
UNIVERSITY OF CALIFORNIA

Los Angeles

Discrete-Time Survival Mixture Analysis

for Single and Recurrent Events Using Latent Variables

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Education

by

Katherine Elizabeth Masyn

2003



c© Copyright by

Katherine Elizabeth Masyn

2003



 
 
 
 



To my dad, who taught me to

think independently and follow my heart.

To my mom, who taught me to

value the minds and hearts of others.

iii



Contents

Acknowledgements xiv

Vita xvii

Abstract xxi

1 Introduction 1

1.1 Discrete-time vs. continuous-time

survival data . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Statement of purpose . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Historical background . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Continuous-time survival analysis . . . . . . . . . . . . 7

1.3.2 Finite mixture models . . . . . . . . . . . . . . . . . . 15

1.3.3 Latent class analysis . . . . . . . . . . . . . . . . . . . 17

1.4 Data example . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iv



2 Single Events 28

2.1 Single event, continuous-time

survival analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Basic notation and event time distributional forms . . . 29

2.1.2 Continuous-time models with covariates . . . . . . . . 32

2.2 Single event, discrete-time

survival analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 Basic notation and event time distributional forms . . . 36

2.2.2 Censoring and truncation . . . . . . . . . . . . . . . . 39

2.2.3 Constructing the likelihood . . . . . . . . . . . . . . . 45

2.2.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.5 Discrete-time models with covariates . . . . . . . . . . 54

2.2.6 Discrete-logit model in a latent variable

framework . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.2.7 Model assessment . . . . . . . . . . . . . . . . . . . . . 91

3 Unobserved Heterogeneity 93

3.1 Ignoring unobserved heterogeneity . . . . . . . . . . . . . . . . 94

3.2 Modeling unobserved heterogeneity . . . . . . . . . . . . . . . 101

3.3 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.4 Class enumeration . . . . . . . . . . . . . . . . . . . . . . . . 117

v



3.4.1 Long-term survivors . . . . . . . . . . . . . . . . . . . 137

4 Recurrent Events 156

4.1 Multivariate event histories . . . . . . . . . . . . . . . . . . . 157

4.2 Defining risk for recurrent event histories . . . . . . . . . . . . 161

4.3 Basic notation and likelihood . . . . . . . . . . . . . . . . . . 173

4.3.1 Gap time . . . . . . . . . . . . . . . . . . . . . . . . . 176

4.3.2 Counting process . . . . . . . . . . . . . . . . . . . . . 180

4.3.3 Total time . . . . . . . . . . . . . . . . . . . . . . . . . 184

4.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

4.4.1 Correcting bias in duration dependence . . . . . . . . . 191

4.5 Unobserved heterogeneity . . . . . . . . . . . . . . . . . . . . 195

4.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

4.6.1 Gap time analysis . . . . . . . . . . . . . . . . . . . . . 203

4.6.2 Counting process analysis . . . . . . . . . . . . . . . . 209

4.6.3 Total time analysis . . . . . . . . . . . . . . . . . . . . 215

4.6.4 Mixture model analysis . . . . . . . . . . . . . . . . . . 216

5 Conclusion 222

5.1 Single events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

5.2 Unobserved heterogeneity . . . . . . . . . . . . . . . . . . . . 225

vi



5.3 Recurrent events . . . . . . . . . . . . . . . . . . . . . . . . . 229

5.4 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Appendix A: Splus Code 235

Appendix B: Mplus input 257

Bibliography 279

vii



List of Figures

2.1 Example hazard and survival probability plots. . . . . . . . . . 40

2.2 Sample hazard and survival probabilities for 12 months post-

treatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Event history LCA path diagram. . . . . . . . . . . . . . . . . 56

2.4 Model 2 estimated hazard and survival probabilities. . . . . . 68

2.5 Model 2 estimated versus sample survival probabilities by treat-

ment status and wife’s education level. . . . . . . . . . . . . . 73

2.6 Event history LCR path diagram. . . . . . . . . . . . . . . . . 75

2.7 Model 5 estimated hazard and survival probabilities by wife’s

education level. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.8 Model 5 estimated hazard and survival probabilities by house-

hold income. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.9 Model 5 estimated hazard and survival probabilities by % days

drinking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

viii



3.1 Examples of unobserved heterogeneity. . . . . . . . . . . . . . 97

3.2 Examples of unobserved heterogeneity with an observed covariate. 99

3.3 Path diagrams for class enumeration Models 0–3. . . . . . . . 125

3.4 Model 6 estimated survival probabilities at baseline. . . . . . . 151

3.5 Model 6 estimated survival probabilities at sample average wife’s

education, household income, and % days drinking. . . . . . . 152

3.6 Model 6 estimated survival probabilities for Classes 1 and 2

by wife’s education at sample average household income and %

days drinking. . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

3.7 Model 6 estimated survival probabilities for Classes 1 and 2

by household income at sample average wife’s education and %

days drinking. . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

3.8 Model 6 estimated survival probabilities for Classes 1 and 2 by

% days drinking at sample average wife’s education and house-

hold income. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.1 Three subject example of recurrent event observations. . . . . 167

4.2 Recurrent event history LCR path diagram. . . . . . . . . . . 189

4.3 Estimated contribution of length of relationship (in years) to

the logit hazard probabilities of second violent episode. . . . . 205

ix



4.4 Model 8a estimated hazard and survival probabilities for second

episode by length of relationship. . . . . . . . . . . . . . . . . 206

4.5 Model 8b estimated hazard and survival probabilities for third

episode by pre-treatment violence and timing of second episode. 210

4.6 Model 10 estimated hazard and survival probabilities for episodes

1–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

4.7 Model 14 estimated hazard and survival probabilities for episodes

1–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

4.8 Model 15 estimated hazard and survival probabilities for first,

second, and third episode by latent class. . . . . . . . . . . . . 221

x



List of Tables

1.1 Descriptive Statistics for Pre- and Post-Treatment % Days Drink-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2 Frequencies and Proportions for Pre-Treatment Violence Episodes 25

1.3 Descriptive Statistics for Continuous Covariates . . . . . . . . 25

1.4 Frequencies and Proportions for Post-Treatment Violence Episodes 26

1.5 Frequencies and Proportions for Categorical Covariates . . . . 27

2.1 Sample Hazard and Survival Probabilities for First Violence

Post-Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2 Example Data for Discrete-Time Survival Using Event and Risk

Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3 Results for Data Example Model 1 . . . . . . . . . . . . . . . 64

2.4 Results for Data Example Model 2 . . . . . . . . . . . . . . . 67

2.5 Results for Data Example Model 5 . . . . . . . . . . . . . . . 83

xi



3.1 Class Enumeration Models 0–3 Specification . . . . . . . . . . 126

3.2 Class Enumeration Populations A–C Definition . . . . . . . . 127

3.3 Class Enumeration Models 0–3 Results for Population A . . . 128

3.4 Class Enumeration Models 0–3 Results for Population B . . . 129

3.5 Class Enumeration Models 0–3 Results for Population C . . . 130

3.6 Class Enumeration Measures for Population A . . . . . . . . . 131

3.7 Class Enumeration Measures for Population B . . . . . . . . . 132

3.8 Class Enumeration Measures for Population C . . . . . . . . . 133

3.9 Long-term Survivor Populations A–E Definition . . . . . . . . 140

3.10 Long-term Survivor Models 1–4 Specification . . . . . . . . . . 141

3.11 Long-term Survivor Models 1–4 Results for Population A . . . 142

3.12 Long-term Survivor Models 1–4 Results for Population B . . . 143

3.13 Long-term Survivor Models 1–4 Results for Population C . . . 144

3.14 Long-term Survivor Models 1–4 Results for Population D . . . 145

3.15 Long-term Survivor Models 1–4 Results for Population E . . . 146

3.16 1- and 2-Class Model Comparisons . . . . . . . . . . . . . . . 148

3.17 Results for Data Example Model 6 . . . . . . . . . . . . . . . 150

4.1 Risk Periods Defined . . . . . . . . . . . . . . . . . . . . . . . 169

4.2 Example Data for First Event . . . . . . . . . . . . . . . . . . 176

4.3 Example Data for Second and Third Event in GT . . . . . . . 179

xii



4.4 Example Data for Second and Third Event in CP . . . . . . . 183

4.5 Example Data for Second and Third Event in TT . . . . . . . 187

4.6 Sample Frequencies and Proportions for First, Second, and Third

Violence Episodes in GT Formulation . . . . . . . . . . . . . . 200

4.7 Sample Frequencies and Proportions for First, Second, and Third

Violence Episodes in CP Formulation . . . . . . . . . . . . . . 201

4.8 Sample Frequencies and Proportions for First, Second, and Third

Violence Episodes in TT Formulation . . . . . . . . . . . . . . 202

4.9 Results for Data Example Model 8a: Second Episode, GT For-

mulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

4.10 Results for Data Example Model 8b: Third Episode, GT For-

mulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

4.11 Results for Data Example Model 10a: Second Episode, CP For-

mulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

4.12 Results for Data Example Model 10b: Third Episode, CP For-

mulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

4.13 Results for Data Example Model 14: Combined Model, TT

Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

4.14 Results for Data Example Model 15 . . . . . . . . . . . . . . . 220

xiii



ACKNOWLEDGEMENTS

My first and primary acknowledgement must go to my advisor and

mentor, Bengt Muthén. I can honestly say that what I have accomplished

would not have been possible without his guidance and support. It has been

the greatest fortune in my education to be able to work with and learn from

him. Along with my profound appreciation, he will always have my utmost

admiration and respect.

I would also like to thank my other committee members, Mike Seltzer,

Mike Rose, and A. Afifi for their attention and thoughtful participation in this

process. I would like to include a special thanks to Mike Rose for his good

counsel that has served me so well over my years in the doctoral program. I am

grateful to the wonderful assistance of Bill Fals-Stewart, who provided the data

for this dissertation as well as personal encouragement. I also acknowledge the

generous help of Klaus Larsen for his honest and useful critiques of my work.

There were others, outside those most closely and academically con-

nected to my dissertation, that also provided important support during this

process. Thanks to Tina Christie for all her excellent advice—professional,

practical, and personal. Thank you to my other classmates and colleagues

with whom I have shared my graduate school experience. Thank you to my

xiv



other close friends, Jennifer Anderson, Courtenay Singer, Jennifer Heyob, and

Bliss Temple, who have been a source of comfort and cheer throughout my

endeavors. My appreciation to my friend and roommate, Kevin Elliott, for

study breaks and sanity checks. I am also grateful for the companionship of

my cat, Gobblin, and dog, Elvis. Thank you to the members of the Prevention

Science Methodology Group and Bengt Muthén’s Research Group for their ac-

tive encouragement and always stimulating exchanges. My gratitude to Anna

Tripp for her love and caring, and thanks to Nathaniel and Geneva Tripp for

their administrative assistance.

Finally, I would like to acknowledge the particularly influential people

that were instrumental in helping me find direction earlier on in my academic

career. My thanks to my parents, who instilled in me the love of learning

and an understanding of the personal power and freedom that comes with

education. Thanks to Mr. Williams, my junior high school math teacher,

whose exceptional teaching first inspired my own enthusiasm for mathematics.

And thank you to Larry Leemis, my undergraduate advisor, who introduced

me to the field of Statistics and the joy of research. His example of skilled

and compassionate teaching combined with focused and disciplined research

has guided and motivated me during my graduate pursuits.

xv



I end with a general note of thanks to everyone else who has helped

me along the way—family, friends, and teachers; I share this accomplishment

with many. I am grateful for all the opportunities I have been given that have

allowed me the privilege of following my passions in this field.

xvi



VITA

February 10, 1975 Born, Fairfax, Virginia, USA.

1991 National Merit Scholarship.

1992 Advanced Studies Diploma with
Governor’s Seal of Academic Excellence.

1992 James Monroe Scholarship,
College of William and Mary,
Williamsburg, Virginia.

1994 Class of 1940 Scholarship,
College of William and Mary.

1995 B.S. (Summa Cum Laude), Mathematics,
College of William and Mary.

1995 Phi Beta Kappa,
College of William and Mary.

1995 Benjamin Stoddard Ewell Award,
College of William and Mary.

1995 William and Mary Prize in Mathematics,
College of William and Mary.

1997–1999 Graduate Student Instructor,
Department of Biostatistics, School of Public Health,
University of California, Berkeley.

1998 Graduate Student Researcher,
Department of Epidemiology, School of Public Health,
University of California, Berkeley.

1998 Outstanding Graduate Student Instructor Award,
University of California, Berkeley.

xvii



1999 Teaching Effectiveness Award,
University of California, Berkeley.

1999 M.A., Biostatistics,
University of California, Berkeley.

1999 Classroom Technologies Grant Recipient,
University of California, Berkeley.

1999 UCLA Chancellor’s Doctoral Fellowship Award,
University of California, Los Angeles.

1999–2002 Graduate Student Researcher,
Graduate School of Education,
University of California, Los Angeles.

2001–2002 Graduate Student Instructor,
Graduate School of Education,
University of California, Los Angeles.

2001–2002 Research Consultant,
Research Institute on Addictions,
State University of New York, Buffalo.

2002–2003 Research Consultant,
The GLOBE Program,
Stanford Research Institute,
Stanford, California.

2002–2003 Visiting Assistant Professor,
Department of Education and Child Development,
Whittier College,
Whittier, California.

2003 Research Consultant,
Urban Teacher Education Collaborative,
Institute for Democracy, Education and Access,
University of California, Los Angeles.

xviii



2003 Leigh Burstein Award for Excellence
in Research Methodology,
University of California, Los Angeles.

PUBLICATIONS AND PRESENTATIONS

Masyn, K. (June, 2003). Discrete-time survival mixture analysis for recurrent
events. Paper presented at the meeting of the Society for Prevention
Research, Washington, DC.

Masyn, K. (June, 2002). Extensions of discrete-time survival mixture analysis.
Paper presented at the meeting of the Society for Prevention Research,
Seattle, WA.

Masyn, K. (June, 2002). Latent class enumeration revisited: Application of
Lo, Mendell, and Rubin (2001) to growth mixture models. Paper
presented at the meeting of the Society for Prevention Research,
Seattle, WA.

Masyn, K. (June, 2001). Discrete-time survival mixture analysis. Paper
presented at the meeting of the Society for Prevention Research,
Washington, DC.

Masyn, K. (April, 2001). Discrete-time survival mixture analysis. Paper
presented at the meeting of the American Educational Research
Association, Seattle, WA.

Masyn, K. (June, 2000). Latent class enumeration for growth mixture
models. Paper presented at the meeting of the Society for Prevention
Research, Montreal, Quebec.

Masyn, K., and Brown, E. (April, 2001). Enumeration of latent classes in
general growth mixture modeling. Paper presented at the meeting of
the American Educational Research Association, Seattle, WA.

xix



Muthén, B., Brown, C.H., Masyn, K., Jo. B., Khoo, S., Yang, C., Wang, C.,
Kellam, S., Carlin, J., and Liao, J. (2002). General growth mixture
modeling for randomized preventive interventions. Biostatistics,
3(4), 459-475.

xx



ABSTRACT OF THE DISSERTATION

Discrete-Time Survival Mixture Analysis

for Single and Recurrent Events Using Latent Variables

by

Katherine Elizabeth Masyn

Doctor of Philosophy in Education

University of California, Los Angeles, 2003

Professor Bengt Muthén, Chair

Survival analysis refers to the general set of statistical methods developed

specifically to model the timing of events. This dissertation concerns a subset

of those methods that deals with events measured or occurring in discrete-time

or grouped-time intervals. A method for modeling single event discrete-time

data utilizing a latent class regression (LCR) framework, originally presented

by Muthén and Masyn (2001), is further developed and detailed. It is shown

that discrete-time data can be represented as a set of binary event indicators

and observed risk indicators that allow estimation using a latent class re-

xxi



gression specification under a missing-at-random assumption that corresponds

to the assumption of noninformative right-censoring. The modeling of the

effects of time-dependent and time-independent covariates with constant or

time-varying effects is demonstrated along with approaches to model testing.

The LCR framework also allows for the modeling of unobserved heterogeneity

through finite mixture modeling, i.e., multiple latent classes. The problems of

ignoring unobserved heterogeneity and the challenges of discrete-time mixture

model identification and specification for single event data are discussed. The

LCR model for single event data is extended to recurrent event survival data

with a focus on recurrent event processes with a low frequency of recurrences.

The gap time, counting process, and total time formulations in the continuous-

time setting are all reformulated for discrete-time and model specification and

estimation is demonstrated for all three. The proposed model accommodates

event-specific baseline hazard probabilities as well as event-specific covariate

effects. The model also allows for multiple event occurrences in a single time

period for a single subject and accounts for within as well as between subject

correlation of event times though the same mixture modeling approach given

for single event data. All models are illustrated with data on the event times of

domestic violence episodes perpetrated by a sample of married men observed

xxii



for 12 months after an alcohol treatment program. Opportunities for future

methodology developments for discrete-time models are discussed.
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Chapter 1

Introduction

In the fields of social and behavioral science, research questions around spe-

cific life course events, such drug use, school drop out, or job loss, are often

concerned with both the “if” and “when” of event occurrence. For exam-

ple, it may be of interest to investigate not only what influences whether a

student drops out of school, but when a student drops out. As another exam-

ple, consider not only whether an individual ever consumes alcohol, but more

importantly, the onset age of alcohol use. Traditionally, event data in social

research has been treated without regard to event timing, using such modeling

techniques as logistic regression, which allows an investigator to explore the

relationship between the probability of event occurrence and covariates of in-

terest, including perhaps an intervention or treatment. Survival analysis refers

1



to the general set of statistical methods developed specifically to model the

timing of events. This dissertation concerns a subset of those methods that

deals with discrete-time events.

1.1 Discrete-time vs. continuous-time

survival data

Time-scales for events can be crudely classified as either continuous or discrete

and the methods applied to one type of time-scale do not necessarily apply to

the other, just as regression techniques for continuous outcome variables do

not apply directly to categorical outcomes. Applications of continuous-time

methods assume that the timing of events is known exactly or that the discrete

intervals on which time is measured are sufficiently small that is reasonable

to treat the observed times as occurring on a continuous time-scale. Discrete-

time events may be of two natures (Allison, 1982): 1) An event may occur

at any point in time but only an interval of time during which the event oc-

curred is recorded, e.g., a student may drop-out of school on any particular

day of the school year, but data may only be available for the grade-level at

which the drop-out occurred. This is sometimes referred to as grouped-time

survival data, e.g., all the days of the school year are grouped together to form

2



a nine-month time interval. 2) An event may only occur at discrete points

in time, e.g., retention at a certain grade level only occurs at the end of a

school year. Although it could be argued that any measure of time is “dis-

crete”, common-sense may distinguish between grouped-time and continuous-

time survival data. Consider, for example, that grouped-time data is likely to

have more than one event occur at each measure whereas continuous-time data

should have no “ties”. This distinction may also correspond to grouped-time

data having notably fewer time periods than the number of individuals under

observation.

In the case of (2), continuous-time survival models are clearly inappro-

priate and it is necessary to apply discrete-time analysis methods. In the case

of (1), one approach is to disregard the underlying continuous-time nature

of the process, assume that events may only occur at the discrete time points

recorded (i.e., events may only occur at the end of each grouped-time interval),

and apply the same methods as with (2). Another approach is to assume an

underlying continuous-time process and then apply a continuous-time model,

adjusting estimates for the discrete nature of the data. For the methodology

developments contained in this dissertation, the data are regarded as hav-

ing been generated by an underlying continuous-time process. However, most

models presented for Case 1 are equally applicable to Case 2 data, without any

3



adjustment. The differences between the two types of discrete-time data tend

to relate more to model inference than model specification. There are more

assumptions implicit in the Case 1 models with respect to the characteristics

of the underlying continuous-time process, e.g., the nature of the duration de-

pendence within each discrete-time interval. Situations where there are model

differences due to the nature of the discrete-time data are noted as they arise.

1.2 Statement of purpose

Discrete-time survival methods have been in use for as long as continuous-

time methods but are somewhat less visible in both the technical and applied

literature. The reason for this in unclear. Perhaps, from the technical side,

the discrete-time setting does not prove as challenging, statistically speaking,

and deals with the less-than-ideal situation of not knowing the exact time-of-

event. From the applied side, the reason is most likely a lack of dissemination

and accessibility to fully implemented modeling methods. In 1993, Singer and

Willett wrote an article of great detail, aimed at the applied social researcher,

calling for and demonstrating the use of discrete-time survival analysis using

logistic regression. The model they explicate was not new in that this most

common approach to modeling discrete-time events was actually suggested by

Cox in his seminal 1972 paper. However, their skillful presentation delivered

4



these models to a previously unexposed applied audience. The use of logistic

regression for discrete-time survival has been studied further by Singer and

Willett (1993b, 1995, 2003) as well as many others including Prentice and

Gloeckler, 1978; Laird and Oliver, 1981; Allison, 1982. There are several com-

peting approaches currently in use including multilevel ordered multinomial

regression (Hedecker, Siddiqui, & Hu, in press), mixed Poisson models (Nagin

& Land, 1993), log linear models (Vermunt, 1997), and discrete-time Markov

chain models (Van de Pol and Langeheine, 1990). These approaches all fall

within the larger category of transition models as delimited by Diggle, Liang,

and Zeger (1994).

The methodology developments presented in this dissertation approach

discrete-time survival analysis from a somewhat different angle by using a la-

tent variable modeling framework. Briefly, the foundation for these develop-

ments involves the modeling of discrete-time survival data of varying complex-

ity using latent class regression analysis. This approach is equivalent to the

logistic regression survival model in a most basic setting (Muthén & Masyn,

2001). The purpose of this dissertation was as follows:

5



• To solidify the motivation and explanation of the latent class regression

specification of discrete-time models for single event data, including a

discussion of link functions, time-independent and time-dependent co-

variates, model testing, and censored and truncated data (Chapter 2);

• To clarify the issues of model specification and identification for sin-

gle event models that account for unobserved heterogeneity, such as a

person-specific increased or decreased susceptibility to an event occur-

rence that is not easily measured or directly observed, as well as to

evaluate the utility of the long-term survivor model (Chapter 3);

• To present a flexible model for recurrent event data, utilizing the latent

class regression framework developed for single events, that allowed for

event-specific survival processes and accounted for unobserved hetero-

geneity (Chapter 4);

• To propose a roadmap for future methodology developments in discrete-

time survival analysis (Chapter 5).

1.3 Historical background

The approach of using latent class regression analysis to model discrete-time

data can be viewed as lying at the intersection of several well-established areas

6



of statistical research: 1) survival analysis (continuous-time, in particular);

2) finite mixture modeling; and 3) traditional latent class analysis.1 What

follows is a brief historical overview of these three areas, acknowledging that

this is by no means meant to be a comprehensive review of all research in

these areas but is intended to provide an adequate backdrop for the methods

discussed in the following chapters.

1.3.1 Continuous-time survival analysis

Survival analysis methodology has its roots in life table data—for centuries

people have been, both formally and informally, collecting population data on

birth rates, morbidity rates, and mortality rates. Typically, with regards to

the mortality rates, information would be collected about the age of death,

cause of death, etc. Sometimes, auxiliary information would also be included,

such as gender, race, occupation, etc. It is not surprising that at some point

people wanted to be able to make projections or predictions about life ex-

pectancies and also make comparisons across sub-populations. For example,

how does the risk of death change across the lifespan? Are men or women

1Although latent class analysis can be viewed as a subset of finite mixture models, it

is treated as distinct in this overview because the historical development of the two areas,

statistically speaking, was more separate than intersecting or overlapping.

7



more likely to live past the age of 80? These questions began to develop into

more sophisticated medical research questions about human survival. For ex-

ample, how does the risk of death from lung cancer progress from the time

of diagnosis? Does treatment “A” prolong the time to recurrence of a breast

cancer compared to treatment “B”? Does treatment “A” have the same effect

on uterine cancer patients? Spurred by such questions, statisticians in the

early and mid-20th century set to work on ways to model such data.

Two challenges are immediately evident when working with survival

data. One is the presence of missing data. Consider an event such as death.

Certainly, if a sample is only observed for a fixed time period, the event of

death for each subject will most likely not be observed for some portion of

the sample. Some will experience the event in the time period and all will

eventually experience the event. However, if they do not experience the event

during the period of observation, their time of event is unknown—essentially,

it is missing. This type of missingness is known as right-censoring in survival

jargon. There are other types of censoring, e.g., left- and interval-censoring,

that are discussed later. Part of the challenge in survival analysis is accounting

for this sort of missingness. If one were to simply delete all but those subjects

who experienced the event during the period of observation, the survival es-

timates would look much grimmer than the actual pattern of survival in the
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population. It is most desirable to use the information about those subjects

that do not experience the event—the exact timing of their events may not

be known since they occur after the end of the observation period, but it is

known that their event times are larger than the time period of the study. The

most recognized point estimate for survival probabilities based on data with

right-censoring is the Kaplan-Meier (K-M) estimate (1958), also known as the

product-limit estimate. The Greenwood formula for confidence intervals of the

K-M point estimates allows the assessment of the precision of those estimates

(Greenwood, 1926). An alternative estimator, based on modern counting pro-

cess techniques, is the Nelson-Aalen (N-A) estimator (Aalen, 1978; Nelson,

1972) . The appeal of these methods of estimation is that they are nonpara-

metric, meaning that the estimation does not require any assumption about

the form or shape of the underlying distribution from which the data is drawn.

The estimated survival function based on the K-M or N-A estimates is simply

a step function with a step occurring at each observed event. This may be

contrasted to a model for survival assuming, say, an exponential distribution,

where the one defining parameter of the distribution (often denoted by λ) is

estimated via maximum likelihood estimation (MLE) in which a value for λ

is identified (out of all possible values for λ) that makes the resultant data

seem most likely (under the assumption that the exponential distribution is
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the “true” underlying distribution). As with any other type of modeling, there

is a trade-off between parametric and nonparametric models. Certainly, the

nonparametric models have greater flexibility and protect from the dangers of

misspecification. However, the parametric models can give gains in parsimony

and statistical efficiency if the model is correctly specified (or only “trivially”

misspecified).

The second primary challenge in survival analysis is assessing the ef-

fects of covariates on survival. Consider first the simple comparison of survival

rates across well-defined groups of individuals. With the Kaplan-Meier esti-

mator, the survival function estimates are based on the data from a sample of

individuals assuming that all those individuals are drawn from the same pop-

ulation, that is, they all have the same mean survival function. From the K-M

approach it is easy to imagine an extension to a two-population scenario where

essentially a separate step-function is estimated for each group. One possible

comparison would be to look at survival quantiles for the two populations. For

example, a comparison could be made between the 50th percentiles of survival

for the two groups, i.e., is the time at which 50 percent of population “A” has

experienced the event significantly different from the time at which 50 percent

of population “B” has experienced the event? Knowing that it is possible to

estimate the 50th percentile of each group, complete with confidence intervals,
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it is not difficult to imagine the construction of a statistical significance test

of the difference. It is a bit more challenging to make a more global statistical

comparison between the groups since the event times (and hence the steps of

each function) will be different across the groups. What is required in this case

is a nonparametric test to correspond to the nonparametric point estimates of

survival. Many such tests exist, the most commonly used being the log-rank

test. Comparisons of groups when modeling the survival function paramet-

rically have a more solid framework, simply drawing on maximum likelihood

theory. One could assume an exponential distribution for both groups and

then fit two models, one with different λ’s for the two groups and one with

the same λ for both groups, comparing the fit of the two models with respect

to the likelihood values.

Now consider a continuous covariate, such as age, that is believed to

influence survival. Essentially, most individuals in the sample will not have the

same value for the covariate and it is not feasible to estimate a survival func-

tion for each individual—it is necessary to assume some sort of commonality

between subjects, even if it is conditional upon the covariate. One approach

for investigating the influence of this covariate would be to group the sub-

jects with similar covariate values, e.g., age groups, and then carry out one

of the aforementioned group comparisons. This is a bit crude in that ignores
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the continuous nature of the covariate and essentially discards information.

However, it is not without merit. Discretizing the covariate allows for a very

flexible model. In the parametric modeling framework, a model can be fit

specifying a relationship between certain parameters and the covariate, e.g.,

log(λ) = a + bx. Here, as in the group comparison setting, it is straightfor-

ward to compare the likelihoods of models with and without the covariate

effect. Keep in mind, however, that with these models there is not only an as-

sumption about the underlying survival distribution, but also an assumption

about the functional relationship between the population parameters which

define that distribution and the covariates of interest. In the development of

conditional survival models what was needed was a method that capitalized on

the advantages of a nonparametric survival estimation method without neces-

sitating discretizing the continuous covariates. This need was met by the Cox

proportional hazards model. Introduced by Cox in 1972, this model presents a

semi-parametric approach to estimating a hazard function with continuous co-

variates. The basic idea behind the Cox model is breaking the hazard into two

parts: 1) the baseline hazard, which is a function of time; and 2) the covariate

effects, which in its simplest form, does not include a time term. The log of

the hazard is assumed to be the sum of these two parts. It is semiparametric

in that the baseline hazard function becomes, essentially, a set of nuisance pa-
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rameters and is not explicitly modeled, i.e., it does not require any underlying

distributional assumptions. The covariate portion is specified parametrically,

typically as a linear combination of the covariates. The assumption placed on

the covariate effects is then that the log hazard varies as a linear function of

the covariates and thus the ratio of hazard function for two specified values

of a covariate at any given point in time is constant, i.e., the hazard function

values are proportional—hence the nomenclature “Cox proportional hazards

model”. Using a full maximum-likelihood approach to obtain estimates for the

covariate effects would require some specification of the form of the baseline

hazard. The significant breakthrough in estimation presented by Cox was a

method called partial likelihood that allowed for estimation of covariate portion

of the model without any restrictions placed on the baseline hazard portion.

The Cox model has also been extended to accommodate other chal-

lenges related to modeling covariate effects in the survival setting. These

extensions include time-varying covariates, where the values on a covariate

set for an individual may change over time, and time-varying covariate effects,

where the influence of a given covariate may change over the time period of ob-

servation. Consider, for example, parent supervision as a predictor of school

drop-out. The level of parent supervision may change as a child progresses

through school (time-varying covariate) and the impact of parent supervision
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on a child’s behavior may change as the child ages (time-varying effects). Ad-

ditional extensions of the Cox model have been made in the last three decades

including, but certainly not limited to, group-varying baseline hazards, model

tests, residual diagnostics, combination with repeated measures models, etc.

(See, for example, Klein and Moeschberger, 1997, for an overview of modern

continuous-time survival analysis and Hougaard, 2000, for an in-depth cover-

age of the latest advances in multivariate survival data.) Included in the more

recent extensions are advances in modeling population heterogeneity with re-

spect to survival. In the original Cox model, there was no error term as is

found in traditional regression models. The implicit assumption is that there

is no variability in survival probabilities beyond that which is explained by

the covariates included in the model. This is not necessarily the most real-

istic assumption, but one that was applied until statisticians, with the help

of estimation algorithms and computing advancements, were able to create a

more general model by including a random effect term in the hazard function.

These models are typically referred to as frailty models that allow for random

variation in the population around a “mean” survival curve (Vuapel, Manton,

and Stallard, 1979).
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1.3.2 Finite mixture models

There is another way to conceive and model population heterogeneity and that

is with the use of finite mixture models. The idea behind these models is that

there are two or more sub-populations within the population from which the

sample is drawn with characteristically different distributions in outcome (in

this case, survival). However, membership in these sub-populations is not di-

rectly observed—it must be inferred. So rather than simple random variation

about a single mean curve, such as with frailty models, there is a “mixing” of

two or more groups, each with distinct survival functions. Finite mixture mod-

eling was actually born out of a need to model skewness and non-normality

in data distributions—virtually any distribution can be approximated by a

mixing of k normal distributions if you allow k to be indiscriminately large.

One of the first demonstrations of mixture modeling was done by Karl Pear-

son in 1894 when he fit a two-component univariate normal mixture model

to crab measurement data. He used the method-of-moments to estimate his

model. There were few others that immediately followed suit because the

moments-based fitting was far too computationally intensive. Some struggled

to find more viable, as well as superior, alternative estimation procedures.

Tan and Chang (1972) were among the researchers of the time that proved

the maximum likelihood solution to be better for mixture models than the
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method-of-moments. Following on the heels of this insight was the release of

the landmark article by Dempster, Laird, and Rubin (1977) that explicated in

general terms an iterative estimation scheme for maximum-likelihood estima-

tion from incomplete data. The recognition that finite mixture models could

be easily reconceived as missing data problems (and thus estimated via the EM

algorithm) and the rapid and widespread computer advancements in speed and

processing marked a true advent in finite mixture modeling. Indeed, the last

20 years have seen a remarkable increase in the development, extension, ap-

plication, and understanding of mixture modeling. (For a in-depth treatment

of the current state of mixture modeling, see McLachlan and Peel, 2000.) Not

surprisingly, the applications of mixture modeling reaching into many more

complex modeling settings beyond the original univariate normal case have

recently begun to include survival analysis, although survival mixtures were

first suggested by Heckman and Singer in 1984. As with mixture models in

general, survival mixture models can be applied to data where a simpler sin-

gle parametric model does not suffice, e.g., mixture of Weibull distributions

(Gupta & Gupta, 1996). In addition, the previously mentioned idea of frailty

can be incorporated and estimated nonparametrically using mixture models

rather than specifying a parametric distribution on the frailty factor in the

survival model, e.g., the sample is modeled to derive from two subpopulations,
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one with a higher susceptibility to the event than the over (Heckman & Singer,

1984a, 1984b). A special case of this use of mixtures to model frailty is what

is know as “cure-rate” models in survival analysis. In some data applications,

individuals may be cured, that is to say, there may be a fraction of the sam-

ple that, in reality, is not at risk for the event in question. These individuals

are commonly referred to as long-term survivors (LTS) and a two-component

survival mixture model accommodates the presence of such a subpopulation.

(See Maller and Zhou, 1996, for a full range of LTS applications.)

1.3.3 Latent class analysis

Latent class models can be considered a special class of mixture models formu-

lated as a mixture of generalized linear models. However, latent class analysis

(LCA) has a rich history somewhat independent of the development of finite

mixture models that is worth reviewing. LCA was born of the field of latent

variable modeling. The idea is that there are two sorts of variables: observed

or manifest variables and unobserved or latent variables. A specified set of

observed variables (also called indicator variables) are assumed to be imperfect

measures of one or more underlying latent variables, that is, the relationship

(covariance) of the observed variables is attributable to each manifest vari-

able’s relationship to the latent variable(s). An example of such a relationship
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would be a set of diagnostic questions on a psychological survey (manifest vari-

ables) designed to measure depression (latent variable). The work of Jöreskog

and Sörbom (1979) established the solid methodological framework for factor

analysis—latent variable models with continuous observed variables regressed

on one or more continuous latent variables. LCA can be characterized as the

categorical data analogue to traditional factor analysis. The most basic latent

class model can be traced back to Lazarsfeld in his discussion of a broader

class of what he coined as latent structure analysis(Lazarsfeld & Henry, 1968).

The fundamental assumption in LCA is that the relationship among the ob-

served categorical variables is “explained” by an underlying categorical latent

variable (latent class variable), i.e., the observed variables are conditionally

(locally) independent given latent class. Essentially, the latent class variable

defines a so-called typology or profile based on the clustering of individual

response patterns across the observed items. The basic formulation of a latent

class model with binary indicators follows.

Let u be a vector of J binary indicator variables, scored 0 or 1, and

let c be a categorical latent variable with K classes, where c ∈ {1, . . . , K} and

c = k indicates membership in class k. For u, the assumption of conditional

independence is given by
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P (u | c) =
j=J∏

j=1

P (uj | c), (1.1)

which can alternately be expressed as

P (u | c) =
j=J∏

j=1

[
P (uj = 1 | c)ujP (uj = 0 | c)1−uj

]
. (1.2)

The distribution of c is defined by a multinomial logistic regression,

P (c = k) =
exp(α0k)∑K

m=1 exp(α0m)
, (1.3)

where α0K = 0 for the reference class, K, and the distribution of each uj can

be defined by a simple logistic regression,

P (uj = 1 | c = k) =
1

1 + exp(−(νjk))
. (1.4)

In equation (1.3), the αk’s capture the probabilities of the K classes and in

(1.4) the νjk’s are the logit of the uj’s for each class k. The logistic regres-

sions for c and the u’s also allow the inclusion of covariates, specifying logit

functional relationships for both c and u with respect to the covariates. The

is termed a latent class regression model (LCR) (Formann, 1992; Huang &

Bandeen-Roche, in press). The equations for the regression of the u’s and c

on a set of covariates, z, are given by
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P (uj = 1 | c = k, z) =
1

1 + exp(−(νjk + β′z))
, (1.5)

and

P (c = k | z) =
exp(α0k + α′kz)

∑K
m=1 exp(α0m + α′mz)

, (1.6)

where α0K = 0 and αK = 0. The observed-data likelihood for a single indi-

vidual i is then given by

P (ui | zi) =
K∑

k=1

P (ui | ci = k, zi)P (ci = k | zi). (1.7)

Goodman (1974) resolved the problem of parameter estimation for LCA

models and his algorithm was implemented by Clogg in 1977. Subsequently,

many advancements in LCA have been made by Goodman and Clogg as well

as others. (For an overview of the most recent developments in LCA, see

Hagenaars and McCutcheon, 2002.) Muthén and Shedden (1999) offered the

broadest framework yet for latent class models by fully integrating LCA with

more general latent variable models. Bandeen-Roche, Miglioretti, Zeger, and

Rathouz (1997) provided methods for assumption-checking and model diag-

nostics for LCR. Larsen (in press) has combined latent class modeling with

the Cox proportional hazards model so that classes defined by categorical in-

dicators in an LCA delineate different survival typologies.
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1.4 Data example

The data set used throughout this dissertation for methodology motivations

and illustrations is from a study conducted by researchers at the Research

Institute on Addictions at SUNY, Buffalo.2 The purpose of the original study

was to evaluate the effectiveness of behavior couples therapy (BCT) on the

drinking behavior of alcohol dependent males. A secondary objective of this

study was to examine the relationship between drinking and domestic violence

in men who have undergone treatment for alcohol dependence. One-hundred

and seventy males, either married or cohabitating,3 undergoing intake for alco-

hol abuse, were randomized to three counseling treatment regimes: 1) marital

treatment (BCT), 2) individual-based treatment with no spouse involvement,

or 3) attention control treatment, with spouse involvement limited to infor-

mational sessions and lectures on substance use and not any active couples

treatment as in (1). Subjects were administered a three month follow-back

survey at entrance to treatment regarding the time prior to treatment and com-

pleted the same survey at three, six, nine, and twelve months post-treatment.

2Special thanks to William Fals-Stewart at RIA for making this data available.

3Although each male subject may be either married or cohabiting, for the purposes of

this discussion, the female partner will be referred to as “spouse” or “wife”, regardless of

the actual marital status of the couple.
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Questions regarded drinking occurrences as well as occurrences of domestic

violence. For the examples in this dissertation, the data is discretized into six

two-month post-treatment periods. In addition to being alcohol abusers, all

subjects in the original sample reported committing at least one domestic vi-

olence offense in the three months prior to treatment. Additional information

was collected on each subject, including age, wife’s age, education level, wife’s

education level, marital status, length of relationship, annual family income,

race, and wife’s race. All but 19 (11%) of the subjects satisfied the DSM-IIIR

criteria for alcohol dependence. Twenty subjects had been referred to treat-

ment because of a DWI offense. All of the subjects were surveyed at the end

of each follow-up period. Thus, there was no loss to follow-up and all subjects

had complete data for the pre-treatment period as well as the full 12 month

post-treatment period of observation.

Table 1.1 displays the descriptive summary statistics for the measures

of drinking during each two-month period, defined as percent-days-drinking,

with drinking on a given day defined as having at least one drink on that

day. Tables 1.2 and 1.4 give the frequencies and relative frequencies for the

number of violent episodes in the three month pre-treatment period and the

six post-treatment follow-up periods. Table 1.3 gives the descriptive summary

statistics for the two continuous scale covariates, husband’s age (in years) and
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length of relationship (in years). The husband’s age and wife’s age variables

were strongly correlated (r=0.96) and so only husband’s age was included in

the analyses. Table 1.5 gives the frequencies and relative frequencies for the

categorical covariates. Several of these displayed categories are the result of

combining categories defined in the original data. The husband’s race variable

originally included the categories “White”, “Black”, “Hispanic”, and “other”.

Due to small counts in the non-White race categories, these groups were com-

bined into a single category. Similar category recombinations were performed

for the annual family income, husband’s education, and wife’s education vari-

ables. As with husband’s and wife’s age, only the husband’s race variable

was included in analyses because of the near-perfect correspondence between

husband’s race and wife’s race—only 5% of couples were interracial.
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Table 1.1: Descriptive Statistics for Pre- and Post-Treatment % Days Drinking

Period M (SD) Range

3 months pre-tx 0.72 (0.23) 0.01 - 1.00

Month 1-2 post-tx 0.22 (0.27) 0.00 - 1.00

Month 3-4 post-tx 0.23 (0.30) 0.00 - 1.00

Month 5-6 post-tx 0.31 (0.34) 0.00 - 1.00

Month 7-8 post-tx 0.30 (0.32) 0.00 - 1.00

Month 9-10 post-tx 0.30 (0.34) 0.00 - 1.00

Month 11-12 post-tx 0.36 (0.35) 0.00 - 1.00

All example data manipulation, summaries, plots, and data simulations

for this dissertation were done in Splus Professional, Version 6.1, which is pro-

duced and distributed by the Insightful Corporation. Select code is provided

in Appendix A. All models presented in this dissertation were estimated using

Mplus, Version 2.14, which is produced and distributed by Muthén & Muthén.

The input files for select models fit to the real data example are provided in

Appendix B.
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Table 1.2: Frequencies and Proportions for Pre-Treatment Violence Episodes

Period # of episodes Frequency Proportion

3 months pre-tx 1 55 0.32
2 35 0.21

3 24 0.14

4 14 0.08

5-10 20 0.12

11+ 22 0.13

Table 1.3: Descriptive Statistics for Continuous Covariates

Variable M (SD) Range

Age (in years) 43.24 (12.62) 22 - 70

Length of relationship (in years) 11.09 (7.89) 1 - 34
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Table 1.4: Frequencies and Proportions for Post-Treatment Violence Episodes

Period # of episodes Frequency Proportion

Month 1-2 post-tx 0 136 0.80
1 26 0.15
2 7 0.04
3 1 0.01

Month 3-4 post-tx 0 152 0.89
1 15 0.09
2 2 0.01
3 1 0.01

Month 5-6 post-tx 0 152 0.89
1 12 0.07
2 6 0.04
3 0 0.00

Month 7-8 post-tx 0 153 0.90
1 14 0.08
2 2 0.01
3 1 0.01

Month 9-10 post-tx 0 155 0.91
1 11 0.06
2 1 0.01
3 1 0.01
4 2 0.01

Month 11-12 post-tx 0 152 0.89
1 7 0.04
2 8 0.05
3 2 0.01
4 1 0.01
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Table 1.5: Frequencies and Proportions for Categorical Covariates

Variable Categories Frequency Proportion

Treatment group BCT 56 0.33
Individual-based 56 0.33
Attention control 58 0.34

Husband’s education H.S. diploma or less 64 0.38
Some college 54 0.32
College graduate 31 0.18
Some graduate school 21 0.12
or graduate degree

Wife’s education H.S. diploma or less 71 0.42
Some college 54 0.32
College graduate 32 0.19
Some graduate school 13 0.08
or graduate degree

Husband’s race White 140 0.82
Non-White 30 0.18

Marital status Married 161 0.95
Cohabitating 9 0.05

Annual family income $0-20,000 13 0.08
$20,001-25,000 21 0.12
$25,001-30,000 36 0.21
$30,001-35,000 40 0.24
$35,001-40,000 29 0.17
$40,001+ 31 0.18

DWI referral Yes 20 0.12
No 150 0.88

Alcohol dependence Met 151 0.89
criteria Not met 19 0.11
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Chapter 2

Single Events

This chapter covers the specification and estimation of single event survival

models, with no unmeasured covariates, i.e., no unobserved heterogeneity. It

begins with the foundations of single event survival analysis (also referred to

as univariate survival analysis) for continuous-time data and then gives the

reformulations for discrete-time data. It also covers the modeling of covariate

predictors of survival, assumption checking, and assessments of model fit.
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2.1 Single event, continuous-time

survival analysis

2.1.1 Basic notation and event time distributional forms

Let the given sample consist of n independent individuals i, with i = 1, . . . , n.

Let Ti be the event time for individual i relative to a known start time, say

t = 0, common for all individuals, and assume T is a non-negative contin-

uous random variable from an unknown distribution, again common for all

individuals, such that Ti ∼ T .

The survival function, describing the probability of an individual sur-

viving beyond time t, i.e., experiencing the event after time t, is defined as

S(t) = P (T > t). (2.1)

The survival function has the following three properties: 1) S(0) = 1;

2) limt→∞S(t) = 0; and 3) S(t) is a monotonic, nonincreasing, and nonnega-

tive function. Notice the relationship between S(t) and the probability density

function, f(·):

S(t) = 1− F (t) =
∫ ∞

t
f(v)dv. (2.2)
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The most common representation of the event time distribution is the hazard

function (also known as the hazard rate or intensity), defined as

h(t) = lim
∆t→∞

P (t ≤ T < t + ∆t | T ≥ t)

∆t
. (2.3)

From this definition, one can see that the hazard rate can be thought of as

the instantaneous failure rate, that is to say, h(t)∆t is the “approximate”

probability1 of an individual who has not experienced the event by time t

experiencing the event in the next instant following t.2 The hazard rate may

also be interpreted as the average number of events in a one unit interval of

time.

1Technically, the hazard rate is not a probability since it may take on values greater than

one.

2f(t)∆t can be thought of as the “approximate” probability of failure at time t when

looking at risk from time zero rather than conditional on survival to the moment right before

t. In understanding the difference between f(t) and h(t), consider the different answer one

may get when asking a doctor to estimate the probability of death for a patient on the fifth

day post-surgery; the doctor may give a very different estimate on the first day post-surgery

than on the fourth.
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With T as a continuous random variable, the following relationships

between S(t) and h(t) hold:

h(t) =
f(t)

S(t)
= −d ln S(t)

dt
, (2.4)

and

S(t) = exp
[
−

∫ t

0
h(v)dv

]
. (2.5)

The survival and hazard functions are the most commonly used distributional

representations in survival analysis. However, under certain conditions, other

representations can prove useful, in terms of their statistical properties . For

example, some methods use the hazard function formulation for estimation

purposes and then use the estimated cumulative hazard for assumption check-

ing.

As discussed in Chapter 1, there are parametric, nonparametric, and

semiparametric approaches to estimating various distributional quantities as-

sociated with the different distributional forms for survival time. The most

common parametric models for continuous-time survival data are the exponen-

tial, Weibull, log logistic, log normal, and generalized gamma. The most com-

mon nonparametric estimators are the Kaplan-Meier and the Nelson-Aalen.

The following section goes into more detail about conditional survival models,

including the semiparametric regression model of Cox (1972).
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2.1.2 Continuous-time models with covariates

The previous sections have mainly addressed the distributional forms of con-

tinuous event time under the assumption that all individuals in the sample

were independent and identically distributed. However, it is rare that a study

does not collect, in addition to measures of outcome, measures of covariates,

also called explanatory variables, that may describe heterogeneity in the sur-

vival process across the sample. And, it is often the case that the interest

of the researcher is not exclusively or even primarily in predicting absolute

risk across time but in comparing the relative risk across time between groups

of individuals, defined by a given set of covariates, and in making inferences

about differences in subpopulation risks. For example, consider a clinical trial

of a new cancer treatment designed to prolong time-to-death. It would be

crucial to determine the magnitude and significance of the reduction in the

risk of death in the treatment group compared to the control group, regardless

of the overall risk in the general population.

As in growth modeling, covariates of survival time can be categorical or

continuous and time-dependent or time-independent. Consider first the case

of time-independent covariates. Let z be a p x 1 vector of covariates. There

are many different ways to specify the dependence of event time on a set of

covariates. Here, only the two most common categories of event time regression
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models are considered: accelerated life models and multiplicative hazard rate

models.

The survival function for the accelerated life model is given by

S(t | z) = S0 (t · ψ(z)) , (2.6)

where S0(T ) is the baseline survival function, i.e., the survival function when

z = 0, and ψ(z) is a link function. Another way to represent this model in

terms of the random variable itself is

T =
T0

ψ(z)
, (2.7)

where T0 has the survival distribution, S0(t). The accelerated life model can

be expressed equivalently in terms of the hazard by

h(t | z) = ψ(z) h0 (t · ψ(z)) . (2.8)

By this model, the effect of the covariates is to change the time scale by a factor

of ψ(z). Essentially, the covariates accelerate or decelerate the movement of

a subject through time. If ψ(zi) = 5, subject i moves through time five

times more quickly than a subject with z = 0; alternatively, subject i has

an expected lifetime one fifth of that of a subject under baseline conditions.

This model does have some intuitive appeal, particularly when considering

wear-out or burn-out scenarios for the survival process. However, the model
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may be intractable without parametric assumptions imposed on S0(t) and does

not as readily accommodate censoring and time-dependent covariates as the

multiplicative hazard rate model.

The hazard function for the multiplicative hazard rate model is given

by

h(t | z) = h0(t) · ψ(z) (2.9)

where, as before, h0(t) is the baseline hazard, that is, h0(t) = h(t | z = 0). This

model is commonly referred to as the proportional hazards model because of a

key feature under the absence of time-dependent covariates and the assumption

of time-independent covariate effects: the hazard rates of two individuals with

covariate values zi and zj are proportional. This means that the ratio of hazard

rates for two subjects, i and j, is a constant, independent of time:

h(t | zi)

h(t | zj)
=

h0(t) · ψ(zi)

h0(t) · ψ(zj)
=

ψ(zi)

ψ(zj)
. (2.10)

The most commonly used form for the link function is ψ(z) = exp(β′z).

This formulation is know as the Cox proportional hazards model or the Cox

regression model3. Each regression coefficient has the interpretation as the

difference in the log hazard rates for a one unit change in the correspond-

ing covariate, that is, the log hazard rate ratio for a one unit increase in the

3The Cox “regression model” is a more appropriate label since Cox’s formulation allows

for relaxation of the proportionality assumption.
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corresponding covariate. Cox’s seminal paper, published in 1972, can be cred-

ited with the dominance of this model in survival analysis applications, not

because of its novel specification or its indisputable and ubiquitous applica-

bility for survival data, but because of the most significant contribution of

the paper regarding the estimation of such a model. Cox suggested an es-

timation method he termed partial likelihood, which essentially constructs a

likelihood based on a conditioning principle where there is a likelihood con-

tribution only at each event time. Right censoring times do not enter the

likelihood which results in no bias in the coefficient estimates and standard er-

rors as long as censoring time is truly independent of event time. The purpose

of this model is to estimate the regression coefficients. In this formulation,

the baseline hazard function is a set of nuisance parameters that drop out of

the likelihood. Leaving the baseline hazard unspecified also places this model

in the semiparametric category. This feature prevents bias in the covariate

effect estimation due to misspecification of the baseline hazard. However, it

is possible to obtain nonparametric estimates of the baseline hazard function

using a post-hoc computation involving the cumulative hazard function and

the estimated link function values for each subject. (For more standard text
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on univariate continuous-time models, see Kalbfleisch and Prentice, 1980; Cox

and Oakes, 1984; Fleming and Harrington, 1991; Yamaguchi, 1991; Collett,

1994; and Klein and Moeschberger, 1997.)

2.2 Single event, discrete-time

survival analysis

2.2.1 Basic notation and event time distributional forms

Consider data that were referred to as “Case 1” in the introduction: an under-

lying continuous-time process with event times grouped into discrete intervals.

Let the given sample consist of n independent individuals i, with i = 1, . . . , n

with corresponding survival times Ti ∼ T , as previously defined.

In this setting, event time is only observed in J grouped intervals

[tj, tj+1) where j = 0, . . . , J − 1, t0 = 0, and tJ = ∞. Let Γi represent

the time interval in which Ti falls, so that Γ is a discrete random variable

with the event set {1, 2, . . . , J}. Then Γi = γ if tγ−1 ≤ Ti < tγ. Given

these definitions, the following distributional forms, parallel to those in the

continuous-time setting, can be specified along with their relations to their

continuous-time counterparts.
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The survival probability, describing the probability of an individual

surviving beyond the interval γ, i.e., experiencing the event after time tγ, is

defined as

PS(γ) = P (Γ > γ) = P (T ≥ tγ) = S(t−γ ). (2.11)

The survival probability has the following relationship to the probability mass

function, Pf (·):

PS(γ) = 1− PF (γ) =
J∑

j=γ+1

Pf (j), (2.12)

where PS(J) = 0 and
∑J

j=1 PS(j) = 1.

The discrete-time equivalent to the hazard function is the hazard proba-

bility. The hazard probability for period γ is the probability that an individual

experiences an event in period γ provided that she has not experienced the

event in an earlier period. This can be expressed by

Ph(γ) = P (Γ = γ | Γ ≥ γ)

= P (tγ−1 ≤ Ti < tγ | Ti ≥ tγ−1)

=
S(t−γ−1)− S(t−γ )

S(t−γ−1)

=
Pf (γ)

PS(γ − 1)
, (2.13)

where Pf (γ) is the probability mass function, Pf (γ) = P (Γ = γ). The follow-

ing relationships between PS(γ) and Ph(γ) then hold:
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Ph(γ) =
PS(γ − 1)− PS(γ)

PS(γ − 1)
(2.14)

and

PS(γ) = P (Γ > γ)

= P (Γ 6= 1 | Γ ≥ 1) · P (Γ 6= 2 | Γ ≥ 2) · · ·P (Γ 6= γ | Γ ≥ γ)

=
γ∏

j=1

(1− Ph(j)) . (2.15)

Examining plots of the hazard probabilities is quite useful in under-

standing how risk for an event changes over time and how those changes in-

fluence the corresponding survival probabilities. For example, most electronic

devices have what it called a bathtub-shaped or U-shaped hazard function; risk

of failure is high in the beginning burn-in period, due to manufacturing de-

fects, etc., and then much later in the life of the surviving devices due to

wear-out. The lifetimes of many living creatures follow a bathtub hazard as

well: we are most vulnerable at the beginning and end of our lifespan. Re-

lating the shape of the hazard to the survival function, when the hazard is

zero, the survival function is constant; when the hazard is high, the survival

function is decreasing quickly; when the hazard is low, the survival function

is decreasing slowly. The shape of the hazard function and survival function

are useful to examine together as the survival function not only reflects the
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cumulative risk impact on the population in each time period, it quantifies the

proportion of the population susceptible to the risk defined by the hazard for

each time period. Figure 2.1 displays six hypothetical example sets of hazard

probabilities and the corresponding survival probabilities, plotted over time.

2.2.2 Censoring and truncation

Missing data is endemic to longitudinal study settings; survival analysis is no

exception. The various mechanisms for missing data in the survival context

are usually grouped under the encompassing term, censoring. Most generally,

censoring occurs when the exact survival time is only known for a portion of

the sample, with event times for the remaining subjects only known to occur

in certain intervals. There are three categories of censoring: right, left, and

interval censoring.

Left censoring occurs when a subject in the sample has experienced

the event of interest prior to the onset of observation. In this case, all that is

known about the event timing is that it occurred sometime between t = 0 and

the beginning of the study.4

4This assumes that retrospective data is not available to obtain the exact timing of the

event.

39



Ex. 1-3 Hazard Probabilities

Time

H
a

za
rd

 p
ro

b
a

b
ili

ty

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5 Ex.1

Ex.2
Ex.3

Ex. 1-3 Survival Probabilities

Time

S
u

rv
iv

a
l p

ro
b

a
b

ili
ty

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Ex.1
Ex.2
Ex.3

Ex. 4-6 Hazard Probabilities

Time

H
a

za
rd

 p
ro

b
a

b
ili

ty

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5 Ex.4

Ex.5
Ex.6

Ex. 4-6 Survival Probabilities

Time

S
u

rv
iv

a
l p

ro
b

a
b

ili
ty

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Ex.4
Ex.5
Ex.6

Figure 2.1: Example hazard and survival probability plots.
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Right censoring occurs when a subject in the sample has not experi-

enced the event of interest at the cessation of observation. In this case, all that

is known about the event timing is that it occurs sometime after the end of the

study. In this scenario, it is assumed that, eventually, each subject will expe-

rience the event. That is to say, if each subject were followed indefinitely, all

would at some point experience the event of interest. There are three primary

right censoring schemes. The first is referred to as Type I censoring. This

censoring occurs when observation of each subject is halted at a pre-specified

time. These times may be the same or different across subjects. A common

scenario that results in Type I censoring is for a study to conclude on a specific

calendar date, prior to all subjects experiencing the event of interest. Type II

censoring results when a sample is observed until a pre-specified number of

events has occurred. A common study design that results in Type II censoring

involves animal experiments where the study is stopped after k deaths occur,

where k was determined to be the minimum number of event times needed for

sufficient statistical power. Random censoring is similar to Type I censoring

except that the time of censoring is itself a random variable, that is, it is not

a fixed or pre-specified value. Study attrition can result in random censoring,

i.e., unforseen circumstances, independent of each subject’s event time, may
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cause subjects to no longer be under the observation of the researcher while

still being at-risk for the event.

Interval censoring occurs when a subject is only known to have expe-

rienced the event of interest within a given time interval but the exact time

is unknown. Interval censoring is common in clinical trials and longitudinal

studies with regularly timed follow-up assessments. Imagine a clinical out-

come of interest that can only be determined by physician examination: at

one assessment, the subject is considered disease-free and at the next assess-

ment, the subject is diagnosed as having the disease; in these cases, it can be

difficult, if not impossible, to determine when during the time between the

two assessments the subject actually developed the disease. Discretely mea-

sured survival data can be considered a special case where all subjects that

experience the event during the observation period are interval censored and

that the possible intervals of censoring are common to all subjects, e.g., all

subjects are assessed at the same follow-up times. Both Type I and random

right censoring as well as left censoring can be reformulated as special cases of

interval censoring, with left censored individuals experiencing the event in the

interval from zero to the time of first observation and right censored individu-

als experiencing the event in the interval from the time of last observation to

infinity.
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As previously noted, censoring is simply the general term used for miss-

ing data mechanisms in survival data. The range of assumptions about the cen-

soring parallel the more general missing data assumptions applied to other data

settings.5 The assumption of noninformative censoring corresponds to the as-

sumption of ignorable missingness, which includes both missing-completely-at-

random (MCAR) and missing-at-random (MAR). If the distribution of censor-

ing times is independent of event times, censored observations may be treated

as MCAR. If the distribution of censoring times is independent of event times,

conditional on the set of observed covariates, then censored observations may

be treated as MAR. The case of informative censoring corresponds to nonig-

norable missingness. In these situations, censoring times depend upon event

times. Interval censoring, as it defines discretely measured survival times, is

implicitly addressed. For Type II censoring, order statistic techniques may be

applied.

Truncation is another feature of survival data, often discussed or pre-

sented in conjunction with the topic of censoring. As censoring can be thought

of as a missing data feature, truncation can be thought of as a selective sam-

pling feature. Left truncation occurs when individuals must experience a cer-

tain event (not the event of interest) and/or not have experienced the event of

5For a complete discussion of missing data techniques, see Little and Rubin (2002).

43



interest to be observed by the researcher. For example, when studying teacher

retention, taking a cross-sectional sample of current teachers would result in

left-truncated data since all teachers who had left the profession prior to the

beginning of the study would not be observed. Another example of left trunca-

tion is often referred to as delayed entry or late entry, meaning that observation

on a given subject does not begin at the origin of event time, e.g., subjects of

different ages 18–35 enter the study at the same time but only subjects who

have not experienced the event prior to study commencement are known to

the researcher. Note the difference between left truncation and left censoring:

in the case of left censoring, individuals who experience the event prior to

the first observation still have the possibility of being included in the sample;

in the case of left truncation, selection to the sample itself is conditional on

the event having not occurred prior to the first observation. Right truncation

occurs when individuals must experience the event to be observed by the re-

searcher. For example, in a recidivism study sampling exclusively from current

inmates, only those who had already been rearrested would be known to the

researcher. In the case of right truncation, there can be no right censoring.

For both types of truncation, the conditional nature of each observation, be

it an event or censoring time, must be accounted for in construction of the

likelihood. For the purposes of this dissertation, the absence of truncation is
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assumed unless otherwise specified. Also, only noninformative, Type I and

random right-censoring is assumed unless otherwise indicated.

2.2.3 Constructing the likelihood

Construction of the likelihood can be approached in a systematic manner by

considering the information each subject contributes to the understanding of

the overall survival process. For an individual who experiences the event in

interval γi, it is known that Γi = γi; the likelihood for that observation is

then P (Γi = γi) = Pf (γi). For an individual right-censored during the interval

Cri, it is known only that Γi > Cri − 1;6 the likelihood for that observation

is then P (Γi > Cri − 1) = PS(Cri − 1). For an individual left-censored at the

interval Cli, it is known that Γi < Cli; the likelihood for that observation is

then P (Γi < Cli) = 1−PS(Cli−1). For an individual interval-censored during

the time spanned by intervals Ili to Iri, it is known that Ili ≤ Γi ≤ Iri; the

likelihood for that observation is then P (Ili ≤ Γi ≤ Iri) = PS(Ili−1)−PS(Iri).

Assume that the censoring is noninformative. Then the full likelihood equation

for 1, . . . , n observations can be written as

6Prentice and Gloeckler (1978) showed that even if the right-censoring occurs during

the time period Cr, that the maximum likelihood estimates are consistent if treating the

censoring time as the end of the interval Cr − 1.
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L =


 ∏

i∈UE

[Pf (γi)]





 ∏

i∈UR

[PS(Cri − 1)]





 ∏

i∈UL

[1− PS(Cli − 1)]





 ∏

i∈UI

[PS(Ili − 1)− PS(Iri)]


 , (2.16)

where UE is the set of indices for exact event times in the sample, UR is the

set of indices for right-censored times, UL is the set of indices for left-censored

times, and UI is the set of indices for interval-censored times.

Consider the most common scenario with only complete and Type I

or random right-censored observations. Let the observed data be represented

by {A, δ} where Ai = min(Γi, Cri) and δi = I(Γi ≤ Cri). Essentially, ai

is the last time period during which the subject is observed7 and δi is the

indicator of whether an event or censoring occurred during that final period.

The likelihood can then be expressed as

L =
n∏

i=1

[Pf (ai)]
δi [PS(ai − 1)]1−δi . (2.17)

Using the relationship between the probability mass and survival functions

and the hazard functions given in Equations 2.13 and 2.15, the likelihood can

7This does not mean the subject is observed to be at-risk for the entirety of the time

period.
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alternatively by expressed in terms of the hazard probabilities by

L =
n∏

i=1



[Ph(ai)]

δi

ai−1∏

j=1

[1− Ph(j)]



 . (2.18)

In the case of right-truncated data, only events are observed. Sup-

pose the data are right-truncated at the interval (QRT ) where QRT < J ; the

likelihood for each right-truncated observation it then

P (Γi = γi | Γi ≤ QRT ) =
Pf (γi)

1− PS(QRT )
(2.19)

Similarly, for data left-truncated at the interval QLT , the likelihood for each

uncensored individual left-truncated at the interval QLTi
is then

P (Γi = γi | Γi ≥ QLTi
) =

Pf (γi)

PS(QLTi
− 1)

(2.20)

and for each right-censored left-truncated individual is

P (Γi > Cri − 1 | Γi ≥ QLTi
) =

PS(Cri − 1)

PS(QLTi
− 1)

. (2.21)

2.2.4 Estimation

In the continuous time setting, no two subjects share the same event time

(theoretically) but in the discrete time setting, multiple subjects may share

the same time interval of event occurrence. Because of this difference, there is

not the same distinction to be made between nonparametric and parametric

approaches to estimation. Certainly, there are more and less restricted models
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for the baseline hazard probabilities as well as for the covariate effects, but all

of the conditional models presented in this dissertation utilize full likelihood

techniques (as opposed to the partial likelihood employed for the Cox model).

The most straight-forward method for estimation of the unconditional

survival probabilities for complete or right-censored data is analogous to the

Product-Limit estimator. Essentially, the hazard probability is estimated for

each time interval by taking the ratio of the number of subjects experiencing

the event in a given interval over the number of subjects observed to be “at-

risk” for a given time interval. A subject is observed to be at-risk in period

j is she has not experienced the event prior to period j and is not censored

in period j or before. In other words, a subject i, i = i, . . . , n is considered

at-risk for interval j if (ai ≥ j, δi = 1) or (ai > j, δi = 0). Let nj be the number

at-risk for interval j, dj be the number of events during interval j, and cj be

the number of subjects censored during interval j. Then the estimate for the

hazard probability for a specific time period is given by

P̂h(γ) =
dγ

nγ

, (2.22)

where

nγ = nγ−1 − dγ−1 − cγ = n−



γ−1∑

j=1

(dj + cj) + cγ


 . (2.23)

So, the number at-risk in period j is equal to the total sample size minus

the total number of events occurring up to period j and the total number of
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subjects censored through period j. Using the relationship between the hazard

probability and the survival probability given in Equation 2.15, the estimated

survival probability is given by

P̂S(γ) =
γ∏

j=1

(
1− P̂h(j)

)
=

γ∏

j=1

(
nj − dj

nj

)
. (2.24)

Efron(1988) showed that the above equation is the discrete-time limit to the

continuous-time Kaplan-Meier estimate. The estimate for the hazard prob-

ability given in Equation 2.23 is also the maximum likelihood estimate for

complete and noninformative right-censored discrete-time date.

For the data example presented in Chapter 1, the estimated hazard

probabilities for occurrence of first violence in each of the six post-treatment

time periods and the corresponding survival probabilities are given in Ta-

ble 2.1. For example, in the second time period, 136 subjects are at-risk for

their first episode of violence during the post-treatment period and 13 commit

an act of violence during that period, yielding an estimated hazard probabil-

ity for that time period of 13
136

= 0.10. Survival beyond the second period is

then the product of the complements of the hazard probabilities for the first

two time periods: P̂S(2) = (1 − 34
170

)(1 − 13
136

) = 0.72. Figure 2.2 displays the

plots for the hazard and survival probabilities. The hazard probabilities are

low overall and show some decrease over the twelve months. Computing the

survival probabilities translate the hazard probabilities into the more intuitive
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Table 2.1: Sample Hazard and Survival Probabilities for First Violence Post-

Treatment

Months 1-2 3-4 5-6 7-8 9-10 11-12

# at-risk 170 136 123 114 108 104

# first episodes 34 13 9 6 4 3

Hazard 0.20 0.10 0.07 0.05 0.04 0.03

Survival 0.80 0.72 0.67 0.64 0.61 0.59

survival rates: 41% of the subjects have committed a domestic violence offense

within the first year after treatment.

This estimation approach suggests an alternative representation of the

hazard probabilities in terms of event history and risk indicators. That is,

Ph(γ) = P (Γ = γ | Γ ≥ γ) = P (Eγ = 1 | Rγ = 1), (2.25)

where

Eγ = I(Γ = γ) (2.26)

and

Rγ = I(Γ ≥ γ). (2.27)
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Figure 2.2: Sample hazard and survival probabilities for 12 months post-

treatment.
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Thus, Eji indicates whether subject i experienced an event in period j and

Rji indicates whether subject i is at-risk for an event in period j, where

j = 1, . . . , J . Substituting into the likelihood from Equation 2.18 gives

Li = [Ph(ai)]
δi

ai−1∏

j=1

[1− Ph(j)]

= [P (Eai
= 1 | Rai

= 1)]δi

ai−1∏

j=1

[1− P (Ej = 1 | Rj = 1)] . (2.28)

The above likelihood is put in terms of E, R, δ and A. Now consider an

indicator, similar to R but indicating observed risk. Remember that a subject

is only observed to be at risk in period j if she has not experienced the event

prior to period j and she is not censored in period j or before. Let Ro
j be an

indicator of observed risk in period j, that is,

Ro
γ = I(Γ ≥ γ and Cr > γ). (2.29)

In terms of the observed data, (A, δ), Ro can be equivalently defined by

Ro
γ = I ([A ≥ γ and δ = 1] or [A > γ and δ = 0]) . (2.30)

Noting that for j < ai that Rji = Ro
ji and that Raii = Ro

aii
if δi = 1, the

likelihood can be expressed exclusively in terms of E and Ro by

Li = [P (Eai
= 1 | Rai

= 1)]δi

ai−1∏

j=1

[1− P (Ej = 1 | Rj = 1)]

=
∏

j∈{r:Ro
ri=1}

P (Ej = eji). (2.31)
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All of this is still done under the assumption of noninformative censoring. To

summarize, the observed data, (Ai, δi), as well as the corresponding likelihood,

can be restated in terms of (Ei, R
o
i ) without loss of information, with the

following conversion:

Eji =





1 if Ai = j and δi = 1

0 otherwise,

(2.32)

and

Ro
ji =





1 if (Ai ≥ j, δi = 1) or (Ai > j, δi = 0)

0 otherwise.

(2.33)

The following observation about the likelihood given in Equation 2.31

is crucial to understanding the motivation for using the LCR framework to

model discrete-time survival data: The likelihood in terms of E and Ro is

identical to the likelihood for a one-class (K = 1) LCA model model with a

set of binary indicators, Ej, j = 1, . . . , J , with the Ro
j ’s treated as response

(non-missingness) indicators under the MAR assumption.8 Thus, the max-

imum likelihood estimates for the Ej’s under MAR are the MLE’s for the

8Note that the specification of the complete data using E = (ERo , ERo) and Ro, where

ERo is the set of Ej ’s such that Ro
j = 1 mirrors the Little and Rubin (1987) specification

for incomplete data.
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Ph(j)’s under noninformative right censoring.9 In a data analysis situation,

most programs to not require that the user provide the actual response indi-

cators for missingness; rather, missingness for given observations is denoted

by some symbolic representation, such as “.”. Table 2.2 shows three example

event histories for the six periods of observation. The first section of the table

shows the event indicator values for each subject during each period, the sec-

ond section shows the observed risk indicator values for each subject during

each period, and the third section shows the “observed” event indicators with

the observations for which ro
ji = 0 marked as missing. Figure 2.3 displays the

unconditional event history model using the traditional path diagram repre-

sentation of the LCA models.

2.2.5 Discrete-time models with covariates

The two most common representations of “grouped-time” survival data are

the ordinal and the discrete. These representations form the basis for the

different model specifications in the discrete-time setting. The ordinal specifi-

9This differs from Vermunt’s (1997) suggestion that the discrete-logit model could be

expressed at a structured LCA model with dependencies across the event indicators. In this

MAR formulation, no further structure on the observed indicators is needed to obtain the

proper likelihood estimates.
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Table 2.2: Example Data for Discrete-Time Survival Using Event and Risk

Indicators

Event indicator e1 e2 e3 e4 e5 e6

Event in period 5 0 0 0 0 1 0

Censored in period 4 0 0 0 0 0 0

No event in 12 months 0 0 0 0 0 0

Risk indicator ro
1 ro

2 ro
3 ro

4 ro
5 ro

6

Event in period 5 1 1 1 1 1 0

Censored in period 4 1 1 1 0 0 0

No event in 12 months 1 1 1 1 1 1

Event indicator (observed) ero1 ero2 ero3 ero4 ero5 ero6

Event in period 5 0 0 0 0 1 .

Censored in period 4 0 0 0 . . .

No event in 12 months 0 0 0 0 0 0
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Figure 2.3: Event history LCA path diagram.
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cation treats the event time period Γi as an ordered polytomous variable with

outcomes 1, . . . , J and models the effects of covariates as a function of the cu-

mulative probability. A multiplicative model using this ordinal representation

is given by

P (Γ ≤ γ | z) = p0(γ) · ψ(z). (2.34)

In the general linear modeling approach, the probability for a categor-

ical outcome is transformed by a link function and modeled as linear with

respect to the observed covariates. Appropriate link functions ensure that es-

timated outcomes, in this case, probabilities, are in the admissible outcome

space; for probabilities, that means between the values 0 and 1. Having the

probability as direct linear functions of the covariates would not guarantee

sensible probability estimates. The most common link function used for cate-

gorical outcomes is the logit, where

logit(p) = log

[
p

(1− p)

]
. (2.35)

The logit of the probability of an event is the log odds of that event. The

multiplicative model given above with the logit link is a special case of what

is know as the proportional odds model for ordered categorical data (Agresti,

1990) with censored observations. In this model, the odds of experiencing the

event in a given interval j are proportional to the odds of experiencing the

event before interval j, conditional on z.
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The discrete specification models the effects of covariates on the hazard

probabilities, which, as shown in the previous section, can be represented by

probabilities of binary event indicators. The general multiplicative model for

the discrete specification is given by

Ph(γ | z) = Ph0(γ) · ψ(z). (2.36)

The two most common link functions use is this setting are the complementary

log-log and the logit, given by

log [− log(1− Ph(γ | z))] = β0γ + β′z (2.37)

and

log

[
Ph(γ | z)

1− Ph(γ | z)

]
= β0γ + β′z, (2.38)

respectively. The model employing the complementary log-log link will be re-

ferred to here as the discrete-CLL model and the model employing the logit

link will be referred to here as the discrete-logit model. In the case of time-

independent effects for all covariates, the discrete-CLL model assumes pro-

portionality of the hazard probabilities across the time intervals; similarly, the

discrete-logit assumes proportionality of the hazard odds across time intervals.

As with the Cox regression model, the assumptions of proportionality for both

models may be relaxed so it does not make sense to distinguish these models

in name by their differing proportionality assumptions.
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Since the discrete representation makes easier the incorporation of time-

dependent covariates and time-dependent covariate effects as well as structured

relationships between hazard probabilities across time compared to the ordinal

representation, it is the basis of all further models discussed in this disserta-

tion. Deciding to model the hazard probabilities as a function of the covari-

ates does not, however, resolve the issue of which link function is preferable.

Discussion of this very issue is given in Halford (1976); Prentice and Gloeck-

ler (1978); Allison (1982); Hedeker et al. (in press); and Singer and Willett

(2003), among others. In the case where there is an underlying continuous

distribution, there is some favor in the literature for the discrete-CLL over the

discrete-logit. The regression coefficients from the discrete-CLL estimate the

same quantities as those in the Cox regression model—hazard ratios. Ironi-

cally, Cox himself, in his 1972 paper, gives the discrete-logit as the discrete

model counterpart to his continuous-time regression model. And, as stated

before, there is nothing in the nature of survival data as a whole that recom-

mends them specifically to discrete-CLL model. Singer and Spilerman (1976)

as well as Flinn and Heckman (1982) warn about the sensitivity of inferences

based on the discrete-logit model to the length of the time interval compared

to the discrete-CLL estimates which are interval invariant with respect to in-

ferences about the structural parameters, i.e., baseline hazard probabilities.
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Practically speaking, there is often little or no difference in the results of these

two model specifications, even when the proportionality assumptions are in

place, since it is well known under conditions of rare-occurring events that

the odds ratio approximates the risk ratio. There is little distinction in this

regard when the proportionality assumptions are relaxed and the covariate

effects are allowed to be invariant. Also, by allowing the most general form of

the baseline hazard in each model—estimating a separate baseline probability

for each time interval—differing lengths of time intervals are automatically

incorporated into the parameter estimates. However, one should be careful

to note that each link function has different assumptions about the interplay

between the baseline hazard probabilities and the covariates in relation to the

conditional hazard probabilities—assumptions that cannot be directly verified.

Given that there is no clear reason to favor one link over the other and that

the logit link is implemented in many software applications and is more fa-

miliar and immediately accessible in understanding and application to those

new to survival analysis, the discrete-logit is the specific model used for the re-

mainder of this dissertation with the understanding at all discussions of model

extensions could as easily be applied to discrete-CLL models.
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2.2.6 Discrete-logit model in a latent variable

framework

The primary reason for the established popularity of the discrete-logit model

over the discrete-CLL in applied settings is because the full maximum likeli-

hood estimates for the parameters of the discrete-logit model can be estimated

using the regular logistic regression machinery present in most general statisti-

cal analysis software. (See Allison, 1982, and Singer and Willett, 1993, for full

exposition of obtaining estimates using this framework.) Muthén & Masyn

(2001) present an alternative approach for estimating the discrete-logit model

using a latent variable framework.10 In modeling single-occurrence events in

discrete-time with observed predictors, the latent variable framework provides

an analytically equivalent model to that specified in the logistic regression

framework. So, the estimation is not somehow “better” or “novel” using this

framework. However, it becomes clear as the model is extended beyond single

events to included unobserved population heterogeneity, recurring events, par-

allel and sequential longitudinal processes, and more that the latent variable

framework affords much greater flexibility in modeling.

10There is nothing about this framework that requires the use of the logit link function.

However, it is typically the link function employed in the latent variable software and is the

link function currently employed in Mplus.
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The most general latent variable modeling framework involves both cat-

egorical and continuous latent variables (Muthén & Shedden, 1999; Muthén,

2002) and is incorporated in the Mplus program (Muthén & Muthén, 1998-2001).

Section 1.3.3 gave an overview of latent class regression and it was shown

in Section 2.2.4 that the likelihood for discrete, right-censored, survival data

could be equivalently expressed as the likelihood for an LCA model with miss-

ingness on the binary indicator variables. In the following section, the LCA

model (under MAR) for discrete-time survival data is extended to the LCR

model, allowing the hazard probabilities to be modeled as a function of ob-

served covariates.

Discrete-logit model using LCR

Recall the representation of the discrete-time survival data in terms of ERo , ERo ,

and Ro given in Section 2.2.4. Treating E as previously defined for survival

data as a vector of categorical indicators of a latent class variable with K = 1

and missingness on those indicators given by Ro such that ERo represents the

whole of the observed indicator data, the maximum likelihood estimates un-

der the MAR assumption for νj, j = 1, . . . , J , are the maximum likelihood
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estimates for the logit hazard probabilities.11 That is,

P̂h(γ) = P̂Ej
(Ej = 1 | C = 1) =

1

1 + exp(−(ν̂γ))
. (2.39)

Using the properly formatted data, an unconditional, unstructured discrete-

logit model can be fit to the violence data. The estimates for this model are

given in Table 2.3. Note that the inverse logit of the ν’s match the sample

probability estimates given in Table 2.1. For example,

P̂h(1) =
1

1 + exp(−(−1.39))
= 0.20. (2.40)

The maximum likelihood estimates of νj and β from a LCR model are the

estimates of the corresponding parameters in the discrete-logit model. That

is,

P̂h(γ | z) =
1

1 + exp(−(ν̂j + β̂′z))
, (2.41)

where ν̂j is the estimated logit of the hazard probability at time period j when

z = 0 and β̂p is the estimated log hazard odds ratio for a one unit increase in zp.

Alternatively, (1 + exp(−(ν̂j)))
−1 is the estimated baseline hazard probability

11Note that the Mplus specification uses the parameter τ = −ν; this is related to the

conceptualization of categorical data as originating from continuous data that has been

categorized using cut-points. For a two category variable, there is one cut-point, otherwise

known as threshold, and τ is the estimate for that threshold. In the discrete-logit model,

the estimate for τγ is equal to the estimate for −νγ or −β0γ as given in Equation 2.38.
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Table 2.3: Results for Data Example Model 1

Parameter Est.

ν1 -1.39
ν2 -2.25
ν3 -2.54
ν4 -2.89
ν5 -3.26
ν6 -3.52

LL=-214.35, parameters=6

for time period j and exp(βp) is the estimated hazard odds ratio for a one unit

increase in zp.

Beginning to investigate the relationship between the time-independent

covariates and the hazard of domestic violence in the post-treatment periods, a

series of models were fit including each time-independent covariate separately

and then in combination with the other variables, all under the proportional

hazard odds assumption. The two covariates that were significant predictors of

the time to the first episode of domestic violence were the indicator for the be-

havior couples’ therapy treatment (relative to both the individual-based treat

and the attention control treatment) and the indicator for wife’s education not
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beyond high school or GED. None of the other covariates12 were significant in

the model, including the number of pre-treatment violence episodes, and there

was no evidence of interaction between any of the variables.

For a continuous variables, such as length of relationship, there is an

assumption in the model, if it is entered as a continuous variable, that its re-

lationship to the logit of the hazard probability is linear, i.e., the logit hazard

changes the same amount for every one unit change in the covariate. It is pos-

sible to relax this linearity assumption by including polynomial terms for the

covariates, such as (length of relationship)2
mean−centered. To explore nonlinear

relationships, it can also be useful to categorize the continuous variable and

represent its effect in the model with a series of dummy variables. This was

done for the continuous covariates in the example and no evidence of nonlin-

ear effects was found. The results of the model with the treatment and wife’s

education indicators included are given in Table 2.4. The BCT treatment has

a protective effect against the onset of violence in the post-treatment period.

The negative coefficient on the wife’s education indicator variable suggest that

subjects with wives who have no education beyond high school are less at-risk

12Includes husband’s age (in years), length of relationship (in years), husband’s race, mar-

ital status, DWI referral, alcohol dependency criteria met, household income, pre-treatment

drinking, and pre-treatment violence.
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for returning to violence at any given time in the post-treatment period. Per-

haps these women are less likely to engage in challenges or confrontations

with their husbands that might be viewed by the men as a provocation for vi-

olence.13 Also given in the table are the exponentiated values of the estimated

coefficients which have the interpretation of the hazard odds ratio. Thus, it

is estimated that subjects in the BCT treatment group have approximately

half the risk of those not in the BCT treatment of returning to violence at

any given period in the 12 months following treatment; and that subjects with

wives with no education beyond high school have approximately half the risk

of those with wives having education beyond high school or high school equiv-

alency for returning to violence at any given period. Plots of the estimated

hazard and survival probabilities for the four groups defined by BCT treatment

group and wife’s education level are shown in Figure 2.4.

There are two standard approaches to evaluating the statistical signif-

icance of a single covariate, say zp, in a LCR model. One is the Likelihood

13At first glance, this may seem counterintuitive since in the domestic violence literature,

education is an overall protective factor for women with respect to risk of spousal violence.

However, one must remember that this is a sample of women who have already been subject

to violence at the hands of their partners and have stayed in the relationships, at least

through the treatment period.
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Table 2.4: Results for Data Example Model 2

Covariate Coeff. Est. SE Est./SE Est. hazard OR

I(Treatment=BCT) -0.59 0.29 -2.03 0.55

I(Wife’s educ. ≤ H.S.) -0.62 0.28 -2.24 0.54

Threshold Est. SE Est./SE Est. baseline hazard

ν1 -0.99 0.24 -4.18 0.27

ν2 -1.82 0.31 -5.81 0.14

ν3 -2.10 0.38 -5.54 0.11

ν4 -2.44 0.44 -5.50 0.08

ν5 -2.80 0.51 -5.47 0.06

ν6 -3.07 0.60 -5.11 0.04

LL=-209.62, parameters=8
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Figure 2.4: Model 2 estimated hazard and survival probabilities.
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Ratio Test (LRT) and the other is the Wald Test.14 Both tests are based on

asymptotics. The LRT is given by

LRT = −2 [LL(model without zp)− LL(model with zp)] , (2.42)

where the LRT is χ2 distributed with one degree of freedom under the null

hypothesis that βp = 0. The Wald test is given by

W =
β̂p

ŜE(βp)
, (2.43)

where the Wald statistic has a standard normal distribution under the null

hypothesis that βp = 0. As cited in Hosmer and Lemeshow (2000), both Huack

and Donner (1977) and Jennings (1986) have investigated the performance and

adequacy of inferences based on Wald statistics and have found that the Wald

test can behave in an irregular manner; the LRT is recommended over the Wald

test for these models. The LRT can also be used for multivariate hypothesis

testing; that is to say, the LRT can be used to evaluate the difference between

14The Score test is another method of hypothesis testing that can be used for these models

but is not discussed in detail here because it is not always available in commercial software

packages.
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any two nested models. Most generally,

LRT = −2 [LL0 − LL1] , (2.44)

where LL0 is the log likelihood for the restricted model under the null hy-

pothesis and LL1 is the log likelihood for the larger, unrestricted model under

the alternative hypothesis. The LRT statistic is χ2 distributed with degrees of

freedom equal to the difference in the number of free (estimated) parameters in

the two models. That is, under the null hypothesis, LRT ∼ χ2(df = q1 − q0),

where q0 is the number of parameters in the null model and q1 is the number of

parameters in the alternative model. The parameters space for the null model

must be contained within the parameter space of the alternative model. The

LRT can be used for inferences about many different aspects of the hazard

model including the significance of a single covariate (continuous or categori-

cal), the time-dependency of the effects of a given covariate, and nature of the

duration dependency of the baseline hazard probabilities. The use of the LRT

is demonstrated in examples throughout the rest of the chapter.

The proportionality assumption

As has already been alluded to, the discrete-logit model can be made more

general by relaxing the assumption of proportionality of the hazard odds—this

means specifying a model that allows the effects of the covariates (in terms of
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hazard odds ratios) to differ across time periods. In the regular logistic frame-

work, modeling this would involve interaction terms between each covariate

and each time period indicator. Working from the LCR parameterization of

the discrete-logit model, it is a straightforward matter to extend equation

(2.41) to allow for time-dependent covariate effects. This model is given by

PEj
(ej = 1 | z, c = 1) =

1

1 + exp(−(νj + β′jz))
. (2.45)

By fitting the model above and then the proportionality model with βj = β

for j = 1, . . . , J , the model LRT can be used to assess the need for relaxation

of the proportionality assumption. It may be a more structured model for the

covariate effects, somewhere in between that of the full proportional hazard

odds more and the model that allows different effects for each time period,

could provide an optimal fit, e.g., the hazard odds ratio is the same in the

early time periods but then changes in the later time periods, similar to a

piece-wise regression. For example,

PEj
(ej = 1 | z, c = 1) =

1

1 + exp(−(νj + β′1jz · I(j ≤ q) + β′2jz · I(j > q)))
,

(2.46)

where q represents the change-point for the covariate effects. Also, it is possible

for some but not all the covariates to have time-dependent effects.

Continuing with the example, the estimated survival probabilities based

on Model 2 can be plotted against the stratified sample survival probability
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estimates for the four groups defined by the treatment and wife’s education

indicators. These four plots are displayed in Figure 2.5. These plots show that

the model-based estimates generally correspond closely to the sample estimates

but deviation from the sample estimates seem greatest for the middle two time

periods. This suggests that there may be some improvement in fit by relaxing

the proportionality assumption, allowing the effects of treatment and wife’s

education to vary for the first, middle, and last two time periods. The log

likelihood for the model allowing for time-dependent effects was -206.89 with 12

free parameters.15 Comparing this model to the more restricted proportional

hazard odds model, the LRT statistic was −2(−209.62 − −206.89) = 5.46;

P (χ2
4 > 5.46) = 0.24. Thus, there was no significant evidence to suggest that

the proportionality assumption was violated by these data.

Time-dependent covariates

Up until this point, only time-independent covariates have been considered,

that is, only covariates whose values remain constant during the full period of

observation. Such explanatory variables might include individual characteris-

tics, such as race, or variables whose values are fixed at or before time zero,

such as treatment status. However, it would be unusual in a longitudinal set-

15Model 3 in Appendix B.
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Figure 2.5: Model 2 estimated versus sample survival probabilities by treat-

ment status and wife’s education level.
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ting that there would not be covariates that changed over time. It is possible

to imagine a situation where a change in the covariate was itself predictive of

survival. For example, consider how a change in marital status or a change

in employment status might influence the risk of depression for an individual

over time.

In terms of the LCA parameterization of the discrete-logit model, it is a

straightforward matter to extend equation (2.41) to allow for time-dependent

covariates. Let X be a vector of time-dependent covariates where Xj is the

vector of values on those covariates at time period j. The model is given by

PEj
(ej = 1 | xj, z, c = 1) =

1

1 + exp(−(νj + β′jz + κ′jxj))
. (2.47)

Notice that the above model allows for the possibility of time-varying effects for

both the time-dependent and time-independent covariates. Figure 2.6 displays

the path diagram for an event history model with both time-dependent and

time-independent covariates with time-varying effects.

Although the extension in the model makes the inclusion of time-

dependent covariates a simply matter, the implications for the interpretation

of the model are much more complex. As in the growth modeling setting,

inclusion of time-dependent covariates introduces the issue of reciprocal cau-

sation (Cox & Oakes, 1984; Singer & Willett, 2003). Essentially, when linking

contemporaneous information on a predictor and outcome, the directional ar-
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row, that is, which variables is doing the influencing, is impossible to infer

from the data for certain types of covariates whose values could be influenced

by the co-occurring outcome. In the discrete-time survival context, this issue

is classified into two sub-issues: state and rate dependence. In the case of state

dependence, the covariate value in time period j is influence by an individual’s

“state” in period j, that is, whether or not she experiences the event. In the

case of rate dependence, the covariate value in time period j is influenced by

the individual’s hazard probability in time period j (Singer & Willett, 2003).

Both cases pose problems for model-based inference and interpretation that

can only be resolved by the substantive theory behind the model.

One method for side-stepping the issue of reciprocal causation is to

time-lag the covariate values. That is, to have the covariate value in time

period j − 1 predicting the outcome in time period j, or having the change

in the covariate value from j − 1 to j influence the outcome in time period

j. Such covariates are referred to as lagged predictors. Something to consider

when specifying a time-lagged relationship from a time-dependent covariate to

the hazard probabilities is whether an average lag the size of the time intervals

that define the discrete time periods in the data is reasonable. For example, if
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a subject is more likely to return to drinking within a week of losing his job,

then a time lag for employment status over two month time periods would not

capture the more proximal lag effect.

Another issue is the implicit assumption in the discrete-time model

that the values of a time-varying covariate are essentially constant within each

time period. If the data do not correspond to this assumption, there are

several alternatives for including such a covariate. One option is to simply take

the mean value of the covariate for each individual within each time period

and use that as the assumed value for the entire period. It is also possible

to incorporate a time-varying covariate that embodies something about the

variability of the covariate for a given individual in each time period as well

as the mean value.

Although time-dependent variables do present some issues in modeling

and inference, they should not be ignored because of the central role they may

play in the understanding of the outcome, i.e., survival process of interest.

However, there are alternative approaches to specifying the relationship be-

tween such time-dependent variables and survival in the latent variable frame-

work that may not be subject to some of the issues described about. For

example, suppose that the relationship between the covariate and outcome

may be better conceived as two co-occurring longitudinal processes where the
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trajectory of the predictor over time, rather than its specific value at any given

time, is most predictive of event time. This type of model is beyond the scope

of the current dissertation but is a promising future extension.

Returning to the example, there are two variables related to drinking

behavior that could be included at time-dependent predictors of violence. One

variable is an indicator of return to drinking for each month and the other is

the percent-days-drinking for each month. There is a substantial amount of lit-

erature exploring the connections between alcohol and violence (Fals-Stewart,

2003), so it could be expected that one or both of these would be significant

predictors. A series of models were fit, including both concurrent and two-

month lag effects of both these covariates, separately and together. There was

significant evidence for the concurrent association of percent-days-drinking

with the hazard of first violence post-treatment. In this example, if drink-

ing and violence are considered to be closely linked in time (e.g., within 24

hours)—although there is still debate in the literature about the direction and

causal relationship of the association—it is not surprising the there is not a

significant lag effect given the the time periods are two months in length. How-

ever, as discussed earlier in this section, care must be taken when interpreting

the concurrent time-dependent effects. The effect of the BCT treatment group

membership become nonsignificant when including percent-days-drinking, sug-
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gesting that the treatment effect on time-to-violence is mediated by drinking

behavior. An indicator of household income greater than $35,000 enters the

model as a protective factor in return to violence. The effect of wife’s educa-

tion level remains from Model 3. There was no evidence to suggest that the

proportionality restriction should be relaxed for percent-days-drinking; that

is, there was no evidence of time-dependent effects for this time-dependent

variable. Further details of this model are given in the next section.16

Structure for the hazard probabilities

Until now, the discrete-logit model has been presented as specified with unre-

stricted baseline hazard probabilities, in the form of the ν ′js, that are allowed

to vary freely across the J time intervals. There are advantages to leaving the

baseline hazard unstructured including accounting for different time interval

lengths and avoiding bias in covariate effect estimates due to baseline hazard

misspecification. However, if the underlying hazard function does have a struc-

tural form that could be represented by a set of constraints on the baseline

hazard probabilities, there can be a gain in statistical efficiency and parsimony

by doing so. Like the previous section on time-dependent effects, models plac-

16Model 4 in Appendix B.
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ing constraints on the baseline hazard can be compared via the model LRT, as

they are nested within the unrestricted baseline hazard probabilities model.

The most restricted baseline hazard probabilities model is one where

the hazard probabilities are constrained to be equal across time. That is,

PEj
(ej = 1 | z, c = 1) =

1

1 + exp(−(ν + β′jz))
. (2.48)

One could also imagine a piecewise constant hazard probability model, such

as

PEj
(ej = 1 | z, c = 1) =

1

1− exp(−(ν1 · I(j < q) + ν2 · I(j ≥ q) + β′jz))
,

(2.49)

where q represents the change-point for the hazard probabilities.

It may also be the case that baseline hazard probabilities can be de-

scribed by some sort of function of time, e.g., linearly increasing in time. Keep

in mind that with the discrete-logit, it is the logit of the hazard probability

that is being modeled. In the latent variable framework, time is not automat-

ically included as an explicit set of variables in the model, as in the logistic

regression—it is represented implicitly by the set of event indicators, one for

each time period. However, time structure to the logit baseline hazard proba-

bilities can be imposed using a latent growth modeling approach (Muthén &

Masyn, 2001; Muthén, 2002). Since the discrete intervals are design-specific
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rather than individual-specific, all subjects can be considered to be observed

at the same times. The logit hazard probabilities are then expressed as a

function of an intercept and slope factor, represented by latent variables, with

factor loadings constraining the structure. For example, a model with a logit

baseline hazard linear in time can be expressed as

PEj
(ej = 1 | z, φ, c = 1) =

1

1 + exp(−(η0 + λjη1 + β′z))
, (2.50)

where η0 is a latent intercept variable with loadings all are fixed at the value

one and η1 is the latent linear slope variable with loadings such that λj is the

factor loading for ej fixed at λj = j − 1 or some other expression of time such

as λj = 1
2
(tj − tj−1). For identification, the thresholds, νj’s, are fixed at zero;

at least one λj must be fixed at zero and at least one other fixed at a constant

value.. If λ1 = 0 then the mean of η0 is then the logit hazard baseline prob-

ability at the first time period. The mean of η1 is the time slope of the logit

hazard probabilities. To allow nonlinear growth in polynomial form, additional

growth factors are added with loadings corresponding to higher powers of time.

To allow for less specific nonlinear growth, all but two of the loadings on η1

could be freely estimated rather than fixed at given time values. This speci-

fication also allows for a slightly different representation of time-independent

covariate effects since the growth parameters, as variables themselves, may be

expressed as dependent upon the covariates. For example, η0 = α0 + α′z is
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equivalent to specifying a discrete-logit model with time-invariant effects for

z, i.e., the proportional hazard odds model. For η1 = α0 + α′z, the effects of

z on the hazard probability increase across the time periods according to the

λj’s. For now, assume V ar(η | z) = 0—unobserved heterogeneity is discussed

further in Chapter 3.

For the example, comparing Model 4 to the more restricted constant

baseline hazard model17, the LRT statistic was −2(−211.50 − −193.84) =

35.32; P (χ2
9−4=5 > 35.32) < 0.001. Thus, there is strong evidence against

a constant baseline hazard. As an alternative, a linear logit baseline hazard

model was fit18 Such a shape is suggested when looking at the unstructured

hazard probability estimates. The unstructured does not offer any significant

improvement over the linear model: LRT = −2(−194.82 − −193.84) = 1.96;

P (χ2
9−5=4 > 1.96) = 0.74). The linear model also offers a significant improve-

ment over the constant hazard model: LRT = −2(−211.50−−194.82) = 33.36;

P (χ2
5−4=1 > 33.36) < 0.001. Table 2.5 gives the results for the model with the

linear logit of the baseline hazard. Note the estimate for the mean of η1

represents a decreasing logit baseline hazard with the estimated odds ratio

comparing the hazard odds between time j + 1 and j, controlling for treat-

17Model 5a in Appendix B.

18Model 5 in Appendix B.
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Table 2.5: Results for Data Example Model 5

Covariate Coeff. Est. SE Est.SE Est. hazard OR

I(Wife’s educ. ≤ H.S.) -0.68 0.28 -2.43 0.51

I(Income > $35K) -0.67 0.33 -2.04 0.51

% days drinking 2.37 0.42 5.72 10.70

E(η0) -1.72 0.23 -7.49 0.18

E(η1) -0.50 0.10 -4.93 0.61

LL=-194.82, parameters=5

ment, wife’s education, and concurrent drinking. The estimated hazard odds

ratio for percent-days-drinking is comparing the hazard odds between those

drinking 100% of days and those drinking 0% of days. Figures 2.7–2.9 display

the estimated hazard and survival probabilities for each covariate effect at the

sample mean value for the other covariates.

Censored and truncated data

Until this point, the models presented have been for complete and right-

censored data. This section will address how to estimate the discrete-logit
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Est. Hazard Probabilities by Wife’s Educ.
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Figure 2.7: Model 5 estimated hazard and survival probabilities by wife’s

education level.
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Est. Hazard Probabilities by Income

Months post-tx follow-up

H
a
za

rd
 p

ro
b
a
b
ili

ty

0
.0

0
.2

0
.4

0
.6

1-2 3-4 5-6 7-8 9-10 11-12

Income <= $35K
Income > $35K

Est. Survival Probabilities by Income

Months post-tx follow-up

S
u
rv

iv
a
l p

ro
b
a
b
ili

ty

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 1-2 3-4 5-6 7-8 9-10 11-12

Income <= $35K
Income > $35K

Figure 2.8: Model 5 estimated hazard and survival probabilities by household

income.
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Est. Hazard Probabilities by Drinking
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Figure 2.9: Model 5 estimated hazard and survival probabilities by % days

drinking.
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model with other forms of noninformative censoring and truncation. All the

methods discussed in the following section can be applied to data with covari-

ates as well.

Left-truncated data. Recall that left truncation occurs when subjects

are only known to the researcher if they have experienced an intermediate event

or have not experienced the event of interest at the initiation of the observation

period. For example, consider a disease survival study that recruits subjects

only 18 years of age or order and measures time to death. Any persons having

died before the age of 18 will not be included in the sampling frame. Let QLTi

be the period at which subject i is left-truncated. Assuming Γ ⊥ QLT , the

following equivalence holds:

P (Γi = γ | Γi ≥ γ, Γi ≥ QLTi
) = P (Γi = γ | Γi ≥ γ), (2.51)

for γ ≥ QLT . That is, the hazard probabilities for left-truncated data are the

same as the unconditional hazard probabilities. This hold for the inclusion of

covariates so long as (Γ|Z) ⊥ (QLT |Z). Note that obtaining the corresponding

estimates for the survival probabilities does not lead to the same equality. If

the left truncation precludes any observations for periods 1 to QLT − 1, then
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the survival probability estimates will be conditional on the truncation. That

is,

γ∏

j=QLT

(1− Ph(j)) = P (Γ > γ | Γ ≥ QLT ) =
PS(γ)

PS(QLT − 1)
. (2.52)

Right-truncated data. Right truncation occurs when only subjects ex-

periencing the event before a time period QRT are known to the researcher,

that is, Γ ≤ QRT for all sampled individuals. As with left-truncated data, is

event time is independent of the truncation time, then the hazard probabilities

for right-truncated data are the same as the unconditional hazard probabilities

but the survival probabilities are conditional on the truncation.

Double-censored data. Recall that left censoring occurs when subjects

have experienced the event in a time before the onset of the study but the exact

timing of the event is unknown to the researcher. It is rare that left censoring

occurs in sample in the absence of right censoring. What is proposed here to

deal with such censoring is an iterative algorithm, similar to the nonparametric

one suggested by Turnbull (1974) for the continuous-time setting. Take, for

a moment, a data set with one left-censored observation, v, all the rest being

complete or right-censored. And suppose that observation is left-censored

at time qLT so that Γv < qLT . This means that Γv ∈ {1, 2, . . . , qLT − 1}.

Begin by estimating the hazard probabilities for each time period based on

the data with observation v excluded. Then replace observation v in the
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original data set with qLT −1 pseudo-observations, (v1, v2, . . . , vqLT
), such that

(Avk
, δvk

) = (k, 1) for k = 1, 2, . . . , qLT . Create a weight vector such that all

complete or right-censored observations are given a weight of one. The weight

for the pseudo-observations are computed as follows:

wvk
=

P̂h(k)

Wv

where Wv =
qLT∑

j=1

P̂h(j). (2.53)

Re-estimate the discrete-logit model with the pseudo-observations and the new

weight vectors. Based on those hazard probabilities, recalculate the weights

and repeat until the hazard probabilities for each time period converge.

Interval-censored data. Interval-censored observations can be treated

in much the same way as described above for left-censored observations. Recall

that interval-censored subjects are only known to have experienced the event

during a stretch of intervals. In this case, the same iterative algorithm is ap-

plied, creating as many pseudo observations for each interval-censored subjects

as the number of time period contained in the censoring interval. Compute

the weights based on the sum of the hazard probabilities across those same

time periods.
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Discretizing continuous-time data

One of the questions that typically arises when researchers seek to utilize

some of the unique features19 of the discrete-time survival framework is how

continuous-time data should be discretized. This is too general a question

to be able to provide specific rules-of-thumb suitable to all data. However,

there are some things to consider when discretizing: 1) For the most general

model with an unstructured hazard probability structure, the model estimation

algorithm will not converge if there are any “empty” intervals, that is, intervals

with no events within; 2) If there are time-dependent covariates, it is wise to

choose interval widths within which there is little individual variability in each

covariate value; 3) The fewer events in each time period, the less precise the

estimates for time-dependent effects will be; 4) Time intervals should make

substantive sense; and 5) Sensitivity to the discretizing can be assessed by

comparing estimates from different time-period definitions to each other and

to a comparable continuous-time model.

19The gap between extensions of continuous-time models and discrete-time models is ever

narrowing, but there are still some differences, at least in available software implementations,

that may make one approach more appealing than another for a given research question.
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2.2.7 Model assessment

Previous sections have already discussed the comparison of nested models to

assess the appropriateness of various model assumptions such as proportion-

ality of the hazard odds for covariate effects and different structures for the

baseline hazard probabilities. There is very little that has been done in the

survival literature with goodness-of-fit in the discrete-time setting. Since the

single event model can be specified in the logistic regression framework, cor-

responding goodness-of-fit tests may be applied such as the Osius and Rojek

(1992) large sample normal approximation to the Pearson χ2 and the Hosmer-

Lemeshow decile of risks test (Hosmer & Lemeshow, 2000). In the LCA liter-

ature, the Pearson χ2 is the statistic of choice. However, the Osius and Rojek

version is needed when there are continuous covariates. For LCR model, the

most recent goodness-of-fit test was proposed by Huang and Bandeen-Roche

(in press). This G2 statistics is described in greater detail in Chapter 3. The

Osius and Rojek model has not been extended to LCR models and the G2

formulation does not accommodate missing data. Thus, there is not goodness-

of-fit measure currently available that is appropriate for the broader class of

models described in remaining chapters.

With regards to issues of power and sample size, one may draw from

the field of categorical data analysis. In the discrete-time survival setting,
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the necessary sample size to fit specific models or the power to detect certain

covariate effects is related to the rarity of the event relative to the sample

size. Peduzzi, Concato, Kemper, Holford, and Feinstein (1996) demonstrate

the “rule of 10”, showing that at least 10 events per parameter are necessary

to obtain reliable estimate of logistic regression coefficients and their standard

errors; to apply this rule with an event history model, one would sum up the

total number of observed events across all the time periods.
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Chapter 3

Unobserved Heterogeneity

In the last chapter, population heterogeneity in the survival process was as-

sumed to be observed, that is to say, all variability in individual survival pro-

cesses could be explained by covariates with known values for all individuals

in the sample. The discrete-logit model, estimated in a latent class regres-

sion framework, was used to model the relationship between the measured

covariates and the hazard probabilities. Unlike the traditional linear regres-

sion models or continuous indicator latent variable models, no random error

term was included. It is not likely, however, no matter how well-designed a

study may be, that all sources of population heterogeneity have been noted

and accounted for. Nor is it likely that all individuals with the same observed

covariate values have identical hazard probabilities. It may also be the case
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that there are sources of population heterogeneity that cannot be directly

observed. Thus, whether these covariates of survival could not be measured

or simply were not measured, their absence can lead to biases in both the

estimation of the hazard function as well as estimation of parameters and in-

ferences regarding the measured covariates.1 This chapter addresses the topic

of unobserved population heterogeneity in discrete-time survival processes.

3.1 Ignoring unobserved heterogeneity

It may seem peculiar to speak of “ignoring” something that is admittedly

unobserved. However, when one considers that spurious associations may be

inferred and population time-to-event patterns misrepresented when the pos-

sibility of unobserved heterogeneity is not considered in the modeling process,

it becomes clear that ignoring, or denying the possibility of interdependencies

not accounted for by the measured data, could pose serious threats to the in-

ternal and well as external validity of a study. The purpose of this section is to

highlight the potential problems when one assumes that there is no unobserved

heterogeneity.

1Heterogeneity could also be the results of covariates measured with error.
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To begin the discussion, consider the following set of simple illustrations

of the impact on various parameter estimates when unobserved heterogeneity

is ignored. Suppose the population from which a sample is drawn is made up

of two unobserved subpopulations, Group A and Group B, both with constant

hazard functions, but one with a higher constant hazard than the other. Group

A and Group B both represent 50% of the overall population. The top plot in

Figure 3.1 shows the “true” hazard functions for both groups and the estimated

hazard probabilities for a model based on a sample of 10, 000 that does not

include group membership as a covariate. Notice that the unadjusted hazard

probabilities show a decrease over time even though the hazard probabilities

within each group are constant. Recall that the hazard probability at each

time period is a conditional probability–only those individuals surviving to

the beginning of the time period are included in the risk set for that period.

In the first interval, all of Group A and Group B are at-risk; thus, the estimated

hazard probability is a 50/50 mixture of the two groups’ hazards. However,

as time goes on, more individuals in Group A than Group B experience the

event due to the higher hazard probability and thus the proportion of Group

A subjects remaining in the risk set for later time periods decreases, moving

the overall unadjusted hazard closer to the Group B hazard probability. The

bottom plot of Figure 3.1 shows a similar scenario. In this case, there are
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not two distinct groups but rather a continuous random error that is used

to characterize the unobserved heterogeneity. The hazard for the population

is assumed to be constant but individuals are allowed to vary around the

logit hazard probability according to a standard normal distribution. As can

be seen in the figure, the estimated hazard probabilities, unadjusted for the

random variation, are biased downward as in the earlier picture for the same

reason: even if initially the population shows random variation around a mean

hazard, the proportion of individuals at-risk with variation above the mean,

i.e., individuals with greater frailty or susceptibility, will drop across time.

Similar results would be obtained with other error distributions on both the

logit hazard probabilities and the probabilities themselves.

Figure 3.2 introduces an observed binary covariate, defined by mem-

bership in Group 1 or Group 2, along with an unobserved binary covariate,

defined by membership in Group A or Group B. In the top plot, member-

ship in Group 1 or 2 is independent of membership in Groups A or B. The

population distribution for Groups 1 and 2 is 50/50 as is the distribution for

Groups A and B. As before, the hazard in each group is constant. The hazard

odds ratio for the outcome in Group 1 compared to Group 2 was set at 2.25.

The odds ratio was defined to be constant across time with no interaction

with Group A/B membership. The figure shows the estimated logit hazard
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Figure 3.1: Examples of unobserved heterogeneity.
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probabilities from the “unadjusted” model that does not include, i.e., ignores,

Group A/B membership, and the “adjusted” model that includes an indicator

of A/B membership2. As can be seen, although the proportionality of the

hazard odds for Group 1 versus Group 2 holds3, the value of that odds ratio

is clearly underestimated in the unadjusted model. Thus, even though the

Group A/B indicator is not a confounder of the Group 1/2 effect, ignoring

Group A/B membership can still bias the Group 1/2 estimated effect.

In the bottom plot of Figure 3.2, the Group A/B indicator is defined as a

confounder. The population distribution for A/B is still 50/50 but membership

in Group 1/2 depends on A/B membership: P (Group 1 | A) = 0.25 and

P (Group 1 | B) = 0.75. In this case, as shown in the figure, not only is the

effect of Group 1/2 membership incorrectly estimated in the unadjusted model,

but there is also a spurious time-dependent effect of Group 1/2 membership

that would be inferred if Group A/B membership were ignored.

The article by Vaupel, Manton, and Stallard (1979) is typically cited

as the first serious treatment of unobserved heterogeneity in survival analysis.

2For the adjusted model, the points plotted for each group are at the sample average of

the Group A/B indicator.

3On the logit scale, proportionality of the odds is seen by equal vertical distances between

the group hazard probabilities over time.
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Figure 3.2: Examples of unobserved heterogeneity with an observed covariate.
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They use the term frailty to refer to individual differences in longevity; hence,

the phrase frailty models is now used to refer to survival models that in some

way attempt to account or adjust for unobserved population heterogeneity.

Heckman and Singer (1984a) proved, by application of the Cauchy-Schwartz

theorem, that ignoring unobserved covariates of survival will bias the estimated

hazards “towards negative duration dependence” (p. 77), meaning that an

increasing hazard will appear more slowly increasing while a decreasing hazard

will appear more rapidly decreasing. Consider the scenario for the top plot of

Figure 3.1 to see how this proposition plays out analytically for that example.

Let Ph(γ | g) be the hazard probability, conditional on g, an indicator of

Group A/B membership, and let Ph(γ) be the marginal hazard probability.

What is obtained during estimation ignoring Group A/B membership is the

marginal probability since, if Group A/B membership is unobserved, so too is

the conditional hazard. The relationship between the conditional probability

and the marginal probability is given by

Ph(γ) = Ph(γ | g = 1) · Pγ(g = 1) + Ph(γ | g = 0) · Pγ(g = 0), (3.1)

where Pγ(g = 1) is the proportion in Group A at time period γ. What is

evident from the figure appears in the equation above. The marginal hazard

probability will be equal to the average of the hazard probabilities across the

two groups at the first time period but will then move closer to the lesser
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hazard probability as the proportion of subjects in the higher hazard group

declines.

In summary, ignoring population heterogeneity will bias hazard prob-

abilities (sometimes referred to as duration dependence) downward and un-

derestimate time-independent covariate effects, even if the sources of said het-

erogeneity are not associated with the observed variables. If such sources are

correlated with the observed variables, there may be spurious time-dependent

effects found for the observed variables. Thus, it is clearly desirable, from an

analysis standpoint, to attempt to account for unobserved heterogeneity in

modeling time-to-events. The next section discusses approaches to incorpo-

rating the possibility of unobserved heterogeneity in model specification.

3.2 Modeling unobserved heterogeneity

Once the alarm had been sounded in the literature about the dangers of ig-

noring unobserved heterogeneity, the question became how best to incorporate

such heterogeneity into models of the survival process. In keeping with the

convention of modeling the hazard function in the continuous-time setting, the

multiplicative hazard model with unobserved heterogeneity can be expressed

as

h(t | xt, z, θt) = h0(t) · ψ(z, xt) · ϕ(θt), (3.2)
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where θt is a vector of unobserved variables. Similarly, for the discrete-time set-

ting, the discrete-logit model with unobserved heterogeneity can be expressed

as

logit Ph(j | xj, z, θj) = νj + β′jz + κ′jxj + φ(θj). (3.3)

For estimation, the marginal distribution based on the observed variables and

duration data must be written in terms of the fully conditional distribution,

including the unobserved variables, integrated over the distribution of the un-

observed variables. In order estimate the parameters in this expression, some

form for the distribution of the unobserved variables must be specified. In

the Vaupel et al. (1979) analysis, the authors assume that frailty is gamma

distributed. This is a common distributional assumption in continuous-time

models. Heckman and Singer (1984a, 1984b), in addition to proving the re-

sultant biases of ignoring unobserved heterogeneity, also showed that the pa-

rameter estimates for the duration dependence and observed covariate effects

in continuous-time models are very sensitive to the distributional assumption

about θ. Vermunt (1997) raises the possibility that Heckman and Singer’s

findings regarding this sensitivity were due to misspecification of the duration

dependence (for which they used a parametric model). However, Land, Na-

gin, and McCall (2001) showed that if the gamma distribution for the frailty

was wrong, then the variance estimates, and hence inferences surrounding the
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covariates, were incorrect, even with no assumption about the underlying du-

ration dependence, i.e., using a semiparametric hazard model. Heckman and

Singer suggested a nonparametric approach for modeling unobserved hetero-

geneity. Instead of a parametric distribution, they recommend modeling the

distribution of θ as series of “mass points” or “points of support” with the

number, locations, and weights of the support points to be empirically deter-

mined in order to avoid the pitfalls of misspecification. This is essentially what

was introduced earlier as a finite mixture model. Their suggested model can

be expressed by

h(t) =
K∑

k=1

h(t) · πk(t) · θk, (3.4)

where the number of support points is K, πk(t) is the weight of the support

point k, and θk is the location of the support point.

Trussel and Richards (1985) showed that even with the Heckman-Singer

procedure, results were still sensitive to misspecification of the duration de-

pendence, i.e., the baseline hazard function. This suggests that both the du-

ration dependence and the distribution of the unobserved covariates should

modeled nonparametrically or with as few assumptions as possible. Ham and

Rea (1987) approached this task in the discrete-time setting by estimating a

discrete-logit mixture model with unstructured baseline hazard probabilities.

More recently, Vermunt (1997) made the connection between latent class anal-
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ysis, log-linear models, discrete-time Markov processes and discrete-time event

models, using latent class log-linear models to account for unobserved popu-

lation heterogeneity. The one limitation of Vermunt’s demonstrated models is

that in the traditional log-linear framework, all covariates must be categori-

cal, although he does allude to possible extensions with continuous covariates.

Land et al. (2001) specify a semiparametric mixed Poisson regression model,

equivalent to a discrete-CLL model with nonparametric unobserved hetero-

geneity. In Vermunt’s models, the support points for the distribution of the

unobserved covariates are allowed to depend upon the observed covariates;

in Land et al., the unobserved covariates are assumed to be independent of

the observed covariates. Related to this issue, Trussel and Richards noted

that model results could be sensitive to whether or not the support points

of the distribution of the unobserved covariates were allowed to depend upon

the observed covariates. Not specified in the multiplicative formulation is the

possibility of interactions between the observed and unobserved covariates and

duration dependence of the unobserved covariates; however, such relationships

may exist in the process that generated the data and it is reasonable to assume

that there may be similar model sensitivities to ignoring such relationships.

The conventional random effects model, where there is a random “error” or

“frailty” term added to the linear expression of covariates does not allow for
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these more complex relationships—the concept of frailty as specified in a ran-

dom effects model is an unobserved time-independent shift of the baseline

hazard for each individual.

As previously noted, the approach of nonparametric specification of

the distribution of unobserved covariates using support points is essentially a

mixture model formulation. Equivalently, these support points could be refor-

mulated as categories or classes of a latent class variable, where the number

of support points is the number of latent classes, the weights are the class

proportion in the samples, and the locations are given by the class-specific

shifts in the logit baseline hazard probabilities. Allowing for more complex

heterogeneity, there could be, in the mixture setting, class-specific parameter

estimates for all the hazard probabilities as well as the covariate effects. By

specifying the discrete-logit model in the latent class regression framework,

the model readily extends to a mixture model allowing for unobserved hetero-

geneity by specifying K > 1. The observed data likelihood for a single subject

i is then given by

Li =
K∑

k=1


PC(k | zi) · [Ph(ai | C = k, xi, zi)]

δi

ai−1∏

j=1

[1− Ph(j | C = k, xij, zi)]




=
K∑

k=1


PC(k | zi)

∏

j∈{r:Ro
ri=1}

P (Ej = eji | C = k, xij, zi)


 . (3.5)
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Notice that the likelihood for a K-class mixture LCR discrete-time model can

again be put in terms of the event and observed risk indicators as defined

in Chapter 2. For the discrete-logit mixture model, the relationship between

C and the time-independent covariates is specified as a multinomial logistic

regression given by

PC(k | z) =
exp(α0k + α′kz)

∑K
m=1 exp(α0m + α′mz)

, (3.6)

where α0K = 0 and αK = 0 for the reference class, K. α0k is the log odds ratio

for being in class k versus class K given membership in one of the two. αkp is

the log odds ratio for being in class k versus class K for a one unit increase in

zp, controlling for all other covariates in the regression.

As before, the relationship between the event indicators and the covari-

ates, now including C, is specified as a logistic regression with class-specific

parameters given by

PEj
(Ej = 1 | C = k, xj, z) =

1

1 + exp(−(νjk + β′jkz + κ′jkxj))
. (3.7)

νjk is the logit of the baseline hazard probability at time period j for class k;

βjkp is the log hazard odds ratio for a one unit increase in zp at time period j

for class k, controlling for all other covariates included in the regression; and

κjkp is the log hazard odds ratio for a one unit increase in xp at time period

j for class k, controlling for all other covariates included in the regression.
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The maximum-likelihood estimation uses an EM algorithm (see Muthén &

Shedden, 1999), where data on C are considered missing.

As with other mixture model settings, such as growth mixture mod-

eling, there will always remain a question of whether these latent classes, or

points of support, represent “true” homogeneous subgroupings within the pop-

ulations or whether such a characterization is simply a reification of an ana-

lytically convenient and empirically driven specification. Trussel and Richards

(1985) showed that it was, practically speaking, impossible to empirically dis-

tinguish between hazard functions that were actually decreasing and repre-

sented the whole of the population and hazard functions that were decreasing

due to a mix of high- and low-risk unobserved subpopulations. Thus, it is left

up to substantive researchers and theorists to validate interpretations of such

mixture models and guard against reification.

The most common use of this nonparametric approach to modeling

unobserved heterogeneity in the survival literature is a specialized mixture

model with two points of support, k = 1, 2, and θ2 = 0, that conceives of these

two support points as representing two characteristically different groups of

individuals in the population. This model is has several names including the

mover-stayer model, the long-term survivor model, or the cure-rate model.

The heterogeneity of survival in the population is characterized by two groups:
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1) the long-term survivor group that has a hazard of zero for the entirety of

the observation period, and 2) the non-long-term survivors, who are at non-

zero risk for the event during the period of observation. Thus, the mixture

model is specified with K = 2 and PE(e | C = k, z, x) = 0 for the LTS

class. If C = 2 designates a long-term survivor, then the marginal probability,

PC(C = 2), represents the proportion of the sample that has zero risk for the

event. Not only is this model a more restricted version of the general model

for hidden heterogeneity presented above, since the duration dependence and

covariate effects are constrained for one class, but the value of C is observed

for a portion of the sample–all subjects who experience the event during the

period of observation are known not to belong to the long-term survivor class.

Thus, data on C are only partially missing.4 This model has been applied in

both the continuous-time setting (see Maller and Zhou, 1996, for a extensive

discussion) and the discrete-time setting (see, for example, Steele, 2003).

One caution about interpretation is necessary for models in which the

duration dependence is also unstructured: the idea of membership in a “risk-

free” class should not be extrapolated beyond the period of observation. That

is to say, there is no information from the data, as used in the model, to

infer risk status beyond the observation period—the risk for the long-term

4This is handled in Mplus by the “training data” feature.
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survivor class is constrained to zero for the observation period; however, there

is nothing in the model specification that implies a zero risk beyond the last

observation period. This is not the case with continuous-time models with

parametric specification of duration dependence—the functional form of the

risk is defined on a time scale the stretches to infinity; thus, a risk fixed at zero

for such a model implies a risk-free status for all time, rather than simply dur-

ing observation. The next section addresses the issue of identifiability, which

is to say, under what conditions it is actually possible to include some repre-

sentation of individual frailty or susceptibility in the model and still estimate

the parameters of interest.

3.3 Identifiability

As with any latent variable model, it is important to address the issue of iden-

tifiability. Heuristically, the essential question is: Is there enough information

in the data to uniquely estimate all the specified parameters of the model? For

example, in the simple linear regression model, it is well known that you can

not estimate more regression parameters than the number of observations in

the data set. More generally, the number of parameters to be estimated cannot

exceed the number of pieces of unique information in the data set, related to

and including the outcome of interest. In a conventional latent factor model,
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the pieces of information are the unique elements are the variances covariances

of the observed data. In a latent class analysis with no covariates, the pieces of

information are the frequency counts for each pattern of the binary indicators.

In a LCA with J indicators, there are 2J possible response patterns. For the

discrete-logit in the LCA framework, with no covariates, there are J unique

pieces of information: There are J +1 frequency counts for response patterns,

corresponding to (1) the number of individuals experiencing the event in time

period 1; (2) the number of individuals experiencing the event in time period

2; . . . (J) the number of individuals experiencing the event in time period J ;

and (J+1) the number of individuals not experiencing the event in time peri-

ods 1, . . . , J ; and then the restraint that the frequency counts across the J +1

patterns must sum to the total sample size n yields J + 1 − 1 = J degrees of

freedom. This enumeration is useful but not complete in assessing the identifi-

ability of a model. For example, Goodman (1974) showed that an unrestricted

three-class model (14 parameters) with four binary indicators (15 degrees of

freedom) is not identified. Thus, it is clear that having more degrees of free-

dom than parameters to be estimated is necessary but not sufficient for model

identification. In the one-class unstructured discrete-logit with no observed

covariates, there are J parameters and J degrees of freedom. This means that

without additional information in the form of covariates or constraints placed
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on the hazard probabilities, the discrete-logit mixture model is not identified.

This leads to the questions of what is necessary for model identification when

incorporating unobserved heterogeneity. For discrete-logit models with unob-

served heterogeneity specified as latent classes, it necessary to consider condi-

tions of identifiability for latent class regression models as well as conditions

of identifiability for hazard models with unobserved heterogeneity.

To begin, take the most general definition of identifiability for mixture

distributions as given by McLachlan and Peel (2000, p. 27): Let

f(yi; Ψ) =
K∑

k=1

πkfk(yi; θk) (3.8)

and

f(yi; Ψ
∗) =

K∗∑

k=1

π∗kfk(yi; θ
∗
k) (3.9)

be any two members of a family of mixture densities. This class of finite

mixtures is said to be identifiable for Ψ ∈ Ω if

f(yi; Ψ) ≡ f(yi; Ψ
∗) (3.10)

if and only if K = K∗ and the component labels can be permuted so that

πk = π∗k and fk(yi; θk) = fk(yi; θ
∗
k) (k = 1, . . . , K). (3.11)

As noted by Bandeen-Roche, Miglioretti, Zeger, and Rathouz (1997)

as well as Huang and Bandeen-Roche (in press), identifiability for latent class
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and latent regression models has traditionally focused on local identifiabil-

ity. The definition of local identifiability resembles the definition given above

with the less global requirement that the conditions hold true for all Ψ ∈ τ

where τ ⊂ Ω. McHugh (1956), Goodman (1974), and Formann (1992) all dis-

cuss that identifiability of the latent class model reduces to ensuring that the

information matrix is positive definite (see Vermunt, 1997, pp. 316–318). Al-

though this has been shown to hold true for LCR models as well, the Jacobian

can have intractably large row-dimensions for verifying full column rank when

continuous covariates are included. Huang and Bandeen-Roche developed a

method for checking identifiability of the LCR model with covariates effects

on both the latent class indicators as well as on the latent class probabilities.

To summarize their results heuristically, the following conditions must hold:

1. The number of unique model parameters cannot exceed the number of

independent pieces of observed information;

2. The covariate effects on the indicator probabilities are finite;

3. The covariate effects the latent class distribution are finite;

4. All covariate values are finite;

5. The probability distributions for the possible response patterns, condi-

tional on each covariate pattern, are linearly independent; and
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6. The design matrix of all covariates influencing the indicators directly and

the design matrix of all covariates influencing the latent class variable

distribution both have full column rank.

In the model specified by these authors, the covariate effects on the latent class

indicators are constrained to be equal across the latent classes.

Although these conditions could be applied to the special case of LCR

with a limited number of response patterns that corresponds to the discrete

logistic model specification, it is useful to also examine the literature on iden-

tifiability of hazard models with unobserved heterogeneity. Elbers and Ridder

(1982) proved three conditions which, if fulfilled, ensured the identifiability of

the hazard model. Heckman and Singer (1984a) proved another condition that

could be used in lieu of one the original conditions set by Elbers and Ridder.

Van de Pol and Langeheine (1990) discussed identification for discrete-time

mixed Markov models. Vermunt (1997) summarizes across all of these re-

sults that the parameters of a single event discrete-time hazard model with
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unobserved heterogeneity are assured to be identifiable if at least one of the

following three conditions hold:5

1. The model is a proportional hazard model;

2. The duration dependence is structured; or

3. The mixing distribution is parameterized. (p.201)

It is possible to combine these conditions, taking into account a wider

range of model specification, including the potential for class-varying effects

of covariates on the indicators and time-dependent effects of the unobserved

heterogeneity, i.e., the “location” of the points of support are time-dependent.

For example, assuming the conditions given by Huang and Bandeen-Roche are

also met, the following conditions are necessary and sufficient for identification

with K = 2:

• Without any observed covariates, the duration dependence must be struc-

tured. and some restrictions on the latent class effects may be required.

5Vermunt actually gives four conditions, the last one being that identifiability is ensured

if the model is a multivariate hazard model, e.g., recurrent everts, clusters observations,

etc. This chapter only addresses unobserved heterogeneity for single event models with

no observation clustering. For more on random effects models in clustered discrete-time

settings, see for example, Hedeker, Siddiqui, and Hu (in press) or Steele (2003).
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• With at least one observed covariate, z, the following models, with struc-

tured duration dependence for the hazard probabilities and K = 2 latent

classes representing the nonparametric distribution of unobserved covari-

ates, are identified:

1. The model with the latent class distribution dependent upon z, and

no effects from z to the event indicators. The model specification

is given by

PC(k = 1 | z) = 1
1+exp(−(α0+α′z))

and

PEj
(Ej = 1 | C = k, z) = 1

1+exp(−(νkj))
.

2. The model with the latent class distribution independent of z and

the effects of z on the event indicators allowed to be time-dependent

but constrained equal across the latent classes, given by

PC(k = 1 | z) = 1
exp(−α0)

and

PEj
(Ej = 1 | C = k, z) = 1

1+exp(−(νkj+β′jz))
.

3. The model with the latent class distribution dependent upon z and

the effects of z on the event indicators constrained to be time-

independent and equal across the latent classes, given by

PC(k = 1 | z) = 1
exp(−(α0+α′z))

and

PEj
(Ej = 1 | C = k, z) = 1

1+exp(−(νkj+β′z))
.
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4. The model with the latent class distribution dependent upon z

and the effects of z on the event indicators allowed to be time-

dependent and class-dependent while the baseline hazard probabil-

ities are freely estimated across the time period but constrained to

have proportional odds across the latent classes, given by

PC(k = 1 | z) = 1
exp(−(α0+α′z))

and

PEj
(Ej = 1 | C = k, z) = 1

1+exp(−(νj+δk+β′
kj

z))
.

Model specification is not limited to the above models. The above models

are identified but many other identifiable specifications are possible with the

addition of other observed covariates. Identification can also be complicated

by the addition of time-dependent covariates. Furthermore, it is important

to note that although the conditions may “ensure” theoretic identification,

the model may not be empirically identifiable. The easiest way to think of

this is that information matrix may be so empirically near non-positive defi-
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nite that whatever software is being used for estimation rejects the model as

unidentified.6

All of these conditions presuppose as given number of classes, K. This

leads to the ubiquitous issue in all mixture modeling settings which is deter-

mining the number of classes to specify. The next session address this problem

of class enumeration.

3.4 Class enumeration

Analogous to choosing the number of factors in an traditional factor analysis,

selecting the number of classes in a mixture analysis is also analytically chal-

lenging. Without prior knowledge or substantive theory to inform the class

enumeration, it is left up to the analyst to choose the “appropriate” number

of classes. The likelihood ratio test that is normally used to compare nested

6Related to identification is nonconvergence in estimation which may or may not signal

identification problems. Mixture models are notorious for their sensitivity to starting values

and estimation algorithms arriving at local rather than global optima or not converging at

all because of poor starting values. Therefore, it is recommended that a series of alternate

starting values are tried when fitting any given model. The forthcoming Mplus, Version 3,

will have the feature of automatic random perturbations of the starting values, with the

number of random starts specified by the user.
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models cannot be applied to compare K = k to a K < k model because

regularity conditions are not met, i.e., the solution is on the boundary of the

parameter space. This is easier to understand by considering a model with the

null hypothesis of K = k and an alternative of K = k +1. There are two ways

to restrict the alternative model to obtain the null: 1) set one of the class prob-

abilities to zero (a value on the boundary of the permissible parameter space

for the class probability), or 2) constrain all the class-specific parameters in

two of the classes to be equal across the two classes (resulting in a non-positive

definite information matrix). A frequent practice for LCA modeling is sim-

ply to compare each estimated model to a saturated model (Goodman, 1974;

McCutcheon, 1987; Formann, 1992) using the Pearson χ2 and choose K to be

the lowest number that yields as acceptable fit (Bandeen-Roche et al., 1997).

However, since it is the likely case for discrete-logit models that covariates are

included to even allow identifiability of a K > 1 model, this technique cannot

be used—the χ2 distribution is not asymptotically valid for the Pearson χ2

statistic usually applied for LCA goodness-of-fit for LCR models that include

any continuous covariates. This is as true for regular logistic regressions with

continuous covariates. To understand this better, consider that the Pearson χ2

statistic is based on observed versus expected frequencies in each of the “cells”

delimited by the categories of the covariates and the outcome variables. The
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distribution of the statistic is based on “n-asymptotics”, that is, as the sample

size becomes infinitely large, the expected counts within each cell also become

large. This is why the Pearson χ2 does not perform well, i.e., the asympototics

do not hold, when a small sample size results in low expected cell counts. How-

ever, with a continuous covariate, there is essentially a covariate “category” for

each individual in sample and as the sample become infinitely large, so does

the number of cells, meaning that the expected cell counts never approach

sizes for which the asymptotics will hold. Bandeen-Roche et al. (1997) pro-

pose a method using pseudo-classes to assess the adequacy of the assumptions

of the LCR model, thus allowing a qualitative comparison across models with

different numbers of classes. However, their method does not allow for direct

covariate effects to the latent class indicators. Huang and Bandeen-Roche

(in press) extend this technique to allow for such effects. In addition, Huang

and Bandeen-Roche offer a new test statistic for LCR goodness-of-fit with di-

rect and indirect covariate effects. They term the goodness-of-fit statistic G2

and prove that it converges to a χ2 distribution. In the continuous mixture

modeling literature, there have been some advances in latent class enumera-

tion, including the empirical likelihood ratio test, present by Lo, Mendell, and

Rubin (2001) based on early work by Vuong (1989). Preliminary simulation

studies show this test to have promise for the continuous multivariate setting
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as well as the univariate setting for which it was developed. However, this test

has not been adequately explored for mixtures of categorical outcomes and

will not be presented here. Entropy-based information heuristics are popular

in the economic literature for mixture models but these are not clearly appli-

cable nor have they been well-tested in the LCR setting. Because of the lack

of consensus about model-building for latent class regression models, many

authors simply examine the change in the likelihood as they increment the

number of classes (for example, Ham and Rea, 1987). Land et al. (2001) use

the change in the log likelihood as well as the Akaike Information Criterion

(AIC) and the BIC to judge the “optimal” number of classes. Vermunt (1997)

only cites Laird (1978) in offering a strategy for fitting latent class models.

Some authors simply specify the number of classes a priori, such as using a

long-term survivor model (for example, Steele, 2003; Farewell, 1982). For the

purposes of this dissertation, only the AIC, BIC, and the G2 will be presented.

The next paragraph describes their calculation.

The Akaike Information Criterion (AIC), developed by Akaike (1973),

is a likelihood-based criterion that essentially penalizes for the number of pa-

rameters, trying to gage the automatic improvement in the likelihood from the

added parameters that come from increasing the number of classes against the

loss in parsimony with the estimation of additional parameters. The AIC is
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defined by

AIC = −2LL + 2r, (3.12)

where LL is the log likelihood value at the conclusion of the estimation, r is

the number of free model parameters. The Bayesian Information Criterion

(BIC), developed by Schwartz (1978), includes a penalty that involves both

the number of parameters and the sample size. The BIC is “better” than the

AIC in that it is statistically consistent by including n. The BIC is defined by

BIC = −2LL + r log n, (3.13)

where n is the sample size. For both the AIC and the BIC, the smaller the

number, the better the model. The calculation of the G2 statistic is a little

more involved. In a sample with J periods, there are J + 1 possible response

patterns corresponding to

1) Event occurs in period 1,

2) Event occurs in period 2,

...

J) Event occurs in period J,

J + 1) Event does not occur during any of the J time periods.

The formulations of the statistic does not allow for missingness on the out-

come which, in this setting, means that the only censoring time permit-

ted is at the conclusion of the observation period. Define a random vector
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Yi = (Yi1, Yi2, . . . , YiJ)′, where Yij = I[eij = 1]. Let πij = P (Yij = 1). The

estimated marginal probabilities of each response pattern can be calculated as

follows:

π̂ij =
K∑

k=1







j−1∏

m=1

(1− P̂h(m | k, xmi, z))


 · P̂h(j | k, xji, z) · P̂C(k | z)


 . (3.14)

A vector of differences between the observed and estimate values on the Yij’s

is given by

Ŝi = Yi − π̂i, (3.15)

where π̂i = (π̂i1, . . . , π̂ij)
′. The estimated variance matrix for Yi is given by

V̂i =




π̂i1(1− π̂i1) −π̂i1π̂i2 · · · −π̂i1π̂iJ

−π̂i2π̂i1 π̂i2(1− π̂i2) · · · −π̂i2π̂iJ

...
...

...

−π̂iJ π̂i1 −π̂iJ π̂i2 · · · π̂iJ(1− π̂iJ)




(3.16)

The G2 statistic of Huang and Bandeen-Roche is then defined as

G2 = Ŝ ′N Σ̂−1
N ŜN ∼ χ2

J , (3.17)

where

ŜN =
1√
n

n∑

i=1

Ŝi, (3.18)

and

Σ̂N =
1

n

n∑

i=1

V̂i. (3.19)
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Huang and Bandeen-Roche prove that Ŝ ′NΣ−1ŜN
L→ χ2

J under the conditions

that the parameters and covariates are all finite, the pattern probabilities are

all nonzero, ΣN is positive definite, and that π̂i converges in probability to πi.

The use of G2 follows that of the conventional goodness-of-fit test for the LCA

in that the model selected is the one with the smallest number of classes that

has a non-significant p-value.

The remainder of this section will examine various strategies for class

enumeration in the absence of outside supporting knowledge. Assume that

there is at least one measured covariate. The first matter to address is the

model specification within and across classes. What sort of model should be

fit when incrementing class number and comparing across models? Should one

use the most general model, allowing direct and indirect effects of covariates

and as much flexibility in the direct covariate effects across time periods and

latent classes as possible while still maintaining identifiability? Should the

baseline hazard odds across classes be constrained to be proportional? How

sensitive are the information heuristics to these possible variations in model

specification? This discussion begins with the matter of allowing covariates to

influence the latent class distribution since this is an appealing specification

in regards to achieving model identification.

123



Vermunt (1997) as well as Trussell and Richards (1985) warn of the

sensitivity of results to whether or not covariates are allowed to influence the

latent class distribution. To understand this sensitivity, consider an simple

example with five time periods and two covariates, x1 and x2. A sample of

n = 10, 000 was generated according the following Population A:

PEj
=

1

1 + exp(−(−2 + x1 + 2x2))
, ∀j = 1, . . . , 5, (3.20)

where x1 ∼ N(0, 1) and x2 ∼ Bernoulli(p = 0.5). For this example, only

x1 was considered observed; thus, x2 is unobserved and it’s distribution can

be appropriately represented by a K = 2 latent class variable. Four different

2-class models were fit to the simulated sample data. Table 3.1 displays the

specifications of the four models. Figure 3.3 displays the path diagrams for

the four models.

All four model specifications are identified. Note that Model 0 does

not include any effect of the observed covariate; Model 1 allows x1 to have

an effect on the distribution of the latent classes but not the event indicators

(indirect); Model 2 allows x1 to influence the event indicators (direct) but

constrains the effects to be time-independent and class-independent; Model 3

allows both direct and indirect effects but constrains the direct effects to be

both time-independent and class-independent. Note also that the hazard is

constrained to be constant across time periods within each class for all four
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Figure 3.3: Path diagrams for class enumeration Models 0–3.
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Table 3.1: Class Enumeration Models 0–3 Specification

Regression PEj
(Ej = 1 | C = k, x1) PC(k | x1)

Model 0 1
1+exp(−(νk))

exp(α0k)∑K

m=1
exp(α0m)

Model 1 1
1+exp(−(νk+β′x1))

exp(α0k)∑K

m=1
exp(α0m)

Model 2 1
1+exp(−(νk))

exp(α0k+α′1kx1)∑K

m=1
exp(α0m+α1mx1)

Model 3 1
1+exp(−(νk+β′x1))

exp(α0k+α′1kx1)∑K

m=1
exp(α0m+α1mx1)

model specifications. For Population A, Model 1 is the correctly specified

model. The results of the four models fit to the simulated sample from popu-

lation A are given in Table 3.3. For comparisons sake, consider the same four

models fit to data drawn from Populations B and C given in Table 3.2. For

Population B, Model 2 is the correctly specified model. The results of the four

estimated models are given in Table 3.4. For Population C, Model 3 is the
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Table 3.2: Class Enumeration Populations A–C Definition

Regression PEj
(Ej = 1 | x1, x2) P (X2 = 1 | x1)

Popn A 1
1+exp(−(−2+x1+2x2))

0.5

Popn B 1
1+exp(−(−2+2x2))

1
1+exp(−x1)

Popn C 1
1+exp(−(−2+x1+2x2))

1
1+exp(−x1)

x1 ∼ N(0, 1), j = 1, . . . , 5

correctly specified model. The results of the four estimated models are given

in Table 3.5.

Table 3.3 demonstrates that in the Population A example, when the ob-

served covariate, x1, has a direct effect on the event indicators and no relation

to the unobserved variable, x2, but the model fit to the data is misspecified in

that is does not allow a direct effect from x1 to the covariates, as in Models

0 and 2, the estimated effect of the unobserved covariate, given in the table

by ν2 − ν1, is overestimated. Also, in Model 2 where only an indirect effect

is allowed through a regression of x2 on x1, one would incorrectly infer that

x2 and x1 were strongly associated. Using a likelihood ratio test to compare
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Table 3.3: Class Enumeration Models 0–3 Results for Population A

Results True Value Model 0 Model 1 Model 2 Model 3

LL – -15,761.38 -14,635.71 -14,741.00 -14,634.34

# parameters – 3 4 4 5

ν1 0.00 0.43 -0.09 0.26 -0.10

ν2 -2.00 -1.92 -2.08 -2.18 -2.13

ν2 − ν1 -2.00 -2.35 -1.99 -2.44 -2.03

β 1.00 @ 0 1.00∗ @ 0 1.11∗

α01 0.00 -0.40 0.12 -0.17 0.17

α11 0.00 @ 0 @ 0 1.83∗ -0.21

PC(k = 1) 0.50 0.40 0.53 0.47 0.54

∗p < 0.05;
@ = “fixed at”
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Table 3.4: Class Enumeration Models 0–3 Results for Population B

Results True Value Model 0 Model 1 Model 2 Model 3

LL – -16,048.54 -15,767.68 -15,763.15 -15,763.08

# parameters – 3 4 4 5

ν1 0.00 0.08 0.17 0.09 0.08

ν2 -2.00 -1.96 -1.80 -1.94 -1.93

ν2 − ν1 -2.00 -2.04 -1.97 -2.03 -2.01

β 0.00 @ 0 0.46∗ @ 0 0.02

α01 0.00 -0.06 -0.27 -0.09 -0.09

α11 1.00 @ 0 @ 0 0.90∗ 0.87∗

PC(k = 1) 0.50 0.48 0.43 0.48 0.48

∗p < 0.05;
@ = “fixed at”
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Table 3.5: Class Enumeration Models 0–3 Results for Population C

Results True Value Model 0 Model 1 Model 2 Model 3

LL – -15,034.46 -12,937.67 -13,199.94 -12,926.43

# parameters – 3 4 4 5

ν1 0.00 0.51 -0.25 0.37 -0.13

ν2 -2.00 -2.31 -2.30 -2.57 -2.18

ν2 − ν1 -2.00 -2.82 -2.05 -2.94 -2.05

β 1.00 @ 0 1.52∗ @ 0 1.03∗

α01 0.00 -0.14 0.46∗ 0.19∗ 0.25

α11 1.00 @ 0 @ 0 2.47∗ 0.98∗

PC(k = 1) 0.50 0.46 0.61 0.52 0.55

∗p < 0.05;
@ = “fixed at”
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Table 3.6: Class Enumeration Measures for Population A

Results # of classes Model 0 Model 1 Model 2 Model 3

LL 1-class -16,163.78 -14,837.77 -16,163.78 -14,837.77

2-class -15,761.38 -14,635.71 -14,741.00 -14,634.34

3-class -15,761.07 NID -14,650.23 -14,632.81

# parameters 1-class 1 2 1 2

2-class 3 4 4 5

3-class 5 6 7 8

AIC 1-class 32,329.55 29,679.54 32,329.55 29,679.54

2-class 31,528.75 29,279.43 29,490.00 29,278.68

3-class 31,532.15 – 29,314.46 29,281.63

BIC 1-class 32,336.76 29,693.96 32,336.76 29,693.96

2-class 31,550.38 29,308.27 29,518.84 29,314.73

3-class 31,568.20 – 29,364.93 29,339.31

G2
5, (p) 1-class 787.07 (<0.01) 283.54 (<0.01) 787.07 (<0.01) 283.54 (<0.01)

2-class 0.60 (0.99) 0.61 (0.98) 8.01 (0.16) 0.22 (1.00)

3-class 0.00 (1.00) – 0.54 (0.99) 0.43 (0.99)
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Table 3.7: Class Enumeration Measures for Population B

Results # of classes Model 0 Model 1 Model 2 Model 3

LL 1-class -16,330.64 -15,992.14 -16,330.64 -15,992.14

2-class -16,048.54 -15,767.68 -15,763.15 -15,763.08

3-class NID NID -15,761.00 -15,760.64

# parameters 1-class 1 2 1 2

2-class 3 4 4 5

3-class 5 6 7 8

AIC 1-class 32,663.28 31,988.27 32,663.28 31,988.27

2-class 32,103.08 31,543.35 31,534.30 31,536.16

3-class – – 31,536.00 31,537.28

BIC 1-class 32,670.49 32,002.69 32,670.49 32,002.69

2-class 32,124.71 31,572.19 31,563.14 31,572.21

3-class – – 31,586.48 31,594.96

G2
5, (p) 1-class 544.83 (<0.01) 413.93 (<0.01) 544.83 (<0.01) 413.93 (<0.01)

2-class 1.26 (0.94) 4.52 (0.48) 1.37 (0.93) 2.44 (0.79)

3-class – – 2.37 (0.80) 2.55 (0.77)
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Table 3.8: Class Enumeration Measures for Population C

Results # of classes Model 0 Model 1 Model 2 Model 3

LL 1-class -15,779.00 -13,142.43 -15,779.00 -13,142.43

2-class -15,034.46 -12,937.67 -13,199.94 -12,926.43

3-class -15,031.83 -12,928.13 -12,946.54 -12,925.13

# parameters 1-class 1 2 1 2

2-class 3 4 4 5

3-class 5 6 7 8

AIC 1-class 31,560.00 26,288.86 31,560.00 26,288.86

2-class 30,074.93 25,883.35 26,407.88 25,862.85

3-class 30,073.66 25,868.26 25,907.09 25,866.27

BIC 1-class 31,567.21 26,303.28 31,567.21 26,303.28

2-class 30,096.56 25,912.19 26,436.72 25,898.90

3-class 30,109.72 25,911.52 25,957.56 25,923.95

G2
5, (p) 1-class 1438.60 (<0.01) 274.74 (<0.01) 1438.60 (<0.01) 274.74 (<0.01)

2-class 5.36 (0.37) 10.25 (0.07) 16.47 (0.01) 1.82 (0.87)

3-class 0.09 (1.00) 8.16 (0.15) 5.40 (0.37) 0.72 (0.98)
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Model 2 to another model (not shown) relaxing the constant baseline hazard

within class constraint, one would incorrectly infer strong evidence against the

null model with a constant hazard. Thus, misspecification in this case, by not

allowing a direct effect when one is present, results in biased estimates of the

effect of the unobserved covariate, the relationship between the observed and

unobserved covariate, and the baseline hazard probabilities.

Table 3.4 demonstrates that in the Population B example, when the ob-

served covariate, x1, has only an indirect effect on the event indicators through

the unobserved covariate, x2, but the model fit to the data is misspecified in

that it only allows a direct effect from x1 to the event indicators, the mean of

the unobserved covariate, given by PC(k = 1) is slightly underestimated, but

the effect of x2 on the event indicators is unaffected. By not allowing an indi-

rect effect from x1 to x2, one would incorrectly infer that x1 has a significant

association with the event indicators within each class.

Table 3.5 demonstrates that in the Population C example, when the

observed covariate, x1, has both direct and indirect effects on the event in-

dicators, that allowing only an indirect effect overestimates the relationship

between x1 and x2 as well as the effect of x2 on the hazard probabilities, while

allowing only a direct effect overestimates the effect of x1 on the hazard prob-

abilities and overestimates the mean of x2. Also, only allowing an indirect
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effect leads to an incorrect inference, rejecting the constant baseline hazard

model.

In all three population examples, when comparing Models 1 and 2 to

Model 3, which allows both direct and indirect effects for x1, using the like-

lihood ratio χ2 test, the correct specification can be selected from among the

three models, since both Models 1 and 2 are nested within Model 3. This

suggests that for a given number of classes, in this example, K = 2, the least

restrictive model, allowing both direct and indirect observed covariate effects,

should be fit and then tested against more restricted models. If there are prob-

lems in terms of available data and identification, it would seem prudent to

specify first a model with only direct effects for the observed covariates rather

than one with only indirect effects given the resultant biases evidenced in the

above examples. That is to say, ignoring indirect effects may be the “lesser of

two evils” in regards to model misspecification in this survival context.

Tables 3.6–3.8 display the computed log likelihood, AIC, BIC, and G2

values from 1-, 2-, and 3-class model runs under each of the four specifications

for Populations A, B, and C.7 The bolded value represent the k-class model

under each of the four specifications that was chosen by each selection criterion.

7“NID” in the tables refers to models that are not identified. This is a good example of

a case of empirical non-identification that was previously mentioned.
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For Population A, both the AIC and BIC incorrectly select the 3-class model

under Model 2 specification. Recall the Model 2 only estimates an indirect

effect for x1 while the sample has been drawn from a population with only

a direct effect from x1 directly to the covariates. Although the G2 is non-

significant for the 2-class Model 2, the p-value is much smaller than it is for

the other three models. One may suspect that with a smaller sample size,

the G2 would also select the 3-class model under this misspecification. For

Population B, with only an indirect covariate effect, all criteria correctly select

the 2-class model for all specifications. For Population C, with both direct and

indirect covariate effects, the AIC incorrectly selects the 3-class models for all

the misspecified models 1–3, the BIC selects the 3-class models for misspecified

models 1 and 2, and the G2 selects the incorrect 3-class model for Model 2 and

nearly so for Model 1. As with the general discussion of model specification,

the greatest trouble comes when there are direct effects of covariates present

and a model is specified without those paths, leading to overestimation of the

number of classes.

An issue not directly dealt with in this chapter, related to both identi-

fication as well as class enumeration is that there may be other sources from

which information regarding the nature of the mixture distributions may be

drawn. Although beyond the scope of this dissertation, the latent variable
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framework does allow extensions that could include concurrent traditional

LCA or LCR models, concurrent or preceding growth mixture models, etc.

that could inform or drive the estimation of the survival mixture components.

(See, for example, Muthén and Masyn, 2001; or Larsen, in press.)

3.4.1 Long-term survivors

One special case of the survival mixture models perviously introduced is the

long-term survivor (LTS) model, also known as the cure rate model or the

mover/stayer model. Since it can be difficult to confidently enumerate the la-

tent classes empirically, there is much appeal in the long-term survivor model

that specifies not only the number of classes, K = 2, but the hazard proba-

bilities within one of the classes, all set to zero. There is also appeal in that

such a specification simplifies the model to be estimated. And it can be quite

defensible in many substantive contexts to imagine a class of individuals who

are never actually at-risk for the event in question. However, given the sensi-

tivity of the survival model estimates to the specification of the distribution of

the unobserved heterogeneity as well as the duration dependence of the hazard

probabilities, this particular model should be reexamined.

Consider a group of individuals in a sample who do not experience the

event of interest during the observation period. Although these subjects may
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have all “survived” the event, some may still come to experience the event

beyond the observation period. Others, however, may never experience the

event at all. In the formulation of the LTS model, there are two latent classes;

the LTS-class is defined at having a hazard probability of zero for all times

with all direct covariate effects fixed at zero, equivalent to never being at-risk

for the event. Of course, there are those who are at-risk but do not experience

the event by chance–these are not long-term survivors. This creates a special

case of mixture modeling where membership in the latent classes is partially

observed: none of the subjects experiencing the event during the observation

period are in the LTS-class; this is known. The class membership of those

subjects not experiencing the event while under observation is unknown, i.e.,

latent. Conceptually, one could ask whether there is a reasonable distinction

to be made between a subpopulation of individuals at very low risk versus a

subpopulation of people not at-risk, especially in regards to latent subpopula-

tions in the context of social research. Many behavioral mechanisms studied in

social research are considered probabilistic not deterministic. Is there a group

of “reformed” alcoholics that are never at-risk for taking a drink or is their

risk simply very low? Is there a group of former inmates that are never at-risk

for rearrest or does their risk just become negligible over time? Also, there

an important distinction to be made between never at-risk and not at-risk
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during the time of observation. Since the more general discrete-time models

do not explicitly model the duration dependence of the hazard in terms of

time, there is nothing in the model specification setting the hazard probabil-

ities in the LTS-class to zero that allow the interpretation of membership in

the LTS-class to mean never at-risk; the LTS-class in a discrete-time survival

model can only be interpreted as a subpopulation not at-risk during the time

periods defined by the study.8

In essence, there are three concerns that should be addressed when

considering application of the LTS model: 1) Specifying a two-class mixture

model that is not empirically supported by the data; 2) Misspecifying a re-

stricted LTS model when the sample has been drawn from a more general

two-class mixture; 3) Interpreting the long-term survivor class a class of in-

definite zero risk. The final concern is not related to model specification as

it is a caution in model interpretation and has already been discussed in the

previous paragraph. For the first concern, consider that the LTS-model is

often selected a priori and procedures for class enumeration are not typically

followed. That is, the restricted two-class structure is taken as given. It would

be advisable to follow class enumeration procedures to explore the empirical

support in the data for a mixture model and then test the LTS model against

8This is not the case for all continuous-time models.
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Table 3.9: Long-term Survivor Populations A–E Definition

Regression PEj
(Ej = 1 | x1, C = 1) PEj

(Ej = 1 | x1, C = 2) P (C = 1 | x1)

Popn A 0 1
1+exp(−(−1+x1))

0.5

Popn B 0 1
1+exp(−(−1+x1))

1
1+exp(−x1)

Popn C 1
1+exp(4)

1
1+exp(−(−1+x1))

0.5

Popn D 1
1+exp(−(−4+x1))

1
1+exp(−(−1+x1))

0.5

Popn E 1
1+exp(−(−4+x1))

1
1+exp(−(−1+x1))

1
1+exp(−x1)

x1 ∼ N(0, 1), j = 1, . . . , 5

a less restricted two class model. This leads to the second concern regarding

imposing an LTS-class restriction on a model for a sample drawn from a more

general two-class mixture (or in the presence of nonspecific heterogeneity). To

understand this concern, consider an simple example with five time periods

and one covariates, x1. A sample of n = 10, 000 was generated according the

2-class populations given in Table 3.9.

Note that Populations A and B both defined to have a fraction of long-

term survivors. For A, the observed covariates does not influence the likelihood
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Table 3.10: Long-term Survivor Models 1–4 Specification

Regression PEj
(Ej = 1 | C = 1, x1) PEj

(Ej = 1 | C = 2, x1) PC(C = 1 | x1)

Model 1 0 1
1+exp(−(ν2+β2x1))

1
1+exp(−α0)

Model 2 0 1
1+exp(−(ν2+β2x1))

1
1+exp(−α0)

Model 3 1
1+exp(−(ν1+β1x1))

1
1+exp(−(ν2+β2x1))

1
1+exp(−α0)

Model 4 1
1+exp(−(ν1+β1x1))

1
1+exp(−(ν2+β2x1))

1
1+exp(−(α0+α1x1))

of being in the LTS-class while for Population B, it does. Populations C,D, and

E are all a mixture of two non-zero hazard classes. For C, x1 only influences the

hazard in the higher risk class. For D, x1 influences the hazard probabilities

in both classes. Population E is like D but with an influence of x1 on the class

probabilities as well. Four models were fit to each of these five samples drawn

from the five specified populations. The models are given in Table 3.10. The

results are given in Tables 3.11–3.15.

In Tables 3.11 and 3.12, where the data are drawn from Populations

A and B, respectively, that have a long-term survivor class, Models 3 and 4,

allowing the parameters in both classes to be freely estimated offer no sta-
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Table 3.11: Long-term Survivor Models 1–4 Results for Population A

Parameter True Value Model 1 Model 2 Model 3 Model 4

LL – -11,448.48 -11,448.37 -11,448.19 11,448.07

# parameters – 3 4 5 6

ν1 −∞ @ -15† @ -15 -15.10 -15.15

ν2 -1.00 -1.01 -1.03 -1.01 -1.03

β1 0.00 @ 0 @ 0 -3.30∗ -3.35∗

β2 1.00 1.00∗ 1.01∗ 1.00∗ 1.01∗

α01 0.00 -0.03 -0.04 -0.03 -0.05

α11 0.00 @ 0 0.02 @ 0 0.02

PC(k = 1) 0.50 0.49 0.49 0.49 0.49

∗p < 0.05;
@ = “fixed at”

†Since the indicator probability is specified in terms of ν, the probability itself is not fixed
to zero; rather, ν must be fixed at a large negative number, making the probability very
close to or essentially zero. A ν of −15 corresponds to a probability of 3.06E − 7.
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Table 3.12: Long-term Survivor Models 1–4 Results for Population B

Parameter True Value Model 1 Model 2 Model 3 Model 4

LL – -11,089.90 -10,801.12 -10,952.73 10,799.65

# parameters – 3 4 5 6

ν1 −∞ @ -15 @ -15 -3.21 -9.78

ν2 -1.00 -0.69 -1.05 -0.33 -1.05

β1 0.00 @ 0 @ 0 -0.36∗ 1.55∗

β2 1.00 0.53∗ 1.03∗ 1.26∗ 1.05∗

α01 0.00 0.51∗ -0.06 1.34∗ -0.06

α11 1.00 @ 0 1.08∗ @ 0 1.11∗

PC(k = 1) 0.50 0.63 0.49 0.79 0.49

∗p < 0.05;
@ = “fixed at”

143



Table 3.13: Long-term Survivor Models 1–4 Results for Population C

Parameter True Value Model 1 Model 2 Model 3 Model 4

LL – -12,235.16 -12,233.66 -12,220.63 12,220.63

# parameters – 3 4 5 6

ν1 -4.00 @ -15 @ -15 -3.51 -3.50

ν2 -1.00 -1.11 -1.16 -0.99 -0.99

β1 0.00 @ 0 @ 0 0.09 0.09

β2 1.00 1.16∗ 0.94∗ 1.00∗ 1.16∗

α01 0.00 -0.26 -0.34 0.18 -0.01

α11 0.00 @ 0 0.09 @ 0 0.18

PC(k = 1) 0.50 0.44 0.42 0.54 0.55

∗p < 0.05;
@ = “fixed at”
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Table 3.14: Long-term Survivor Models 1–4 Results for Population D

Parameter True Value Model 1 Model 2 Model 3 Model 4

LL – -12,560.94 -12,532.76 -12,504.47 12,504.41

# parameters – 3 4 5 6

ν1 -4.00 @ -15 @ -15 -4.06 -4.11

ν2 -1.00 -1.40 -1.09 -1.03 -1.05

β1 1.00 @ 0 @ 0 0.98∗ 1.02∗

β2 1.00 0.90∗ 0.69∗ 1.06∗ 1.07∗

α01 0.00 -0.74∗ -0.27∗ -0.08 -0.11

α11 0.00 @ 0 -0.42∗ @ 0 0.03

PC(k = 1) 0.50 0.32 0.43 0.48 0.47

∗p < 0.05;
@ = “fixed at”
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Table 3.15: Long-term Survivor Models 1–4 Results for Population E

Parameter True Value Model 1 Model 2 Model 3 Model 4

LL – -12,871.50 -12,869.87 -12,860.57 12,822.99

# parameters – 3 4 5 6

ν1 -4.00 @ -15 @ -15 -8.79 -3.96

ν2 -1.00 -1.21 -1.16 -1.14 -0.99

β1 1.00 @ 0 @ 0 2.46∗ 0.96∗

β2 1.00 0.35∗ 0.28∗ 0.35∗ 0.96∗

α01 0.00 -0.25∗ -0.18∗ -0.16∗ 0.02

α11 1.00 @ 0 -0.10 @ 0 0.92∗

PC(k = 1) 0.50 0.44 0.46 0.46 0.51

∗p < 0.05;
@ = “fixed at”
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tistical improvement over the LTS Models 1 and 2. In other words, when

there is a long-term survivor class, it is possible to distinguish empirically

(given a sufficient sample size) a zero-risk class. In Tables 3.13–3.15, the story

changes. These data are drawn from Populations C, D, and E that have two

classes, one with a low, but non-zero risk. By fitting an LTS model to these

data, the estimated class proportions and covariate effects in the non-LTS

class present a much different picture than what are the actual relationships

between the classes and between the hazard probabilities and the observed co-

variate. Again, as with the previous model specification and class enumeration

examples, the lesson here seems clear: the best analysis strategy, even if sub-

stantive theory support the existence of a LTS class, is to fit an unrestricted

two class model with both direct and indirect covariate effects and then test

this model against the LTS model.

Returning to the example begun in Chapter 2, evidence for unobserved

heterogeneity is evaluated. The G2 statistic for the last model (5b) fit in Chap-

ter 2 was 1.62 (df=6) which has a corresponding p-value of 0.95, suggesting

the 1-class model fit the data very well and that is unlikely any significant

improvement can be made by 2-class model. Table 3.16 gives the class enu-

meration criteria results for Model 5b and the unrestricted 2-class version in

Model 6. The BIC and G2 both favor the one class over the two-class as
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Table 3.16: 1- and 2-Class Model Comparisons

Results LL # parameters AIC BIC G2

1-class (Model 5) -194.82 5 399.64 415.32 1.62 (p=0.95)

2-class (Model 6) -184.72 13 395.44 436.21 0.96 (p=0.99)

expected.

Although not supported by the data, it is still instructive to examine

the results of Model 6. The parameter estimates are given in Table 3.17.

Figures 3.4–3.8 display the estimated survival probabilities for baseline, at the

sample mean covariate values, and for each covariate effect at the sample mean

of the other covariates based on the Model 6. Figure 3.4 shows that the two

classes have very similar baseline survival. The proportion of the sample in

Class 1 is estimated at 30% and for Class 2, 70%. Figure 3.5 shows that Class 1

is, at the average covariate values, at much higher risk and, consequently, has a

notably lower survival rate during the first year. The plots for Figures 3.6–3.8

show that the reason is not an elevated baseline rate but rather an elevated

effect of the wife’s education and percent-days-drinking. Although drinking is

a significant risk factor for both Class 1 and Class 2, the magnitude of the effect
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is estimated to be much higher in class one. Wife’s education not beyond high

school is a significant risk factor and has no significant effect in Class 2. This is

opposite what was found in the one-class model. However, wife’s education is

also predictive of class membership with men having wives with no education

beyond high school being six time less likely to be in Class 1. Household

income is not a significant predictor for Class 1 but having an income greater

than $35K is protective against return to violence for Class 2 men. Income

is not significantly associated with class membership. Although there may

not be two subpopulations exactly resembling the two classes characterized by

this model, it does suggest that there is more heterogeneity with regards to

frailty or susceptibility to risk or protective factors related to violence than

heterogeneity in underlying baseline risk of returning to violence, i.e., some

men who are more likely to return to violence when drinking than others,

even though men who are drinking are all more likely to return to violence

than those who are not. It also suggests the that relationship between wife’s

education and husband’s time-to-violence is much more complex than the one-

class model may reveal.
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Table 3.17: Results for Data Example Model 6

Class 1 = 30%
Class 2 = 70%

Parameter Class 1 Est. SE Est./SE Class 2 Est. SE Est./SE

I(Wife’s educ. ≤ H.S.) 4.31∗ 1.60 2.70 -0.69 0.46 -1.51

I(Income > $35K) 1.82 1.11 1.64 -1.84 0.73 -2.52

% days drinking 8.80∗ 2.59 3.40 2.33 0.75 3.11

E(η0) -3.04∗ 1.17 -2.60 -2.45 0.64 -3.86

E(η1) -0.71∗ 0.34 -2.06 -0.19 0.16 -1.18

α01 -0.34 0.87 -0.39 @0 – –

αI(Wife′s educ.≤H.S.),1 -1.74∗ 0.76 -2.31 @0 – –

αI(Income>$35K),1 0.15 0.84 0.18 @0 – –

∗p < 0.05;
@ = “fixed at”
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Figure 3.4: Model 6 estimated survival probabilities at baseline.
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Figure 3.5: Model 6 estimated survival probabilities at sample average wife’s

education, household income, and % days drinking.
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Figure 3.6: Model 6 estimated survival probabilities for Classes 1 and 2 by

wife’s education at sample average household income and % days drinking.
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Figure 3.7: Model 6 estimated survival probabilities for Classes 1 and 2 by

household income at sample average wife’s education and % days drinking.
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Figure 3.8: Model 6 estimated survival probabilities for Classes 1 and 2 by %

days drinking at sample average wife’s education and household income.
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Chapter 4

Recurrent Events

Up until this point, the only types of events that have been considered are

single, non-repeatable events. If an event is considered a transition from one

state to another, such as living to dead, then the end state is, in the language

of Markov models, absorbing ; once an individual has transitioned into that

state, there is no further movement or “risk” to the individual. Given the

historical development of survival models in the area of life table analysis,

it is not surprising that the main focus for methods development has been

around single, terminating events. However, there are many time-to-event

processes, particularly in fields of social research, that do not fit the single

event model. Most generally, such data can be referred to as multivariate
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survival or event history data. This chapter focuses on one particular type of

multivariate survival process: recurrent events.

4.1 Multivariate event histories

In the survival analysis literature, multivariate event process are typically cat-

egorized as either multiple event histories or recurrent event histories.1 Mul-

tiple event processes are also termed competing risks models. Essentially,

rather than a single terminating event, there are several possible events that

could terminate a subject’s risk. Multiple causes of death is the most common

example—instead of modeling time-to-death, one may want to model time-

to-death from opportunistic infection versus time-to-death from cancer in ad-

vanced AIDS patients. Another example of multiple event data is juvenile

arrest. Rather than modeling time-to-arrest, one may want to model time-

to-arrest for crimes against property versus time-to-arrest for crimes against

persons. In these models, a subject is at-risk simultaneously for all events but

the risk for any of the events is terminated at the occurrence of one of the

possible events. A distinction can be made between competing risks, where

1Certainly, in more complex model extensions, a combination of recurrent and multiple

events may be considered—multiple events and recurrent events are by no means mutually

exclusive in social or behavioral processes.
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the occurrence of any one of the possible events precludes the occurrence of

the others, and a multiple process scenario, where several events may occur

to a given individual without any necessary ordering or sequence. Analysis of

either type of multivariate survival data, multiple event or multiple process, is

beyond the scope of this dissertation.

Recurrent event processes are also termed repeatable events or multi-

ple spell models. Essentially, the event of interest is the same but it is not

terminating, that is, after an individual’s first occurrence of the given event

she returns to an “at-risk” status for a subsequent occurrence. Examples of re-

current events include pregnancies, school suspensions, and suicide attempts.

Hougaard (2002) makes the usefully distinction between recurrent event pro-

cesses with high and low enumerations. That is, some recurrent event processes

have a small number of maximum events that are ever observed for a single

subject, such as pregnancies. Other recurrent event processes may have such a

large number of recurrences for some subjects, such as epileptic seizures, that

enumerating them becomes cumbersome. In all cases, it is possible to define
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some time, t = 0, that marks the beginning of risk for any event for a given

individual.2 However, in the case with frequent occurring events, the subject

may experience an unknown number prior to the beginning of observation

period, resulting in multiple left-censored episode times. In the case for low

enumerative events, it is more likely that a full event history from t = 0 may

be known to the researcher. For the purposes of this dissertation, only single,

recurrent events of the low enumerative kind will be considered.3

Although some authors reformulate recurrent event data as multiple

event data, the following discussion highlights the importance of considering

recurrent event processes as distinct from other multivariate event processes.

There are three key features of recurrent event data—the first two distinguishes

them from other multiple event data and the third feature is common to all

multivariate processes: 1) an individual may only be at-risk for one event at a

time; 2) an individual may not be at-risk for the mth event until she has expe-

rienced the (m− 1)th event, i.e., the events are ordered; and 3) the presence of

2In the recurrent events setting, if there is not any clear t = 0, it may be possible to

instead begin the process modeling with t = 0 defined at the timing of the first event,

i.e., modeling from the time a subject is at-risk for recurrence rather than at-risk for first

occurrence.

3Hougaard (2002) and Vermunt (1997) conceive of these types of processes in terms of

multi-state Markov models in continuous-time and discrete-time, respectively.
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within-subject event time correlation. Features 1 and 2 are what make recur-

rent event data markedly different from competing risk or multiple event data

where an individual is considered to be at-risk for all events simultaneously.

Feature 3 falls under the topic of unobserved heterogeneity. Just as in Chap-

ter 3, the assumption of independent observations may not be applicable; it is

unlikely that the assumption of independent observations within individuals,

let alone between individuals, would hold true for most recurrent event data.

That is, it is unlikely that each subject’s individual susceptibility (or frailty)

for a sequence of events is entirely captured in values of the observed covari-

ates on the individual. These are the features that must be kept central when

considering the model specification for recurrent event data. An additional

feature that may also apply to a variety of multivariate survival processes,

including recurrent events, is event-specific processes. For recurrent events,

that would mean the hazard for the mth event may have a different duration

dependence and behave differently with respect to covariates than the hazards

for preceding events.

Kelly and Lim (2000) wrote a comprehensive review and comparison

of the most recent models used to handle recurrent event data in continuous

time. They present a systematic framework used to evaluate the similarities

and differences across these models, as well as the appropriateness of those
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models in handling recurrent events data.4 Currently, there is no comparable

review of recurrent event models for discrete-time. The purpose of this chapter

is to present a similar framework for understanding the different formulations

of recurrent event processes in discrete-time and to develop corresponding

specifications of each formulation in terms of latent variables, extending the

single event models presented in Chapters 2 and 3. The next section focuses

on the definition of risk and risk periods, leaving aside the issue of correlated

event times (Feature 3) for a later section.

4.2 Defining risk for recurrent event histories

In order to understand and model a recurrent event process, one must answer

three basic questions: “Who?”, “What?”, and “When?”. Who is at-risk? For

what are they at-risk, e.g., first event, second event, etc.? When are they at-

risk? The first two questions can be answered in a joint manner. At t = 0, all

subjects are at-risk. They are at-risk for the first event. They are at-risk for

the first event until the first event occurs or they are censored. This answers

4Kelly and Lim’s framework is based on what they call the four key model components:

definition of the risk interval; definition of the risk set; choice of a common versus event-

specific baseline hazard (as noted by Kelly and Lim, risk set definition incorporates the

choice of baseline hazard); and handling of within-subject correlation (p.14).
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the “when” question for the first event. This time period of risk for the first

event may also be referred to as the first “spell”. A spell is ended by either the

occurrence of the event or by cessation of observation by censoring or study

conclusion. For the first spell, time zero (t = 0), the left end point of the

first time period, is defined as it would be in a single event model, e.g., birth,

start of school, end of treatment, etc. As soon as a subject experiences the first

event, she then becomes at-risk for a second event, not before. All those having

experienced a first event but not yet a second are at-risk for a second event.

The second spell is the time period of risk from the occurrence of the first event

to the occurrence of the second event or censoring. Here is an issue in discrete-

time regarding spell definition that does not come up in the continuous-time

framework: defining the beginning of spells for m > 1. By Feature 1, a subject

may not be at-risk for event m until event m− 1 has occurred. In continuous

time, it is the instant right after the occurrence of event m− 1 that the risk of

m begins. In discrete-time, event m−1 may happen any time during a certain

interval, say j. There are two difficulties if risk for event m is defined to start

at period j+1: 1) There is some portion of interval j during which the subject

is at-risk for event m that is not counted; and 2) It must be assumed that only

one event is possible per interval. Allison (1982) offers three solutions to this

issue: 1) Chose intervals such that no subject experiences more than one event
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in a single period, 2) Simply treat any number of events great than one in any

given interval as only one event, or 3) Model the number of events within each

time interval with a Poisson regression. The first solution can be applied only

if the continuous-time data is available and the analyst is able to select the

period length for discretizing the event times. However, this is a non-option

if the data only exist in discrete-time form. Also, even if possible, creating

smaller intervals could also result in a higher number of periods containing no

observed events, especially for m > 1, which could cause problems with the

model estimation. The second solution is not a reasonable option if one wants

to accommodate Feature 2, allowing the baseline hazard to be event-specific.

The event enumeration by number of periods in which at least one event

occurred can lead to very different results than enumeration by the number

of events themselves if subjects are experiencing multiple recurrences within

each time period. The third solution, like the second, does not allow for the

estimation of event-specific hazards. Land, Nagin, and McCall (2001) use the

Poisson regression approach.5

Here, a more suitable solution to the problem of multiple recurrence

in a single time period is proposed, keeping with the idea of an underlying

5Although their model does not allow event-specific hazards, it does allow inclusion of

unobserved heterogeneity in the form of finite mixture.
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continuous-time process. Essentially, risk for event m is defined to start in

the same period as the occurrence of event m− 1. Allowing this overlap does

not violate Feature 1 of recurrent events data. Since event m− 1 occurring in

period j implies that the event time for m− 1 is between tj−1 and tj, the risk

for event m begins in that same interval. This definition of spell beginning

for event m > 1 is applied for the time formulations described below. The

primary problem with this definition of risk, and most likely the reason that it

has not been utilized in discrete-time for recurrent events, is the bias present in

the hazard duration dependence by allowing such an overlap if not accounting

for reduced risk duration. To understand this issue, consider a subject who

experiences a first and second event in the same time period, j. For the first

event in j, the underlying hazard rate on the continuous-time scale is assumed

to be constant for the interval. However, for the second event, the underlying

hazard rate must be smaller in the beginning of the interval since the first event

in that period occurs before the second. Another way to look at this issue is

to return to the definition of the hazard probability in terms of the underlying

continuous-time process. The hazard probability for a first event in period

j can be defined as P (tj−1 ≤ T1 < tj | T1 ≥ tj−1). The hazard probability
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for a second event in period j is defined as P (t1 ≤ T2 < tj | T2 ≥ t1).
6 As

can be seen, the average risk duration is not the same for two consecutive

events in the same interval. The bias in risk durations can increase the more

events occurring in a single time period for each individual. Note that in the

case of discretely occurring events, multiple recurrence in a single time period

is not an issue. The beginning of risk for event m should be defined as the

period immediately following the period of occurrence for event m − 1. This

chapter allows the overlap in risk intervals for consecutive events (assuming an

underlying continuous-time process) and proposes a possible bias correction in

the section on estimation.7

The above discussion helped better define the “when” question for sec-

ond and later events but there is another dimension to the “when” question

with regards to the time scale that is chosen. To understand this issue better,

consider the three example cases depicted in Figure 4.1. The beginning of

period 1 is assumed to be t = 0 and the same for all three cases. Subject A

6There are different definitions of the hazard probability depending of the time formula-

tions discussed in subsequent sections.

7Allowing the overlap in risk intervals for adjacent events and the proposed bias correction

are novel with respect to the existing literature and will need to be more carefully examined

analytically and empirically before they are accepted into current analysis practices.
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experienced a first event in period 3. Thus, according to the reasoning above,

Subject A is at-risk for a second event beginning in period 3. Subject B expe-

riences a first event in period 4 and is thus at-risk for a second event beginning

in period 4. There are two ways to look at the timing of risk for the second

event. One way is with respect to the occurrence of the first event. That is,

considering period 3 for Subject A and period 4 for Subject B as equivalent

periods in that both periods represent for each subject the first period at-risk

for the second event. In this time scale, Subject A is at-risk for a second

event during periods 0–2 following the first event and Subject B is at-risk for

a second event in periods 0–5 following the first event, where period zero rep-

resents the same period of the prior event occurrence. This is referred to in

the literature as Gap Time, or GT, formulation.

Another way to look at risk timing is on the original observation time-

line for which Subject A is at-risk for a second event in the period before

Subject B is at-risk for a second event. Subject A is at-risk during periods 3–5

for a second event (at period 5 the second event occurs) and Subject B is at-

risk during periods 4–9 (after period 9, observation is ended and B is censored

with respect to the time-to-second-event process8. This is referred to in the

8As depicted in the figure, censoring of Subject B does not occur until after the end of

the ninth time period
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A

9

1 2 3 4 5 6 7 8

B

9

1 2 3 4 5 6 7 8

C

9

Darkened circles represent events, with the event number within the circle.  A 

darkened circle with a ``0'' represents a censoring event; the unfilled circles 

represent observations of ``no event'' made on the subject.  Time periods 

without any circle represent periods during which the subject ceased to be 

under the observation of the researcher. 

Figure 4.1: Three subject example of recurrent event observations.

literature as Counting Process, or CP, formulation. Both these formulations

are described in more detail below.

In the GT formulation, the first period of risk for event m is the period

of occurrence for event m−1. In this formulation, the clock essentially “resets”

after each event. The occurrence of all events after the first are modeled on

a time scale relative to the prior event and not relative to the actual timeline

of observation. In GT formulation, the j = 0 time period for the m event is
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associated with the same time period during which event m− 1 occurred. An

event m occurring in the GT period j = 1 implies that event m occurred in the

period immediately following the period during which event m − 1 occurred.

Consider again the three example cases depicted in Figure 4.1. In the GT

formulation, Subject A is at-risk for a first event in periods 1–3, at-risk for a

second event in periods 0–2, and at-risk for a third event in periods 0–4. All

three of the spells for Subject A terminate with an event. Subject B is at-risk

for a first event in periods 1–4 and at-risk for a second event in periods 0–5.

Subject B is never observed to be at-risk for the third event because the second

event does not occur during the period of observation. Similarly, Subject C is

not observed to be at-risk for any event but the first. Table 4.1 gives the risk

periods (spells) for each subject by each event.

A distinction here is be made between what will be termed full-GT and

partial-GT formulations. Consider the three hypothetical subjects. Period 1

for the first spell of Subject A is the first interval of time from some beginning,

t = 0, while period 1 for the second and the third spells are the time intervals

directly before which a prior event occurred. Thus, the spell of the first event

is on a different time-scale than the gap time formulation for all subsequent

events. However, if the first spell itself is begun by the occurrence of an event,

i.e., onset of the recurrent event process, then the first spell is actually the
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Table 4.1: Risk Periods Defined

Formulation Gap time (GT) Counting process (CP) Total time (TT)

Subject A 1st event 1–3 1–3 1–3
2nd event 0–2 3–5 1–5
3rd event 0–4 5–9 1–9

Subject B 1st event 1–4 1–4 1–4
2nd event 0–5 4–9 1–9
3rd event N/A N/A (1–9)

Subject C 1st event 1–5 1–5 1–5
2nd event N/A N/A (1–9)
3rd event N/A N/A (1–9)

spell of the second event and time period 1 would be in the same gap time

formulation as the subsequent spells. In the first case, where the first spell is

marked by onset of risk, the gap time formulation is partial, only applying to

events after the first occurrence. In the second case, where the first spell is

marked by a first event, e.g., onset of IV drug use, the gap time formulation

is full-GT.

The CP formulation uses the same time scale for all events, referenced

to a fixed point in time, but does not allow the overlap in risk periods across

events for a given subject. That is, Subject A cannot be observed to be at-risk

for a second event until after A has experienced the first event. For example,

in Table 4.1, Subject A has observed risk periods 3–5 for the second event;

169



the second spell is three periods long, as in the GT formulation, but the spell

terminates at period 5, on the original time scale. Both the GT and CP

formulations are conditional in that a subject’s risk status for the mth event

is conditional upon the occurrence of (m − 1) earlier events. As explained

by Allison (1995), it is possible to imagine some processes where the hazard

for an event depends on the time since an individual first became at-risk,

regardless of the number and timing of prior events, e.g., time in the labor

force for risk on unemployment. The fact is, in many processes, the hazard

may depend on both time since the last event and time since overall risk onset.

It is possible to account for this dual duration dependence in both the CP and

GT formulations as is demonstrated in a later section.

There is a third way of defining risk that was not mentioned in the

above discussion. The total time, or TT, formulation defines the risk periods

for event m (mth spell) as beginning at a select point on the observation time

scale. In this case, compared to the GT formulation, the clock does not reset for

each event—the beginning of each spell is at the same point in the observation

timeline. And, unlike the CP formulation, risk periods for different events for

the same subject overlap. The TT formulation is essentially marginal—the

risk status for each event is not conditional on the occurrence of prior events.

Rather than determining risk at each time period based on the event history
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up to that period, the TT formulation looks at risk t = 0 and forward, e.g.,

subjects could experience a first, second, and third event during the first time

period and are considered at risk for all three events. Risk periods for each

event end either by occurrence of the corresponding event, at which point the

subject continues to remain at-risk for all subsequent events, or by censoring, at

which point the subject ceases to be observed at-risk for all remaining events.

As shown in Table 4.1, the first spell for Subject A is periods 1–3, periods 1–5

for the second spell, and periods 1–9 for the third spell. For Subject B, the first

spell is periods 1–4 and the second spell is periods 1–9. The periods for the

third spell are in parentheses. There is a variation on the TT formulation that

defines spells in TT but conditional upon the occurrence of a prior event during

the observation period. In this version, only subjects who experiencing a first

event during the observation period are considered to be at-risk for a second

event from period 1. This formulation makes little sense since it violates the

desired feature of not allowing overlapping risk periods and does not provide a

marginal risk determination as does the first TT formulation described. Only

the first marginal formulation is presented in the remainder of this chapter.

Although the marginal definition of risk may provide some information about

the recurrent events process, allowing subjects to be at risk for more than one

event at a time is really more appropriate for multiple events or competing
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risks for which it was originally developed. Wei, Linn, and Weissfeld (1989),

who developed the model with this TT formulation recommended its use for

recurrent events, even though it includes those risk periods in parentheses. Guo

and Lin (1994) reformulate the model for discrete-time, again recommending it

for recurrent events, as well as competing risks. Ironically, despite this model’s

acknowledged shortcomings in the literature with respect to its application to

recurrent events data, particularly related to correct estimation of covariate

effects, it enjoys wide use (Kelly & Lim, 2000). The differences between using

the GT, CP, and TT formulations will be further discussed throughout this

chapter, including full illustration of each with the real data example.

For all three formulations, it is possible to allow the baseline hazard and

covariate effects to be event-specific, allowing for testing of common effects or

duration dependence across events.9 Specifying a common hazard in the GT

formulation, for example, would suggest the risk of an event during the first

period following the first event was the same as the risk of an event during

the first period following the second event. Specifying a common hazard in

the CP formulation would suggest that the risk of a second event in the time

9Some recurrent event model specifications presuppose common baseline hazards and/or

common covariate effects, failing to accommodate the desired Feature 2 previously men-

tioned.
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period j was the same as the risk of a third event in during period j. A

common hazard in the TT formulation is not a reasonable model for recurrent

events. This is because specifying a common hazard is the same as equating

the marginal event probabilities for all events in each time period, ignoring the

ordered nature of the events which makes it highly unlikely that initial events

and later event would have the same hazard in the earlier time periods of risk.

4.3 Basic notation and likelihood

Let the given sample consist of n independent individuals i, with i = 1, . . . , n.

Let Tmi be the survival time for individual i corresponding to event m. Let

M be the maximum number of possible events. In the discrete-time setting,

events are only observed to fall within J grouped time intervals, [tj, tj+1),

where j = 0, . . . , J − 1 and tj = ∞. Let Γmi represent the time interval into

which Tmi falls, so that Γmi is a discrete random variable with the event set

{1, . . . , J}. Then Γmi = γm if tγm−1 ≤ Tmi < tγm . Also, the following ordering

is imposed: Γ1i ≤ Γ2i ≤ · · · ≤ ΓMi. In all formulations, the hazard and

survival probabilities for the first event is the same as it is in the single event

case:
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Ph1(Γ1 = γ) = P (Γ1 = γ | Γ1 ≥ γ)

= P (tγ−1 ≤ T1 < tγ | T1 ≥ tγ−1), (4.1)

and

PS1(γ) = P (Γ1 > γ)

= P (Γ1 6= 1 | Γ1 ≥ 1) · P (Γ1 6= 2 | Γ1 ≥ 2) · · ·P (Γ1 6= γ | Γ1 ≥ γ)

=
γ∏

j=1

(1− Ph1(j)) . (4.2)

Let the observed data for subject i corresponding to the first event be

represented by {A1i, δ1i}. Similar to the single event framework, A1i represents

the last time period during which subject i is observed to be at-risk for the

first event and δ1i is the indicator of whether an event (δ1i = 1) or censoring

(δ1i = 0) occurred during that final period.10 The likelihood contribution of

subject i relative to the first event is given by

L1i = [Ph1(a1i)]
δ1i ·

a1i−1∏

j=1

[1− Ph1(j)]. (4.3)

As in Chapter 2, the likelihood can be restated in terms of the event

and observed risk indicators. Let E1j be an event indicator for the first event

10Only noninformative right-censoring in considered in this dissertation.
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such that

E1γ = I(Γ1 = γ). (4.4)

Let Ro
1j be an indicator of observed risk for the first event in period j, that is,

Ro
1γ = I ([A1 ≥ γ and δ1 = 1] or [A1 > γ and δ1 = 0]) . (4.5)

The observed data likelihood for the first event11 for subject i can be restated

in terms of Ro
1i and E1i by

L1i =
∏

j∈{r:Ro
1ri=1}

P (E1j = e1ji). (4.6)

To summarize, the observed data for the first event (or first spell), (A1i, δ1i),

as well as the corresponding likelihood, can be restated in terms of (E1i, R
o
1i)

without loss of information, with the following conversion:

E1ji =





1 if A1i = j and δ1i = 1

0 otherwise,

(4.7)

and

Ro
1ji =





1 if (A1i ≥ j, δ1i = 1) or (A1i > j, δ1i = 0)

0 otherwise.

(4.8)

Table 4.2 gives the values for Ro
1 and ERo1 for the hypothetical Subjects, A,

B, and C, from the example introduced in the preceding section.

11As before, MAR corresponds to the assumption of noninformative censoring.
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Table 4.2: Example Data for First Event

Risk indicator ro
1,1 ro

1,2 ro
1,3 ro

1,4 ro
1,5 ro

1,6 ro
1,7 ro

1,8 ro
1,9

Subject A 1 1 1 0 0 0 0 0 0
Subject B 1 1 1 1 0 0 0 0 0
Subject C 1 1 1 1 1 0 0 0 0

Event indicator ero1,1 ero1,2 ero1,3 ero1,4 ero1,5 ero1,6 ero1,7 ero1,8 ero1,9

Subject A 0 0 1 . . . . . .
Subject B 0 0 0 1 . . . . .
Subject C 0 0 0 0 0 . . . .

4.3.1 Gap time

In the GT formulation, the time periods of all event after the first are on

a time scale relative to the occurrence of the first event. Thus, define ∆mi

as the time period into which Tmi falls, relative to the first event, such that

∆mi = Γmi − Γ(m−1)i. Note that ∆mi = 0 corresponds to event m occurring in

the same time period as event m− 1. The hazard probability for event m, for

m > 1, is then given by

Pgt(hm)(d) = P (∆m = d | ∆m ≥ 0)

= P (Γm − Γm−1 = d | Γm − Γm−1 ≥ d). (4.9)

So, Pgt(hm)(j) is the probability that the mth event occurs in jth period after

the (m − 1)th event given that it does not occur before that. A conditional
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survival probability can then be defined, similar to the hazard for each event

m conditional on the occurrence of event m− 1.

Pgt(Sm)(d) = P (∆m > d)

=
d∏

j=1

(
1− Pgt(hm)(j)

)
(4.10)

Let the observed data for subject i corresponding to the second event

be represented by {Dgt(2)i, δ2i} where Dgt(2)i represents the last time period

during which subject i is observed to be at-risk for the second event (in gap

time, Dgt(2) = A2 − A1) and δ2i is the indicator of whether an event (δ2i = 1)

or censoring (δ2i = 0) occurred during that final period. The likelihood con-

tribution of subject i relative to the second event is given by

Lgt(2)i =


[Pgt(h2)(dgt(2)i)]

δ2i ·
dgt(2)i−1∏

j=0

[1− Pgt(h2)(j)]




δ1i

. (4.11)

More generally, for any event m, m > 1, the likelihood contribution of subject

i relative to the mth event is

Lgt(m)i =


[Pgt(hm)(dgt(m)i)]

δmi ·
dgt(m)i−1∏

j=0

[1− Pgt(hm)(j)]




δ(m−1)i

. (4.12)

The full likelihood for the gap time formulation is then given by

Lgt =
n∏

i=1

[
L1i

M∏

m=2

Lgt(m)i

]
. (4.13)

As for the first event, the likelihood can be restated in terms of the

event and observed risk indicators. Let Egt(m)j be the GT event indicator for
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the mth event such that

Egt(m)γ = I(∆m = γ). (4.14)

Let Ro
gt(m)j be the GT indicator of observed risk for the mth event in period j,

that is,

Ro
gt(m)γ = I ([Dm ≥ γ and δm = 1] or [Dm > γ and δm = 0]) . (4.15)

The observed data likelihood for the mth event for subject i can be restated

in terms of Ro
gt(m)i and Egt(m)i by

Lmi =
∏

j∈{r:Ro
gt(m)ri

=1}
P (Egt(m)j = emji). (4.16)

To summarize, the observed data for the mth event (or mth spell), (Dmi, δmi), as

well as the corresponding likelihood, can be restated in terms of (Egt(m)i, R
o
gt(m)i)

without loss of information, with the following conversion:

Egt(m)ji =





1 if Dmi = j and δmi = 1

0 otherwise,

(4.17)

and

Ro
gt(m)ji =





1 if (Dmi ≥ j, δmi = 1) or (Dmi > j, δmi = 0)

0 otherwise.

(4.18)

Table 4.3 gives the values for Rgt(m) and Egt(m) for example subjects, A, B,

and C, for the second and third event.
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Table 4.3: Example Data for Second and Third Event in GT

ro
gt(2),∗ 1 2 3 4 5 6 7 8 9

Subject A 1 1 1 0 0 0 0 0 0

Subject B 1 1 1 1 1 1 0 0 0

Subject C 0 0 0 0 0 0 0 0 0

erogt(2),∗ 1 2 3 4 5 6 7 8 9

Subject A 0 0 1 . . . . . .

Subject B 0 0 0 0 0 0 . . .

Subject C . . . . . . . . .

ro
gt(3),∗ 1 2 3 4 5 6 7 8 9

Subject A 1 1 1 1 1 0 0 0 0

Subject B 0 0 0 0 0 0 0 0 0

Subject C 0 0 0 0 0 0 0 0 0

erogt(3),∗ 1 2 3 4 5 6 7 8 9

Subject A 0 0 0 0 1 . . . .

Subject B . . . . . . . . .

Subject C . . . . . . . . .
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4.3.2 Counting process

In the CP formulation, the time periods of all events after the first are on the

same time scale as the first event. Thus, the hazard probability for event m,

given m > 1, is defined by

Pcp(hm)(γ) = P (Γm = γ | Γm ≥ γ, Γm−1 ≤ γ). (4.19)

Note the additional conditioning event so that the hazard probability of event

m occurring in time period γ is conditional upon not only that event m did

not occur before time period γ but also that event m − 1 occurred before or

during time period γ. This condition is implicit in the gap time formulation

in the expression ∆m ≥ 0. It is possible to also define a conditional survival

probability, such that

Pcp(Sm)(γ) = P (Γm > γ | Γm−1 ≤ γ)

=
γ∏

j=Γm−1

(1− Pcp(hm)(j)). (4.20)

Although admittedly it is more intuitive to think about survival probabili-

ties than hazard probabilities when conceiving of time-to-event processes, the

meaning of survival becomes much more complicated and less intuitive in the

recurrent events setting under the CP formulation. The equation given above

defines the survival probability for event m conditional on the random time
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period for event m − 1. It would also be possible to compute the mean con-

ditional survival probability for event m at time period γ by computing a

weighted average over all possible time periods for the m− 1 event.

Let the observed data for subject i corresponding to the second event be

represented by {Acp(2)i, δ2i} where Acp(2)i represents the last time period during

which subject i is observed to be at-risk for the second event (in CP time,

Acp(2) = A2) and δ2i is the indicator of whether an event (δ2i = 1) or censoring

(δ2i = 0) occurred during that final period. The likelihood contribution of

subject i relative to the second event is given by

Lcp(2)i =


[Pcp(h2)(acp(2)i)]

δ2i ·
acp(2)i−1∏

j=0

[1− Pcp(h2)(j)]




δ1i

. (4.21)

More generally, for any event m, m > 1, the likelihood contribution of subject

i relative to the mth event is

Lcp(m)i =


[Pcp(hm)(acp(m)i)]

δmi ·
acp(m)i−1∏

j=0

[1− Pcp(hm)(j)]




δ(m−1)i

. (4.22)

The full likelihood for the gap time formulation is then given by

Lcp =
n∏

i=1

[
L1i

M∏

m=2

Lcp(m)i

]
. (4.23)

As in gap time, the likelihood can be restated in terms of the event and

observed risk indicators. Let Ecp(m)j be the CP event indicator for the mth

event such that

Ecp(m)γ = I(Acp(m) = γ). (4.24)
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Let Ro
cp(m)j be the CP indicator of observed risk for the mth event in period j,

that is,

Ro
cp(m)γ = I




[Acp(m−1) ≤ γ ≤ Acp(m) and δm = 1] or

[Acp(m−1) ≤ γ < Acp(m) and δm = 0]


 . (4.25)

The observed data likelihood for the mth event for subject i can be restated

in terms of Ro
cp(m)i and Ecp(m)i by

Lmi =
∏

j∈{r:Ro
cp(m)ri

=1}
P (Ecp(m)j = emji). (4.26)

To summarize, the observed data for the mth event (or mth spell), (Acp(m)i, δmi),

as well as the corresponding likelihood, can be restated in terms of

(Ecp(m)i, R
o
cp(m)i) without loss of information, with the following conversion:

Ecp(m)ji =





1 if Acp(m)i = j and δmi = 1

0 otherwise,

(4.27)

and

Ro
cp(m)ji =





1 if (Acp(m−1)i ≤ j ≤ Acp(m)i, δmi = 1) or

(Acp(m−1)i ≤ j < Acp(m)i, δmi = 0)

0 otherwise.

(4.28)

Table 4.4 gives the values for Rcp(m) and Ecp(m) for example subjects, A, B,

and C, for the second and third event.
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Table 4.4: Example Data for Second and Third Event in CP

ro
cp(2),∗ 1 2 3 4 5 6 7 8 9

Subject A 0 0 1 1 1 0 0 0 0

Subject B 0 0 0 1 1 1 1 1 1

Subject C 0 0 0 0 0 0 0 0 0

erocp(2),∗ 1 2 3 4 5 6 7 8 9

Subject A . . 0 0 1 . . . .

Subject B . . . 0 0 0 0 0 0

Subject C . . . . . . . . .

ro
cp(3),∗ 1 2 3 4 5 6 7 8 9

Subject A 0 0 0 0 1 1 1 1 1

Subject B 0 0 0 0 0 0 0 0 0

Subject C 0 0 0 0 0 0 0 0 0

erocp(3),∗ 1 2 3 4 5 6 7 8 9

Subject A . . . . 0 0 0 0 1

Subject B . . . . . . . . .

Subject C . . . . . . . . .
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4.3.3 Total time

In the TT formulation, the time periods of all events after the first are on the

same time scale as the second event; however, the hazard is not conditional

upon the time of the prior event. Thus, the hazard probability for event m,

given m > 1, is given by

Ptt(hm)(γ) = P (Γm = γ | Γm ≥ γ). (4.29)

So, Ptt(hm)(j) is the probability that the mth event occurs in period j given

that it does not occur before period j. The survival probability based on the

TT hazard yields the marginal survival probability for each event:

Ptt(Sm)(γ) = P (Γm > γ)

=
γ∏

j=1

(1− Ptt(hm)(j)). (4.30)

Let the observed data for subject i corresponding to the second event be

represented by {Att(2)i, δ2i} where Att(2)i represents the last time period during

which subject i is observed to be at-risk for the second event (in TT time,

Att(2) = A2) and δ2i is the indicator of whether an event (δ2i = 1) or censoring

(δ2i = 0) occurred during that final period. The likelihood contribution of

subject i relative to the second event is given by

Ltt(2)i =


[Ptt(h2)(att(2)i)]

δ2i ·
att(2)i−1∏

j=0

[1− Ptt(h2)(j)]


 . (4.31)
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More generally, for any event m, m > 1, the likelihood contribution of subject

i relative to the mth event is

Ltt(m)i =


[Ptt(hm)(att(m)i)]

δmi ·
att(m)i−1∏

j=0

[1− Ptt(hm)(j)]


 . (4.32)

The full likelihood for the gap time formulation is then given by

Ltt =
n∏

i=1

[
L1i

M∏

m=2

Ltt(m)i

]
. (4.33)

As in GT and CP, the likelihood can be restated in terms of the event

and observed risk indicators. Let Ett(m)j be the TT event indicator for the mth

event such that

Ett(m)γ = I(Att(m) = γ). (4.34)

Let Ro
tt(m)j be the TT indicator of observed risk for the mth event in period j,

that is,

Ro
tt(m)γ = I

(
[Att(m) ≥ γ and δm = 1] or [Att(m) > γ and δm = 0]

)
. (4.35)

The observed data likelihood for the mth event for subject i can be restated

in terms of Ro
tt(m)i and Ett(m)i by

Lmi =
∏

j∈{r:Ro
tt(m)ri

=1}
P (Ett(m)j = emji). (4.36)

To summarize, the observed data for the mth event (or mth spell), (Att(m)i, δmi),

as well as the corresponding likelihood, can be restated in terms of
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(Ett(m)i, R
o
tt(m)i) without loss of information, with the following conversion:

Ett(m)ji =





1 if Att(m)i = j and δmi = 1

0 otherwise,

(4.37)

and

Ro
tt(m)ji =





1 if (Att(m)i ≥ j, δmi = 1) or (Att(m)i > j, δmi = 0)

0 otherwise.

(4.38)

Table 4.5 gives the values for Rtt(m) and Ett(m) for example subjects, A, B, and

C, for the second and third event.

4.4 Estimation

Similar to what was shown in Chapter 2, the specification of the observed data

likelihood in terms of the hazard probabilities is identical to the specification of

the observed data likelihood in terms of the event indicators vectors, Em, e.g.,

the maximum likelihood estimates for P (Egt(m)j), under MAR with Ro
gt(m)j as

the missingness indicator, are the same as the estimates for Pgt(hm)(j). Us-

ing the logistic link as before, each hazard probability can be expressed as a

function of observed covariates. Again, as in Chapter 2, using the latent class

regression analysis, treating each event indicator as a latent class indicator,

the MLE’s for the parameters of the LCR and the parameters of discrete-logit
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Table 4.5: Example Data for Second and Third Event in TT

ro
tt(2),∗ 1 2 3 4 5 6 7 8 9

Subject A 1 1 1 1 1 0 0 0 0

Subject B 1 1 1 1 1 1 1 1 1

Subject C 1 1 1 1 1 0 0 0 0

erott(2),∗ 1 2 3 4 5 6 7 8 9

Subject A 0 0 0 0 1 . . . .

Subject B 0 0 0 0 0 0 0 0 0

Subject C 0 0 0 0 0 . . . .

ro
tt(3),∗ 1 2 3 4 5 6 7 8 9

Subject A 1 1 1 1 1 1 1 1 1

Subject B 1 1 1 1 1 1 1 1 1

Subject C 1 1 1 1 1 0 0 0 0

erott(3),∗ 1 2 3 4 5 6 7 8 9

Subject A 0 0 0 0 0 0 0 0 1

Subject B 0 0 0 0 0 0 0 0 0

Subject C 0 0 0 0 0 . . . .
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hazard probability model are equal. Figure 4.2 displays the path diagram for

a recurrent event history model with three possible event occurrences and only

time-independent covariates. Allowing for event-specific baseline hazard prob-

abilities, which correspond to event-specific thresholds in the regression, and

event-specific covariate and covariate effects as well as time-varying covariates

and covariate effects, the full and unrestricted regression model for each event

indicator is given, using the gap time formulation as an example, by

logit(P (Egt(m)j | xgt(m)j, zm)) = νgt(m)j + β′gt(m)jzm + κ′gt(m)jxgt(m)j. (4.39)

The intercept, νgt(m)j is the logit of the baseline GT hazard probability for

period j; that is, νgt(m)j is the logit probability for zm = 0 and xgt(m)j = 0 that

the mth event happens j periods after the (m−1)th event given that the it has

not happened before that. βgt(m)jp is the log GT hazard odds ratio in period j

for a one unit increase in zmp. κgt(m)jp is the log GT hazard odds ratio in period

j for a one unit increase in xmjp. The time varying covariates, x, are given in

terms of their value on the GT time scale, since the first period of spell m in

gap time may be at different locations on the original time scale for different

subjects. Notice that allowing event-specific baseline hazard probabilities with

event-specific covariate sets and event-specific effects is equivalent to doing a

separate analysis for each successive event. An event-stratified analysis is one

of the conventional approaches to recurrent events but can be tedious and
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Figure 4.2: Recurrent event history LCR path diagram.
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statistically inefficient if the event processes have any parameters in common

(Allison, 1984). Also, it does not allow statistical testing of parameter equality

across events. The restriction of νmj = νj for all m constrains the baseline

hazard probabilities to be the same at time period j regardless of the event

number12. Notice that interpretation of νj depends on whether the observed

data has a GT, TT, or CP formulation. For the full-GT formulation, the

restriction to a common baseline hazard would be a reasonable specification if

the data did not call for event-specific baseline hazard probabilities. However,

for the partial-GT formulation, the restriction of νmj = νj for all m > 1 is the

more reasonable restriction since the first spell is not on the same time scale

as the subsequent spells.

Although the specification allows event-specific hazards for all possible

M recurrences, there may be a very small number of subjects observed at-risk

12The TT formulation with common hazard for continuous-time was proposed by Lee,

Wei, and Amato (1992), the LWA model. Both the GT and CP formulations with event-

specific hazards for continuous-time were proposed by Prentice, Williams, and Peterson

(1981), the PWP-GT and PWP-CP models. The CP formulation with common hazard was

proposed by Andersen and Gill (1982), the AG model. Kelly and Lim (2000) also consider

the GT formulation with a common hazard, the GT-UR model, and the CP formulation with

event-specific hazards, the TT-R model. The GT formulation with event-specific hazard for

discrete-time was presented by Willett and Singer (1995).
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for and/or experiencing those higher numbered events. In such cases, there

are two options for practical analysis to avoid unstable and unreliable event-

specific hazards for the larger m: 1) restrict the data to p events where p < M ,

and all those subject who experience p events cease to be at-risk for any event

after p; or 2) constrain the baseline hazard probabilities and covariate effects

to be the same across some p to M events, where p < M . To be conservative,

apply the same guidelines as for single events to each event-specific model.

It is also possible to impose a structure on each event-specific or com-

mon hazard across time periods using the η factors as shown in Chapter 2. The

restriction of βmj = βj for all m constrains the effects of the time-independent

covariates to be the same for all events at time period j. Recall that the

restriction of βj = β for all j constrains the effects of the time-independent

covariates to be the same for all time periods—the proportional hazard odds

model.

4.4.1 Correcting bias in duration dependence

As discussed in Section 4.2, it is necessary to make an adjustment in the model

to account for the average shortened risk duration that is present when allow-

ing risk intervals for consecutive events to overlap. In the GT formulation,

there is already an adjustment implicit in the model for two events occurring
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in the same interval. That is, allowing for events in time period zero and

allowing the baseline probability to be unrestricted by event number, already

absorbs the shortened risk duration into the baseline hazard probability esti-

mate. However, there is not an automatic adjustment if more that one prior

event occurred in the same time period. Such an adjustment can be made to

the baseline hazard probability of event m for m > 2 at time period zero by

including a indicator variable for all events 1, . . . , (m − 2) in the regression

model as given below.

logit(P (Egt(m)0 | xgt(m)0, zm)) = νgt(m)0 + β′gt(m)0zm + κ′gt(m)jxgt(m)0

+
m−2∑

p=1

(ωgt(0)p · I[Ap = Am]). (4.40)

ωgt(0)p represents the adjustment to the baseline hazard for event p, p < m− 1

having occurred in the same interval as event m. νgt(m)0 is now the logit

probability for zm = 0 and xgt(m)j = 0 that the mth event happens in the

same period as event m − 1 given that event m − 2 occurred in a prior time

period. Because gap time is conditional on each event occurrence, the only

adjustment needed is for period zero for each event spell after the second. This

is not the case in the CP formulation, where an adjustment must be made to

each baseline hazard probability for m > 1 at each time period as given below.
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logit(P (Ecp(m)j | xcp(m)j, zm)) = νcp(m)j + β′cp(m)jzm + κ′cp(m)jxgt(m)j

+
m−1∑

p=1

(ωcp(j)p · I[Ap = j]). (4.41)

ωcp(j)p represents the adjustment to the baseline hazard for event p, p < m,

having occurred in the same time period, j. Note that including a set of time-

dependent indicator variables for the time periods of all prior events makes

the inclusion of the ω terms redundant. No such adjustment is necessary for

the TT models since risk for event m is not conditional upon the occurrence

of the (m− 1)th event—all risk intervals begin at the same time, t = 0.

Within the GT or CP formulations, the need for an unrestricted base-

line hazard can be evaluated by comparing the event-specific and common

baseline hazard models using the LRT.13 In addition, equivalent models can

be obtained across the GT and CP formulation by including covariates in

each model corresponding to the event history in the alternate time scale.14

For example, in the CP formulation, a time-varying covariate representing the

13Care should be taken in interpreting the meaning of common baseline hazard probabil-

ities when the bias adjustment given above has been included in the model.

14Such equivalence does not exist in the continuous-time setting using partial likelihood

methods because the baseline hazard, on whatever time scale is chosen, is not explicitly

estimated.
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number of time periods from the prior event can be included to account for

the possible hazard dependence on the time since last occurrence. In the GT

formulation, a time-independent covariate representing the time period of the

prior event in terms of the original time scale can be included to account for

the possible hazard dependence on the time since the onset of risk for the

very first event. Thus, the choice between the GT and CP formulations is a

matter of preference and is analogous, for example, to the decision of how and

whether to center covariates in a multilevel linear model—the likelihood will be

the same but the parameter estimates and their corresponding interpretations

will change. In applying these models, a researcher may want to fit models

to more than one time-scale specification, careful to note that the parame-

ters, both baseline hazard probabilities and covariate effects, have different

interpretations depending on the time scale.

The TT model is not comparable to the GT and CP models in that it

provides marginal rather than conditional estimates of event likelihood across

time. If one uses a TT formulation, it is important to recognize how the

covariate effects may present in such a model. Suppose that there is a covariate

that only predicts time to the first event but not the time to the second event

or beyond conditional on the occurrence of the first event. As demonstrated

clearly in the simulation examples by Kelly and Lim (2000), when there is a
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covariate effect for only the first event, the TT models display what they term

a “carry-over” effect. This should be expected given the marginal nature of

the TT model. If there is a positive covariate effect on the first event, it makes

all subsequent events, marginally speaking, more likely as well. Even when

the covariate effect is constant across events and the spells are independent

within subjects, the TT models can overestimate the treatment effect.

4.5 Unobserved heterogeneity

One of the important features of recurrent events data named at the begin-

ning of this chapter was within-subject correlation (Feature 3). Up until this

point, all of the model specifications given assumed that event times across

individuals in the sample as well as within individuals were independent. In

Chapter 3, the problems of ignoring unobserved heterogeneity in survival anal-

ysis were demonstrated. Those issues are just a relevant, if not more so, for

analysis of recurrent events data; that is because, as previously mentioned, it

is unlikely that the correlation between spell durations for a given individual

are completely explained by observed covariates. Not only will the standard

errors on parameters be underestimated if all spells are treated as distinct and

independent observations, but the hazard probabilities and covariate effects
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will themselves be biased15. Allison (1995) mentions that using the time from

or time of the prior occurrence as a way to detect dependence between spells

within subjects in models that treat each spell as a distinct observation16 but

warns that this approach does not necessarily correct the resultant biases. In

the marginal approach proposed by Wei, Lin, and Weissfeld (1989), events

within individuals are treated as independent and then a robust variance es-

timate is obtained using a “sandwich estimator”. Allison (1995) notes that

this approach does not correct for biases in the actual hazard or coefficient

estimates. Also, Kelly and Lim (2000) demonstrated through simulations that

the robust variance estimate did not adequately account for the within-subject

correlations.

Another approach to dealing with the within-subject correlation is ran-

dom effects models, also called frailty models, similar to what was introduced

in Chapter 3. Because there are multiple events observed for each individual in

the sample, identification of models that explicitly contain a random effect in

15Kelly and Lim (2000) showed in their simulation studies that for data generated from

populations with a constant treatment effect across events and correlated event times within

subjects that the estimated treatment effect was attenuated in models that assumed spell

independence

16Dependence between observations within subjects is ignored in the Willett and Singer

(1995) recurrent event model for discrete-time.

196



the model to account for the unobserved heterogeneity may not require model

constraints or covariate information as was necessary in the single event case.

The challenges of model identification depend, in large part, on the constraints

imposed in the model. For example, since allowing event-specific baseline haz-

ard and covariate effects is equivalent to fitting separate, single event models

for each event number, the identification issues are the same as in the sin-

gle event case. If constraints such as a common baseline hazard across event

numbers are imposed, identification of the unobserved heterogeneity model is

simplified. Steele (2003) has taken the hierarchical nonlinear modeling ap-

proach, as available through the MLWiN software application, treating spells

as clustered within individuals, i.e., spells are the level 1 units and subjects

are the level 2 units (similar to the hierarchical modeling approach to repeated

measures data). This specification assumes a constant baseline hazard across

events with a mean shift possible by including the number of prior events

as a covariate. This framework allows for random coefficients on the covari-

ates as well as random effect. All random terms are assumed to be normally

distributed. Hence, this approach is susceptible to the same shortcoming as

parametric models of unobserved heterogeneity in the single event setting: pa-

rameters estimates are sensitive to misspecification of the frailty distribution.

Also, this approach makes the assumption that a subject’s frailty is the same
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for each event, i.e., if a subject is at increased susceptibility for the first event,

she has the same increased susceptibility for the second event, and so on. Us-

ing the LCR framework allows not only nonparametric specification for the

frailty distribution, it allows event-specific hazard, covariate effects, and frail-

ties through intercepts and coefficients specified by event number and latent

class.

Surprisingly, little can be found in the literature extending the Heck-

man and Singer (1984a) concept of nonparametric modeling of unobserved

heterogeneity to multivariate survival data. Vermunt (1997) does offer some

discussion of latent classes as a way to account, nonparametrically, for both

between and within subject time dependencies but does not focus on recur-

rent events as much as the more general multiple event models. Given that

specification of all three recurrent event time formulations can be fit into the

LCR framework, as shown in the previous section, it is possible to specify any

of those models with K > 1. As in Chapter 3, it is recommended that the

nature of the classes be data driven rather than determined a priori, e.g., not

presupposing a long-term survivor class, members of which would have a zero

hazard probability for all events and all time periods. Extending to a LCR

model with K > 1, the regression for E on the covariates and C is then given,
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using the GT formulation for example, by

logit(P (Egt(m)[j] | C = k, xgt(m)j, zm)) = νk,gt(m),j+β′k,gt(m),jzm+κ′k,gt(m),jxgt(m)j,

(4.42)

and, as before, the regression C is given by

PC(k | z) =
exp(α0k + α′kz)

∑K
m=1 exp(α0m + α′mz)

. (4.43)

4.6 Example

Consider again the example begun in Chapter 2 regarding domestic violence.

In the previous chapters, the time to first domestic violence was modeled as a

single, nonrecurrent event.

In the sample, 69 out of the 170 men have at least one violent episode

during the 12 month post treatment period. Forty-three have a second episode

and 26 have a third episode. The maximum number of observed episodes

during the observation period was seven but since only 26 are at-risk for a

fourth episode or beyond, only the hazards for the first three episodes will be

modeled here. Tables 4.6–4.8 display the number at-risk for each event during

each of the six time periods as well as the number of occurrence in each period

and the ratio of events to number at-risk. These proportions correspond to

the sample hazard probability estimates in each time formulation.
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Table 4.6: Sample Frequencies and Proportions for First, Second, and Third

Violence Episodes in GT Formulation

Months 1-2 3-4 5-6 7-8 9-10 11-12

First episode # at-risk 170 136 123 114 108 104

# of events 34 13 9 6 4 3

Hazard 0.20 0.10 0.07 0.05 0.04 0.03

Period 1 2 3 4 5 6

Second episode # at-risk 69 51 31 24 21 14

# of events 16 18 5 2 1 1

Hazard 0.23 0.35 0.16 0.08 0.05 0.07

Third episode # at-risk 43 30 22 17 12 5

# of events 12 8 3 1 2 0

Hazard 0.28 0.27 0.14 0.06 0.17 0.00
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Table 4.7: Sample Frequencies and Proportions for First, Second, and Third

Violence Episodes in CP Formulation

Months 1-2 3-4 5-6 7-8 9-10 11-12

First episode # at-risk 170 136 123 114 108 104

# of events 34 13 9 6 4 3

Hazard 0.20 0.10 0.07 0.05 0.04 0.03

Second episode # at-risk 34 39 41 35 32 29

# of events 8 7 12 7 6 3

Hazard 0.24 0.18 0.29 0.20 0.19 0.10

Third episode # at-risk 8 14 24 28 29 26

# of events 1 2 3 5 6 9

Hazard 0.13 0.14 0.13 0.18 0.21 0.35

201



Table 4.8: Sample Frequencies and Proportions for First, Second, and Third

Violence Episodes in TT Formulation

Months 1-2 3-4 5-6 7-8 9-10 11-12

First episode # at-risk 170 136 123 114 108 104

# of events 34 13 9 6 4 3

Hazard 0.20 0.10 0.07 0.05 0.04 0.03

Second episode # at-risk 170 162 155 143 136 130

# of events 8 7 12 7 6 3

Hazard 0.05 0.04 0.08 0.05 0.04 0.02

Third episode # at-risk 170 169 167 164 159 153

# of events 1 2 3 5 6 9

Hazard 0.01 0.01 0.02 0.03 0.04 0.06
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The analysis of the recurrent events was done for each formulation and

then the results compared. Recall that each formulation deals with a different

angle or conception of the process and should be compared not with the goal of

choosing one over the others but with the goal of assimilating complementary

information from different models. The general analysis strategy was the same

across the three formulations and parallels analysis strategy for multiple group

analyses: 1) Fit models for each episode separately, investigating covariate ef-

fects and hazard structure; 2) Combine models for each episode into a single

model, investigating equality of parameters across episodes; and 3) Fit a se-

ries of mixture models, investigating the presence and influence of unobserved

heterogeneity, including dependence between spell times within subjects.

4.6.1 Gap time analysis

Tables 4.9 and 4.10 gives the results of the separate models for the second and

the third episode in the gap time formulation.17 For the second episode, the

only predictor that had a significant effect was the length of the relationship.

There was a nonlinear effect modeled by including a mean-centered squared

17Only three subjects experienced the second and the third episodes in the same time

period so no bias adjustment was included in the GT model for the third event. By similar

reasoning, no adjustment was included in the CP models for the second and third events.

203



Table 4.9: Results for Data Example Model 8a: Second Episode, GT Formu-

lation

Parameter Est. SE Est./SE

Length of relationship -0.03 0.02 -1.06

(Length of relationship)2 -0.006∗ 0.003 -2.01

E(η0) -0.23 0.33 -0.71

E(η1) -0.33∗ 0.12 -2.68

LL=-98.55, parameters=4

∗p < 0.05

term in the model. Figure 4.3 shows the contribution to the logit hazard

probabilities by length of relationship. From the coefficients on the linear and

quadratic term, length of relationship is protective but becomes less so from

one to nine years in relationship length and then becomes increasing protective

from 9 years upward. A length of relationship of one year and 17 years have a

hazard odds ratio of one. Figure 4.4 shows the estimated hazard and survival

probabilities for select values of relationship length. There was no evidence of

time-dependent effects for length of relationship. A linear structure adequately

modeled the baseline hazard.
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Figure 4.3: Estimated contribution of length of relationship (in years) to the

logit hazard probabilities of second violent episode.
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Figure 4.4: Model 8a estimated hazard and survival probabilities for second

episode by length of relationship.
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For the third episode, the pre-treatment level of violence and the actual

timing of the second episode, relative to the end of treatment, were significant

predictors of time-to-violence. Pre-treatment violence was found to have a

nonlinear effect, with those having more than four reported episodes being

at increased risk at all time periods relative to those reporting four or less

episodes in the three months preceding treatment. The actual time between

the first and the second episode was not predictive of the time to the third

episode but the time from end of treatment to the second episode was, with the

hazard increasing as the time from treatment increased. Figure 4.5 displays the

estimated hazard and survival probabilities for pre-treatment violence levels

and for all six values of the second episode timing. Only values of the hazard

and survival in the observed range were plotted, i.e., for a second episode

occurring in third (5-6 months) post-treatment period, only a maximum of

four gap time periods of risk would have been observed. There was no evidence

of time-dependent effects for either pre-treatment violence or timing of second

episode. The baseline hazard was adequately modeled by a constant value.

Models for the first, second, and third episode were combined into one

(see Model 9 in Appendix B). However, since there are no shared covariates

across the episode and the structure of the baseline hazard for the second

and the third episode are different, there were no equality constraints to be
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reasonably tested. There is clearly a different process determining time to first

episode of violence in the post-treatment period than the process determining

the time between the first and second episode or the process determining the

time between the second the third episode. It is important to remember that

the risk sets of men for the second and third episode are conditional on the

occurrence of a prior event. Drinking levels are not predictive of the gap times

for the second and third event. That does not mean these men are not drinking.

Those who drink are more likely to end up in the risk set for the second episode

because they are more likely to return to violence. It suggests that once these

men return to violence and to drinking, drinking is not predictive of when they

will offend again. For the third episode, the fact that a higher level of pre-

treatment violence increases the hazard suggests that these men may begin to

fall back into their pattern of more frequent violent behavior once they have

committed at least two offenses within the first year. The increased hazard

for the third episode due to the time since treatment for the second episode

suggests that there may be an overall impact of treatment (of any kind) for

these men. Certainly, the overall rate of violence in the sample is much lower

that pre-treatment considering that all of the subject had at lease one reported

episode of violence in the three months preceding treatment but only 41%

return to violence in the 12 months following treatment. Among those who
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Table 4.10: Results for Data Example Model 8b: Third Episode, GT Formu-

lation

Parameter Est. SE Est./SE

I(Pre-tx violence > 4) 2.10∗ 0.68 3.09

Time of 2nd episode 1.00∗ 0.24 4.12

ν -4.86 1.03 -4.74

LL=-49.06, parameters=3

∗p < 0.05

do return to violence, this relationship to the time since treatment may imply

that treatment may temporarily diffuse the frequency of violence among those

who do return to that behavior but that effect dissipates as they move further

away from treatment in time. None of these differential covariate relationships

could be explored in a recurrent events model that assumed a common hazard

and/or common covariate effects across the first three occurrences.

4.6.2 Counting process analysis

Tables 4.11 and 4.12 give the results for the separate models for the second

and third episode in the counting process formulation. The most striking
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Figure 4.5: Model 8b estimated hazard and survival probabilities for third

episode by pre-treatment violence and timing of second episode.
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thing to observe is that the model results for the second episode in the CP

version are essentially identical to the results for the second episode in the

GT formulation (Model 8a). Note that the likelihood and number of free

parameters are the same. The quadratic relationship between time-to-violence

and length of relationship was found. Including a time-varying covariate of

time since first episode captures the linear duration dependence estimated for

the baseline hazard in the gap time model. This illustrates the point that

the CP and GT models can model the same time dependence processes, gap

time with an observation-timeline covariate and counting process with a time-

varying time-since-last-event covariate. A similar relationship is seen for the

results of the third episode. The increasing linear trend in the baseline hazard

of the counting process model mirrors the linear effect of the timing of the

second episode found in the gap time model. As with the GT combined model,

there were no reasonable equality constraints to be made across the hazards

for the three episodes. Figure 4.6 displays the estimated hazard and survival

probabilities at the mean covariate values. Since the hazard probabilities for

the second and third episode are also in terms of the original observation

timeline, they can be plotted on the same scale as the first episode (unlike the

partial gap time model). The plots show the hazard for the second episode

greater than the first across time with the hazard for the third beginning
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Table 4.11: Results for Data Example Model 10a: Second Episode, CP For-

mulation

Parameter Est. SE Est./SE

Length of relationship -0.03 0.02 -1.06

(Length of relationship)2 -0.006∗ 0.003 -2.01

Time since 1st episode -0.33∗ 0.12 -2.68

ν -0.23 0.33 -0.71

LL=-98.55, parameters=4

∗p < 0.05

lower than those for the two prior episode but then increasing dramatically

over time. Recall that these are conditional plots—the low hazard for the third

episode in the initial time periods indicate that it is unlikely that subject with

a first and second episode in those early period have a third in so near a time

to treatment. However, as time from treatment increases, the likelihood of a

third episode in the later periods given first and second offense in any of the

prior periods is quite high.
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Table 4.12: Results for Data Example Model 10b: Third Episode, CP Formu-

lation

Parameter Est. SE Est./SE

I(Pre-tx violence > 4) 2.15∗ 0.72 2.99

Time since 2nd episode -0.99∗ 0.26 -3.82

E(η0) -4.18 1.10 -3.79

E(η1) 1.08 0.30 3.61

LL=-49.34, parameters=4

∗p < 0.05
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Figure 4.6: Model 10 estimated hazard and survival probabilities for episodes

1–3.
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4.6.3 Total time analysis

Table 4.13 gives the results for the combined model in the TT formulation.

Recall that unlike the conditional GT and CP models, the TT model is a

marginal model and different results were expected. The separate models for

the first, second, and third episode were combined (Model 5, 12a, and 12b,

respectively) and several equality constraints were made for parameters across

the three events. For the second and third episode, percent-days-drinking was

predictive of time-to-violence and the effects was found to be essentially the

same for episodes 1–3. This is the expected “carry-over” effect mentioned

previously. Because drinking is predictive of the time to first episode, it is

predictive of the time to all subsequent episodes, marginally speaking. There

was also a carry-over effect for household income for the first to the second

episode but not the third. There was no carry-over effect for wife’s education.

The time-varying covariate of time since the previous episode was found to

have a significant effect on both the second and third episode and that effect

was equivalent. A positive linear effect of pre-treatment violence was found

for the second and the third episode. The baseline hazard for the first and

second episode were adequately fit with a linear structure–the intercepts for

the two events were different but the slopes were found to be equivalent and

decreasing; the baseline hazard for the third episode was modeled as a constant.
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Figure 4.7 displays the hazard and survival probabilities at the mean covariate

levels. These plots look quite different than the conditional plots from the GT

and CP models. Since these are marginal probabilities, the hazards for the

second and the third episodes are lower than those for the first episode across

all time periods but are close to each other. The survival probabilities plot

illustrates that almost 60% of the sample does not return to violence in the

first year. A much smaller percent fails to survive having two or three episodes

of violence but the survival curves for the second the third episode are close

together, suggesting that many of those who have a second episode have a

third episode, more so than first to second episode.

4.6.4 Mixture model analysis

The modeling of multiple latent classes was conducted with only the gap time

formulation; the counting process model has already been shown to be equiv-

alent to gap time model and the total time includes carry-over effects that

could confound the detection of unobserved heterogeneity. Table 4.14 gives

the results of a two class model, allowing each episode’s baseline hazard as

well as covariate effects to differ across classes. For the quadratic term for

length of relationship and timing of the second episode, allowing class varying

effects resulted in model non-convergence. Wife’s education level was the only
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Table 4.13: Results for Data Example Model 14: Combined Model, TT For-

mulation

First episode parameters Est. SE Est./SE

I(Wife’s educ. ≤ H.S.) -0.67∗ 0.27 -2.45

I(Income > $35K) -0.69∗ 0.30 -2.32

% days drinking 2.19∗ 0.34 6.50

E(η0) -1.69∗ 0.22 -7.72

E(η1) -0.47∗ 0.09 -5.37

Second episode parameters Est. SE Est./SE

I(Income > $35K) -0.69∗ 0.30 -2.32

Length of relationship -0.03 0.03 -1.14

(Length of relationship)2 -0.003 0.003 -1.02

Pre-tx violence 0.05∗ 0.02 2.08

% days drinking 2.19∗ 0.34 6.50

Time since 1st episode 0.65∗ 0.07 9.34

E(η0) -2.51 0.42 -5.93

E(η1) -0.47 0.09 -5.37

Third episode parameters Est. SE Est./SE

Pre-tx violence 0.05∗ 0.02 2.08

% days drinking 2.19∗ 0.34 6.50

Time since 2nd episode 0.65∗ 0.07 9.34

ν -4.67 0.27 -17.05

LL=-430.31, parameters=11

∗p < 0.05
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Figure 4.7: Model 14 estimated hazard and survival probabilities for episodes

1–3.
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predictor of class membership. The class distribution and parameter estimates

for the first episode suggest that the estimation of heterogeneity in the form

of latent classes is most driven by the first episode which is not surprising

considering there are no shared parameters across the episodes and the first

episode model contains the greatest number of observations. Also, as in the

mixture model for the first episode, the data does not evidence a two class

model. However, examining the results in the table as well as the class plots

for each episode in Figure 4.8 suggest that there is heterogeneity in underlying

susceptibility to violence over time as well as heterogeneity in the effect of the

protective and risk factors for time-to-violence across episodes.
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Table 4.14: Results for Data Example Model 15

Class 1 = 32%
Class 2 = 68%

Class 1 Class 2
1st episode parameters Est. SE Est./SE Est. SE Est./SE

I(Wife’s educ. ≤ H.S.) 2.78 1.69 1.65 -1.47∗ 0.61 -2.42

I(Income > $35K) 1.58 0.80 1.98 -3.17∗ 1.01 -3.12

% days drinking 3.00 2.06 1.46 3.71∗ 1.13 3.29

E(η0) -1.91∗ 0.70 -2.75 -2.51∗ 0.46 -5.40

E(η1) -0.90∗ 0.29 -3.14 -0.12 0.14 -0.90

Class 1 Class 2
2nd episode parameters Est. SE Est./SE Est. SE Est./SE

Length of relationship -0.01 0.06 -0.19 -0.03 0.06 -0.58

(Length of relationship)2 -0.01 0.005 -1.90 -0.01 0.005 -1.90

E(η0) -0.47 0.78 -0.60 0.05 0.54 0.10

E(η1) -0.71∗ 0.29 -2.43 0.42 0.27 1.55

Class 1 Class 2
3rd episode parameters Est. SE Est./SE Est. SE Est./SE

I(Pre-tx violence > 4) 1.56 1.50 1.05 2.72∗ 0.99 2.76

Time of 2nd episode 1.24∗ 0.31 4.03 1.24∗ 0.31 4.03

ν -4.58 1.10 -4.18 -6.13 1.40 -4.39

Class 1 Class 2
Class regression parameters Est. SE Est./SE Est. SE Est./SE

α01 -0.21 0.53 -0.40 @0 – –

αI(Wife′s educ.≤H.S.),1 -1.58∗ 0.76 -2.08 @0 – –

LL=-329.17
parameters=24

∗p < 0.05;
@ = “fixed at”
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Est. First Episode Hazard Probabilities by Class
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Figure 4.8: Model 15 estimated hazard and survival probabilities for first,

second, and third episode by latent class.
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Chapter 5

Conclusion

This chapter summarizes the material presented in this dissertation and dis-

cusses the limitations of the methods herein. It also provides a roadmap for

future methodology development in the area of discrete-time survival analysis

using a latent variable framework.

5.1 Single events

This dissertation built on the work of Muthén and Masyn (2001), demonstrat-

ing the specification and estimation of a single event discrete-time survival

model using latent class regression. It was shown in the case of complete and

noninformative right-censored data that the maximum likelihood estimates for

the probability of the event indicators (treated as binary latent class indicators
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with K = 1) under the assumption of Missing-at-Random (MAR), with non-

missingness in each time period corresponding to observed risk, were equal to

the MLE’s of the hazard probabilities for each time period. It was also shown

how to model the relationship between the hazard probabilities for each time

period and both time-independent and time-dependent covariates using a logit

link function.1 Testing of certain modeling constraints, such as the proportion-

ality of the hazard odds ratio and the time-independence of covariate effects,

was explained, as was the testing of different structures that can be imposed

on the baseline hazard probabilities.

Discrete-time survival analysis allows researchers with event history

data to model the time-to-event process, investigating how risk for an event

may change over time and how risk over time may be influenced by both

time-independent and time-dependent covariates. As stated in Chapter 2, the

LCR framework for discrete-time survival models does not offer anything new,

per se, with regards to specification or estimation—the LCR for single events

1There was also a discussion about the choice of link functions with the note that nothing

about the LCR modeling framework favored one link function over another except in the

practical sense, in that the logit link is the one utilized by the Mplus software. Also, the

logit model specifically may be sensitive to interval length, but it was posited that this

sensitivity may have little practical impact on model estimation; that supposition, however,

needs further substantiation.

223



is equivalent to the discrete-time model specified in the logistic regression

framework. However, the LCR framework does readily allow for many more

complex model extensions than does the traditional logistic regression. Some

of these extensions were explored in Chapters 3 and 4.

The model for single event discrete-time survival analysis explicated in

Chapter 2 has the same limitations as any of the alternate discrete formula-

tions. If one believes that there is an underlying continuous-time process, there

is an untestable assumption about the constancy of the hazard rate within

each time interval. Also, the model does not explicitly allow for changes in a

time-dependent covariate within a given time period. The issue of reciprocal

causation in modeling and interpreting the effects of time-dependent covari-

ates, present in all longitudinal models, is complicated in the discrete-time

setting because of the grouped-time structure of the data. In the area of model

estimation, a discrete-time model with zero observed events in a given time

period is not identified unless the time period is combined with an adjacent

period, essentially constraining the baseline hazard probabilities and covariate

effects to be the same in those periods. There has been very little work done

on model assessment in terms of goodness-of-fit tests and power calculations

for discrete-time models. This dissertation refers to the existent literature,

primarily from the area of categorical data analysis and logistic regression,
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but does not offer anything beyond these current conventions. Finally, al-

though other forms of censoring and truncation are addressed, the assumption

of noninformative right-censoring is applied throughout the dissertation in the

discussion of model specification and estimation. An iterative algorithm for

model estimation with double-censored data is proposed but its properties,

such as self-consistency, are not established nor is the implementation of the

algorithm demonstrated.

5.2 Unobserved heterogeneity

The literature on unobserved heterogeneity and unmeasured covariates in con-

tinuous time, often found under the topic of frailty models, was reviewed. In

the survival data setting, ignoring unobserved heterogeneity can lead to bi-

ases in the estimated baseline hazard probabilities, covariate effects, and even

spurious covariate time-dependent effects depending on the relationship of the

unobserved measures to the survival process and the observed covariates. Sev-

eral simulated examples were presented in Chapter 3 to illustrate the potential

dangers of failing to account for unobserved heterogeneity. The recommenda-

tion of modeling unobserved heterogeneity using finite mixture models in the

continuous-time setting to counteract model sensitivity to misspecification of

the distribution of the unmeasured covariates, was implemented in the discrete-
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time LCR framework by allowing the number of latent classes to be greater

than one. Attention was given to the issue of identification which can prove

challenging with single-event data. A discrete-time survival mixture model

with unstructured baseline hazard probabilities is not identified without at

least one measured covariate. There was also a discussion on the matter of

class enumeration, that is, assessing the empirical evidence in differential sup-

port of mixture models with increasing numbers of classes. The AIC, BIC, and

G2 were compared for a set of simulated examples to which correctly specified

and misspecified models were fit. It was shown that misspecifying a model,

particularly by allowing only indirect effects of a measured covariate on the

hazard probabilities through the latent class variable, could lead to incorrect

model selection with respect to the class enumeration as well as biases in the

estimated covariate effects. As a related issue, it was also shown that presup-

posing a class number and structure, such as is done with long-term survivor

models, can lead to biases in the model estimation. From the simulated ex-

amples presented, it seems advisable that a long-term survival model is tested

against an unrestricted two-class model rather than assuming it to be correct.

The dangers of ignoring unobserved heterogeneity are clear. One of the

primary advantages to specifying discrete-time survival models in the LCR

framework is the straightforward extension that can be made to a multi-class
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mixture model. By allowing more than one latent class, the model can ac-

commodate the possibility of individual variability in not only baseline hazard

probabilities, through class-specific thresholds, but also variability in the ef-

fects of the measured covariates, through class-specific regression coefficients.

The model also allows measured covariates to influence the distribution of in-

dividual frailty, through the regression of the latent class variable on observed

time-independent covariates. Such a flexible model with no distributional as-

sumptions about the unobserved heterogeneity guards against problems of

misspecification. The discrete-time survival mixture model allows researchers

to explore not only the mean survival process but to also better understand

how overall event susceptibility as well as susceptibility to various risk and

protective factors may vary within the population. And such differences in

susceptibility may also depend on a set of measured covariates. This is a

clear improvement over models that require multilevel data (e.g., individuals

clusters in observed groups such as classrooms or families) or a restricted spec-

ification of the unobserved heterogeneity (e.g., long-term survivor models) to

account for unobserved heterogeneity.

The discrete-time survival mixture model for non-clustered single event

data is limited by the requirements for identification. Depending on the num-

ber of time periods, number of observed events, total sample size, number of
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measured covariates, and the nature of the unobserved heterogeneity, the LCR

framework allows a more unrestricted model than may be theoretically or em-

pirically identified for a given sample. One could argue that if a particular

mixture model is not empirically identified that the bias present in a more

restricted model, even if misspecified, may be negligible, practically speaking.

However, this matter needs to be more fully explored. Also, there is a lim-

itation in the methods currently available for class enumeration. The use of

the AIC, BIC, and G2 was demonstrated in Chapter 3 but the performance

of these indices and statistical test along with others available for mixture

modeling in different settings, such as the Lo, Mendell, and Rubin LRT, was

not systematically evaluated in the discrete-time setting. Until such a time as

there is a reliable test for the number of classes, substantive knowledge must

be used in combination with empirical evaluation to inform the mixture model

specification. The need for more methods related to models assessment and

power calculations in the non-mixture case applies to the mixture models as

well. This dissertation, although detailing the motivation and specification

of discrete-time mixture models does not establish a complete set of “best

practices” for model building and assessment.
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5.3 Recurrent events

Although there is some literature about recurrent event models in discrete-

time, there is no thorough review of the different approaches in modeling

recurrent event processes as exists for continuous time. This dissertation pre-

sented three different formulations of time and risk for recurrent events, fo-

cusing on processes with low frequencies of recurrences. It was demonstrated

how the gap time, counting process, and total time formulations could all be

specified in the same LCR framework used for single events. Similar to the

single event models, the LCR framework specification allows a direct extension

to multiple latent classes, using finite mixtures to account for the likely within

subject correlation across event times as well as other sources of unobserved

heterogeneity. It was proposed that risk intervals for adjacent spells be al-

lowed to overlap at the end period for one spell and the beginning of the next.

The gap time and counting process formulations were shown to be equivalent

in discrete-time, when including the appropriate time-dependent covariates;

however, the gap time formulation requires less explicit adjustment for the

possible bias resulting from overlapping risk intervals. The choice between the

two formulations should be driven by the substantive research questions and

the time scale that best represents those questions. The total time formula-
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tion, resulting in a marginal model, was not found to be as informative as the

other two formulations in understanding the recurrent event process.

The recurrent events model in the LCR framework offers several ap-

pealing features for the applied researcher. The model allows for event-specific

baseline hazard probabilities as well as event-specific covariate effects. This

means that researchers may investigate the differences in duration dependence

and covariate effects for different events. For example, are the significant risk

factors for time to first occurrence also significant risk factors for the time be-

tween recurrences? Are those subjects who have already experienced one event

at increased risk of experiencing a second event? In addition, the effects of

unobserved heterogeneity (including within subject correlation) are permitted

to influence not only the baseline hazard probabilities but also event-specific

covariate effects. That is, the frailty or susceptibility for an individual is per-

mitted to be different for differently numbered events. None of the current

models for recurrent events in discrete-time present this degree of flexibility.

The traditional logistic regression formulation allows for event-specific haz-

ards but does not account for within or between subject correlation beyond

the measured covariates. The Poisson mixture model allows for nonparametric

modeling of the unobserved heterogeneity but does not allow for event-specific

hazard probabilities or covariate effects. The multilevel discrete-time logistic
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model also does not allow for event-specific hazard probabilities (although the

number of prior events may be included as a covariate) and imposes a normal

distribution on the variability of the logit baseline hazard probabilities and

covariate effects.

The treatment of recurrent events is limited in this dissertation so that

processes with high frequencies of recurrence are not addressed. Also, the

proposed correction for the possible bias resulting from allowing the end and

beginning of adjacent risk intervals to overlap was not formally proven to

be a sufficient adjustment. There is no measure of goodness-of-fit presented

although there is a possibility of extending the G2 statistic. With respect to

unobserved heterogeneity, there is no satisfactory work on the sensitivity to

misspecification of the distribution in the recurrent events setting nor is there

a clear practical strategy for mixture model specification and assessment.

5.4 Future research

The limitations of the current dissertation point to some of the many direc-

tions in which future research in the area of discrete-time survival using latent

variables may go. For the single event models, more work is needed on the top-

ics of model assessment and power calculations, particularly for the mixture

models. The G2 statistic is a promising goodness-of-fit measure but it needs to
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be modified to accommodate right-censoring prior to the end of the observa-

tion period. The behavior of this statistic also needs to be examined through

simulations to understand the degree of sensitivity it may have to sample size

and trivial model misspecification. Also, the G2 and the Lo, Mendell, and

Rubin LRT, along with commonly employed information criteria, such as the

AIC and BIC, should be evaluated with regards to their performance in the

area of latent class enumeration for discrete-time models. It would also be

of great value to the applied researcher to evaluate the power for detecting

time-dependent and time-independent covariate effects as well as direct and

indirect covariate effects in the mixture models as a function of the number of

time periods, the width of the time periods, the baseline hazard probabilities,

sample size, and effect sizes. The algorithms proposed for double-censored and

interval-censored data should be shown to be self-consistent and implemented

in a real data analysis setting. All of the work mentioned here should also be

extended to recurrent event models with the additional consideration of how

associations between the different event processes could improve stability of

parameter estimates, power, accuracy of class enumeration, etc.

Moving beyond the scope of this dissertation is the challenge of adapt-

ing this LCR framework to accommodate other multivariate survival data. For

example, the recurrent event modeling framework could be modified for use
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with data from high frequency event recurrence processes. These data do not

allow for event-specific baseline hazard probabilities or event-specific covariate

effects and often contain double-censored observations. Another kind of mul-

tivariate survival data for which the LCR framework could be modified are

the competing risks processes briefly described at the beginning of Chapter 4.

For these data, occurrence of one event precludes the occurrence of any of the

other possible events. A model for competing risks using this framework might

resemble something of a hybrid between the single and recurrent event models.

And all these extensions are still limited in scope to survival data—they do

not realize the full potential of the LCR framework for multivariate longitu-

dinal events. Using a general latent variable framework, which includes LCR,

the richness and flexibility of this formulation for discrete-time event history

is currently unmatched. Muthén and Masyn (2001) illustrated a model that

combined a growth mixture model followed by a discrete-time survival process,

in which the heterogeneity in the growth trajectories predicted heterogeneity

in the time-to-event process. It would also be possible in this framework to

specify a discrete-time survival process followed by a growth model, e.g., mod-

eling time to returning to drinking and then modeling the pattern of drinking

behavior once it had begun. Two consecutive survival processes could be mod-

eled as well as concurrent survival processes or other concurrent longitudinal

233



processes. It would be possible to incorporate covariates measured with error

(i.e., latent variables, continuous or categorical, as covariates of survival) and

it may even be possible to allow the event itself to be measured with error,

e.g., depression as an event where depression is not diagnosed with absolute

precision.

There are certainly other modeling possibilities not mentioned here and

many that have yet to be conceived. This dissertation establishes a strong

foundation that will allow future exploration into the many methodology ex-

tensions that will provide researchers with full and flexible models that best

represent the complexity of behaviorial processes over time.
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Appendix A: Splus Code
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nsize is the sample size. 

emviopj is an nsize-element vector where emviopj[i]=1 if the m
th

 event 

occurred for subject i in time period j and 0 otherwise. 

The value 999 indicates missingess.

Creating observed event indicators for first violence episode 

eviomj is an nsize-element vector corresponding to the observed event indicators 

for the m
th

 event in the j
th

 time period as described in Chapter 2. 

evio11_e1viop1
evio12_e1viop2

evio13_e1viop3

evio14_e1viop4
evio15_e1viop5

evio16_e1viop6

for (i in 1:nsize) 

{

if (evio11[i]==1)
{evio12[i]_999; evio13[i]_999; 

evio14[i]_999; evio15[i]_999; evio16[i]_999} 

if (evio12[i]==1)

{evio13[i]_999; evio14[i]_999;
 evio15[i]_999; evio16[i]_999} 

if (evio13[i]==1)

{evio14[i]_999; evio15[i]_999; evio16[i]_999} 

if (evio14[i]==1)

{evio15[i]_999; evio16[i]_999} 

if (evio15[i]==1)
{evio16[i]_999}

}
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Creating observed event indicators for second and third 

violence episode in gap time formulation 

eviomjgt is an nsize-element vector corresponding to the observed event 

indicators for the m
th

 event in the j
th

 time period in gap time formulation as described 

in Chapter 4.

evio20gt_rep(999,nsize)
evio21gt_rep(999,nsize)

evio22gt_rep(999,nsize)
evio23gt_rep(999,nsize)

evio24gt_rep(999,nsize)

evio25gt_rep(999,nsize)

for (i in 1:nsize) 

{
if (e1viop1[i]==1)

  {evio20gt[i]_0; evio21gt[i]_0; evio22gt[i]_0;  
 evio23gt[i]_0; evio24gt[i]_0; evio25gt[i]_0} 

if (e1viop2[i]==1)
 {evio20gt[i]_0; evio21gt[i]_0; evio22gt[i]_0;  

  evio23gt[i]_0; evio24gt[i]_0} 

if (e1viop3[i]==1)
  {evio20gt[i]_0; evio21gt[i]_0; evio22gt[i]_0;  

  evio23gt[i]_0} 

if (e1viop4[i]==1)

  {evio20gt[i]_0; evio21gt[i]_0; evio22gt[i]_0} 

if (e1viop5[i]==1)
  {evio20gt[i]_0; evio21gt[i]_0} 

if (e1viop6[i]==1)

  {evio20gt[i]_0} 

}
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for (i in 1:nsize) 

{
if (e2viop1[i]==1)

  {evio20gt[i]_1; evio21gt[i]_999; evio22gt[i]_999;  
  evio23gt[i]_999; evio24gt[i]_999; evio25gt[i]_999} 

if (e2viop2[i]==1 & e1viop2[i]==1)

  {evio20gt[i]_1; evio21gt[i]_999; evio22gt[i]_999;  
  evio23gt[i]_999; evio24gt[i]_999; evio25gt[i]_999} 

if (e2viop2[i]==1 & e1viop1[i]==1)
  {evio21gt[i]_1; evio22gt[i]_999; evio23gt[i]_999;  

  evio24gt[i]_999; evio25gt[i]_999} 

if (e2viop3[i]==1 & e1viop3[i]==1)
  {evio20gt[i]_1; evio21gt[i]_999; evio22gt[i]_999;  

  evio23gt[i]_999; evio24gt[i]_999; evio25gt[i]_999}      

if (e2viop3[i]==1 & e1viop2[i]==1)

  {evio21gt[i]_1; evio22gt[i]_999; evio23gt[i]_999;  
  evio24gt[i]_999; evio25gt[i]_999} 

if (e2viop3[i]==1 & e1viop1[i]==1)

  {evio22gt[i]_1; evio23gt[i]_999; evio24gt[i]_999;  
  evio25gt[i]_999} 

if (e2viop4[i]==1 & e1viop4[i]==1)
  {evio20gt[i]_1; evio21gt[i]_999; evio22gt[i]_999;  

  evio23gt[i]_999; evio24gt[i]_999; evio25gt[i]_999}      

if (e2viop4[i]==1 & e1viop3[i]==1)
  {evio21gt[i]_1; evio22gt[i]_999; evio23gt[i]_999;  

  evio24gt[i]_999; evio25gt[i]_999} 

if (e2viop4[i]==1 & e1viop2[i]==1)

  {evio22gt[i]_1; evio23gt[i]_999; evio24gt[i]_999;  
  evio25gt[i]_999} 

if (e2viop4[i]==1 & e1viop1[i]==1)

  {evio23gt[i]_1; evio24gt[i]_999; evio25gt[i]_999} 

if (e2viop5[i]==1 & e1viop5[i]==1)

  {evio20gt[i]_1; evio21gt[i]_999; evio22gt[i]_999;  
  evio23gt[i]_999; evio24gt[i]_999; evio25gt[i]_999}      
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if (e2viop5[i]==1 & e1viop4[i]==1)

  {evio21gt[i]_1; evio22gt[i]_999; evio23gt[i]_999;  
  evio24gt[i]_999; evio25gt[i]_999} 

if (e2viop5[i]==1 & e1viop3[i]==1)

  {evio22gt[i]_1; evio23gt[i]_999; evio24gt[i]_999;  
  evio25gt[i]_999} 

if (e2viop5[i]==1 & e1viop2[i]==1)

  {evio23gt[i]_1; evio24gt[i]_999; evio25gt[i]_999} 

if (e2viop5[i]==1 & e1viop1[i]==1)

  {evio24gt[i]_1; evio25gt[i]_999} 

if (e2viop6[i]==1 & e1viop6[i]==1)
  {evio20gt[i]_1; evio21gt[i]_999; evio22gt[i]_999;  

  evio23gt[i]_999; evio24gt[i]_999; evio25gt[i]_999}      

if (e2viop6[i]==1 & e1viop5[i]==1)

  {evio21gt[i]_1; evio22gt[i]_999; evio23gt[i]_999;  
  evio24gt[i]_999; evio25gt[i]_999} 

if (e2viop6[i]==1 & e1viop4[i]==1)

  {evio22gt[i]_1; evio23gt[i]_999; evio24gt[i]_999;  
  evio25gt[i]_999} 

if (e2viop6[i]==1 & e1viop3[i]==1)
  {evio23gt[i]_1; evio24gt[i]_999; evio25gt[i]_999} 

if (e2viop6[i]==1 & e1viop2[i]==1)

  {evio24gt[i]_1; evio25gt[i]_999} 

if (e2viop6[i]==1 & e1viop1[i]==1)

  {evio25gt[i]_1} 
}

evio30gt_rep(999,nsize)
evio31gt_rep(999,nsize)

evio32gt_rep(999,nsize)
evio33gt_rep(999,nsize)

evio34gt_rep(999,nsize)

evio35gt_rep(999,nsize)
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for (i in 1:nsize) 

{
if (e2viop1[i]==1)

  {evio30gt[i]_0; evio31gt[i]_0; evio32gt[i]_0;  
  evio33gt[i]_0; evio34gt[i]_0; evio35gt[i]_0} 

if (e2viop2[i]==1)

  {evio30gt[i]_0; evio31gt[i]_0; evio32gt[i]_0;  
  evio33gt[i]_0; evio34gt[i]_0} 

if (e2viop3[i]==1)
  {evio30gt[i]_0; evio31gt[i]_0; evio32gt[i]_0;  

  evio33gt[i]_0} 

if (e2viop4[i]==1)
  {evio30gt[i]_0; evio31gt[i]_0; evio32gt[i]_0} 

if (e2viop5[i]==1)
  {evio30gt[i]_0; evio31gt[i]_0} 

if (e2viop6[i]==1)

  {evio30gt[i]_0} 
}

for (i in 1:nsize) 

{
if (e3viop1[i]==1)

  {evio30gt[i]_1; evio31gt[i]_999; evio32gt[i]_999;  
  evio33gt[i]_999; evio34gt[i]_999; evio35gt[i]_999} 

if (e3viop2[i]==1 & e2viop2[i]==1)

  {evio30gt[i]_1; evio31gt[i]_999; evio32gt[i]_999;  

  evio33gt[i]_999; evio34gt[i]_999; evio35gt[i]_999} 

if (e3viop2[i]==1 & e2viop1[i]==1)
  {evio31gt[i]_1; evio32gt[i]_999; evio33gt[i]_999;  

  evio34gt[i]_999; evio35gt[i]_999} 

if (e3viop3[i]==1 & e2viop3[i]==1)
  {evio30gt[i]_1; evio31gt[i]_999; evio32gt[i]_999;  

  evio33gt[i]_999; evio34gt[i]_999; evio35gt[i]_999} 
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if (e3viop3[i]==1 & e2viop2[i]==1)

  {evio31gt[i]_1; evio32gt[i]_999; evio33gt[i]_999;  
  evio34gt[i]_999; evio35gt[i]_999} 

if (e3viop3[i]==1 & e2viop1[i]==1)

  {evio32gt[i]_1; evio33gt[i]_999; evio34gt[i]_999;  
  evio35gt[i]_999} 

if (e3viop4[i]==1 & e2viop4[i]==1)

  {evio30gt[i]_1; evio31gt[i]_999; evio32gt[i]_999;  

  evio33gt[i]_999; evio34gt[i]_999; evio35gt[i]_999} 

if (e3viop4[i]==1 & e2viop3[i]==1)
  {evio31gt[i]_1; evio32gt[i]_999; evio33gt[i]_999;  

  evio34gt[i]_999; evio35gt[i]_999} 

if (e3viop4[i]==1 & e2viop2[i]==1)

  {evio32gt[i]_1; evio33gt[i]_999; evio34gt[i]_999;  
  evio35gt[i]_999} 

if (e3viop4[i]==1 & e2viop1[i]==1)

  {evio33gt[i]_1; evio34gt[i]_999; evio35gt[i]_999} 

if (e3viop5[i]==1 & e2viop5[i]==1)
  {evio30gt[i]_1; evio31gt[i]_999; evio32gt[i]_999;  

  evio33gt[i]_999; evio34gt[i]_999; evio35gt[i]_999} 

if (e3viop5[i]==1 & e2viop4[i]==1)

  {evio31gt[i]_1; evio32gt[i]_999; evio33gt[i]_999;  
  evio34gt[i]_999; evio35gt[i]_999} 

if (e3viop5[i]==1 & e2viop3[i]==1)

  {evio32gt[i]_1; evio33gt[i]_999; evio34gt[i]_999;  

  evio35gt[i]_999} 

if (e3viop5[i]==1 & e2viop2[i]==1)
  {evio33gt[i]_1; evio34gt[i]_999; evio35gt[i]_999} 

if (e3viop5[i]==1 & e2viop1[i]==1)

  {evio34gt[i]_1; evio35gt[i]_999} 

if (e3viop6[i]==1 & e2viop6[i]==1)

  {evio30gt[i]_1; evio31gt[i]_999; evio32gt[i]_999;  
  evio33gt[i]_999; evio34gt[i]_999; evio35gt[i]_999} 
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if (e3viop6[i]==1 & e2viop5[i]==1)
  {evio31gt[i]_1; evio32gt[i]_999; evio33gt[i]_999;  

  evio34gt[i]_999; evio35gt[i]_999} 

if (e3viop6[i]==1 & e2viop4[i]==1)
  {evio32gt[i]_1; evio33gt[i]_999; evio34gt[i]_999;  

  evio35gt[i]_999} 

if (e3viop6[i]==1 & e2viop3[i]==1)

  {evio33gt[i]_1; evio34gt[i]_999; evio35gt[i]_999} 

if (e3viop6[i]==1 & e2viop2[i]==1)
  {evio34gt[i]_1; evio35gt[i]_999} 

if (e3viop6[i]==1 & e2viop1[i]==1)

  {evio35gt[i]_1} 

}

Creating observed event indicators for second and third 

violence episode in counting process formulation 

eviomjcp is an nsize-element vector corresponding to the observed event 

indicators for the m
th

 event in the j
th

 time period in counting process formulation as 

described in Chapter 4.

evio21cp_rep(999,nsize)

evio22cp_rep(999,nsize)

evio23cp_rep(999,nsize)
evio24cp_rep(999,nsize)

evio25cp_rep(999,nsize)
evio26cp_rep(999,nsize)

for (i in 1:nsize) 
{

if (e1viop1[i]==1)

  {evio21cp[i]_0; evio22cp[i]_0; evio23cp[i]_0;  
  evio24cp[i]_0; evio25cp[i]_0; evio26cp[i]_0} 
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if (e1viop2[i]==1)

  {evio22cp[i]_0; evio23cp[i]_0; evio24cp[i]_0;  
  evio25cp[i]_0; evio26cp[i]_0} 

if (e1viop3[i]==1)

  {evio23cp[i]_0; evio24cp[i]_0; evio25cp[i]_0;  
  evio26cp[i]_0} 

if (e1viop4[i]==1)

  {evio24cp[i]_0; evio25cp[i]_0; evio26cp[i]_0} 

if (e1viop5[i]==1)

  {evio25cp[i]_0; evio26cp[i]_0} 

if (e1viop6[i]==1)
  {evio26cp[i]_0} 

}

for (i in 1:nsize) 
{

if (e2viop1[i]==1)
  {evio21cp[i]_1; evio22cp[i]_999; evio23cp[i]_999;  

  evio24cp[i]_999; evio25cp[i]_999; evio26cp[i]_999} 

if (e2viop2[i]==1)

  {evio22cp[i]_1; evio23cp[i]_999; evio24cp[i]_999; 
  evio25cp[i]_999; evio26cp[i]_999} 

if (e2viop3[i]==1)

  {evio23cp[i]_1; evio24cp[i]_999; evio25cp[i]_999;  
  evio26cp[i]_999} 

if (e2viop4[i]==1)
  {evio24cp[i]_1; evio25cp[i]_999; evio26cp[i]_999} 

if (e2viop5[i]==1)

  {evio25cp[i]_1; evio26cp[i]_999} 

if (e2viop6[i]==1)
  {evio26cp[i]_1} 

}
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evio31cp_rep(999,nsize)
evio32cp_rep(999,nsize)

evio33cp_rep(999,nsize)
evio34cp_rep(999,nsize)

evio35cp_rep(999,nsize)
evio36cp_rep(999,nsize)

for (i in 1:nsize) 

{
if (e2viop1[i]==1)

  {evio31cp[i]_0; evio32cp[i]_0; evio33cp[i]_0;  
  evio34cp[i]_0; evio35cp[i]_0; evio36cp[i]_0} 

if (e2viop2[i]==1)

  {evio32cp[i]_0; evio33cp[i]_0; evio34cp[i]_0;  

  evio35cp[i]_0; evio36cp[i]_0} 

if (e2viop3[i]==1)
  {evio33cp[i]_0; evio34cp[i]_0; evio35cp[i]_0;  

  evio36cp[i]_0} 

if (e2viop4[i]==1)
  {evio34cp[i]_0; evio35cp[i]_0; evio36cp[i]_0} 

if (e2viop5[i]==1)
  {evio35cp[i]_0; evio36cp[i]_0} 

if (e2viop6[i]==1)

  {evio36cp[i]_0} 
}

for (i in 1:nsize) 

{
if (e3viop1[i]==1)

  {evio31cp[i]_1; evio32cp[i]_999; evio33cp[i]_999;  
  evio34cp[i]_999; evio35cp[i]_999; evio36cp[i]_999} 

if (e3viop2[i]==1)

  {evio32cp[i]_1; evio33cp[i]_999; evio34cp[i]_999; 

  evio35cp[i]_999; evio36cp[i]_999} 
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if (e3viop3[i]==1)

  {evio33cp[i]_1; evio34cp[i]_999; evio35cp[i]_999;  
  evio36cp[i]_999} 

if (e3viop4[i]==1)

  {evio34cp[i]_1; evio35cp[i]_999; evio36cp[i]_999} 

if (e3viop5[i]==1)
  {evio35cp[i]_1; evio36cp[i]_999} 

if (e3viop6[i]==1)
  {evio36cp[i]_1} 

}

Creating observed event indicators for second and third 

violence episode in total time formulation 

eviomjtt is an nsize-element vector corresponding to the observed event 

indicators for the m
th

 event in the j
th

 time period in counting process formulation as 

described in Chapter 4.

evio21tt_rep(0,nsize)

evio22tt_rep(0,nsize)
evio23tt_rep(0,nsize)

evio24tt_rep(0,nsize)

evio25tt_rep(0,nsize)
evio26tt_rep(0,nsize)

for (i in 1:nsize) 
{

if (e2viop1[i]==1)
  {evio21tt[i]_1; evio22tt[i]_999; evio23tt[i]_999;  

  evio24tt[i]_999; evio25tt[i]_999; evio26tt[i]_999} 

if (e2viop2[i]==1)
  {evio22tt[i]_1; evio23tt[i]_999; evio24tt[i]_999; 

  evio25tt[i]_999; evio26tt[i]_999} 

if (e2viop3[i]==1)
  {evio23tt[i]_1; evio24tt[i]_999; evio25tt[i]_999;  

  evio26tt[i]_999} 
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if (e2viop4[i]==1)

  {evio24tt[i]_1; evio25tt[i]_999; evio26tt[i]_999} 

if (e2viop5[i]==1)
  {evio25tt[i]_1; evio26tt[i]_999} 

if (e2viop6[i]==1)

  {evio26tt[i]_1} 
}

evio31tt_rep(0,nsize)

evio32tt_rep(0,nsize)
evio33tt_rep(0,nsize)

evio34tt_rep(0,nsize)
evio35tt_rep(0,nsize)

evio36tt_rep(0,nsize)

for (i in 1:nsize) 
{

if (e3viop1[i]==1)
  {evio31tt[i]_1; evio32tt[i]_999; evio33tt[i]_999;  

  evio34tt[i]_999; evio35tt[i]_999; evio36tt[i]_999} 

if (e3viop2[i]==1)

  {evio32tt[i]_1; evio33tt[i]_999; evio34tt[i]_999; 
  evio35tt[i]_999; evio36tt[i]_999} 

if (e3viop3[i]==1)

  {evio33tt[i]_1; evio34tt[i]_999; evio35tt[i]_999;  
  evio36tt[i]_999} 

if (e3viop4[i]==1)
  {evio34tt[i]_1; evio35tt[i]_999; evio36tt[i]_999} 

if (e3viop5[i]==1)

  {evio35tt[i]_1; evio36tt[i]_999} 

if (e3viop6[i]==1)
  {evio36tt[i]_1} 

}
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Calculation of G
2
 for Model 5 

y1_as.numeric(evio11==1)
y2_as.numeric(evio12==1)
y3_as.numeric(evio13==1)
y4_as.numeric(evio14==1)
y5_as.numeric(evio15==1)
y6_as.numeric(evio16==1)

eta0_-1.718
eta1_-0.498

lambda_c(0,1,2,3,4,5)

beta1_-0.675
beta2_-0.668
beta3_2.373

y1hat_1/(1+exp(-(eta0+eta1*lambda[1]+
   beta1*edw+beta2*inc+beta3*pddp1))) 

y2hat_(1-1/(1+exp(-(eta0+eta1*lambda[1]+
   beta1*edw+beta2+inc+beta3*pddp1))))* 
  (1/(1+exp(-(eta0+eta1*lambda[2]- 
   beta1*edw+beta2+inc+beta3*pddp2)))) 

y3hat_(1-1/(1+exp(-(eta0+eta1*lambda[1]-
   beta1*edw+beta2+inc+beta3*pddp1))))* 
  (1-1/(1+exp(-(eta0+eta1*lambda[2]- 
   beta1*edw+beta2+inc+beta3*pddp2))))* 
  (1/(1+exp(-(eta0+eta1*lambda[3]- 
   beta1*edw+beta2+inc+beta3*pddp3)))) 

y4hat_(1-1/(1+exp(-(eta0+eta1*lambda[1]-
   beta1*edw+beta2+inc+beta3*pddp1))))* 
  (1-1/(1+exp(-(eta0+eta1*lambda[2]- 
   beta1*edw+beta2+inc+beta3*pddp2))))* 
  (1-1/(1+exp(-(eta0+eta1*lambda[3]- 
   beta1*edw+beta2+inc+beta3*pddp3))))* 
  (1/(1+exp(-(eta0+eta1*lambda[4]- 
   beta1*edw+beta2+inc+beta3*pddp4)))) 
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y5hat_(1-1/(1+exp(-(eta0+eta1*lambda[1]-
   beta1*edw+beta2+inc+beta3*pddp1))))* 
  (1-1/(1+exp(-(eta0+eta1*lambda[2]- 
   beta1*edw+beta2+inc+beta3*pddp2))))* 
  (1-1/(1+exp(-(eta0+eta1*lambda[3]- 
   beta1*edw+beta2+inc+beta3*pddp3))))* 
  (1-1/(1+exp(-(eta0+eta1*lambda[4]- 
   beta1*edw+beta2+inc+beta3*pddp4))))* 
  (1/(1+exp(-(eta0+eta1*lambda[5]- 
   beta1*edw+beta2+inc+beta3*pddp5)))) 

y6hat_(1-1/(1+exp(-(eta0+eta1*lambda[1]-
   beta1*edw+beta2+inc+beta3*pddp1))))* 
  (1-1/(1+exp(-(eta0+eta1*lambda[2]- 
   beta1*edw+beta2+inc+beta3*pddp2))))* 
  (1-1/(1+exp(-(eta0+eta1*lambda[3]- 
   beta1*edw+beta2+inc+beta3*pddp3))))* 
  (1-1/(1+exp(-(eta0+eta1*lambda[4]- 
   beta1*edw+beta2+inc+beta3*pddp4))))* 
  (1-1/(1+exp(-(eta0+eta1*lambda[5]- 
   beta1*edw+beta2+inc+beta3*pddp5))))* 
  (1/(1+exp(-(eta0+eta1*lambda[6]- 
   beta1*edw+beta2+inc+beta3*pddp6)))) 

vc1_(1/nsize)*c(sum(y1hat*(1-y1hat)),
  sum(y1hat*-y2hat),sum(y1hat*-y3hat), 
  sum(y1hat*-y4hat),sum(y1hat*-y5hat), 
  sum(y1hat*-y6hat)) 

vc2_(1/nsize)*c(sum(y2hat*-y1hat),
  sum(y2hat*(1-y2hat)),sum(y2hat*-y3hat), 
  sum(y2hat*-y4hat),sum(y2hat*-y5hat), 
  sum(y2hat*-y6hat)) 

vc3_(1/nsize)*c(sum(y3hat*-y1hat),
  sum(y3hat*-y2hat),sum(y3hat*(1-y3hat)), 
  sum(y3hat*-y4hat),sum(y3hat*-y5hat), 
  sum(y3hat*-y6hat)) 

vc4_(1/nsize)*c(sum(y4hat*-y1hat),
  sum(y4hat*-y2hat),sum(y4hat*-y3hat), 
  sum(y4hat*(1-y4hat)),sum(y4hat*-y5hat), 
  sum(y4hat*-y6hat)) 
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vc5_(1/nsize)*c(sum(y5hat*-y1hat),
  sum(y5hat*-y2hat),sum(y5hat*-y3hat), 
  sum(y5hat*-y4hat),sum(y5hat*(1-y5hat)), 
  sum(y5hat*-y6hat)) 

vc6_(1/nsize)*c(sum(y6hat*-y1hat),
  sum(y6hat*-y2hat),sum(y6hat*-y3hat), 
  sum(y6hat*-y4hat),sum(y6hat*-y5hat), 
  sum(y6hat*(1-y6hat))) 

vy_cbind(vc1,vc2,vc3,vc4,vc5,vc6)

sn1_y1-y1hat
sn2_y2-y2hat
sn3_y3-y3hat
sn4_y4-y4hat
sn5_y5-y5hat
sn6_y6-y6hat

sn_(1/sqrt(nsize))*c(sum(sn1),sum(sn2),
  sum(sn3),sum(sn4),sum(sn5),sum(sn6)) 

g2_t(sn)%*%solve(vy)%*%t(t(sn))

pg2_1-pchisq(g2,6)

Class enumeration data simulations:  Population A 

caseid_1:10000

x1_rnorm(10000,0,1)

x2_as.numeric(runif(10000,0,1)<.5)

u1_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-2+x1+2*x2))))) 
u2_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-2+x1+2*x2))))) 
u3_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-2+x1+2*x2))))) 
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u4_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-2+x1+2*x2))))) 
u5_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-2+x1+2*x2))))) 

for (i in 1:10000) 
{
if (u1[i]==1)
  {u2[i]_999; u3[i]_999; u4[i]_999; u5[i]_999} 

if (u2[i]==1)
  {u3[i]_999; u4[i]_999; u5[i]_999} 

if (u3[i]==1)
  {u4[i]_999; u5[i]_999} 

if (u4[i]==1)
  {u5[i]_999} 
}

Class enumeration data simulations:  Population B 

caseid_1:10000

x1_rnorm(10000,0,1)

x2_as.numeric(runif(10000,0,1)<(1/(1+exp(-x1))))

u1_as.numeric(runif(10000,0,1)<(1/(1+exp(-(-2+2*x2)))))
u2_as.numeric(runif(10000,0,1)<(1/(1+exp(-(-2+2*x2)))))
u3_as.numeric(runif(10000,0,1)<(1/(1+exp(-(-2+2*x2)))))
u4_as.numeric(runif(10000,0,1)<(1/(1+exp(-(-2+2*x2)))))
u5_as.numeric(runif(10000,0,1)<(1/(1+exp(-(-2+2*x2)))))
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for (i in 1:10000) 
{
if (u1[i]==1)
  {u2[i]_999; u3[i]_999; u4[i]_999; u5[i]_999} 

if (u2[i]==1)
  {u3[i]_999; u4[i]_999; u5[i]_999} 

if (u3[i]==1) {u4[i]_999; u5[i]_999} 

if (u4[i]==1)
  {u5[i]_999} 
}

Class enumeration data simulations:  Population C 

caseid_1:10000

x1_rnorm(10000,0,1)

x2_as.numeric(runif(10000,0,1)<(1/(1+exp(-x1))))

u1_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-2+x1+2*x2))))) 
u2_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-2+x1+2*x2))))) 
u3_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-2+x1+2*x2))))) 
u4_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-2+x1+2*x2))))) 
u5_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-2+x1+2*x2))))) 

for (i in 1:10000) 
{
if (u1[i]==1)
  {u2[i]_999; u3[i]_999; u4[i]_999; u5[i]_999} 

if (u2[i]==1)
  {u3[i]_999; u4[i]_999; u5[i]_999} 
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if (u3[i]==1)
  {u4[i]_999; u5[i]_999} 

if (u4[i]==1)
  {u5[i]_999} 
}

Long-term survivor data simulations:  Population A 

caseid_1:10000

x1_rnorm(10000,0,1)

x2_as.numeric(runif(10000,0,1)<.5)

#x2==1 for LTS 

u1_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0) 
u2_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0)  
u3_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0)  
u4_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0) 
u5_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0)  

for (i in 1:10000) 
{
if (u1[i]==1)
  {u2[i]_999; u3[i]_999; u4[i]_999; u5[i]_999} 

if (u2[i]==1)
  {u3[i]_999; u4[i]_999; u5[i]_999} 

if (u3[i]==1)
  {u4[i]_999; u5[i]_999} 

if (u4[i]==1)
  {u5[i]_999} 
}
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Long-term survivor data simulations:  Population B 

caseid_1:10000

x1_rnorm(10000,0,1)

x2_as.numeric(runif(10000,0,1)<.5)

u1_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0) +  
  as.numeric(runif(10000,0,1)< 
  (1/(1+exp(-(-4)))))*(x2==1) 
u2_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0) +  
  as.numeric(runif(10000,0,1)< 
  (1/(1+exp(-(-4)))))*(x2==1) 
u3_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0) +  
  as.numeric(runif(10000,0,1)< 
  (1/(1+exp(-(-4)))))*(x2==1) 
u4_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0) +  
  as.numeric(runif(10000,0,1)< 
  (1/(1+exp(-(-4)))))*(x2==1) 
u5_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0) +  
  as.numeric(runif(10000,0,1)< 
  (1/(1+exp(-(-4)))))*(x2==1) 

for (i in 1:10000) 
{
if (u1[i]==1)
  {u2[i]_999; u3[i]_999; u4[i]_999; u5[i]_999} 

if (u2[i]==1)
  {u3[i]_999; u4[i]_999; u5[i]_999} 

if (u3[i]==1)
  {u4[i]_999; u5[i]_999} 

if (u4[i]==1)
  {u5[i]_999} 
}
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Long-term survivor data simulations:  Population C 

caseid_1:10000

x1_rnorm(10000,0,1)

x2_as.numeric(runif(10000,0,1)<.5)

u1_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0) +  
  as.numeric(runif(10000,0,1)< 
  (1/(1+exp(-(-4+x1)))))*(x2==1) 
u2_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0) +  
  as.numeric(runif(10000,0,1)< 
  (1/(1+exp(-(-4+x1)))))*(x2==1) 
u3_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0) +  
  as.numeric(runif(10000,0,1)< 
  (1/(1+exp(-(-4+x1)))))*(x2==1) 
u4_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0) +  
  as.numeric(runif(10000,0,1)< 
  (1/(1+exp(-(-4+x1)))))*(x2==1) 
u5_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0) +  
  as.numeric(runif(10000,0,1)< 
  (1/(1+exp(-(-4+x1)))))*(x2==1) 

for (i in 1:10000) 
{
if (u1[i]==1)
  {u2[i]_999; u3[i]_999; u4[i]_999; u5[i]_999} 

if (u2[i]==1)
  {u3[i]_999; u4[i]_999; u5[i]_999} 

if (u3[i]==1)
  {u4[i]_999; u5[i]_999} 

if (u4[i]==1)
  {u5[i]_999} 
}
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Long-term survivor data simulations:  Population D 

caseid_1:10000

x1_rnorm(10000,0,1)

x2_as.numeric(runif(10000,0,1)<1/(1+exp(-x1)))

u1_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0) +  
  as.numeric(runif(10000,0,1)< 
  (1/(1+exp(-(-4+x1)))))*(x2==1) 
u2_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0) +  
  as.numeric(runif(10000,0,1)< 
  (1/(1+exp(-(-4+x1)))))*(x2==1) 
u3_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0) +  
  as.numeric(runif(10000,0,1)< 
  (1/(1+exp(-(-4+x1)))))*(x2==1) 
u4_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0) +  
  as.numeric(runif(10000,0,1)< 
  (1/(1+exp(-(-4+x1)))))*(x2==1) 
u5_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0) +  
  as.numeric(runif(10000,0,1)< 
  (1/(1+exp(-(-4+x1)))))*(x2==1) 

for (i in 1:10000) 
{
if (u1[i]==1)
  {u2[i]_999; u3[i]_999; u4[i]_999; u5[i]_999} 

if (u2[i]==1)
  {u3[i]_999; u4[i]_999; u5[i]_999} 

if (u3[i]==1)
  {u4[i]_999; u5[i]_999} 

if (u4[i]==1)
  {u5[i]_999} 
}
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Long-term survivor data simulations:  Population E 

caseid_1:10000

x1_rnorm(10000,0,1)

x2_as.numeric(runif(10000,0,1)<1/(1+exp(-x1)))

u1_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0)  
u2_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0)  
u3_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0)  
u4_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0)  
u5_as.numeric(runif(10000,0,1)<
  (1/(1+exp(-(-1+x1)))))*(x2==0)  

for (i in 1:10000) 
{
if (u1[i]==1)
  {u2[i]_999; u3[i]_999; u4[i]_999; u5[i]_999} 

if (u2[i]==1)
  {u3[i]_999; u4[i]_999; u5[i]_999} 

if (u3[i]==1)
  {u4[i]_999; u5[i]_999} 

if (u4[i]==1)
  {u5[i]_999} 
}
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Appendix B: Mplus input
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RIA Data Example Variable List 

evio11-evio16:  Binary event indicators for the first episode of violence in the six
post-treatment periods. 

tx1:  Binary indicator of BCT treatment. 

edw1:  Binary indicator of wife’s education not beyond high school. 

inc5:  Binary indicator of household income $35,001 - $40,000. 

inc6:  Binary indicator of household income greater than $40,000. 

pddp1-pddp6:  Percent-days-drinking for the six post-treatment periods. 

evio20gt-evio25gt:  Binary event indicators for the second event on the gap time scale. 

evio30gt-evio34gt:  Binary event indicators for the third event on the gap time scale. 

lor:  Length of relationship in years. 

lorsq:  Square of mean-centered length of relationship. 

viopre5:  Binary indicator of  5-10 violent episodes in the three month pre-treatment 
period.

viopre6:  Binary indicator of more than 10 violent episodes in the three month  
pre-treatment period. 

tte2:  Time period during which the second episode occurred on the original time scale. 

evio21cp-evio26vp:  Binary event indicators for the second event on the counting process 
time scale. 

evio31cp-evio36vp:  Binary event indicators for the third event on the counting process 
time scale. 

gte1p1-gte1p6:  Binary indicators for the first event occurring in period 1-6. 

evio21tt-evio26tt:  Binary event indicators for the second event on the total time scale. 

evio31tt-evio36tt:  Binary event indicators for the third event on the total time scale. 
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Model 1 

DATA:

File is RIAdata.dat; 

VARIABLE:

Names are case,whiteh,ms,dwi,dep,...; 

Usevar are evio11-evio16; 

     Missing are all(999); 

Categorical are evio11-evio16;

Classes = c(1); 

ANALYSIS:

     Type=Mixture missing; 

MODEL:

%overall%

%c#1%

     [evio11$1*0 evio12$1*0 evio13$1*0 evio14$1*0]; 

     [evio15$1*0 evio16$1*0]; 
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Model 2 

DATA:

File is RIAdata.dat; 

VARIABLE:

Names are case,whiteh,ms,dwi,dep,...; 

Usevar are evio11-evio16 tx1 edw1; 

     Missing are all(999); 

     Categorical are evio11-evio16; 

     Classes = c(1); 

ANALYSIS:

     Type=Mixture missing; 

MODEL:

%overall%

     evio11-evio16 on tx1 (1); 

     evio11-evio16 on edw1 (2); 

%c#1%

     [evio11$1*0 evio12$1*0 evio13$1*0 evio14$1*0]; 

     [evio15$1*0 evio16$1*0]; 
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Model 3 

DATA:

File is RIAdata.dat; 

VARIABLE:

Names are case,whiteh,ms,dwi,dep,...; 

Usevar are evio11-evio16 tx1 edw1; 

     Missing are all(999); 

     Categorical are evio11-evio16; 

     Classes = c(1); 

ANALYSIS:

     Type=Mixture missing; 

MODEL:

%overall%

     evio11-evio12 on tx1 (1); 

     evio13-evio14 on tx1 (2); 

     evio15-evio16 on tx1 (3); 

     evio11-evio12 on edw1 (4); 

     evio13-evio14 on edw1 (5); 

     evio15-evio16 on edw1 (6); 

%c#1%

     [evio11$1*0 evio12$1*0 evio13$1*0 evio14$1*0]; 

     [evio15$1*0 evio16$1*0]; 
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Model 4 

DATA:

File is RIAdata.dat; 

VARIABLE:

Names are case,whiteh,ms,dwi,dep,...; 

     Usevar are evio11-evio16 edw1 inc5 inc6 

     pddp1 pddp2 pddp3 pddp4 pddp5 pddp6; 

     Missing are all(999); 

     Categorical are evio11-evio16; 

     Classes = c(1); 

ANALYSIS:

     Type=Mixture missing; 

MODEL:

%overall%

     evio11-evio16 on edw1 (1); 

     evio11-evio16 on inc5 (2); 

     evio11-evio16 on inc6 (2); 

     evio11 on pddp1 (3); 

     evio12 on pddp2 (3); 

     evio13 on pddp3 (3); 

     evio14 on pddp4 (3); 

     evio15 on pddp5 (3); 

     evio16 on pddp6 (3); 

%c#1%

     [evio11$1*0 evio12$1*0 evio13$1*0 evio14$1*0]; 

     [evio15$1*0 evio16$1*0]; 
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Model 5a 

DATA:

File is RIAdata.dat; 

VARIABLE:

Names are case,whiteh,ms,dwi,dep,...; 

     Usevar are evio11-evio16 edw1 inc5 inc6 

      pddp1 pddp2 pddp3 pddp4 pddp5 pddp6; 

     Missing are all(999); 

     Categorical are evio11-evio16; 

     Classes = c(1); 

ANALYSIS:

     Type=Mixture missing; 

MODEL:

%overall%

     evio11-evio16 on edw1 (1); 

     evio11-evio16 on inc5 (2); 

     evio11-evio16 on inc6 (2); 

     evio11 on pddp1 (3); 

     evio12 on pddp2 (3); 

     evio13 on pddp3 (3); 

     evio14 on pddp4 (3); 

     evio15 on pddp5 (3); 

     evio16 on pddp6 (3); 

%c#1%

     [evio11$1*0 evio12$1*0 evio13$1*0 evio14$1*0] (1); 

     [evio15$1*0 evio16$1*0] (1); 
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Model 5 

DATA:

File is RIAdata.dat; 

VARIABLE:

Names are case,whiteh,ms,dwi,dep,...; 

     Usevar are evio11-evio16 edw1 inc5 inc6 

      pddp1 pddp2 pddp3 pddp4 pddp5 pddp6; 

     Missing are all(999); 

     Categorical are evio11-evio16; 

     Classes = c(1); 

ANALYSIS:

     Type=Mixture missing; 

MODEL:

%overall%

     evio11-evio16 on edw1 (1); 

     evio11-evio16 on inc5 (2); 

     evio11-evio16 on inc6 (2); 

     evio11 on pddp1 (3); 

     evio12 on pddp2 (3); 

     evio13 on pddp3 (3); 

     evio14 on pddp4 (3); 

     evio15 on pddp5 (3); 

     evio16 on pddp6 (3); 

     eta0 by evio11-evio16@1; 

     eta1 by evio11@0 evio12@1 evio13@2

evio14@3 evio15@4 evio16@5; 

     [eta0* eta1*]; 

%c#1%

     [evio11$1@0 evio12$1@0 evio13$1@0 evio14$1@0] (4); 

     [evio15$1@0 evio16$1@0] (4); 
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Model 6 

DATA:

File is RIAdata.dat; 

VARIABLE:

Names are case,whiteh,ms,dwi,dep,...; 

     Usevar are evio11-evio16 edw1 inc5 inc6 

    pddp1 pddp2 pddp3 pddp4 pddp5 pddp6 

     Missing are all(999); 

     Categorical are evio11-evio16; 

     Classes = c(2); 

ANALYSIS:

     Type=Mixture missing; 

MODEL:

%overall%

     evio11-evio16 on edw1 (1); 

     evio11-evio16 on inc5 (2); 

     evio11-evio16 on inc6 (2); 

     evio11 on pddp1 (3); 

     evio12 on pddp2 (3); 

     evio13 on pddp3 (3); 

     evio14 on pddp4 (3); 

     evio15 on pddp5 (3); 

     evio16 on pddp6 (3); 

     eta0 by evio11-evio16@1; 

     eta1 by evio11@0 evio12@1 evio13@2

evio14@3 evio15@4 evio16@5; 

     [eta0* eta1*]; 
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     c#1 on edw1; 

     c#1 on inc5 inc6 (4); 

%c#1%

     [evio11$1@0 evio12$1@0 evio13$1@0 evio14$1@0] (14); 

     [evio15$1@0 evio16$1@0] (14); 

     [eta0*5 eta1*-1]; 

     evio11-evio16 on edw1 (11); 

     evio11-evio16 on inc5 (12); 

     evio11-evio16 on inc6 (12); 

     evio11 on pddp1 (13); 

     evio12 on pddp2 (13); 

     evio13 on pddp3 (13); 

     evio14 on pddp4 (13); 

     evio15 on pddp5 (13); 

     evio16 on pddp6 (13); 

%c#2%

     [evio11$1@0 evio12$1@0 evio13$1@0 evio14$1@0] (24); 

     [evio15$1@0 evio16$1@0] (24); 

     [eta0*0 eta1*0]; 

     evio11-evio16 on edw1 (21); 

     evio11-evio16 on inc5 (22); 

     evio11-evio16 on inc6 (22); 

     evio11 on pddp1 (23); 

     evio12 on pddp2 (23); 

     evio13 on pddp3 (23); 

     evio14 on pddp4 (23); 

     evio15 on pddp5 (23); 

     evio16 on pddp6 (23); 
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Model 8a 

DATA:

File is RIAdata.dat; 

VARIABLE:

Names are case,whiteh,ms,dwi,dep,...; 

     Usevar are evio20gt-evio25gt lor lorsq; 

     Missing are all(999); 

     Categorical are evio20gt-evio25gt; 

     Classes = c(1); 

ANALYSIS:

     Type=Mixture missing; 

MODEL:

%overall%

     evio20gt-evio25gt on lor (1); 

     evio20gt-evio25gt on lorsq (2); 

     eta02 by evio20gt-evio25gt@1; 

     eta12 by uvio20gt@0 evio21gt@1 evio22gt@2

evio23gt@3 evio24gt@4 evio25gt@5; 

     [eta02* eta12*]; 

%c#1%

     [evio20gt$1@0 evio21gt$1@0 evio22gt$1@0 evio23gt$1@0]; 

     [evio24gt$1@0 evio25gt$1@0]; 
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Model 8b 

DATA:

File is RIAdata.dat; 

VARIABLE:

Names are case,whiteh,ms,dwi,dep,...; 

     Usevar are evio30gt-evio34gt viopre5 viopre6 tte2; 

     Missing are all(999); 

     Categorical are evio30gt-evio34gt; 

     Classes = c(1); 

ANALYSIS:

     Type=Mixture missing; 

MODEL:

%overall%

     evio30gt-evio34gt on viopre5 (1); 

     evio30gt-evio34gt on viopre6 (1); 

     evio30gt-evio34gt on tte2 (2); 

%c#1%

     [evio30gt$1*0 evio31gt$1*0 evio32gt$1*0] (3);

[evio33gt$1*0 evio34gt$1*0] (3); 
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Model 10a 

DATA:

File is RIAdata.dat; 

VARIABLE:

Names are case,whiteh,ms,dwi,dep,...; 

     Usevar are evio21cp-evio26cp lor lorsq 

      gte1p1 gte1p2 gte1p3 gte1p4 gte1p5 gte1p6,; 

     Missing are all(999); 

     Categorical are evio21cp-evio26cpgt; 

     Classes = c(1); 

ANALYSIS:

     Type=Mixture missing; 

MODEL:

%overall%

     evio21cp-evio26cp on lor (1); 

     evio21cp-evio26cp on lorsq (2); 

     evio21cp on gte1p1 (3); 

     evio22cp on gte1p2 (3); 

     evio23cp on gte1p3 (3); 

     evio24cp on gte1p4 (3); 

     evio25cp on gte1p5 (3); 

     evio26cp on gte1p6 (3); 

%c#1%

     [evio21cp$1@0 evio22cp$1@0 evio23cp$1@0] (4); 

[evio24cp$1@0 evio25cp$1@0 evio26cp$1@0] (4); 
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Model 10b 

DATA:

File is RIAdata.dat; 

VARIABLE:

Names are case,whiteh,ms,dwi,dep,...; 

     Usevar are evio31cp-evio36cp viopre5 viopre6 

     gte2p1 gte2p2 gte2p3 gte2p4 gte2p5 gte2p6; 

     Missing are all(999); 

     Categorical are evio31cp-evio36cp; 

     Classes = c(1); 

ANALYSIS:

     Type=Mixture missing; 

MODEL:

%overall%

     evio31cp-evio36cp on viopre5 (1); 

     evio31cp-evio36cp on viopre6 (1); 

     evio31cp on gte2p1 (2); 

     evio32cp on gte2p2 (2); 

     evio33cp on gte2p3 (2); 

     evio34cp on gte2p4 (2); 

     evio35cp on gte2p5 (2); 

     evio36cp on gte2p6 (2); 

     eta03 by uvio31cp-uvio36cp@1; 

     eta13 by uvio31cp@0 uvio32cp@1 uvio33cp@2

uvio34cp@3 uvio35cp@4 uvio36cp@5; 

     [eta03* eta13*]; 

%c#1%

     [evio31cp$1@0 evio32cp$1@0 evio33cp$1@0] (3); 

[evio34cp$1@0 evio35cp$1@0 evio36cp$1@0] (3); 
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Model 14 

DATA:

File is RIAdata.dat; 

VARIABLE:

Names are case,whiteh,ms,dwi,dep,...; 

Usevar are evio11-evio16 evio21tt-evio36tt 

edw1 inc5 inc6 lor lorsq viopre 

    pddp1 pddp2 pddp3 pddp4 pddp5 pddp6 

gte1p1 gte1p2 gte1p3 gte1p4 gte1p5 gte1p6, 

       gte2p1 gte2p2 gte2p3 gte2p4 gte2p5 gte2p6 

     Missing are all(999); 

     Categorical are evio11-evio16 evio21tt-evio36tt; 

     Classes = c(1); 

ANALYSIS:

     Type=Mixture missing; 

MODEL:

%overall%

!First Event 

     evio11-evio16 on edw1 (11); 

     evio11-evio16 on inc5 (12); 

     evio11-evio16 on inc6 (12); 

     evio11 on pddp1 (13); 

     evio12 on pddp2 (13); 

     evio13 on pddp3 (13); 

     evio14 on pddp4 (13); 

     evio15 on pddp5 (13); 

     evio16 on pddp6 (13); 

     eta01 by evio11-evio16@1; 

     eta11 by evio11@0 evio12@1 evio13@2

evio14@3 evio15@4 evio16@5; 
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     [eta01*]; 

     [eta11*](5); 

!Second Event 

     evio21tt-evio26tt on inc5 (12); 

     evio21tt-evio26tt on inc6 (12); 

     evio21tt-evio26tt on lor (22); 

     evio21tt-evio26tt on lorsq (23); 

     evio21tt-evio26tt on viopre (24); 

     evio21tt on pddp1 (13); 

     evio22tt on pddp2 (13); 

     evio23tt on pddp3 (13); 

     evio24tt on pddp4 (13); 

     evio25tt on pddp5 (13); 

     evio26tt on pddp6 (13); 

     evio21tt on gte1p1 (26); 

     evio22tt on gte1p2 (26); 

     evio23tt on gte1p3 (26); 

     evio24tt on gte1p4 (26); 

     evio25tt on gte1p5 (26); 

     evio26tt on gte1p6 (26); 

     eta02 by evio21tt-evio26tt@1; 

     eta12 by evio21tt@0 evio22tt@1 evio23tt@2

evio24tt@3 evio25tt@4 evio26tt@5; 

     [eta02*]; 

     [eta12*] (5); 

!Third Event 

     evio31tt-evio36tt on viopre (24); 

     evio31tt on pddp1 (13); 

     evio32tt on pddp2 (13); 

     evio33tt on pddp3 (13); 

     evio34tt on pddp4 (13); 

     evio35tt on pddp5 (13); 

     evio36tt on pddp6 (13); 
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     evio31tt on gte2p1 (26); 

     evio32tt on gte2p2 (26); 

     evio33tt on gte2p3 (26); 

     evio34tt on gte2p4 (26); 

     evio35tt on gte2p5 (26); 

     evio36tt on gte2p6 (26); 

%c#1%

!First Event 

     [evio11$1@0 evio12$1@0 evio13$1@0] (1); 

[evio14$1@0 evio15$1@0 evio16$1@0] (1); 

!Second Event 

     [evio21tt$1@0 evio22tt$1@0 evio23tt$1@0] (1); 

[evio24tt$1@0 evio25tt$1@0 evio26tt$1@0] (1); 

!Third Event 

     [evio31tt$1*0 evio32tt$1*0 evio33tt$1*0] (3); 

[evio34tt$1*0 evio35tt$1*0 evio36tt$1*0] (3); 
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Model 15 

DATA:

File is RIAdata.dat; 

VARIABLE:

Names are case,whiteh,ms,dwi,dep,...; 

     Usevar are evio11-evio16

evio20gt-evio25gt evio30gt-evio34gt 

     edw1 inc5 inc6 lor lorsq

viopre5 viopre6 tte2 

pddp1 pddp2 pddp3 pddp4 pddp5 pddp6; 

     Missing are all(999); 

     Categorical are evio11-evio16 

       evio20gt-evio25gt evio30gt-evio34gt; 

     Classes = c(2); 

ANALYSIS:

     Type=Mixture missing; 

MODEL:

%overall%

!First Event 

     evio11-evio16 on edw1 (11); 

     evio11-evio16 on inc5 (12); 

     evio11-evio16 on inc6 (12); 

     evio11 on pddp1 (13); 

     evio12 on pddp2 (13); 

     evio13 on pddp3 (13); 

     evio14 on pddp4 (13); 

     evio15 on pddp5 (13); 

     evio16 on pddp6 (13); 
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     eta01 by evio11-evio16@1; 

     eta11 by evio11@0 evio12@1 evio13@2

evio14@3 evio15@4 evio16@5; 

     [eta01* eta11*]; 

!Second Event 

     evio20gt-evio25gt on lor (21); 

     evio20gt-evio25gt on lorsq (22); 

     eta02 by evio20gt-evio25gt@1; 

     eta12 by evio20gt@0 evio21gt@1 evio22gt@2

evio23gt@3 evio24gt@4 evio25gt@5; 

     [eta02* eta12*]; 

!Third Event 

     evio30gt-evio34gt on viopre5 (31); 

     evio30gt-evio34gt on viopre6 (31); 

     evio30gt-evio34gt on tte2 (32); 

     c#1 on edw1; 

%c#1%

!First Event 

     [evio11$1@0 evio12$1@0 evio13$1@0] (1); 

[evio14$1@0 evio15$1@0 evio16$1@0] (1); 

!Second Event 

     [evio20gt$1@0 evio21gt$1@0 evio22gt$1@0] (2); 

[evio23gt$1@0 evio24gt$1@0 evio25gt$1@0] (2); 

!Third Event 

     [evio30gt$1*0 evio31gt$1*0 evio32gt$1*0] (3); 

[evio33gt$1*0 evio34gt$1*0] (3); 
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!First Event 

     evio11-uvio16 on edw1 (11); 

     evio11-uvio16 on inc5 (12); 

     evio11-uvio16 on inc6 (12); 

     evio11 on pddp1 (13); 

     evio12 on pddp2 (13); 

     evio13 on pddp3 (13); 

     evio14 on pddp4 (13); 

     evio15 on pddp5 (13); 

     evio16 on pddp6 (13); 

     eta01 by evio11-evio16@1; 

     eta11 by evio11@0 evio12@1 evio13@2

evio14@3 evio15@4 evio16@5; 

     [eta01*5]; 

     [eta11*-1]; 

!Second Event 

     evio20gt-evio25gt on lor (21); 

     evio20gt-evio25gt on lorsq (22); 

     eta02 by evio20gt-evio25gt@1; 

     eta12 by evio20gt@0 evio21gt@1 evio22gt@2

evio23gt@3 evio24gt@4 evio25gt@5; 

     [eta02*] (23); 

     [eta12*] (24); 

!Third Event 

     evio30gt-evio34gt on viopre5 (31); 

     evio30gt-evio34gt on viopre6 (31); 

     evio30gt-evio34gt on tte2 (32); 
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%c#2%

!First Event 

     [evio11$1@0 evio12$1@0 evio13$1@0] (201); 

[evio14$1@0 evio15$1@0 evio16$1@0] (201); 

!Second Event 

     [evio20gt$1@0 evio21gt$1@0 evio22gt$1@0] (202); 

[evio23gt$1@0 evio24gt$1@0 evio25gt$1@0] (202); 

!Third Event 

     [evio30gt$1*0 evio31gt$1*0 evio32gt$1*0] (203); 

[evio33gt$1*0 evio34gt$1*0] (203); 

!First Event 

     evio11-evio16 on edw1 (110); 

     evio11-evio16 on inc5 (120); 

     evio11-evio16 on inc6 (120); 

     evio11 on pddp1 (130); 

     evio12 on pddp2 (130); 

     evio13 on pddp3 (130); 

     evio14 on pddp4 (130); 

     evio15 on pddp5 (130); 

     evio16 on pddp6 (130); 

     eta01 by evio11-evio16@1; 

     eta11 by evio11@0 evio12@1 evio13@2

evio14@3 evio15@4 evio16@5; 

     [eta01*0]; 

     [eta11*0]; 

!Second Event 

     evio20gt-evio25gt on lor (210); 

     evio20gt-evio25gt on lorsq (22); 
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     eta02 by uvio20gt-uvio25gt@1; 

     eta12 by uvio20gt@0 uvio21gt@1 uvio22gt@2

uvio23gt@3 uvio24gt@4 uvio25gt@5; 

     [eta02*] (230); 

     [eta12*] (240); 

!Third Event 

     evio30gt-evio34gt on viopre5 (310); 

     evio30gt-evio34gt on viopre6 (310); 

     evio30gt-evio34gt on tte2 (32); 
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Jöreskog, K. G. and Sörbom, D. (1979). Advances in Factor Analysis and

Structural Equation Models. Abt Books, Cambridge, MA.

Kalbfleisch, J. D. and Prentice, R. L. (1980). The Statistical Analysis of Failure

Time Data. Wiley, New York.

Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete

observations. Journal of the American Statistical Association, 53:457–481.

Kelly, P. J. and Lim, L. L.-Y. (2000). Survival analysis for recurrent event data:

An application to childhood infectious diseases. Statistics in Medicine,

19:13–33.

Klein, J. P. and Moeschberger, M. L. (1997). Survival Analysis: Techniques

for Censored and Truncated Data. Springer-Verlag, Inc., New York.

Laird, N. (1978). Nonparametric maximum likelihood estimation of a

mixing distribution. Journal of the American Statistical Association,

73(364):805–811.

Laird, N. and Oliver, D. (1981). Convariance analysis of censored survival data

284



using log-linear analysis techniques. Journal of the American Statistical

Association, 76(374):231–240.

Lamport, L. (1994). LATEX: User’s Guide and Reference Manual. Addison-

Wesley Publishing Company, Reading, MA, 2nd edition.

Land, K. C., Nagin, D. S., and McCall, P. L. (2001). Discrete-time hazard

regression models with hidden heterogeneity: The semiparametric mixed

poison regression approach. Sociological Methods and Research, 29(3):342–

373.

Larsen, K. (2003). Joint analysis of time-to-event and multiple categorical

indications of latent classes. In press.

Larsen, R. J. and Marx, M. L. (1986). An Introduction to Mathematical Statis-

tics and Is Applications. Prentice-Hall, Inc., Englewood Cliffs, NJ.

Lazarsfeld, P. F. and Henry, N. W. (1968). Latent Structure Analysis.

Houghton Mifflin, Boston.

Lee, E. W., Wei, L. J., and Amato, D. A. (1992). Cox-type regression analysis

for large numbers of small groups of correlated failure time observations.

In Klein, J. P. and Goel, P. K., editors, Survival Analysis: State of the

Art, pages 237–247. Kluwer Academic Publisher, Dordrecht.

285



Lemis, L. M. (1995). Reliability: Probablistic Models and Statistical Methods.

Prentice-Hall, Inc., Englewood Cliffs, NJ.

Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing

Data. John Wiley & Sons, Inc., New York, 2nd edition.

Lo, Y., Mendell, N. R., and Rubin, D. B. (2001). Testing the number of

components in a normal mixture model. Biometrika, 88(3):767–778.

Maller, R. and Zhou, X. (1996). Survival Analysis with Long-Term Survivors.

John Wiley & Sons, Inc., Chichester, England.

McCutcheon, A. L. (1987). Latent Class Analysis. Sage Publications, Inc.,

Newbury Park, CA.

McHugh, R. B. (1956). Efficient estimation and local identification in latent

class analysis. Psychometrika, 21:331–347.

McLachlan, G. and Peel, D. (2000). Finite Mixture Models. John Wiley &

Sons, Inc., New York.

Muthén, B. O. (2002). Beyond SEM: General latent variable modeling. Be-

haviormetrika, 29(1):81–117.

Muthén, B. O. and Masyn, K. (2001). Discrete-time survival mixture analysis.

286



Muthén, B. O. and Shedden, K. (1999). Finite mixture modelling with mixture

outcomes using the EM algorithm. Biometrics, 55:463–469.

Muthén, L. K. and Muthén, B. O. (2001). Mplus User’s Guide. Muthén &

Muthén, Los Angeles, CA.

Nagin, D. S. and Land, K. C. (1993). Age, criminal careers, and population

heterogeneity: Specification and estimation of a nonparametric, mixed

poisson model. Criminology, 31:327–362.

Nelson, W. (1972). Theory and applications of hazard plotting for censored

failure data. Technometrics, 14:945–965.

Osius, G. and Rojek, D. (1992). Normal goodness-of-fit tests for multinomial

models with large degrees of freedom. Journal of the American Statistical

Association, 87:1145–1152.

Pearson, K. (1894). Contributions to the theory of mathematical evolution.

Philosophical Transactions of the Royal Society of London A, 185:71–110.

Peduzzi, P. N., Concato, J., Kemper, E., Holford, T. R., and Feinstein, A.

(1996). A simulation study of the number of events per variable in logistic

regression. Journal of Clinical Epidemiology, 99:1373–1379.

Prentice, R. L. and Gloeckler, L. A. (1978). Regression analysis of grouped

287



survival data with application to breast cancer data. Biometrics, 34(1):57–

67.

Prentice, R. L., Williams, B. J., and Peterson, A. V. (1981). On the regression

analysis of multivariate failure time data. Biometrika, 68:373–379.

Rice, J. A. (1995). Mathematical Statistics and Data Analysis. Duxbury Press,

Belmont, CA.

Schwartz, G. (1978). Estimating the dimensions of a model. Annals of Statis-

tics, 6:461–464.

Singer, B. and Spilerman, S. (1976). Some methodological issues in the analysis

of longitudinal surveys. Annals of Economic And Social Measurement,

5:447–474.

Singer, J. D. and Willett, J. B. (1993). It’s about time: Using discrete-time

survival analysis to study duration and the timing of event. Journal of

Educational Statistics, 18(2):155–195.

Singer, J. D. and Willett, J. B. (2003). Applied Lingitudinal Data Analysis:

Modeling Change and Event Occurence. Oxford University Press, New

York.

288



Steele, F. (2003). A multilevel mixture model for event history data with long-

term survivors: An application to an analysis of contraceptive sterilisation

in Bangladesh. Lifetime Data Analysis, 9:155–174.

Tan, W. Y. and Chang, W. C. (1972). Some comparisons of the method of

moments and the method of maximum likelihood in estimating parameters

of a mixture of two normal densities. Journal of the American Statistical

Association, 67:702–708.

Thompson, Jr., W. A. (1977). On the treatment of grouped observations in

life studies. Biometrics, 33(3):463–470.

Trussel, J. and Richards, T. (1985). Correcting for unmeasured heterogene-

ity in hazard models using the Heckman-Singer procedure. Sociological

Methodology, pages 242–276.

Turnbull, B. W. (1974). Nonparametric estimation of a survivorship function

with doubly censored data. Journal of the American Statistical Associa-

tion, 69:169–173.

Van de Pol, F. and Langeheine, R. (1990). Mixed Markov latent class models.

Sociological Methodology.

Vaupel, J. W., Manton, K. G., and Stallard, E. (1979). The impact of hetero-

289



geneity in individual frailty on the dynamics of mortality. Demography,

16(3):439–454.

Vermunt, J. K. (1997). Log-Linear Models for Event Histories. Sage Publica-

tions, Inc., Thousand Oaks, CA.

Vuong, Q. H. (1989). Likelihood ratio test for model selection and non-nested

hypotheses. Econometrica, 57:307–333.

Wei, L. J., Lin, D. Y., and Weissfeld, L. (1989). Regression analysis of multi-

variate incomplete failure time data by modeling marginal distributions.

Journal of the American Statistical Association, 84:1065–1073.

Willett, J. B. and Singer, J. D. (1993). Investigating onset, cessation, relapse,

and recovery: Why you should, and how you can, use discrete-time sur-

vival analysis. Journal of Consulting and Clinical Psychology, 61(6):952–

965.

Willett, J. B. and Singer, J. D. (1995). It’s déjà vu all over again: Using
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