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1 Introduction

This report discusses latent variable methods relevant to continuous-time survival
analysis of clinical trial data. In depth analysis of data from a cancer trial is
presented. The data are from a phase III study investigating the effects of second-
line treatment for patients with advanced malignant pleural mesothelioma (MPM).
243 patients were randomly assigned to one of two arms: best supportive care
(BSC) versus pemetrexed chemotherapy (P+BSC). Survival analysis results have
been discussed in Jassem et al. (2008). The outcome to be studied in this report is
progression-free survival for which Jassem et al (2008) reported a median survival
time of 1.5 months for the BSC group and 3.6 months for the P+BSC group using
Kaplan-Meier analysis. The Kaplan-Meier survival curves for the two groups are
shown in Figure 1.

A question of great interest in cancer research is whether and how strongly
patient-reported quality of life outcomes (PROs) are associated with survival. Do
PROs interact with treatment in affecting survival? Do PROs measured at baseline
predict survival? Do PROs have predictive utility also when controlling for the
patient’s cancer stage, prior treatment response, and clinician-rated performance
status? Does treatment affect PROs? Does different development over time in
PROs relate to differences in survival? Does PRO development worsen before
disease progression? To attempt answers to these questions this report will draw
on novel latent variable survival modeling techniques described in Asparouhov,
Masyn, and Muthén (2006) and implemented in the Mplus software (Muthén &
Muthén, 2008). Some of the latent variable survival models also draw on new
software development to appear in the forthcoming Mplus version 6. A large
variety of models will be explored, building up to the final model through a series
of modeling steps.

The outline of the report is as follows. In Section 2 the data structure is briefly
described. Section 3 presents Cox regression models, showing the need to allow
for a non-proportional hazard model. Using the non-proportional hazard model,
baseline information for the subjects is used to predict survival, exploring interac-
tions with treatment arm. In Section 4, longitudinal information from one time-
varying covariate at a time is used in a joint growth-survival analysis. Several
alternative models for relating the two processes are compared. Section 5 dis-
cusses how the information from the PRO measures can be summarized using a
variety of latent variable models. In Section 6 the best-fitting latent variable model
is combined with the non-proportional hazard model to describe the effects on sur-
vival of PROs measured at baseline. Section 7 discusses latent variable survival
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Table 1: Analysis variables (total sample size = 243)

Variable Proportion

Tx: treatment arm
0: best supportive care 0.494
1: pemetrexed/best supportive care 0.506

Pritreat: prior chemo response

0: stable disease 0.416
1: progressive disease 0.300
2: partial response 0.202
3: unknown, missing 0.066
4: complete response 0.016
Dichotomized as 0+2+4

(not treatment resistant) vs 1+3 0.617

Stage: Mesothelioma stage

1: stage ib 0.021
2: stage ia 0.016
3: stage ii 0.074
4: stage iii 0.288
5: stage iv 0.601

modeling using time-varying information. Section 8 concludes with a summary
of the substantive and statistical findings.

2 Mesothelioma trial data structure

Patients in the MPM trial were assessed at baseline (visit 0) and every 3 weeks
thereafter for 24 weeks until progressive disease, death, or early discontinuation.
For study design details, see Jassem et al. (2008). The set of covariates to be used
in the analyses of this report is listed in Table 1 and Table 2.

Given the second-line treatment nature of the trial an important baseline back-



Table 2: Analysis variables (total sample size = 243), continued

Mean Std. Dev.

LCSS items

appetite loss 31.1 28.1
fatigue 42.8 28.3
cough 21.1 26.2
dyspnea 37.1 28.7
hemoptysis 2.8 9.7
pain 32.0 29.2
overall symptoms 40.1 29.9
interference 47.6 29.3
quality of life 46.6 26.1
Karnofsky Performance Status 84.3 9.2
prior 0.6 0.5
stage 4.4 0.9
pfs 4.8 6.4
pfs censoring, BSC 0.09 0.08
pfs censoring, P+BSC 0.04 0.04




ground variable is response to prior chemotherapy. Using Cox regression, Jassem
et al. (2008) found this to be the only significant treatment interaction factor. In
line with the Jassem analysis, the prior experience is dichotomized as not treat-
ment resistant versus treatment resistant (see definition in Table 1). 62% of the
patients are classified as not treatment resistant. Cancer stage (stage i - stage iv) is
treated as a continuous variable. 60% of the patients are at stage iv. The clinican-
rated Karnofsky Performance Status (KPS) scale is shown in Table 3. A score of
100 refers to normal activity with O representing death.

The patient-reported quality-of-life assessment uses the Lung Cancer Symp-
tom Scale-Mesothelioma (LCSS-Meso, or LCSS for short) shown in Table 4. The
scale ranges from a score of 0 representing a good condition to a score of 100
representing a poor condition. The LCSS instrument has 9 items of which 6 refer
to specific symptoms and 3 represent more global assessments (overall symptoms,
interference, and quality of life). Table 2 shows that at baseline (visit 0) the mean
of the item hemoptysis (coughing up blood) is very low and this item will not be
included in the analysis. The cough item has the lowest mean of the remaining
items at baseline. The LCSS and the KPS observations were made at the different
visits up to a maximum of 11 time points. The LCSS items show a large degree of
variation across time, whereas a majority of subjects obtain the same KPS score
over time.

3 Survival analysis using proportional and non-proportional
Cox regression modeling

3.1 Checking for non-proportionality

Survival analysis using the conventional proportional hazard model is specified
as follows. Let the variable T be a time-to-event variable such as death. Let /
be the time when individual leaves the target cohort due to death or other types
of censoring such as lost to follow up. The survival variable 7T and the censoring
indicator 0 are defined by

T = min{Ty, I} (1)
1 ifTy>1

5=¢ L0~ @)
0 ifTy<I.



Table 3: Karnofsky Performance Status Scale

Activity Status

Point Description

Normal Activity 100 Normal, with no complaints or evidence of
disease
90 Able to carry on normal activity but with mi-
nor signs or symptoms of disease present
80 Normal activity but requiring effort; signs
and symptoms of disease more prominent
Self-Care 70 Able to care for self, but unable to work or
carry on other normal activities
60 Able to care for most needs but requires oc-
casional assistance
50 Considerable assistance required, along with
frequent medical care; some self-care still
possible
Incapacitated 40 Disabled and requiring special care and as-
sistance
30 Severely disabled; hospitalization required
but death from disease not imminent
20 Extremely ill, supportive treatment, hospital-
ized care required
10 Imminent death
0 Dead




Table 4: Lung Cancer Symptom Scale-Meso (LCSS): Patient Scale

Directions: Please place a mark along each line where it would best describe
the symptoms of your lung illness DURING THE PAST DAY (during the
past 24 hours)

1. How is your appetite?
As good as it could be As bad as it could be

2. How much fatigue do you have?
None As much as it could be

3. How much coughing do you have?
None As much as it could be

4. How much shortness of breath do you have?
None As much as it could be

5. How much blood do you see in your sputum?
None As much as it could be

6. How much pain do you have?
None As much as it could be

7. How bad are your symptoms from your lung illness?
I have none As bad as it could be

8. How much has your illness affected your ability to carry out normal activities?
Not at all So much that I can do nothing for myself

9. How would you rate the quality of your life today?
Very high Very Low




Figure 2: Log cumulative hazards for the sample and for the Cox proportional
hazard model
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Let X be an observed vector of covariate variables. The proportional hazard model
specifies that the hazard function is proportional to the baseline hazard function,

h(t) = A1) Exp(BX) 3)

The Kaplan-Meier survival curves of Figure 1 provide a non-parametric rep-
resentation of the survival data and are in this sense analogous to sample statistics
obtained without modeling assumptions. A basic modeling aspect is if the as-
sumption of proportionality of the hazard over time used in conventional Cox
regression modeling is reasonable. In particular, it is important to know if the
treatment effect is constant over time. To investigate this, it is useful to consider a
plot of the sample log cumulative hazard for the treatment and control groups (cf
Singer & Willett, 2003). If proportionality holds for the treatment effect this plot
should show parallel curves at equal distance for all time points. The left panel of
Figure 2 indicates that proportionality does not hold with the right panel showing
the difference when using the estimated curve from the Cox proportional-hazard
model. Figure 3 shows the differences in survival curves for Kaplan-Meier and
the Cox proportional-hazard model.

3.1.1 Model alternatives

A non-proportional hazard model can be formulated by allowing an interaction
between a covariate and time. Time can be broken up into different periods where
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Figure 3: Survival curves for Kaplan-Meier versus Cox proportional hazard model
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the hazard is different. For the MPM data time can be broken up into 9 peri-
ods corresponding to the timing of the different visits 3 weeks apart. The use of
these 9 time periods is also motivated by them coinciding with the timing of the
PRO measurements, so that the time-varying effects of PRO on survival can be
described for each time period. Following is a set of models exploring non pro-
portionality, starting from the conventional Cox regression assuming proportional
hazards.

Let Z be a binary variable corresponding to treatment arm and X a vector of
other covariate. Let Z take values O and 1.

Model 1

log(h(t|1Z,Y)) = log(ho(t)) + @ Z+ BX

where A is unrestricted non-parametric function. This is the standard Cox pro-
portional hazard (CPH) model, rewriting (3) in log form. It can be estimated by
regressing the survival variable on Z or by setting Z as a known latent class in
mixture modeling using the new Mplus version. The parameter o is the regres-
sion coefficient for Z or the mean parameter of the survival variable.

Model 2
log(h(t|1Z,Y)) = log(ho(t))+ (a+7y1)Z+ BX

where A is an unrestricted non-parametric function. The model shows an inter-
action between treatment arm and time. This is a model that can not be done in
Mplus directly but it can be approximated by Model 3 below. The model is re-
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garded as a natural extension to CPH and is a non-proportional hazard model.
Model 3
log(h(t|Z,Y)) = log(ho(1)) + (e + v clt/c]) Z+ BX

where A is unrestricted non-parametric function and [ ] is the integer part func-
tion. The constant ¢ can be any number. This model can be done in Mplus by
splitting the time interval into subintervals of length ¢ and creating separate sur-
vival variables for each individual and each interval. As c— > 0 Model 3 becomes
equivalent to Model 2.

Model 4
log(h(t|Z,Y)) = log(ho(t)) + & e) Z+ BX

where A is unrestricted non-parametric function, [ ] is the integer part function
and ay, 0, ... are model parameters. This model is a generalization of Model 3
that relaxes the linear trend in the shift of the hazard function and is also estimated
by splitting the interval into subintervals as in Model 3. Under the parameter
constraints

oi=0a-+7vi

Model 4 becomes equivalent to Model 3 and in fact that is how Model 3 is esti-
mated, i.e., specifying Model 4 with the above parameter constraints.

Model 5
log(h(t|Z,Y)) =log(hz(t))+ B X

where /1 and hg are both unrestricted non-parametric functions. This is the model
that Mplus 5.2 will estimate by setting Z as known class. Model 5 can also be
viewed as limit of Model 4 as c— > 0, i.e, Model 4 becomes equivalent to Model
Sasc—>0.

There is one complication in the above modeling. The time period is split
into 8 intervals of size ¢ = (.7 corresponding to the treatment schedule. Only one
more interval is included after these 8 intervals. Thus with abuse of notation [¢/c]
is regarded to be 8 for all r > 8c.

The order of flexibility / generality of these models from least to most flexible
is as follows.

Model 1

Model 2 (discrete) or Model 3 (continuous)

11



Figure 4: Log cumulative hazard curves for Kaplan-Meier versus non-
proportional hazard model
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Model 4 (discrete) or Model 5 (continuous)
(Note that the word “discrete” does not refer to discrete time survival model-
ing.)

3.1.2 Applying Model 4 to the treatment effect estimation

Log cumulative hazard functions estimated from the non-proportional, unrestricted
Model 4 are shown in Figure 4 with the Kaplan-Meier curves given as comparison.
The corresponding survival curves are shown in Figure 5 with the Kaplan-Meier
curves as comparison. The figures show that Model 4 gives good agreement with
the Kaplan-Meier curves.

Model 4 allows non-proportional hazard modeling using 9 different hazard
parameters, one for each time period. Model 3 is a more parsimonious model
where the log hazards are specified to be linear in time. In some settings a better
fit may instead be obtained with log hazards that are linear in the log of time
(Singer & Willett, 2003). These models are compared to the Cox proportional
hazard model in Table 6. It is seen that the linear log hazard model has only a
slightly worse loglikelihood than the unrestricted model and is preferable based
on having the lowest BIC (Bayesian Information Criterion) value. This model will
be used for further analyses.
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Figure 5: Survival curves for Kaplan-Meier versus non-proportional hazard model
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Table 6: Summary of hazard modeling of treatment effects

Model Loglikelihood #par.s BIC
Proportional -433 1 871
Unrestricted -420 9 890
Linear -422 2 856
Log linear -424 2 858
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3.2 Covariate effects

Model 3, the non-proportional hazard model linear in time, is used to explore
the influence on survival of a set of covariates, including treatment arm, prior
treatment success, cancer stage, the Karnofsky score at baseline, and the LCSS
items at baseline (visit 0). The model allows for interaction between treatment arm
and the covariate. The analyses use one covariate at a time. The results are listed
in Table 7. The table entries describe the 5% significance of the hazard estimates
at each of the 9 time periods. It is seen that for the BSC (control) group none of the
covariates have a significant effect on the hazard during any of the periods. The
interaction effect for the covariate prior is in line with the Jassem finding, here
replicated for the non-proportional hazard model as significantly lower hazards
for time periods 1 - 6. Cancer stage has a main effect in the P+BSC (treatment)
group where a higher stage results in increased hazard during time periods 5-6.
Most of the 9 LCSS items, and their sum, show an increased hazard for P+BSC
for high LCSS values corresponding to low quality of life. In line with this, the
Karnofsky score points to decreased hazard for higher scores, corresponding to
higher activity levels.

3.3 [Estimation

Mplus uses the maximum-likelihood estimation method for the estimation of all
models described here. The estimation is based on a non-parametric baseline haz-
ard function for the survival variables. This is accomplished by estimating a base-
line hazard function as a step function that is constant between every two consecu-
tive event times. This approach dates back to Breslow (1974) and is now referred
to as the Breslow likelihood approach or the profile likelihood approach. The
baseline hazard parameters are estimated as nuisance (unrestricted) parameters
with this approach. The method was firmly established in the latent variable mod-
eling area with the papers of Larsen (2004; 2005) and Asparouhov et al. (2006).
Simulation studies in Asparouhov et al. (2006) show that the Mplus implementa-
tion of these methods yields consistent and asymptotically efficient results. In the
case when the method is applied to the standard Cox regression model, the Mplus
implementation agrees with the implementation in other statistical packages such
as SAS and Stata.

There are two different ways to implement survival mixture analysis. The
two methods are described in Asparouhov et al. (2006), which is implemented
in Mplus 5.2, and Larsen (2004). In Larsen (2004) the baseline hazard function

14



Table 7: Non-proportional hazard modeling effects of each covariate

Covariate Effect in BSC group? Effect in P+BSC group? Interaction (P+BSC-BSC)?
prior no no 1-6 (—)

stage no 5-6 (+) no

appetite loss no no no

fatigue no 1-5(+) no

cough no 1-6 (+) 1-7 (+)
hemoptysis no 1(—),4-9(+) 1(—),59 ()
dyspnea no 1-5(+) no

pain no 3-9(+) no

overall symptoms no 1-7 (+) 3-7(+)
interference no 1-4 (+) no

quality of life no 1-7 (+) 5-7 (4)

LCSS sum no 1-7 (4+) 3-6 (4+)
Karnofsky no 1-6 (—) 1-4 (-)

Significant hazard estimates at 5% level.
Numbers refer to time period (1-9).

+: significantly higher hazard
-: significantly lower hazard
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varies across classes only by a single multiplicative factor. Consider a two-class
model where the baseline hazard functions in the two classes are 4 (7) and hy(¢).
In Larsen (2004) h;(z) is estimated as a non-parametric step function while /,(¢)
is constrained by the following equation

ho(t) = othy (1) 4)

where « is a parameter that is estimated. In contrast Mplus 5.2 will estimate both
hi(t) and hy(t) as unconstrained non-parametric step functions. The advantage
of Larsen’s approach is that the class effect on the baseline can be explicitly es-
timated, while in the Mplus 5.2 approach the effect of the class variable is not
obtained directly, simply because the two baseline function are completely un-
constrained and no parameter summarizes the difference between the two baseline
hazards. Essentially when using the Mplus 5.2 approach one knows that the base-
lines are different across classes but not how. The Mplus 5.2 approach is more
flexible, but the extra flexibility was not needed for analyzing the Mesothelioma
data and the Larsen (2004) approach is used for all models. The Larsen (2004)
approach will be commercially available later this year with the release of Mplus
Version 6.

4 Joint growth and survival analysis

The non-proportional hazard model is now expanded to include time-varying in-
formation on the LCSS items and the Karnofsky score. Random effect growth
modeling is applied to a specific LCSS item. For an overview of joint random-
effects growth and survival modeling, see, e.g., Diggle et al. (2008).

A key missing data issue arises in these analyses. In Table 8 and Table 9 the
quality of life LCSS item is used to illustrate the strong decline in sample coverage
over the visits. Data from only the first 9 visits are used here, corresponding to the
regular scheduled visits. The attrition over time is determined by the progression-
free survival time. Analyzing the LCSS item growth by itself draws heavily on the
assumption of MAR (Little & Rubin, 2002), that is, assuming that the attrition is
explained by previously observed outcomes and covariates. This assumption may
not hold in which case non-ignorable missingness calls for different modeling.
For an overview, see, e.g., Little (2008). Adding the survival model part to the
growth model, however, alleviates the missing data problem and again makes it
fall under MAR. This is the approach taken here.
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Table 8: Proportion of data present
Covariance Coverage

QOL.O QOL.1 QOL2 QOL3 QOL4 QOLS5 QOL6 QOL.7

QOL.0  0.881

QOL_1 0.053  0.053

QOL_2 0.630  0.004  0.683

QOL_3 0.519 0.004 0531 0.564

QOL4 0391 0.004 0407 0374 0.420

QOL.5 0.337 0.004 0342 0325 0325 0.358

QOL_6 0276  0.004 0276 0272 0259 0276 0.284

QOL_7 0.230 0.004 0230 0222 0.214 0226 0218 0.235
QOL_8 0.169 0.000 0.169 0.156 0.169 0.169 0.152  0.148
QOL.9 0.123  0.000 0.119 0.119 0.119 0.123 0.115 0.115
QOL_10 0.025 0.000 0.025 0.025 0.025 0.025 0.025 0.025
QOL_11 0.021 0.000 0.021 0.021 0.021 0.021 0.021 0.021
PFS 0.881 0.053 0.683 0564 0420 0358 0.284  0.235

Table 9: Proportion of data present, continued
Covariance Coverage

QOL8 QOLY9 QOL_1I0 QOL.11 PFS

QOL_8 0.177

QOL.9 0.119  0.123

QOL_10 0.025  0.025 0.025

QOL_11 0.021  0.021 0.021 0.021

PFS 0.177  0.123 0.025 0.021  1.000
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Figure 6: Predicting survival from trend (Xu-Zeger model)

For each of the time-varying variables, a random effect linear growth model is
considered. Four competing models are considered for how the development over
time in the variable influences survival: Predicting survival from the underlying
growth trend (Xu & Zeger, 2001), predicting survival from the observed outcome,
predicting survival from the random effects of the growth model, and predicting
survival from latent trajectory classes (Asparouhov et al. 2006). The four models
are shown in schematic form in Figure 6, Figure 7, Figure 8, and Figure 9.

The Xu and Zeger (2001) model is defined as follows. Let Y;; be an observed
dependent variable for individual i at time ¢. Suppose that Y;; follows a linear
growth model

Yy =Y +&; &)
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Figure 7: Predicting survival from observed outcome
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Figure 8: Predicting survival from random effects

Y, =o0;+Bit (6)

where ¢; and B; are normally distributed random effects.
Model 1 The Xu-Zeger model is given by

log(hi(1)) = log(ho(1)) +7 Y; + B X;. )

This model can not be done in Mplus but is approximated by Model 2 below.

Model 2 For a constant c let
e = Qi+ i clt/c] (8)
The Mplus Xu-Zeger approximation model is given by
log(hi(1)) = log(ho(t)) + ¥ Y. + B Xi. 9)

As c— > 0 Model 2 is equivalent to Model 1. Model 2 is implemented in Mplus
by splitting the time interval and the survival variable into subintervals of length c.
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Figure 9: Predicting survival from growth mixture
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Model 3 For a constant ¢ define the alternate Xu-Zeger model which uses the
actual observed values as predictors rather than their expected value.

log(hi(t)) = log(ho(t)) + ¥ Yi(r/e) + B Xi- (10)

Model 3 is implemented in Mplus also by splitting the time interval and the sur-
vival variable into subintervals of length c. The model is based on the assumption
that the variables Y are observed at times c, 2c, 3c, ...

Description of a growth mixture model (Muthén & Asparouhov, 2008) alter-
native will be deferred to Section 6.

The analysis results are shown in Table 10. The first model predicts survival
from the trend (referred to as Model 1, the Xu-Zeger model above); see Figure
6. The second model (referred to as Model 3 above) predicts survival from the
time-varying observed LCSS outcome; see Figure 7. The third model predicts
survival from the random effects o; and f;, referred to as i and s in Figure 8.
The fourth model predicts survival from the latent trajectory classes; see Figure
9. Table 10 shows that overall the BIC differences between the models are small
and no model is the best for all three items. It should be noted that for the quality
of life item the 2-class growth mixture model does not have a better BIC than
its 1-class counterpart (not reported), suggesting that there are not distinguishable
latent trajectory classes for this LCSS item. For the other two items, there is only
a small BIC advantage for the 2-class model. Because the growth mixture model
needs a latent class variable with at least 2 classes to correlate the LCSS item
development with survival, the growth mixture model appears to be less useful in
this setting.

The last three columns refer to 5% significance of effects: Treatment effect
on survival, treatment effect on the LCSS item development, and effect of LCSS
item development on survival. The treatment effect on survival is significant and
in the expected direction of lowering the hazard for all three items under all four
models. The treatment effect on the LCSS item development is not significant for
any of the items under any of the models. The point estimates are, however, of
the expected sign and significance might have been obtained at a larger sample
size. The effect of LCSS item development on survival is not significant under
the Xu-Zeger model for any of the items but is significant under the other models.
For all three items under the random effect model, it is interesting to note that
survival is predicted by the trend s (f3;), so that higher trend value for a subject
is associated with a higher hazard of disease progression. This finding suggests
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Table 10: Survival analysis related to development in the three global LCSS items

Model Log- Number of BIC Tx Effect Tx Effect LCSS Effect
Likelihood Parameters on PFS on LCSS on PFS
Quality of life
Xu-Zeger -4615 19 9334 Yes No No
Observed -4610 19 9324 Yes No Yes
Random effects -4611 20 9332 Yes No Yes (both i and s)
Growth mixture -4598 24 9328 Yes No Yes
Interference
Xu-Zeger -4679 19 9463 Yes No No
Observed -4675 19 9454 Yes No Yes
Random effects -4653 20 9414 Yes No Yes (s only)
Growth mixture -4674 24 9479 Yes No Yes
Overall symptoms
Xu-Zeger -4655 19 9414 Yes No No
Observed -4650 19 9405 Yes No Yes
Random effects -4652 20 9414 Yes No Yes (s only)
Growth mixture -4639 24 9411 Yes No Yes

a positive answer to the question of whether disease progression is preceded by a

PRO worsening.

To further study the joint growth-survival models the three key covariates of
cancer stage, prior treatment success, and Karnofsky Performance status are added
to the modeling. All three covariates are allowed to interact with the treatment
variable in their influence on survival. Only the random effect model version is
used. Table 11 shows that this model extension alters the three effect estimates
reported in Table 10. The treatment no longer has a significant effect of lowering
the hazard of progression-free survival, and only for the interference item is the
trend s significantly predicting survival. Judging from the ratios of point estimates

23



Table 11: Survival analysis related to development in the three global LCSS items,
adding covariates and using the random effect model

Tx Effect Tx Effect LCSS Effect Total Tx
on PFS on LCSS on PFS Effect
Quality of life
No No Yes (i only) No
Interference
No No Yes (s only) No

Overall symptoms

No No No No

to their standard errors, this finding may be due to lack of power with a relatively
small sample size, where it should be noted that the Table 11 model has approx-
imately 50% more parameters (33) as compared to the Table 10 models. Power
analysis for latent variable survival models using Mplus is discussed in the Con-
clusions section. Note also, however, the last column of Table 11 which gives the
total effect of the treatment on survival, specifically the hazard at time period 2,
which is the first time period that is affected by the LCSS random effect trend s.
Because survival is influenced by both treatment and the LCSS development, the
direct treatment effect on survival may be “diluted”. The total treatment effect is
the sum of the direct effect of treatment on survival plus the product of the effect
of treatment on the LCSS random effect s times the effect of s on survival. It is
seen, however, that the total effect is not significant for any of the items.

A final note concerns the possibility of using information on the timing of the
separate chemotherapy sessions. In version 5.21 of Mplus, modeling with time-
varying covariates is accomplished by splitting the interval into subintervals and
constructing survival models for the specific interval. In order to take advantage
of individual-specific treatment administration one has to split the entire interval
of 24 weeks into small intervals of 1 week or smaller. That in turn will produce 24
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survival variables and 24x8 TX variables (8 Tx variables for each infusion multi-
plied by 24 for the 24 intervals that the variables are split into). That in turn will
lead to a very large multivariate model that is difficult to write, navigate, compute,
and debug. In addition, the deviations in the timing of the treatment administration
in most cases were found to be less than a week off from the prescribed schedule.
This suggests that the potential gain from this modeling attempt is quite limited.
In a future Mplus version a more efficient algorithm will be available that can
use time varying covariates in a more efficient manner. In addition to the above
issues it became clear that searching for TX time specific effect for treatment is
doomed to failure because there is not enough variation in the administration of
the chemotherapy. In order to evaluate the effect of each dose TX1, TX2, ..., TX8
greater variation in the administration schedule is needed. In these data the ef-
fect of TX1 during week 4 is confounded with the effect of TX2 in its first week.
Therefore it is not possible to separate these two effects.

5 Latent variable modeling of LCSS items

The LCSS items were given in Table 4 and their correlations at baseline (visit 0)
are shown in Table 12 and Table 13.

The 9 LCSS items consist of 6 symptom-specific questions (appetite loss, fa-
tigue, cough, dyspnea, hemoptysis, pain) and 3 questions of a more global nature
(overall symptoms, interference, quality of life). Table 12 shows that the symptom
items have moderate correlations among themselves and with the global items.
The global items correlate somewhat more among themselves. All LCSS items
have lower correlations with the Karnofsky Performance Status score (called kps
in the table), indicating that the patient-reported outcomes carry different infor-
mation than the clinician-reported score.

5.1 Alternative latent variable models

A single analysis using the combined information from all LCSS items may be
more powerful than analyses based on one item at a time. The question is how
to succinctly combine the information. To approach this, a variety of latent vari-
able models will be used. Figure 10 shows a summary of 3 key models. For an
overview discussion of these models, see Muthén (2008).

The top of Figure 10 shows a factor analysis model which summarizes the
information in the items in terms of a continuous latent variable, labeled f as in
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Table 12: Correlations

anrx 0  ftg 0 cgh O dysp.O pain_O sx-0 intfr 0 qol0
anrx 0 1.000
ftg 0 0.456  1.000
cgh 0 0.216 0.445 1.000
dysp-0 0.325 0.649 0.518 1.000
pain. 0 0.362 0464 0.285 0.356 1.000
sx_0 0411 0572 0320 0426 0.537 1.000
intfr 0 0370 0519 0.254 0519 0.428 0.602 1.000
qol 0 0.487 0554 0.283 0496 0445 0.573 0.709 1.000
kps.0O  -0.181 -0.281 -0.137 -0.266 -0.334 -0.365 -0.300 -0.315
tx -0.050 -0.029 0.000 -0.076 0.029 0.027 0.037 0.024
prior -0.022 -0.061 -0.038 0.001 -0.044 -0.043 0.022 0.001
stage 0.103 -0.005 -0.012 0.004 0.108 0.082 0.117 0.161
pfs -0.082 -0.099 -0.078 -0.108 -0.185 -0.077 -0.047 -0.130
Table 13: Correlations, continued
kps_0 tx  prior  stage pfs
kps-0  1.000
tx -0.038  1.000
prior -0.024 -0.033  1.000
stage -0.033 0.056 -0.106 1.000
pfs 0.110 0.095 -0.020 -0.213 1.000
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factor. Different items contribute different amounts of information on this fac-
tor. For example, as shown in the left panel, compared to the other items item
4 discriminates much less between low and high factor values by having a lower
slope (factor loading). More than one factor may be needed to capture the cor-
relations among the items and this type of model can be approached using either
exploratory analysis or confirmatory analysis. A strength of the factor analysis
approach is that a continuous score is obtained for the subjects. A disadvantage
is that the model provides no cut point on the factor(s) in order to designate an
individual has having, for example, low versus high quality of life.

The middle segment of Figure 10 shows latent class analysis (also referred to
as latent profile analysis when the items are continuous). In latent class analysis
(LCA) the classes are defined as having different item mean profiles as shown
on the left. The model assumes conditional independence of the items given the
classes. The model has the advantage of providing a classification of subjects. The
posterior probability of latent class membership can be estimated for each subject
and the subject classified as belonging to the most likely class. The classifica-
tion quality is assessed by the model entropy describing how clearly the posterior
probabilities discriminate between the classes.

The bottom segment of Figure 10 shows a newer form of latent class analysis
which is a hybrid LCA - factor analysis model. It is referred to as factor mixture
analysis (FMA). In FMA, the strong assumption of conditional independence is
relaxed in that the model allows for within-class correlation among the items.
The strength of within-class correlation is determined by the factor and the item
loadings on this factor. The factor may be interpreted as a severity dimension,
letting subjects have different levels within a class, or may merely be used to get
a better fit to the data and therefore a more trustworthy classification.

Figure 11 shows a special kind of factor analysis model. It is a confirmatory
factor model with one general and one specific factor. The factors are uncorre-
lated. The figure shows how the model can be applied to the LCSS items, where
the general factor influences all items and the specific factor influences only the
symptom items. The general factor is expected to have the largest influence on
the 3 global items. This model may be an improvement on a 1-factor model in
that some of the items may have stronger correlations among them than a single
factor can explain. For example, some of the symptom items may correlate more
strongly than others. The LCSS instrument has a peculiar structure in that the
overall symptom items in a sense incorporates the symptom-specific items. This
direct relationship among some items may cause a rejection of the 1-factor model,
but could be handled by the confirmatory model of Figure 11. The model is akin
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Figure 10: Overview of latent variable models
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Figure 11: General-specific confirmatory factor model

to a 2-factor exploratory model where the factors are specified to be orthogonal,
but also adds a specific structure of zero loadings for the 3 global items and the
specific factor.

Figure 12 considers formative latent variable models and relate them to more
conventional models, which are referred to as reflective. With formative indica-
tors, the factor is influenced by the items instead of influencing the items. There
is no model restriction applied to the covariances among the formative indicators.
For an overview of modeling with formative indicators, see Bollen et al. (2009).
Model 1 in Figure 12 shows 3 items influencing a formative factor f. Because
the formative model is not identified by itself it has to be combined with other,
observed variables - in this case y. For identification purposes, one slope is fixed
and the residual variance is fixed at zero. In this way, the formative factor is a
weighted sum of the formative indicators with relative weights being estimated.
Model 2 shows how the formative factor f can be combined with a reflective fac-
tor fy. It should be noted, however, that Model 1 is equivalent to Model 3 and
Model 2 is equivalent to Model 4. Model 3 is simply a regular regression model
and Model 4 is a conventional structural equation model referred to as a MIMIC
model.

The formative model idea may be of interest for modeling the LCSS items
given the special structure of this measurement instrument referred to earlier. Fig-
ure 13 shows how the symptom-specific items can be seen to influence a quality
of life factor which is in turn influencing the responses to the 3 global items. The
model does not impose a structure on the covariances among the symptom-specific
items, but only on their covariances with the global items and on covariances
among the global items. It may be noted that an observed-variable counterpart to
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Model 3 = Model 1 Model 4 = Model 2

Figure 12: Formative latent variable models

this model was applied in the Hollen et al. (2004) validation of LCSS in that the
3 global items were summed and regressed on the symptom items to determine
their predictive contributions.

5.2 Results of latent variable modeling for visit

5.3 Analysis of 8 LCSS items at visit

Table 14 shows the results of fitting the latent variable models discussed to the
LCSS items at baseline (visit 0). Due to missing data the sample size is n = 216.
Maximum-likelihood estimation is used. Due to the non-normality of the items,
the analyses use non-normality robust x? test of model fit and non-normality ro-
bust standard errors. The 1-factor model does not fit well based on a too high x>
and a too low CFI (comparative fit index). The exploratory 2-factor model is also
rejected. The 3-factor model fits well but has only 1 item with a large loading
for one of the factors and shows a Heywood case in that this item has a negative
residual variance.

Model M4 is the general factor, specific factor confirmatory model of Figure
11. It fits marginally well in terms of CFI, although it is rejected by 2. M4 has the
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Figure 13: MIMIC model for the LCSS items

Table 14: Latent variable models for 8 LCSS items (not including hemoptysis) at

visit 0, n=216

Model Loglikelihood #par’s BIC Comments

Factor analysis

M1: EFA 1f -7847 24 15823  x%(20) = 68, CFI = 0.90

M2: EFA 2f -7817 31 15800 12(13) = 39, factor corr = 0.7

M3: EFA 3f 7802 37 15803 x?(7) =7, Heywood

M4: CFA lgf 1sf -7818 29 15791 x*(15) =30, CFI = 0.97

MS5: MIMIC 5x 3y -7814 34 15810 x%(10) =23, CFI = 0.95

Latent class analysis

M6: LCA 2¢ -7911 25 15957 51% in high class

M7: LCA 3¢ -7834 34 15850

M8: LCA 4a -7790 43 15812

M9: LCA 5c -7760 52 15799

Factor mixture analysis

M10: FMA 2c 1f -7772 33 15721 19% in high classs, entropy = 0.945
M11: FMA 3c 1f -7739 42 15705 14% (high), 17% (mid), 69%(low)
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Table 15: Factor Solutions At Visit 0, Using 8 LCSS Items

Ml M2 M4
f fl 2 fg fs
anrx 0.552  0.149 0.430 0.547 0.054
ftg 0.768 0.666 0.191 0.694 0.404
cgh 0464 0.797 -0.245 0.355 0.522
dysp 0.687 0.785 0.016 0.597 0.575
pain 0.597 0.207 0.414 0.583 0.070
sX 0.741 0.171 0.600 0.747 0.000
intfr  0.763  0.000 0.816 0.804 0.000
qol  0.783 -0.004 0.844 0.824 0.000
1.000
0.715  1.000

best (lowest) BIC among the 5 factor models. The solution is interesting as seen
in Table 15, which gives the factor solutions for models M1, M2, and M4. The fg
(general) factor of Model M4 is best measured by the 3 global items as expected,
while the fs (specific) factor is measured best by fatigue, cough, and dyspnea. The
2-factor exploratory model M2 captures the same 3 items as measuring the factor
f1, so these 3 items seem to have a common underlying feature. The M2 model
shows this factor to be highly correlated with f2, whereas in model M4 the specific
factor is defined as an uncorrelated, residual factor.

The MIMIC model M5 also has a borderline acceptable fit in terms of CFI.
The BIC value is not as good as the multiple-factor models, which is perhaps due
to the many parameters used to make the covariate part of the model unrestricted.
The M5 solution is shown in Table 16. The top 3 rows show the factor loadings for
the 3 global items and they are about equally strong indicators of the factor. The
bottom 5 rows show the regression coefficients for the factors regressed on the 5
symptom-specific items. An interesting finding is that the cough items does not
show a significant influence on the factor. As an aside, this is also found when each
of the 3 global items is related to the 5 symptom-specific items in a regular linear
regression. The finding is also in line with the Hollen et al. (2004) regression
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Table 16: MIMIC Latent Variable Model For Visit O

Parameter Estimate S.E. Est./S.E. Two-Tailed

P-Value
fBY
sx_0 1.000 0.000  999.000 999.000
intfr_O 1.085 0.097 11.224 0.000
qol 0 0.980 0.095 10.321 0.000
f ON
anrx_0 0.171 0.046 3.691 0.000
ftg 0 0.233  0.069 3.398 0.001
cgh 0 -0.041 0.052 -0.790 0.429
dysp_0 0.207 0.057 3.618 0.000
pain_0 0.208 0.049 4.227 0.000

analysis using another data set. The cough item does not seem to contribute to
overall quality of life. This finding will be returned to in the next step of modeling.

The latent class models M6 - M9 of Table 14 show that BIC continues to
improve with increased number of latent classes, but does not show a minimum
which would be pointing to the optimal number of classes. None of the latent
class models has as good of a BIC value as M4.

The factor mixture models M10 and M11 give better BIC values than models
MI1-M9. MI10 uses 2 latent classes and 1 factor, finding 19% in the high LCSS
class corresponding to low quality of life. The entropy of 0.945 is excellent. The
factor loadings (not reported) are highest for the 3 global items, while the cough
item has a distinctly lower, albeit significant loading. The 3-class model M11
improves further on the BIC and results in 3 ordered classes.

The special behavior of the cough item seen in the MIMIC modeling is also
seen in the latent class modeling. Deleting the cough item, the 7-item LCSS anal-
yses are displayed in Table 17. It is seen that the factor models can no longer
accommodate the second factor which was previously defined by fatigue, cough,
and dyspnea, but inadmissible solutions with negative residual variances are ob-
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Figure 14: Item mean profiles for the 8- and 7-item LCSS factor mixture models
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tained. The factor mixture model M10 still has a better BIC than M1-M9. Model
M11 with 3 classes has a better BIC, but one of the classes contains only 3% of
the subjects.

Model M10 finds 39% in the high LCSS class as compared to the 19% of
Table 14. To understand the reason for this, Figure 14 compares the item mean
profiles of the 8-item latent class solution of Table 14 with those of the 7-item
solution of Table 17. Figure 14 shows that the cough item dominates the creation
of the latent classes in the 8-item analysis. For the 8-item solution, the mean
difference across classes is the largest in standard deviation terms for the cough
item. The mean differences across classes between the other items are smaller for
the 8-item solution than for the 7-item solution. For example, the 8-item solution
has a class separation between the means for the overall symptom item of about
2/3 of a standard deviation, while the 7-item solution has a separation of about 5/3
of a standard deviation.

The standard deviation of the factor mixture severity factor for the 7-item so-
lution is estimated as 13. The severity factor variation can be used to consider to
which extent there is overlap between subjects who are, say, 1 standard deviation
below the mean in the high class and subjects who are 1 standard deviation above
the mean in the low class. In the 7-item solution all but one item has no such over-
lap and the overall symptom item means are four such standard deviations apart,
implying a good degree of class separation.

The latent variable analyses suggest that Model M10 using 7 items is the
model of choice for the LCSS items. The entropy of 0.840 indicates a clear clas-
sification. The classification quality of model M10 is further investigated below.
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Table 17: Latent variable models for 7 LCSS items (not including hemoptysis or
cough) at visit 0, n=216

Model Loglikelihood #par’s BIC Comments

Factor analysis

MI: EFA 1f -6857 21 13827 x*(14)=63, CFI=0.92

M2: EFA 2f -6836 27 13818 x2(8) = 22, Heywood

M3: EFA 3f -6827 32 13827  x?(3) = 31, Heywood

M4: CFA 1gf 1sf -6840 25 13814  x2(10) = 31, CFI = 0.97, Heywood
M5: MIMIC 4x 3y -6839 27 13824 x2(8) =20, CFI = 0.95

Latent class analysis

Mé6: LCA 2c¢ -6915 22 13947  52% in high class

M7: LCA 3c -6843 30 13848

M8: LCA 4a -6815 38 13835

MO: LCA 5c¢ -6798 46 13843

Factor mixture analysis

M10: FMA 2c 1f -6823 29 13802 39% in high class, entropy = 0.840
MI11: FMA 3c 1f -6796 37 13791 only 3% in one class
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The classification provided by the factor mixture model M10 for the 8- and
7-item analyses is further described in Table 18. The high entropy is reflected
by most likely class membership counts agreeing closely with estimated class
counts. It is also reflected by the low off-diagonal values of the classification
table. Here, each row corresponds to individuals most likely belonging to that
class. The entries are the average posterior probability for subjects in different
classes.

The class membership of the 7-item solution can also be related to other vari-
ables. It was found that there are no significant differences with respect to gender,
age, cancer stage, or prior treatment success. The Karnofsky Performance Sta-
tus score was significantly different in the two classes, with a mean of 86 in the
low class and 81 in the high class, representing about half a standard deviation
difference.

As a final step in the latent variable analysis, it is of interest to descriptively
relate the latent variable modeling of visit 0 LCSS to the logarithm of progression-
free survival (PFS) time and to also relate the factor modeling results to the factor
mixture modeling results. Both goals are met in Figure 15 using the 7-item ap-
proach and considering the treatment group (P+BSC). For simplicity, the 1-factor
model is used. First, it is seen that the estimated factor scores correlate with PFS
time. The lower the factor value (the higher the quality of life), the higher on
the whole is the PFS time. Second, it is seen that latent class membership corre-
lates with PFS time in that the lower LCSS class (higher quality of life) has on
the whole higher PFS times than the higher LCSS class. Third, it is seen that the
factor scores and the latent classes do not have a 1-to-1 correspondence. Consid-
ering the factor score axis, it is not the case that the low LCSS class subjects are
all to the left with the high class LCSS subjects all to the right. Because of this,
the choice between these two latent variable models can have an impact when
incorporating the visit O LCSS items in a latent variable survival model.

6 Predicting survival from baseline LCSS

The visit 0 LCSS factor mixture model with 2 classes and 1 factor will now be
used to predict progression-free survival using the non-proportional hazard model
linear in time. The 7-item version of the latent variable model is used. The key
question is if the LCSS items can contribute significant information beyond that
already contributed by the baseline covariates of prior treatment success, cancer
stage, and Karnofsky Performance Status. The model is complex and will be
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Table 18: Classification Of Patients Using Visit O Factor Mixture Analysis

5+3 = Using 8 LCSS items (excluding hemoptysis),
4+3 = Using 7 LCSS items (excluding hemoptysis and cough)

Final class counts and proportions for the latent classes based on the estimated model

Latent classes

5+3 443
1] 175.13706 | 0.81082 | 132.24459 | 0.61224
2 | 40.86297 | 0.18918 | 83.75541 | 0.38776

Classification quality
543 | 443

Entropy | 0.945 | 0.838

Class counts and proportions
Latent classes
543 4+3
1] 175 | 0.81019 | 132 | 0.61111
2] 41 0.18981 | 84 | 0.38889

Classification table
Average latent class probabilities for most likely latent class membership (row)
by latent class (column)
5+3 4+3
1 2 1 2
110991 | 0.009 | 0.963 | 0.037
21 0.040 | 0.960 | 0.061 | 0.939
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Figure 15: Relating latent variables at visit O to survival time, comparing the factor
scores of the 1-factor model to the classification of the factor mixture model
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Figure 16: Predicting survival using a latent variable model for LCSS items at
visit 0

shown in both diagram form and statistically. The model diagram is shown in
Figure 16. The treatment dummy variable tx is here captured by a latent class
variable with known class membership in order to allow maximum modeling flex-
ibility. The treatment variable influences pfs (solid arrow) and also influences the
influence of stage, prior, and kps on pfs (broken arrows), allowing for treatment
interaction for these three covariates. The interaction between latent class and
treatment is shown as a broken arrow from c to the arrow from tx to pfs.

6.1 Survival modeling with a latent class variable

Formally, the model can be described as follows. Let Z be a binary treatment vari-
able. Let Z take values O (control) and 1 (treatment). Let C be a latent class binary
variable that will correlate the LCSS observations at visit O and the survival PFS
variable. Let Z take values O and 1. Let Y1, ...,Y),, denote the LCSS observations at
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visit 0. The distribution of ¥ is described by the following equations
Yi|C = tic+Ai n+&

where 7 is a standard normal random variable and &; are independent residuals
with variance 6;. An alternative way to write this model is

Y|C=pw+BiC+Ain+e.

The distribution of the survival variable is described by the following hazard
model (c is the constant 0.7 corresponding to 3 weeks periods)

log(h(t|1Z,X,C)) =log(ho(t))+ (o1 + 7 [t/c))Z+ (aa+ 7 [t/c])C

+(0o5 +nlt/c])ZC+ (ou+ 1 [t/c]) Xi

+(ou +nlt/c)XiZ+ B2 X2 + B3 X3

where X is the KPS variable, X; and X3 are the prior treatment success and cancer
stage variables and /(7) is the non-parametric baseline hazard function.
Finally the distribution of C is given by the following equation

1
— L+exp(bo+brXo +b3X3)’

P(C=1)

6.2 Analysis results

The model estimates show that for the control group (BSC) only the partial effect
of the covariate prior on survival has a significant hazard estimate, increasing the
hazard for the non treatment-resistant subjects. This significant effect is in contrast
to the insignificant effect that was found in Table 7 when the covariate was entered
alone. For the treatment group (P+BSC), stage has a significant hazard estimate,
increasing the hazard for subjects at a more severe stage. Increasing Karnofsky
Performance Status score (kps) significantly lowers the hazard in the treatment
group.

The effects of LCSS latent class membership controlling for stage, prior, and
Karnofsky are as follows. To vizualize the estimated model, the resulting survival
curves are shown with curves evaluated at the most frequent cancer stage iv (re-
ferred to as stage=5 in Figure 17-19), for non-resistant treatment response, and for
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Estimated Survival Curves For Factor Mixture Model, Class 1, stage=>5, prior=1, kps0=mean
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Figure 17: Factor mixture survival, low LCSS class, treatment vs control groups

average kps value. In the 61% low LCSS class (class 1; high quality of life), the
hazard estimates are significant negative (lower) in the treatment group for time
periods 1-3. Figure 17 shows the corresponding estimated survival curves and
it is seen that the treatment and control curves show a larger difference than the
Kaplan-Meier curves of Figure 1. Furthermore, the curves are not crossing. The
median survival times for control and treatment groups are 1.5 and 4.3, respec-
tively.

In the 39% high LCSS class (low quality of life), there is a significant negative
treatment-control group hazard difference only for the first time period. Figure 18
shows the estimated survival curves. The treatment-control curves are closer and
do cross. The median survival times for control and treatment groups are 1.4 and
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Estimated Survival Curves For Factor Mixture Model, Class 2, stage=>5, prior=1, kpsO=mean

1 T T T T T T T

Control
Treatment |

0.9}

0.8} 4

0.7+ :

061 4

0.5} 4

04} i

Probability

0.3} 4

0.2} 4

01t :

0 | | | | |
0 5 10 15 20 25 30 35 40

Progression-Free Survival (months)

Figure 18: Factor mixture survival, high LCSS class, treatment vs control groups

3.0, respectively. The difference between Figure 17 and Figure 18 indicate the
magnitude of the LCSS effect on survival.

Figure 19 and 20 further explore the effect of LCSS class membership. Fig-
ure 19 shows the estimated survival curves for high and low LCSS class among
treatment group subjects. Here, the hazard estimates are significantly lower in the
low LCSS class for time periods 3-9. Figure 20 shows the corresponding control
group curves. Here, there are no significant differences in the hazard estimates.
Taken together, the figures illustrate the interaction between treatment and LCSS
class in influencing survival, controlling for stage, prior, and kps which are also
allowed to interact with treatment. In terms of survival, the latent class distinction
has little importance in the control group, but is important in the treatment group

42



Estimated Survival Curves For Factor Mixture Model, Treatment, stage=>5, prior=1, kpsO=mean
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Figure 19: Factor mixture survival, treatment group, high and low LCSS classes

in that subjects in the low LCSS class (high quality of life) benefit more from the
treatment.

7 Modeling survival using a latent variable model
for longitudinal LCSS item information

7.1 Latent transition analysis over the first two visits

Because the factor mixture model was chosen as the best model for the LCSS
items, the question arises how modeling of the longitudinal development of the
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Estimated Survival Curves For Factor Mixture Model, Control, stage=5, prior=1, kpsO=mean
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Figure 20: Factor mixture survival, control group, high and low LCSS classes
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Figure 21: Latent transition analysis

LCSS items should be formulated. In Section 4 a random effect growth model was
used, but this does not account for the latent LCSS classes. The growth mixture
model (Muthén & Asparouhov, 2008) that was applied in Section 4 concerned a
continuous outcome. In contrast, when using the factor mixture model the latent
class variable is the primary dependent variable. In such a case, changes over
time can be described by latent (hidden) Markov modeling, also referred to as
latent transition analysis (LTA). The idea behind LTA is shown in Figure 21 for
visits 0 and 2. At each time point, a latent class measurement model is used.
Measurement invariance over time is applied. The visit O latent class variable
cl influences c2 via a multinomial logistic regression. This produces a transition
table containing the probability of changing class or staying in the same class over
time.

Muthén (2008) proposed a modified LTA using a factor mixture measurement
model at each time point. This model is shown in Figure 22. The changes in LCSS
over time will be described using this FMA-LTA model. The estimated class
probabilities and transition probabilities are shown in Table 19. The high LCSS
class (low quality of life) is estimated at 43% at visit 0, only slightly higher than
the 39% in earlier analyses. The high LCSS class at visit 2 is estimated at 45%.
The transition table shows a high degree of stability in latent class membership
over the two visits with only 11% moving from the low class (class 1) to the high
class (class 2) and 9% moving from high to low class.
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Table 19: Latent Transition Analysis Of Visit 0 And Visit 2

Class counts and probabilities

c0 Low LCSS class
138.98404 0.57195
High LCSS class
104.01595 0.42805
c2 Low LCSS class
133.48444 0.54932
High LCSS class
109.51556 0.45068

Latent transition probabilities based on the estimated model

c0 classes (rows) by c2 classes (columns)
1 2
1 0.894 0.106
2 0.089 00911
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Figure 22: Factor mixture latent transition analysis

7.2 Joint latent transition - survival analysis

As a next analysis step, the FMA-LTA is combined with a survival model using
the same non-proportional hazard representation used earlier. Figure 23 shows the
model in diagram form with the latent class variables influencing pfs.

The estimated survival curves are shown in Figures 24-27. Figure 24 shows
the difference between treatment and control survival curves for subjects who
are in the low LCSS class at both visits. Comparing this figure with the visit 0
low LCSS class survival curves of Figure 17 suggests that subjects have no extra
survival advantage of staying in the low LCSS latent class membership at visit
2. It appears that the initial LCSS status at visit O is the key factor in treatment
affecting survival.

7.3 Joint latent variable growth-survival analysis of all time
points

As a final modeling step, six models are considered for the LCSS items at visits 0

- 9. The six models are shown in Figures 28-33.

Model M1, shown in Figure 28, predicts survival using a Xu-Zeger trend
model based on a single-factor model for the LCSS items. The single-factor model
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Figure 23: Joint factor mixture latent transition analysis - survival analysis
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Estimated Survival Curves For LTA Model, Class 11
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Figure 24: Joint factor mixture latent transition analysis - survival analysis: Low,

low LCSS class

49



Estimated Survival Curves For LTA Model, Class 22
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Figure 25: Joint factor mixture latent transition analysis - survival analysis: High,

high LCSS class
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Figure 26: Joint factor mixture latent transition analysis - survival analysis: Treat-
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Figure 28: M1 - Predicting survival by a Xu-Zeger model with a single-factor
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Figure 29: M2 - Predicting survival from factors of single-factor model for LCSS
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Figure 30: M3 - Predicting survival by random effects with a single-factor model

for LCSS items
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Figure 31: M4 - Predicting survival by a growth mixture Xu-Zeger model with a

factor mixture model for LCSS items
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Figure 32: M5 - Predicting survival by random effects of a growth mixture model
with a factor mixture model for LCSS items
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was not found to be the best of the models investigated in Section 5, but is used for
illustrative purposes here in order to compare its performance to the other mod-
els. Based on the results of Section 5, it can be applied to the three global LCSS
items. Model M2, shown in Figure 29, uses the same latent variable model and is
the latent variable counterpart to the Table 10 Figure 7 model using the observed
LCSS item as a predictor of survival. Model M3, shown in Figure 30, bases the
prediction of survival on the random effects i and s. Model M4, shown in Fig-
ure 31, uses a growth mixture model (Muthén & Asparouhov, 2008) and bases the
survival prediction on a Xu-Zeger trend for the within-class severity factor. Model
M5, shown in Figure 32, takes the same approach as in Model M4, but replaces
the prediction from the trend with prediction from the random effects. Model M6,
shown in Figure 33, extends the previously discussed latent transition factor mix-
ture model to several time points and predicts survival from time-specific latent
class membership.

Table 20 shows that the single-class models M1 and M3 are outperformed
in terms of BIC by the mixture models M4, M5, and M6. The BIC differences
among M4, M5, and M6 are not large. It is seen that only the mixture models give
significant effects of the treatment on survival. As seen in earlier analyses, none
of the models show a significant effect of treatment on LCSS development. The
effect of LCSS development on survival is significant in all models.

8 Conclusions

8.1 Summary of substantive and statistical findings

From a substantive point of view, the latent variable survival analyses show that
the information for the patient-reported items of the Lung Cancer Symptom Scale-
Meso instrument is useful in predicting progression-free survival in a second-line
treatment study. This is the case also when controlling for cancer stage, prior
treatment, and the clinician-rated Karnofsky Performance Status score. The la-
tent variable analyses of LCSS suggest that a model with two latent classes is
preferable, classifying subjects into a high and a low LCSS class. Controlling for
the covariates, the class membership has no significant effect on survival in the
control group (BSC arm), but has a significant effect on survival in the treatment
group (P+BSC arm). Although subjects in either class benefit from the treatment,
subjects in the low LCSS class, corresponding to high quality of life, have a sig-
nificant added benefit from the treatment in terms of longer survival.
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Table 20: Joint latent variable growth-survival analysis of all time points

Model Log- Number of BIC Tx Effect Tx Effect LCSS Effect
Likelihood Parameters on PFS on LCSS on PFS

Ml -11642 110 23883 No No Yes

M2 too heavy computations

M3 -11639 113 23894 No No Yes (i only)

M4 -11546 67 23456 Yes (low class only) No Yes

M5 -11544 69 23464 Yes (low class only) No Yes (both i and s)

M6 -11567 60 23462 Yes No Yes

Model description:

M1: Survival predicted by a Xu-Zeger model with a single-factor model for LCSS
items (Figure 28).

M2: Survival predicted from factors of single-factor model for LCSS items (Fig-
ure 29).

M3: Survival predicted by random effects with a single-factor model for LCSS
items (Figure 30).

M4: Survival predicted by a growth mixture Xu-Zeger model with a factor mix-
ture model for LCSS items (Figure 31).

MS: Survival predicted by random effects of a growth mixture model with a factor
mixture model for LCSS items (Figure 32).

M6: Survival predicted by latent transition model with a factor mixture model for
LCSS items (Figure 33).
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The analysis results suggest that the baseline LCSS information collected at
visit O provides important predictive information regarding potential treatment
success. In this study, about 40% of the subjects are classified into the high LCSS
class corresponding to poor quality of life. This portion of patients benefit less
from the treatment in terms of progression-free survival.

Treatment effects on PRO in the form of the LCSS items were not found to be
significant. This may, however, be due to insufficient power given the relatively
small sample size of n = 243. The development of the LCSS items over time were
found to provide significant prediction of survival.

Statistically, the report shows that continuous-time survival modeling with la-
tent variables is now feasible. This is the case when using latent classes, latent
variables in the form of random effects, and combinations of the two kinds of la-
tent variables. The modeling in Section 6, predicting survival from a baseline fac-
tor mixture model, is not difficult or time-consuming to compute. The joint latent
transition - survival modeling of Section 7 is more challenging but still feasible.
A more difficult task is to combine a mixture model with time-varying informa-
tion such as from LCSS items. This calls for predicting survival in different time
intervals using either a time-varying observed variable or a factor. Because of the
special type of data, however, where the dependent variable and he predictors are
missing simultaneously in most cases, it is possible to estimate the model with
a small number of integration points. This makes the computation still feasible
when predicting from LCSS items.

8.2 Future topics

Based on an estimated model such as in Section 6 it is of great interest to compare
the survival rates under treatment and control for a new patient with specific back-
ground variables as well as responses to the initial LCSS evaluation. This is not a
straightforward task, however, because the treatment variable affects many parts
of this model in contrast to a simple regression model of survival. Thus sufficient
care should be taken to use the full advantage and flexibility of these models. In
addition the task is complicated somewhat by the various ways the actual specific
question is posed. For example, you can change the variables that PFS is condi-
tioned on, i.e., you can simply consider the distribution of [PFS | TX, stage] or [
PFS | TX, stage, LCSSO] or [ PFS | TX, stage, LCSS]. The easiest to compute is
[ PES | all other variables, TX=1] and [ PFS | all other variables, TX=0] as this
simply amounts to plugging in these values into the Cox regression. If however
you condition only on a subset of all the variables that are in the model such as
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LCSSO0 for example one has to derive a new model with only these variables that is
deduced from the full model with all the variables. This would involve the distri-
bution of [missing variables | observed variables] which should be already in the
model. In some cases the total TX effect on survival is decomposed as a TX effect
on LCSS variables which in turn affects survival as well as the direct TX effect on
survival. Additional complications arise when continuous and categorical latent
variables are involved in the model as these will typically need to be integrated out
of the model as well. Standard errors can also be included into various final re-
sults. Typically these will be constructed with the delta method following the point
estimate derivation. Using the non-parametric baseline methodology, however, it
is currently not possible to derive confidence limits for anything that involves the
baseline curve. One feasible alternative is to use a stepwise parametric model as
a substitute for the non-parametric baseline model. For these reasons, the topic of
estimating treatment benefits under different baseline conditions deserves further
research.

Power analysis using latent variable survival models is too complex to be ex-
pressed via explicit formulas, but can be carried out using the Mplus Monte Carlo
feature. Such Monte Carlo data generation however is fairly complicated for sev-
eral reasons and so should be done carefully. The first step in the data generation
process is to realize that the generation of PFS can not be done as one variable.
Instead it has to be done as in the model, i.e., by generating PFS1, PFS2, ... |
PFS9 as well as the corresponding censoring indicators C1,C2, ... ,C9. Mplus can
generate censored survival data based on an exponential distribution for the cen-
soring process. But these variables have two types of censoring, a deterministic
one and an exponential random censoring. The second type can be implemented
with Mplus Monte Carlo by choosing an appropriate level of the censoring hazard
parameter. The first type, however, is deterministic and has to be implemented
with the DEFINE statement, by simply truncating at 0.7. Because the DEFINE
statements are not available in internal Monte Carlo that means that the generation
and analysis has to be done with "External” Monte Carlo. This is done as follows.
In Step 1 multiple data sets are generated and saved. In Step 2 data are further
manipulated and serially analyzed. The deterministic censoring has to be done in
the second step. Missing data specification is also critical in these analyses. Here
missing data also has two sources, random and “deterministic”’. The deterministic
source simply says that all variables are missing after the first PFSj variable that is
smaller than 0.7. This type of missingness has to be imposed also in the DEFINE
command, i.e., in step 2. The first type of missingness, the random kind, has to
be generated in the first step with the internal Monte Carlo generation. Note that
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both missingness proportions and censoring proportions should be computed sep-
arately since these quantities are not part of the model. Also to generate survival
data in Mplus you have to specify a baseline hazard function which is also not
given in this model. You can specify that function as a constant with the appro-
priate constant taken from a similar model assuming that the PFSj variables have
a constant baseline. The generation of the covariates in the model should also be
considered carefully, for example the variable stage is a categorical variable and
it should be generated as such. Because the model typically does not involve any
modeling for the covariates such modeling should be done separately and used in
the data generation process. This means preserving not only the univariate dis-
tribution of the covariates but also the multivariate, i.e., a separate multivariate
model for the covariates should be constructed.

63



References

[1] Asparouhov, T., Masyn, K. and Muthén, B. (2006). Continuous time survival
in latent variable models. Proceedings of the Joint Statistical Meeting in Seattle,
August 2006. ASA section on Biometrics, 180-187.

[2] Beunckens, C., Molenberghs, G., Verbeke, G., and Mallinckrodt, C. (2008).
A latent-class mixture model for incomplete longitudinal Gaussian data. Bio-
metrics, 64, 96-105.

[3] Bollen, K.A., Lennox, R.D., and Dahly, D.L. (2009). Practical application of
the vanishing tetrad test for causal indicators measurement models: An exam-
ple from health-related quality of life. Statistics in Medicine, 28, 1524-1536.

[4] Breslow, N.E. (1974). Covariance analysis of censored survival Data. Biomet-
rics, 30, 89-99.

[5] Diggle, P., Henderson, R. and Philipson, P. (2008). Random-effects mod-
els for joint analysis of repeated-measurement and time-to-event outcomes. In
Fitzmaurice, G., Davidian, M., Verbeke, G. & Molenberghs, G. (eds.), Longi-
tudinal Data Analysis, pp. 349-366. Boca Raton: Chapman & Hall/CRC Press.

[6] Hollen, P.J., Gralla, R.J., Liepa, A.M., Symanowski, J.T., and Rusthoven, J.J.
(2004). Adapting the Lung Cancer Symptom Scale (LCSS) to mesothelioma.
Cancer, 101, 587-595.

[7] Jassem, J., Ramlau, R., Santoro, A., Schuette, W., Chemaissani, A., Hong, S.,
Blatter, J., Adachi, S., Hanauske, A., and Manegold, C. (2008). Phase III trial
of pemetrexed plus best supportive care compared with best supportive care
in previoulsy treated patients with advanced Imalignant pleural mesothelioma.
Journal of Clinical Oncology, 26, 1698-1704.

[8] Larsen, K. (2004). Joint analysis of time-to-event and multiple binary indica-
tors of latent classes. Biometrics, 60(1), 85-92.

[9] Larsen, K. (2005). The Cox proportional hazards model with a continuous la-
tent variable measured by multiple binary indicators. Biometrics, 61(4), 1049-
1055.

[10] Lin, H., McCullogh, C.E., and Rosenheck, R.A. (2004). Latent pattern mix-
ture models for informative intermittent missing data in longitudinal studies.
Biometrics, 60, 295-305.

64



[11] Little, R.J. (2008). Selection and pattern-mixture models. In Fitzmaurice,
G., Davidian, M., Verbeke, G. & Molenberghs, G. (eds.), Longitudinal Data
Analysis, pp. 409-431. Boca Raton: Chapman & Hall/CRC Press.

[12] Little, R. J. and Rubin, D. B. (2002). Statistical analysis with missing data.
Second edition. New York: John Wiley and Sons.

[13] McLachlan, G. J. and Peel, D. (2000). Finite mixture models. New York:
Wiley and Sons.

[14] Muthén, B. (2008). Latent variable hybrids: Overview of old and new mod-
els. In Hancock, G. R., & Samuelsen, K. M. (Eds.), Advances in latent variable
mixture models, pp. 1-24. Charlotte, NC: Information Age Publishing, Inc.

[15] Muthén B. and Asparouhov, T. (2008). Growth mixture modeling: Analysis
with non-Gaussian random effects. In Fitzmaurice, G., Davidian, M., Verbeke,
G. & Molenberghs, G. (eds.), Longitudinal Data Analysis, pp. 143-165. Boca
Raton: Chapman & Hall/CRC Press.

[16] Muthén, B. and Muthén, L. (2008). Mplus User’s Guide. Los Angeles, CA:
Muthén & Muthén.

[17] Singer, J.D. and Willett, J.B. (2003). Applied longitudinal data analysis.
Modeling change and event occurrence. New York: Oxford University Press.

[18] Xu, J. and Zeger, S.L. (2001). Joint analysis of longitudinal data comprising
repeated measures and times to events. Applied Statistics, 50, 375-387.

65



