1  0 0 . 7 2 5  

0.543 0 ,536 - 1 0 .543 0 0 .514 

0 .759  0 .759 a 0 .759 a - 0 .759  a 

0.6?2 0 .6?2 0 0.6?2 0 0 .672 

0 .497 0.49? 0 0 .497 0 0 .497 

0 .308  0 .306 - 1 0 .30? 0 0 .305 

0 .405 0 .408  1 0 ,405 0 0 .438 

0 . 7 0 5  0 . 7 0 6  0 0 . 7 0 5  0 0 . 7 1 8  

0 . 4 2 3  0 . 4 2 3  0 0 . 4 2 3  0 0 . 4 2 3  

0 , 5 4 7  0 . 5 4 7  0 0 . 5 4 7  0 0 . 5 4 7  

0 . 7 5 2  0 . 7 5 2  0 0 . 7 5 2  0 0 . 7 5 2  

S t r u c t u r a l  P a r a m e t e r s  - C o n f i r m a t o r y  F a c t o r  A n a l y s i s  Nodel  

Uns tanda rd i zed  S o l u t i o n  

1.000 1.003 0 0 .914 - 9 1.003 

1.000 1.002 0 0,927 - 7 1.002 

0,691 0 .689 0 0 .668 - 3 0 .683 

S tanda rd i zed  S o l u t i o n  

0.691 0 .689 0 0 .663 - 4 0 ,683 

S t r u c t u r a l  P a r a m e t e r s  - S t r u c t u r a l  E q u a t i o n  Model  

U n s t a n d a r d i z e d  S o l u t i o n  

~32 0.691 0 .689 0 0 ,668 - 3 0 .683 

V(~2)  1.000 1.003 0 0.914 - 9 1 .003 

V (¢3 )  0 ,522 0 .527 1 0 .519 - 1 0 .534 

S tanda rd i zed  S o l u t i o n  

~32 0.691 0 .689 0 0 .663 - 4 0 .683 

R2(R3 ) 0 .477 0 .475  0 0 .440 - 8 0 .467 

PPA 

E s t i m a t e  B l a s  

- 6 

- 5 

0 

0 

- 1 

8 

2 

0 

0 

0 

0 

0 

- 1 

- 1 

- 1 

0 

2 

- 1 

- 2 

a F i x e d  p a r a m e t e r .  

B o t h  v a r i a b l e s  h a v e  a m l s s l n g n e s s  r a t e  o f  15~ w l t h  an  R 2 o f  5 0 ~ .  
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l i ke l ihood ,  a l l owing  any  n u m b e r  o f  pa t te rns .  Th i s  m a y  be  ca r r i ed  o u t  by  B M D P ' s  P A M  

p r o g r a m ,  D i x o n  (1983). A m o r e  o p t i m a l  a p p r o a c h  is, howeve r ,  to  ca r ry  o u t  F Q L  esti-  

m a t i o n  by  a p r o c e d u r e  tha t  a l lows  for  such  gene ra l  pa t t e rns ,  as  was  d o n e  in F i n k b e i n e r  

(1979). 

I t  s h o u l d  be n o t e d  tha t  miss ing  d a t a  t h e o r y  ex t ends  b e y o n d  the  s i t ua t ion  o f  c o n t i n u -  

o u s  va r i ab l e s  a n d  m u l t i v a r i a t e  n o r m a l  d i s t r i bu t i ons  to, fo r  ins tance ,  m u l t i n o m i a t  d is t r i -  

b u t i o n s  (see e.g., Rub in ,  1974; Lit t le ,  1983). H e n c e ,  t he  d e m o n s t r a t e d  s t r eng th  o f  the  F Q L  

e s t i m a t i o n  a p p r o a c h  m a y  a lso  be  o f  in t e res t  in p s y c h o m e t r i c  m e t h o d s  for  c a t ego r i ca l  da ta .  
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