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Longitudinal modeling of population heterogeneity: 

Methodological challenges to the analysis of empirically derived criminal trajectory profiles 

 

The question of how to model population heterogeneity in longitudinal data has been 

repeatedly discussed in criminological journals, especially in the context of modeling “criminal 

careers” as the variable of interest (e.g., Elliot, 1985; Farrington & West, 1993; Nieuwbeerta & 

Blokland, 2003; Tracy, Wolfgang, & Figlio, 1990). It has been recognized that there is variation 

in criminal trajectories and any analysis of the age-crime relationship requires a decision on how 

to model this variation. In Chapter 1 in this volume, Muthén briefly touched on different 

modeling approaches to capture observed heterogeneity around trajectory profiles. Here we will 

revisit and extend the examples mentioned. To do so we will use two well-known criminological 

data sets, the Philadelphia Cohort Study (Tracy et al., 1990) and the Cambridge data (Farrington 

& West, 1990). Both datasets have been used in the past to describe criminal activity as a 

function of age.  

It is important to note that we are not seeking to provide the final analysis for either one of 

these datasets. Too many substantive decisions would have to be made that only criminologists 

could provide. Nonetheless, we will take this opportunity to discuss how the different modeling 

alternatives are related to each other, what the different modeling results for these applications 

are, how results from one model can be translated to another, and what further modeling 

opportunities the different models offer for substantive researchers.  

In our analysis we focus on growth mixture models (Muthén, 2001a, 2002, 2004; Muthén 

& Muthén 1998-2006; Muthén & Shedden, 1999), non-parametric growth models (Aitkin, 1999; 

Hedeker, 2000; Heinen, 1996), and latent class growth models, also known as group-based 
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trajectory models (e.g., Nagin & Land, 1993; Roeder, Lynch, & Nagin, 1999). The in-depth 

comparison of these models is important because it can help to answer a key question that 

substantive researchers have often asked in the past, that is, how to find a balance between 

mixture classes that are needed according to substantive theory and those needed to model 

variation around observed growth trajectories (e.g., Bushway, Brame, & Paternoster, 1999; 

Heckman & Singer, 1984; Nagin & Tremblay, 2005; Sampson & Laub, 2005).  

 

Population-based conviction data 

As mentioned above, we decided to use two data sets for our demonstration. The first 

includes data on convictions of 403 “boys” from Cambridge, England who were followed from 

ages 10 to 40 (Farrington & West, 1990)3. The second dataset includes information on 13,160 

males born in Philadelphia in 1958. Annual counts of police contacts are available from age 4 to 

26 for this birth cohort. Strengths and limitations of these data have been discussed in various 

places (Brame, Mulvey, & Piquero, 2001; Moffitt, 1993; Nagin & Land, 1993) and will not be 

repeated here.  

Both datasets share two characteristics. First, the aggregate age-crime curve follows the 

well-known pattern of increasing yearly convictions throughout the subjects’ teenage years and 

decreasing annual conviction rates thereafter (Farrington, 1986; Hirschi & Gottfredson, 1983). 

Second, the outcome variable is extremely skewed with a large number of zeros at each point in 

time.  Both characteristics can be seen in Figure 1. The upper panel of Figure 1 displays the 

average number of police contacts for the Philadelphia data by age-groups. We see the average 

number of police contacts rise up to the age 16, where it peaks at an average of 0.23 police 

contacts for the entire cohort of 13,160 males.  
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---------------------------------------------------------- 

Insert Figure 1 about here 

---------------------------------------------------------- 

The lower panel of Figure 1 displays the number of males with police contacts by age. We 

see that the change noted in the upper panel of Figure 1 is not just due to an increase in the 

number of contacts for a particular subset of males, but is also largely due to a changing number 

of males that experienced police contacts.  At age 11, for example, 205 males, which is less than 

two percent of the entire cohort, had a police contact. At age 16, on the other hand, this number 

increased to 1800 males (13.7% of the cohort). But there are also a large number of males who 

never had any contact with the police. In the Philadelphia birth cohort roughly 60% had no 

recorded police contact in the recorded years between age six and age 26, about 15% had one 

police contact during this period, and the remaining quarter of the birth cohort shows between 2 

and 57 police contacts. In any given year more than 90% of males in the 1958 cohort do not 

show any policy contact, except for the teenage years (15 through 17) where the number of non-

offenders ranged between 86.3 % and 89%.  

---------------------------------------------------------- 

Insert Figure 2 about here 

---------------------------------------------------------- 

The distribution of convictions over time looks very similar for the Cambridge study 

(Figure 2), only a little less smooth due to the smaller number of cases. For the Cambridge males 

we see also an increase in early adulthood resulting in a peak at age 17 with an average of 0.17 

convictions and a decline thereafter. The number of males engaged in crimes increased in a 

similar way. At age 11 roughly 2% (8 boys) were convicted, while at age 17 there were 



Longitudinal Modeling of Population Heterogeneity  5 

somewhat more than 10%. Here too most males show no convictions throughout the 

observational period. Overall, 60% of males in the Cambridge study were never once convicted, 

and in any given year anywhere between 88.8% and 98.5% of males had zero convictions. 

For our modeling example several decisions were made to deal with the large amount of 

zeros in the outcome variable at each individual time point. Following Roeder et al. (1999) we 

decided to analyze the data grouped into bi-annual intervals4, and use zero-inflated Poisson 

models (Lambert, 1992; Nagin & Land, 1993) in all our analyses of the count outcome variable. 

These zero-inflated Poisson (ZIP) models were developed for situations in which the count 

outcome is equal to zero more often than one would expect assuming a Poisson distribution 

(Hall, 2000). The ZIP model is discussed in detail by Nagin and Land (1993) and Roeder et al. 

(1999), and will therefore not be explained any further. A brief model description can be found 

in the Appendix to this chapter.  

 

Comparison of the mixture modeling approaches 

The key to the model comparison is a good understanding of the assumptions behind the 

different growth models, specifically the presence or absence of random effects, as well as a 

good understanding of non-parametric modeling of the distributions of those random effects. 

Before we discuss the results we will therefore review the specification of a different growth 

model using a general latent variable framework.5 The use of this framework allows a 

straightforward comparison of the growth models, both in terms of equations and in terms of 

actual model specification. In our comparison of growth mixture models, we focus on their 

ability to capture the heterogeneity of trajectories. However, it should be noted that all 
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assumptions underlying regression-based models6 still apply and need to be considered when 

applying these even more demanding techniques. 

Underlying concepts 

In growth curve models, the development of the observed outcome variables over time is 

characterized as a function of age. Conventional growth modeling can be used to estimate the 

amount of variation across individuals in the growth parameters (intercepts and slopes) as well as 

average growth. In other words, in a conventional growth model the individual variation around 

the estimated average trajectory is expressed in growth parameters that are allowed to vary 

across individuals (Raudenbush & Bryk, 2002), and that variation of the growth parameters is 

assumed to take on a normal distribution (Hedeker & Gibbons, 1994). Substantively, it means 

that one assumes all people in the sample have the same expected criminal trajectory and that the 

individual variation around this expected trajectory is centered on the estimated intercept and 

slopes for the whole sample, with symmetric deviation on both sides (e.g., some individuals start 

their criminal careers earlier and some start later, but on average they start at the estimated 

intercept).  

The normality assumption of the conventional growth model was challenged by Nagin and 

Land (1993). These authors adopted a model by Heckman and Singer (1984) that approximates 

an unspecified continuous distribution of unobserved heterogeneity with a linear combination of 

discrete distributions (Nagin, Farrington, & Moffitt, 1995). That is, different groups are used to 

capture the overall variation. Within the latent variable framework one would say the population 

consists of latent classes each of which has its own growth trajectory; we therefore refer to this 

approach as latent class growth analysis (LCGA). Over the last few years, LCGA has become 

attractive for quantitative criminologists and specialists in related fields (e.g., Blokland & 
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Nieuwbeerta, 2005; Fergusson & Horwood, 2002; Haviland & Nagin, 2005; Piquero, Farrington, 

& Blumstein, 2003). The group-based modeling approach supports distinctions among subgroups 

having distinct offending trajectories. It also matches theories like the one proposed by Moffitt 

(1993) that differentiate between a large group of adolescence-limited offenders and a small 

subgroup of life-course persistent offenders. However, subgroups found in these latent-class-type 

models have not always matched theory, and there has been a tension regarding how to interpret 

the classes found (for a review see Raudenbush, 2005). Recently Nagin and Tremblay (2005) 

warned about the reification of the trajectory groups when their initial purpose is solely a 

statistical approximation of a complex continuous distribution. As Raudenbush (2005) pointed 

out,  

Perhaps we are better off assuming continuously varied growth a priori and therefore 
never tempting our audience to believe in the key misconception that groups of 
persons actually exist. We would then not have to warn them strongly against 
"reification" of the model they have been painstakingly convinced to adopt (p. 136). 

 
Looking at the models introduced by Muthén in Chapter 1 of this volume, the decision 

regarding how to model trajectories might not necessarily be an either/or. A growth mixture 

model (GMM) would allow for both − a mixed population as predicted by certain criminological 

theories of different subpopulation trajectories, and a variation in the growth parameters (and 

likewise the trajectories) within the groups. However, if random effects are allowed within the 

classes, the growth mixture model also relies on the normality assumption. A nonparametric 

version of a growth mixture (NP-GMM) can be employed instead, which does not rely on any 

distributional assumption for the random effects. Instead, the model is specified such that latent 

classes are used to capture the potentially non-normal distribution within the growth mixture 

classes. In this sense, the nonparametric growth mixture model resembles the latent class growth 

model. At the same time it allows for an explicit specification of 'substantively meaningful' 
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trajectory groups and groups that are needed solely to capture the variation in the growth 

factor(s). 

Model specifications 

The similarities and differences between these models will become clearer with a closer 

look at the model specifications. Let us start with a simple model with no covariates other than 

age, where the age-crime relationship is described by a quadratic growth function. The outcome 

variable is a count (e.g., number of convictions) and the Poisson parameter λ can be expressed 

for each individual i at time point t as a linear combination of the time-related variable X with a 

linear slope parameter β1 and a quadratic slope parameter β2, 2
210)ln( titiiit xβxββλ ++= . In this 

specification of a conventional growth model β0i is a random intercept, and β1i and β2i are 

random slopes. That means that the values for the intercept and slopes are allowed to vary across 

individuals.  

Let us assume for simplicity a conventional growth model with a random intercept factor 

and no random effects for the slope or quadratic term. The equation above would change to 

2
210)ln( ttiit xβxββλ ++=  with no i subscripts on β1 and β2. Substantively speaking, every 

observational unit shows the same development but starting from different values. One can think 

of this as a shift of the growth trajectories along the vertical axis in pictures like Figure 1 and 2. 

Using multilevel notation (e.g., Raudenbush & Bryk, 2002), the equation estimated at level two 

(the individual level) for the growth model with just a random intercept is ii rαβ 000 += . In a 

latent variable framework, this random effect β0i can be seen as a latent variable with a normal 

distribution. The latent variable captures the heterogeneity in the intercepts, and again, the 

normality assumption implies that the individual variation around the expected trajectory is 
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centered on the estimated intercept for the whole sample, with symmetric deviation on both 

sides. But what if the assumption is violated and the random effects cannot be seen as being 

normally distributed? This issue will be discussed next in the context of nonparametric growth 

models. 

Nonparametric growth models  

In this case the distribution of the random effects can be left unspecified and will be 

estimated. For estimation the EM algorithm can be employed, and within the E-step numerical 

integration can be used. In numerical integration the integral is substituted by a finite weighted 

sum of mass points (nodes) as shown in Chapter 1, Figure 7 (left panel). If one were to 

approximate a normal distribution with numerical integration, Gauss-Hermite quadrature can be 

used. In this case nodes and weights of the nodes are known and fixed. However, if an unknown 

distribution needs to be approximated, the nodes (mass points) and weight of the nodes (masses) 

can be estimated. Together they provide the necessary parameters to capture the unknown 

distribution of the random effect (see Chapter 1, Figure 7, right panel; there the mass points 

determine the location of the bars, and the weight determines their height).  

For our example of an age-crime relationship that is described by a quadratic growth 

function, the random effect of the intercept would now not longer be captured by ii rαβ 000 += , 

but rather through N different nodes that would be called classes in the latent variable 

framework. The full estimation equation would be expressed by 2
210| )ln( ttnncit xβxββλ

i
++== . 

The subscript i on the intercept growth factor is replaced with n indicating a particular class 

(node) in the unknown distribution. With this model specification there is now no longer any 

within-class variation in the intercept growth factor and there is no error term for the growth 

factors. Instead, there are k different growth factor means. Note that the ‘classes’ do not have a 
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substantive interpretation, but are needed as mass points to approximate the variation in 

intercepts. 

 

Growth mixture model and latent class growth model 

Let us step aside for a moment and consider general mixture-modeling applications. In 

such a model, be it a growth mixture model or a latent class growth model, the classes are 

usually perceived as being substantively different in their development. That is, not only do the 

intercept growth factor means differ across classes, but so too do their slope factor means. Thus, 

they too should have a subscript k, as indicated in the equations in Figure 3. In the growth 

mixture model, the growth factors, β0i, β1i and β2i may vary randomly among individuals. 

However, in marked contrast to conventional growth models, these random effect models can be 

specified for k unobserved subpopulations or classes. 

---------------------------------------------------------- 

Insert Figure 3 about here 

---------------------------------------------------------- 

The key differences among the classes are typically found in the fixed effects α0, α1, and 

α2, which may differ for each of the k classes of C but do not necessarily do so. Likewise, slopes 

and intercepts may have random effects, but do not necessarily do so. That said, if all variances 

in the growth factors, β0, β1, and β2, are set to zero, a growth mixture model specification would 

look like the specification of a latent class growth model (group based trajectory model). If 

random effects are specified in a growth mixture model they are again latent variables with a 

normal distribution. Here the normality assumption implies now that for each latent class the 

individual variation around the expected trajectory is centered on the estimated intercept and 
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slopes for the respective class, with symmetric deviation on both sides. Note that each individual 

has a probability of membership in each of the classes, and the individual’s score on the growth 

factors can be estimated. 

Nonparametric growth mixture model 

Having discussed the nonparametric version of a conventional growth model, and the 

similarities and differences in the latent class growth model and the growth mixture model, we 

can now combine the different elements and take a closer look at the nonparametric version of a 

growth mixture model. As the name indicates the nonparametric GMM does not rely on any 

distributional assumption for the random effects. Instead, the model is now specified such that 

additional latent classes are estimated to capture the potentially non-normal distribution within 

the growth mixture classes.  

Consider, for example, a growth mixture model with random intercept (and no random 

effects on the linear and quadratic slope parameters): 2
210| )ln( tktkkikcit xβxββλ

i
++== , and 

kikki rαβ 000 += . A nonparametric version of this growth mixture model would use classes to 

capture the variation of the intercept within each of the k substantive classes established before. 

The overall trajectory shape of the k substantive classes will not change. That is, each substantive 

class is still defined by the same slope and quadratic term. However, there will now be additional 

n classes that differ only in the estimated intercept term and are used to capture the distribution 

of the random effect on the intercept.   

It might be helpful here to look at the example model specification in Figure 4 (which 

resembles to what would be specified in the Mplus software). A quadratic growth model is 

specified for an observed outcome variable. The slope variance s and the variance q for the 

quadratic random effect are set to zero (s@0 and q@0). Only a random intercept is estimated in 
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this growth mixture model. In the lower part of the first column of Figure 4 (labeled GMM) a 

mean intercept β0 represented by [i], a slope β1 represented by [s], and a quadratic term β2 

represented by [q] will be estimated for three substantive classes. This results in nine estimated 

growth parameters for the Poisson part of the growth mixture model, three for each class  

---------------------------------------------------------- 

Insert Figure 4 about here 

---------------------------------------------------------- 

A nonparametric version of the same growth mixture model is displayed in the middle 

column of Figure 4, labeled nonparametric GMM. Two latent class variables are specified in this 

model: csub, with three classes that capture the substantive different trajectories found in the 

GMM model, and cnp, to capture the distribution of the random intercept. This second class 

variable is allowed to have two classes, which vary in their estimated intercept factor means but 

not in the slope or the quadratic means, as seen in the bottom half of Figure 4. For the first 

substantive class (csub=1) four parameters are estimated. The estimated value for the two 

intercepts varies across np-classes that capture the distribution of the random intercept; the value 

for the estimated slope and quadratic term does not (see the values 2 and 3 for both s and q). 

Note that by having the slope factor means for the linear and quadratic term [s q] be the same 

across the np-classes within each substantive class, the assumption is made that the linear and 

quadratic slope growth factors are uncorrelated with the intercept growth factor. This assumption 

is not made by the LCGA model, as outlined in the left column of Figure 4, where all growth 

factor means (intercept, slope and quadratic term) can be different across classes and all growth 

factor variances are set to zero. That said, a latent class growth model could give a result where 

the estimated slope factor means ([s] and [q]) vary across substantive classes without being 
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correlated with the estimated mean intercept factor. An LCGA model could therefore lead to the 

same result as a nonparametric growth mixture model.  

The model set-up shows the similarity between these models. But the similarity should not 

disguise the important theoretical implications of the different model specifications. We will 

come back to this point when we discuss the different interpretations of the model results for the 

two data examples in the next section. 

 

Application of the three different modeling strategies 

To discuss the different modeling results for the Cambridge data as well as the Philadelphia 

data, we will build on past results from Kreuter and Muthén (2006), Roeder et al. (1999) as well 

as D’Unger, Land, McCall, & Nagin (1998). For both data sets we will select a set of growth 

models that have been shown to represent the data well. We start the comparison of the growth 

mixture, latent class growth, and nonparametric growth mixture solutions with a discussion of 

the model statistics followed by a comparison of the resulting mean trajectories, as well as the 

assignment of most likely class membership.  

Discussion of model statistics 

A common challenge for all of the latent variable models discussed here is the decision 

regarding the number of classes needed to best represent the data (see, e.g., McLachlan & Peel, 

2000). Objective criteria for doing so have been a matter of some controversy. Kreuter and 

Muthén (2006) used a different set of statistics to evaluate different models for the Cambridge 

data. The comparison of the log-likelihood values was used as an indicator for the appropriate 

number of classes. However, this likelihood ratio test was not used as the sole decision criterion, 

since for these models it does not have the usual large-sample chi-square distribution due to the 



Longitudinal Modeling of Population Heterogeneity  14 

class probability parameter being at the border of its admissible space (Muthén, 2004). 

Therefore, the comparison of log-likelihood values was supplemented by alternative procedure 

like the Bayesian Information Criterion (BIC; Schwartz, 1978), new mixture tests like the 

likelihood-ratio test proposed by Lo, Mendell, and Rubin (LMR; 2001), and the bootstrap 

likelihood ratio-test (McLachlan & Peel, 2000; Nylund, Asparouhov, & Muthén, in press). 

Results from models fit to the Cambridge data and Philadelphia data are presented in Table 1, 

and described below. 

---------------------------------------------------------- 

Insert Table 1 about here 

---------------------------------------------------------- 

Cambridge data.  For the Cambridge data, Kreuter and Muthén (2006) identified a three-

class growth mixture model (GMM), a six-class nonparametric growth model (GM np) and a 

five-class latent class growth model (LCGA) to fit the data best within each of these modeling 

types. For the three-class GMM, a model with two different developmental trajectories (labeled 

as GMM (zip) 2+0 in Table 1) showed the best fit. This model has 12 parameters: two 

parameters for class membership, three parameters (intercept, linear slope and quadratic slope) 

for both count trajectories, one for the intercept variance, two for the slope and a quadratic slope 

for the zero-inflation part of the model, and one parameter for the probability of being in the zero 

class at each point in time. The log-likelihood value for this model is -1,454.7 with a BIC of 

2,981.5. 

Of the different nonparametric GMM models, a nonparametric model with two support 

points (nodes) for intercept variation in one non-zero class and three in the other performed best 

using log-likelihood values, BIC and BLRT as indicators of model fit (labeled as GMM np zip in 
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Table 1). This model, which has 15 parameters, yielded a log likelihood value of -1,444.4 and a 

BIC of 2,978.8. Among the LCGA models (indicated as LCGA (zip) in Table 1), both four- and 

five-class models performed well. The five-class solution, which has 22 parameters, has a log-

likelihood value of -1,441 and a BIC of 3,014. 

Philadelphia data. The data from the Philadelphia Cohort Study were examined in a 

similar fashion. Following D’Unger et al. (1998), a random subset of 1000 observations was 

used for this model comparison. To keep the parallel with the Cambridge data results, we 

decided to use the results for the five-class latent class growth model (a solution found to fit the 

data best in the D’Unger et al. study). Also, while the six-class latent class growth model had a 

slightly better BIC value than the five-class model (6,504 vs. 6,506), the LMR likelihood ratio 

test failed to reject a five-class model in favor of a six-class model. We matched these results to a 

three-class GMM model as well as a nonparametric GMM model with three substantive classes 

and two nonparametric classes.1 A noticeable departure from the Cambridge data was that, in this 

case, specifying an explicit zero class was not necessary for any of these models; however, the 

outcome variable was specified as zero-inflated Poisson, just like it was in the models for the 

Cambridge data.  

For the Philadelphia data the three-class GMM model has a likelihood of -3,173.6 with 15 

parameters, resulting in a BIC value of 6,450.8 (see bottom half of Table 1). The nonparametric 

version of this GMM model, which has 18 parameters, has a slightly higher log-likelihood value 

of -3,172.4, resulting in a BIC of 6,469.2. The latent class growth model with five classes and 22 

parameters has a log-likelihood value of -3,177.1. 

                                                 
1 Note that in the GMM model we allow for a random intercept only. A more detailed analysis of the full Philadelphia 
cohort study can be found in Muthén and Asparouhov (2006). Note that a model with random effect for the intercept 
and the linear slope fits the data better and changes the results somewhat. The analysis here is kept simpler for 
illustrative purposes. 
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We will look in detail at the results for the trajectories later in the chapter. For now, what is 

interesting to note at this point is that the log-likelihood values for the three models for each of 

these datasets are very similar. In fact, they are much more similar to each other than the results 

within one model type when different numbers of classes are used, or when the models are run 

without the zero-inflated Poisson specification (see Appendix). The biggest difference between 

the models is in the number of parameters used to achieve these likelihoods (with the lowest 

number in GMM and the highest in LCGA) and the values of entropy. Entropy is a measure used 

for the separation of the latent classes which is based on the posterior class membership 

probabilities (Muthén & Muthén, 1998-2006). Entropy measures capture how well one can 

predict class membership given the observed outcomes. Values range from 0 to 1, and high 

values are preferred. However, entropy measures are by definition a function of the number of 

classes. If one were to fit a model with as many classes as there are observations, entropy would 

necessarily be 1. We therefore do not want to overemphasize this value, but will come back to 

this difference in entropy when we compare class assignment and predictive power of the 

different models.  

Lastly it should be noted that all of these mixture models appear to have a considerably 

lower BIC values than the conventional growth model with a random intercept term. For the 

random subset of 1000 observations from the Philadelphia data, the BIC was 6,528.2 for a model 

with 7 parameters and a log-likelihood value of -3,239.8. The distribution of factor scores 

presented in the next section will illustrate this effect. 

Factor score distribution 

The two graphs in Figure 5 show the distribution of intercept factor scores for the 

conventional growth curve model and the growth mixture model for the Philadelphia data. The 
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picture on the bottom shows for the general growth mixture models a highly skewed distribution 

of the intercept growth factor. The three-class growth mixture model divides this distribution in 

three sub-classes. Displayed are here the intercept factors scores for the two biggest classes 

(roughly 40% and 44 %; according to the most likely class membership 16.1% and 78.5%). 

---------------------------------------------------------- 

Insert Figure 5 about here 

---------------------------------------------------------- 

Looking at the bottom picture in Figure 5, we see that there is a high pile of intercept factor 

scores around zero (-15 on the log-scale) and another pile of factor scores that ranges from -9 to -

3 on the log-scale with a mean and median at -6. In the nonparametric version of the growth 

mixture model these two distributions are represented with two additional sub-classes for each of 

the mixture classes. The early and higher peaking class has two support points at -13.7 (with a 

weight of 3%) and -15.5 (with a weight of 17%), the late and very low peaking class has one 

support point at -5.6 (with a weight of 63%) and -2.6 (with a weight of 12%). 

However, looking back at Table 1, the nonparametric version of the GMM has a very 

similar log-likelihood to the GMM and needs more parameters. It is therefore less parsimonious 

and does not fit the data better. The normality assumption for the random effect in the GMM 

model does not seem to be violated so much as to make a nonparametric representation 

necessary. For the Cambridge data, Kreuter and Muthén (2006) showed the quadrature points for 

the NP-GMM model and the related intercept factor score distributions. There, too, the 

nonparametric specification of the random effects in the GMM model appeared to be 

unnecessary. 
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Mean trajectories 

Growth model results are most often displayed with mean trajectory curves. Figure 6 

shows the results for the Philadelphia Cohort study. The three mean trajectories from the GMM 

are shown in the left-hand panel and the five mean trajectories for the LCGA are shown in the 

right panel. The results of both models capture three ‘themes’: a peak in mid-teenage years (age 

15) with a steep decline, a peak in later teenage years (age 16/17) with a slower decline and very 

low peaking in early adulthood (age 19/20). The height of the GMM trajectories is notably lower 

than those of the LCGA, but one should not forget that additional variance terms are estimated 

for the GMM that allow for a variation around the means displayed here. One could display the 

GMM curves not just conditional on the mean but conditional on one standard deviation above 

and one standard deviation below the mean for any given class. In this case the graphs would 

look more similar to the NP-GMM result. 

---------------------------------------------------------- 

Insert Figure 6 about here 

---------------------------------------------------------- 

Looking back to the model setup in Figure 4, the NP-GMM falls between GMM and 

LCGA. Like LCGA there is no variance estimated for the trajectory curves, or to phrase it 

differently, all random effects for intercept, slope, and quadratic terms are set to zero. However, 

the parameters for slope and intercept are constrained to be equal for some of the classes, which 

allows for a nonparametric representation of the variation of the intercept in the GMM model. 

The estimated classes that form the two solid lines in the NP-GMM graph of Figure 6 are 

variations on the trajectory shape represented with a solid line in the GMM graph of Figure 6. 

Likewise, the two short-dashed lines are variations of Class 1 in the GMM graph and the dot-



Longitudinal Modeling of Population Heterogeneity  19 

dashed lines are variations of the dot-dash line in the GMM graph. For all three substantive 

classes the np-class with the larger estimated class size is marked with a thicker line in Figure 6. 

The LCGA results follow similar themes with early and late peaking classes. However 

there are shifts in form and location of the trajectories compared to the GMM and NP-GMM 

model results, as well as changes in the estimated class sizes. The two late-peaking classes in 

LCGA peak at age 19, not 17 as in the GMM and NP-GMM results. Additionally, the peak 

height of the earlier peaking class trajectories is different from those in the NP-GMM solution. 

For the Philadelphia data the early high peaking class in the LCGA has an estimated class size of 

little more than 1% (C 4) and occurs at age 15. In the GMM-NP the early high peaking class has 

an estimated class size of 3% (Csub1np1) and is not as high peaking as the LCGA class. The 

even higher peaking class with an estimated class size of almost 1% (Csub2np1) peaks at a later 

age. And, the LCGA has a late-peaking 4% class 3, peaking at 19, while GMM-NP has 2 later-

peaking classes with 1 and 5%, both peaking at age 17. 

For the Cambridge data the results for the NP-GMM and the LCGA model were very 

similar (Kreuter & Muthén, 2006). Figure 7 shows the estimated average number of convictions 

at each time point plotted in the LCGA estimates against the estimates for each time point in the 

NP-GMM model for each of the five LCGA classes. The dashed diagonal line is the identity line. 

Points fall on this line if the estimated means are exactly the same at each time point for both 

models. While there is some slight deviation from the identity line, this graph nevertheless shows 

the similarity in the model results for the Cambridge data (further modeling details can be found 

in Kreuter & Muthén, 2006). 

---------------------------------------------------------- 

Insert Figure 7 about here 
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---------------------------------------------------------- 

For a substantive researcher attention should be paid to shape and location of the estimated 

trajectories. If the shape of the trajectories is the same for a set of classes and the only difference 

between the classes is in how high or low these trajectories start, then there is reason to check 

carefully if this indicates that the classes are solely variations on the same theme (nonparametric 

ways to capture a random intercept effect) or if they really have substantive meaning. The latter 

can be guided by theory, but cannot be decided without extending the models. The relationship 

of the classes to antecedents and consequences can be information in this regard. For example, if 

the NP-GMM sub-classes that represent the distribution of the intercept factor scores of the 

GMM have different predictive power for a distal outcome, or if covariates predict the subclasses 

differently, then it would be reasonable to relax the restrictions on the growth factor means and 

move to an LCGA. On the other hand, LCGA might tempt the research to try a substantive 

interpretation for each of the LCGA classes whereas some of those classes are only needed to 

capture random variation in the growth factor(s) and GMM would come up with fewer 

substantively different classes. The model statistics for the Philadelphia cohort study suggest 

this, with GMM resulting in a higher log-likelihood and lower BIC value than the LCGA. But 

again, knowledge regarding the interpretation of the classes can only be gained in relating classes 

and growth factors to variables outside the model (antecedents and consequences). 

One note of caution should be added here. So far we only discussed random variation 

around an estimated mean intercept trajectory. That is, we discussed that shifts along the vertical 

axis are a random effect that might call for a nonparametric representation. A similar thought can 

be brought up for shifts along the horizontal axis. For these example data sets this would mean 

that the number of convictions or police contacts in certain life periods is more predictive of later 
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consequences than at which age those convictions or police contacts happen. This shows once 

again that successful modeling needs to combine substantive and technical knowledge. 

 

Summary 

This chapter illustrates and compares three different modeling approaches for longitudinal 

data. The approaches considered include latent class growth analysis as well as parametric and 

nonparametric versions of growth mixture models. The analyses show that researchers might not 

want to make a priori decisions regarding whether to assume continuously varied growth or to 

rely entirely on substantive classes to capture the variation in growth. A growth mixture model 

where random effects are allowed within classes can be an alternative. Or, if the normality 

assumption is questioned, a nonparametric version may be considered. 

For both the Philadelphia and Cambridge data we saw that mixture models are needed to 

summarize the developmental trajectories. We also saw that the variation in the intercept random 

effect of a GMM can be represented in a nonparametric way. The resulting estimates for the 

nonparametric model seem to fit the data slightly better than the other two mixture specifications 

for the Cambridge data.  Note that in the Cambridge data the resulting trajectories for an LCGA 

model are very similar to the NP-GMM results. This is not the case for the the Philadelphia data.  

The parametric and non-parametric version of the GMM model show very similar growth 

trajectories. However, the resulting trajectories of the LCGA differ in class sizes and slope 

compared to the parametric and non-parametric GMM.  

In both cases, but in particular for the Philadelphia data, the next analysis step would be to 

try models that relate the growth factor variation in the GMM model, as well as the different 

classes in NP-GMM and LCGA, to distal outcomes or antecedents.  If it is the case that the NP-
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GMM sub-classes have different predictive power regarding a distal outcome, for example, then 

this could be sign that these classes represent more than a mere variation on a random intercept. 

In addition the full Philadelphia data could be explored with models that allow for random linear 

and quadratic slopes (see Muthén & Asparouhov, 2006). 
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Appendix 

Note that the ZIP model is already a special case of a finite mixture model with two 

classes. For each observation the probability is estimated to be in either the "zero" class, those 

with structural zeros, or the "non-zero" class, those with random zeros or at least one conviction. 

For the zero class a zero count occurs with probability one. For the non-zero class, the 

probability of a zero count is expressed with a Poisson process. The interesting feature for the 

ZIP, or its expression as a two-class model, is that the probability of being in the zero class can 

be modeled by covariates that are different from those that predict the counts for the non-zero 

class. The same is true when allowing for a zero class in the growth trajectory modeling. 

More formally, for the present application this model can be represented as follows: At 

each individual time point a count outcome variable Uti (the number of conviction at each time 

point t for individual i) is distributed as ZIP (Roeder et al., 1999). 

0   with probability   
~

Poisson( ) with probability   1-
ij

ti
ti ij

p
U

pλ
⎧⎪
⎨
⎪⎩

. 

The parameters pit and λit can be represented with ti ti tlogit( ) = log[ /1- ]=X  ti tiρ ρ ρ γ  

and ln( )ti ti iλ β= Χ . 
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Footnotes 

 
1  We thank Tihomir Asparouhov, Shawn Bushway, John Laub, Katherine Masyn, Daniel Nagin, 

Paul Nieuwbeerta and the participants of the 2006 CILVR conference at the University of 

Maryland for stimulating discussions that shaped our perspective for this paper. Michael 

Lemay was of great help in data preparation and analysis. 

 
2  The authors contributed equally to this chapter. 

 
3  Eight boys died during the observational period and are not included in the analysis. 

 
4  The Cambridge data were grouped into bi-annual intervals starting with age 10. The 

Philadelphia data were also grouped into bi-annual intervals starting with age 5. In addition, 

we reduced the age range for the Cambridge data to age 10-27 (see Kreuter & Muthén, 

2006). 

 
5  For an overview of this modeling framework, see Muthén (2002). For a step-by-step 

introduction to applying latent variable models to longitudinal data, see Muthén (2004). 

 

6  See Berk (2004) for a comprehensive summary. 
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Table 1 

Growth Mixture Model, Nonparametric Representation of Growth Mixture Model, and Latent 

Class Growth Analysis (All With Zero-Inflation) 

 
 

Model Classes LogL No. of  
parameters 

BIC       Entropy 

Cambridge Data  
GMM (zip) 2  + 0 -1,454.7 12 2,981.5      0.493 
GMM np zip 2 + 3 + 0 -1,444.4 15 2,978.8      0.660 
LCGA (zip) 5  -1,441.0 22 3,014.0      0.814 

Philadelphia Cohort Study ’58 (subset n=1000) 
GMM (zip) 3 -3,173.6 15 6,450.8      0.238 
GMM np zip 2+2+2 -3,172.4 18 6,469.2      0.704 
LCGA (zip) 5 -3,177.1 22 6,506.1      0.817 
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Figure 1. Distribution of police contacts over the ages 5 to 26 for the Philadelphia Cohort Study 
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Figure 2.  Distribution of convictions over the ages 10 to 40 for the Cambridge Study 
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Figure 3.  Specification of general growth mixture model and latent class growth model 

 

Growth Mixture Model Latent Class Growth Model 
2

| 0 1 2ln( ) +
iit c k ki ki t ki tx xλ β β β= = +  2

| 0 1 2ln( ) +
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Figure 4.  Example model specification for GMM, NP-GMM and LCGA 

 
 

GMM Non-parametric GMM LCGA 
CLASSES = csub(3); CLASSES = csub(3) cnp(2); CLASSES = csub(5); 

   
s@0; 
q@0; 

model csub:                   
 %csub#1% 

    [s-q]; 
 %csub#2% 
    [s-q]; 
 %csub#3% 
    [s-q]; 

i@0; 
s@0; 
q@0; 

   
Estimated Growth Parameters 

GMM Non-parametric GMM LCGA – 5 classes 
csub         [i     s    q] 
  1            1    2    3 
  2            4    5    6 
  3            7    8    9 
 

csub   cnp  [i     s    q] 
  1       1     1    2    3 
  1       2     4    2    3 
  2       1     5    6    7 
  2       2     8    6    7 
  3       1     9   10   11 
  3       2    12   10  11 

csub     [i     s    q] 
  1         1    2    3 
  2         4    5    6 
  3         7    8    9 
  4        10   11  12 
  5        13   14  15 
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Figure 5.  Distribution of intercept growth factor scores for the conventional growth model and 

the two biggest classes of the GMM model (class assignment according to most likely class 

membership) for the Philadelphia data. 
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Figure 6.  Mean trajectories for the three-class, its nonparametric GMM, and latent class growth 

model 
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Figure 7.  Cambridge data: LCGA estimated average number of convictions at each time point 

plotted against NP-GMM estimates for each time point for each of the five LCGA classes 
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