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1 INTRODUCTION

Randomized trials involving human participants often suffer from both noncompli-
ance and missingness in outcomes (nonresponse or dropout). In these situations, it
seems quite natural to link individuals’ compliance type to their dropout behavior or
response to surveys. For example, treatment noncompliers may be less likely to re-
spond to follow-up surveys or more likely to drop out from the study than compliers.
These settings lead to potentially nonignorable missing-data mechanisms, given that

missingness is related to latent compliance class, which is partly unobserved.

If the probability of missingness in outcomes depends only on observed data, the
missing data are considered as missing at random (Little & Rubin, 1987). Under the
assumption of missing at random (MAR), the missing-data mechanism is ignorable
for likelihood-based inferences. In other words, whether the mechanism leading to
missing data is explicitly specified in the model does not influence inferences. How-
ever, if missingness is attributable to unobserved data, the missing-data mechanism

is nonignorable. In this case, likelihood-based inferences can be sensitive to whether

and how the missing-data mechanism is specified in the statistical model.

Frangakis and Rubin (1999) suggested their novel idea of modeling missing-
data mechanisms related to compliance behavior of study participants. They defined
“latent ignorability”, where potential outcomes and associated potential nonresponse
indicators are independent within each level of the latent compliance strata. Since
compliance status is not completely observed for every individual, the missing-data
mechanism related to compliance is no longer ignorable. This latent ignorability

assumption conditional on compliance is weaker than the conventional ignorability
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(MAR) assumption and is potentially useful in investigating the sensitivity of the

ITT effect and the CACE estimates to violation of ignorability.

Based on simulation studies, Frangakis and Rubin (1999) demonstrated that
models assuming latent ignorability generally perform better than (or at least as well
as) models assuming ignorability even when the latent ignorability conditions are not
satisfied. The substantial advantage of assuming latent ignorability found in Fran-
gakis and Rubin (1999) was, however, based only on conditions where the response
rate is quite different for compliers and noncompliers (80% vs. 50%: big deviation
from ignorability). Since Frangakis and Rubin (1999), a systematic investigation has
not been conducted to define conditions under which models assuming ignorability or
latent ignorability are most sensitive, and to define conditions under which substan-
tial differences can be expected between the two missing data approaches. Further,
it is not well known whether assuming latent ignorability instead of ignorability is

always advantageous.

Compound exclusion (Frangakis & Rubin, 1999) is one of the key structural
assumptions in identifying principal effects (Frangakis & Rubin, 2002) under latent
ignorability. Under this assumption, the difference in outcomes and response rates
between the treatment and the control condition is allowed for compliers, but is not
allowed for never-takers (individuals who would not receive the treatment regard-
less of whether it is offered) or for always-takers (individuals who would receive the
treatment regardless of whether it is offered). The plausibility of the standard ex-
clusion restriction in observed outcomes and the impact of violating the assumption

have been previously discussed (Angrist et al., 1996; Frangakis et al., 2002; Hirano
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et al., 2000; Imbens & Rubin, 1997; Jo, in press, 2002; Shadish, Cook, & Campbell,
2002; West & Sagarin, 2000). When the exclusion restriction is violated in observed
outcomes, the causal effect of treatment not only can be understated, but also can
be exaggerated depending on how the assignment of treatment affects noncompliers.
However, little is known about the sensitivity of causal effect estimates to violation of
the exclusion restriction in outcome missingness. Since the violation of the exclusion
restriction in observed outcomes affects both models assuming ignorability and latent
ignorability, this study will focus its investigation on the violation of the exclusion

restriction in outcome missingness, which affects only latent ignorability models.

The plausibility of compound exclusion restriction is often hard to predict in
practice given various possibilities and competing theories. Besides, the directions and
magnitudes of deviation from the exclusion restriction can be different for observed
outcomes and missingness of the outcomes. In examining the degree of deviation
from ignorability, observed or estimated response rates without considering possible
violation of compound exclusion could be misleading. For example, when there are
only two compliance classes (e.g., compliers and never-takers), observed data in the
treatment condition may indicate a clear difference in response rates between the
two compliance classes. However, the same trend may not hold in the absence of
treatment. Or, estimated response rates assuming compound exclusion may show a
big difference between the two compliance classes in the control condition, but this
finding may not hold if compound exclusion is violated. To gauge the relative benefit
of models assuming ignorability and latent ignorability given these uncertainties, one

needs to carefully consider reasons why (or why not) compliers and noncompliers
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would show different response rates when assigned to the control condition (deviation
from ignorability), and why (or why not) noncompliers would show any effects of
treatment assignment on their response rates (deviation from compound exclusion).
The answers to these questions could be quite obvious in some situations, but not in

other situations.

This study focuses on the fact that identification of causal effects under latent
ignorability relies on the generalized (compound) exclusion restriction (i.e., both on
the outcomes and missingness of outcomes), whereas identification of causal effects
under ignorability relies on the standard exclusion restriction (i.e., only on the out-
comes). The assumption of latent ignorability is weaker than ignorability in the sense
that it allows interaction between outcome missingness and partially observed com-
pliance class, but stronger in the sense that the exclusion restriction is additionally
imposed on outcome missingness. In other words, the relative benefit of models as-
suming latent ignorability and standard ignorability depends on degrees of deviation
from compound exclusion and ignorability. On the basis of Monte Carlo Simulations,
this study demonstrates sensitivity of causal effect estimates under ignorability and
latent ignorability to various degrees of deviation from the standard ignorability and
compound exclusion. It is also demonstrated that sensitivity of causal effect estimates
to model misspecification can be somewhat reduced in the presence of covariates that
are good predictors of compliance. Maximum likelihood estimation using the EM

algorithm is employed in the estimation of causal effects in the study.
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2 UNDERLYING ASSUMPTIONS

Assume the simplest experimental setting where there is only one outcome measure
(Y), its missing indicator is R (1 = responded, 0 = not responded), treatment assign-
ment (Z) is binary (1 = treatment, 0 = control), and the treatment received (D) has
only two levels (1 = received, 0 = not received). The behavior types (C;) of the sub-
jects based on combinations of Z and D can be classified into four categories based on
Rubin’s causal model approach, where the possibility of statistical causal inference is
built at the individual level (Holland, 1986; Rubin, 1978, 1980). Angrist et al. (1996)
labeled the four categories as complier, never-taker, defier, and always-taker. Let
D;(1) denote the potential treatment receipt status for individual ¢ when assigned to
the treatment condition, and D;(0) denote the potential treatment receipt status for
individual ¢ when assigned to the control condition. Compliers are subjects who do
what they are assigned to do (D;(1) = 1 and D;(0) = 0). Never-takers are subjects
who do not receive the treatment even if they are assigned to the treatment condition
(D;(1) = 0 and D;(0) = 0). Defiers are the subjects who do the opposite of what
they are assigned to do (D;(1) = 0 and D;(0) = 1). Always-takers are the subjects
who always receive the treatment, no matter which condition they are assigned to
(D;(1) = 1 and D;(0) = 1). Let Y;(1,D;(1)) and R;(1, D;(1)) denote the potential
outcome and its missing indicator for individual ¢ with treatment receipt status D;
when Z; = 1, and Y;(0, D;(0)) and R;(0, D;(0)) denote the potential outcome and its

missing indicator for individual ¢ with treatment receipt status D; when Z; = 0.

Among these four types of subjects, the emphasis is usually given to the estima-

tion of causal effect of treatment assignment for compliers (e.g., Angrist, Imbens &
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Rubin, 1996; Bloom, 1984; Hirano, Imbens, Rubin, & Zhou, 2000; Imbens & Rubin,
1997; Jo, in press; Little & Yau, 1998). The following assumptions are critical in the

identification of CACE.
— Randomization: Treatment assignment is random.

— Stable Unit Treatment Value (SUTVA: Rubin, 1978, 1980, 1990): Potential

outcomes for each person are unrelated to the treatment status of other individuals.
— Monotonicity (Imbens & Angrist, 1994): There are no defiers.

— Exclusion Restriction (Angrist et al., 1996): For never-takers and always-
takers, the distributions of the potential outcomes are independent of the treatment
assignment. That is, Y;(0, D;(0)) = Yi(1, D;(1)) for units with D;(0) = D;(1) = 0 or
D;(0) = D;(1) = 1.

— Compound Exclusion (Frangakis & Rubin, 1999): For never-takers and always-
takers, the distributions of the potential outcomes and associated potential nonre-
sponse indicators are independent of the treatment assignment. That is, Y;(0, D;(0)) =
Yi(1, D;(1)) and R;(0,D;(0)) = R;(1,D;(1)) for units with D;(0) = D;(1) = 0 or
D;(0) = D;(1) = 1.

When ignorability is assumed in the estimation, the standard exclusion restric-
tion is sufficient. When latent ignorability is assumed in the estimation, compound

exclusion is necessary to obtain unique ML estimates.
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3 Causal Effect Estimation

For simplicity, let us assume that there are only two possible compliance behavior
types (C;). That is,
» ¢ (complier) if D;(1) =1, and D;(0) =0
- n (never-taker) if D;(1) =0, and D;(0) =0,
where C(t) = {i | C; =t} for t € {c,n}.
Let c; =0and n; = 1ifi € C(n),and ¢; = 1 and n; = 0ifi € C(c). A continuous

outcome Y for individual 7 is

Yi = anni+ acCit+ mniZi+ YeCi Zi+ A Xi + Ao i Xi + €mni + €iccin(1)

where where o, and «,, are intercepts for compliers and never-takers. -, is the average
causal effect of treatment assignment for compliers (CACE: complier average causal
effect). ~, is the average causal effects of treatment assignment for never-takers. A.
and )\, are covariate effects on the outcome. €., and ¢,; are normally distributed

residuals of compliers and never-takers.

The logistic regression of C' on X is described as

logit(me) = Bo+ 51 Xi, (2)

where 7.; is the probability of being a complier, m,; (1 — m;) is the probability of
being a never-taker, 3y is a logit intercept, and [ is a vector of logit coefficients.
The logistic regression of missing (response) indicator R (1 = responded, 0 = not

responded) on C' and Z is described as

logit(mri) = Aonni+ Nocci + Upni Zi + Teci Zi + Ainni Xi + Meci X, (3)
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where Ag, and Ay, are logit intercepts of noncompliers and compliers. I',, represents
the effect of treatment assignment on R for noncompliers, and I'. represents the effect
of treatment assignment on R for compliers. Ay, and Aj. represent covariate effects
on R for noncompliers and compliers. The proportion of responders mr may vary

across compliers (g, ) and never-takers (mgy,).

This study employs a maximum likelihood estimation approach in the estimation
of CACE. The unknown compliance status (C) in the control condition is handled
as missing data via the EM algorithm (Dempster, Laird, & Rubin, 1977; Little &
Rubin, 1987; McLachlan & Krishnan, 1997; Tanner, 1996). Parametric standard er-
rors are computed from the information matrix of the ML estimator using both the
first- and the second-order derivatives under the assumption of normally distributed
outcomes. ML-EM estimation of CACE assuming ignorability and latent ignorabil-
ity was carried out by the Mplus program (Muthén & Muthén, 1998-2001). The
general framework of ML-EM estimation under latent ignorability considering both

categorical and continuous latent variables are outlined in Muthén and Brown (2001).

Viewing C as partly missing data, the complete-data log likelihood can be ex-

pressed for the general model as
> _(log[Ci | Xi] + log[Y; | Ci, Xi]), (4)
i=1

where X includes a vector of covariates and treatment assignment Z. With miss-

ing data, the Y part of Equation (4) expands to [V;?, Y™ R, | C;, X;]. We are

7

interested in
D/iObsv R7 | Cv‘,, X7] — /D/v',Obsv Y;rms | Ci7X1',] [R7 | }/iobs’ Y;rm',s7 0717 Xv‘,] d}/fms (5)

If ignorability is assumed, Equation (5) simplifies to
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[Y;-Obs, Ri ‘ Ci,Xi] — [Y;Obs | Ci;Xi] [Rz ‘ }/‘iobS’ Xi]? (6)

where the two terms of Equation (6) do not share parameters so that the last term

can be ignored and maximization can focus on the [Y* | C;, X;].

If latent ignorability is assumed, the [R; | Cj,*] term cannot be ignored, but
would need to be updated in the EM algorithm to take into account the updated
E step information on C;. In this way, ignorability does not hold for the mixture

distributions of [Y | X]. Therefore, models assuming latent ignorability will focus on

Y% | Oy X [Ri | Cry X (7)

4 SIMULATION STUDY

This section demonstrates the quality of the CACE estimate in varying conditions
of standard ignorability (SI), latent ignorability (LI), and compound exclusion (CE).
For simplicity, the simulation study considers only compliers and never-takers. The
simulation results presented in this section are based on 500 replications with a sample
size of 2000. Equal probability of treatment/control assignment and 50% compliance
rate were used as true values for all simulation settings in this study. The outcomes Y;
are normally distributed with variance of one. The outcome mean is 2.5 for compliers
and 1.0 for never-takers when Z = 0. The true average causal effect of treatment
assignment on the outcome for compliers (CACE) is 0.5, which corresponds to 0.5 in
terms of effect size. The true average causal effect on the outcome for never-takers
is fixed at zero in every simulation setting. The average response rate is 50% when
Z = 0. The effect of deviation from SI is examined in situations, where 1) response

rate is 50% for both compliers and never-takers when Z = 0. (i.e., SI holds), 2)
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response rate is 55% for never-takers and 45% for never-takers (10% difference), 3)
response rate is 60% for never-takers and 40% for never-takers (20% difference), and
4) response rate is 65% for never-takers and 35% for never-takers (30% difference).
The true average causal effect of treatment assignment on outcome missingness for
compliers is 2.5 in terms of odds ratio. The effect of deviation from CE is examined
in situations, where 1) the average causal effect of treatment assignment on outcome
missingness for never-takers is 1.0 in terms of odds ratio (i.e., CE holds), 2) the odds
ratio is 1.5, 3) the odds ratio is 2.0, and 4) the odds ratio is 2.5. Covariates are not
included in simulations shown in Tables 1.a and 1.b. One covariate is included in

simulations shown in Tables 2.a and 2.b.

Table 1.a. Average CACE estimates when assuming standard ignorability for miss-
ingness of outcomes (SE and coverage in parentheses).

Deviation from CE Deviation from SI (difference between mg, and 7g,)

0% 10% 20% 30%

OR (I',) = 1.0 0.502 0.429 0.369 0.319
(0.104, 95.8%) (0.102, 88.6%) (0.100, 74.4%) (0.098, 54.0%)

OR (I'y) =15 0.502 0.430 0.369 0.318
(0.104, 95.2%) (0.101, 89.2%) (0.099, 74.4%) (0.098, 54.0%)

OR (I',) = 2.0 0.502 0.430 0.369 0.319
(0.104, 95.4%) (0.101, 89.2%) (0.099, 73.4%) (0.097, 52.8%)

OR (I'y) =25 0.502 0.430 0.369 0.319

(0.103, 95.4%) (0.101, 88.6%) (0.099, 73.4%) (0.097, 52.4%)

Table 1.a shows the sensitivity of the CACE estimate to violation of CE and
SI when SI and the standard exclusion restriction are assumed for the missing-data
mechanism. Average standard errors and 95% confidence interval coverage probabil-

ities are shown in the parentheses. It is shown that CACE estimates are sensitive to
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deviation from SI, but not to deviation from CE. If compliers and never-takers show
a large difference in response rates, CACE estimates can be seriously biased when

assuming SI.

Table 1.b. Average CACE estimates when assuming latent ignorability for missing-
ness of outcomes (SE and coverage in parentheses).

Deviation from CE Deviation from SI (difference between mg, and mg,)

0% 10% 20% 30%

OR (I',) = 1.0 0.502 0.496 0.495 0.497
(0.111, 95.4%) (0.104, 94.8%) (0.099, 94.2%) (0.092, 95.0%)

OR (T',) = 1.5 0.384 0.384 0.388 0.396
(0.118, 84.8%) (0.111, 81.6%) (0.104, 81.8%) (0.097, 83.2%)

OR (I') = 2.0 0.309 0.312 0.319 0.331
(0.125, 68.2%) (0.116, 64.2%) (0.108, 62.8%) (0.102, 60.2%)

OR (T,) = 2.5 0.258 0.261 0.270 0.282

(0.130, 53.2%) (0.121, 49.2%) (0.112, 47.8%) (0.105, 44.2%)

Table 1.b shows the sensitivity of the CACE estimate to violation of CE and SI
when LI and compound exclusion is assumed for the missing-data mechanism. It is
shown that CACE estimates are sensitive to deviation from CE, but not to deviation
from SI. If never-takers show a large effect of treatment assignment on response rates,
CACE estimates can be seriously biased when assuming LI. The simulation results
shown in Tables 1.a and 1.b indicate that the relative benefit of assuming SI and LI

depends on which assumption (SI or CE) is more plausible or more severely biased.

The simulation results in Tables 2.a and 2.b show whether the information from
covariates associated with compliance behavior increases insensitivity of CACE es-
timates to deviation from SI or CE in models assuming SI and LI. For simplicity,

one continuous covariate (X; ~ N(0,1)) that only predicts C' (odds ratio = 2.0) is
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used. It is demonstrated that including a covariate resulted in a noticeable, but not
dramatic improvement in the quality of CACE estimates. The results show that co-
variate information reduces sensitivity of CACE estimates to the violation of SI in
models assuming SI (Table 2.a), and reduces sensitivity of CACE estimates to the

violation of CE in models assuming LI (Table 2.b).

Table 2.a. Average CACE estimates when assuming standard ignorability for miss-
ingness of outcomes in the presence of a covariate (SE and coverage in parentheses).

Deviation from CE Deviation from SI (difference between mg, and 7g,)

0% 10% 20% 30%

OR (I',) = 1.0 0.506 0.448 0.394 0.350
(0.102, 94.0%) (0.100, 92.2%) (0.097, 81.8%) (0.096, 62.6%)

OR (I',) = 1.5 0.505 0.446 0.394 0.349
(0.102, 94.2%) (0.099, 91.8%) (0.097, 81.8%) (0.095, 61.6%)

OR (I',) = 2.0 0.505 0.446 0.392 0.348
(0.102, 94.2%) (0.099, 92.0%) (0.097, 81.2%) (0.094, 60.8%)

OR (T'y,) = 2.5 0.505 0.446 0.392 0.348

(0.102, 94.2%)  (0.099, 91.6%) (0.096, 81.2%) (0.094, 59.8%)

Table 2.b. Average CACE estimates when assuming latent ignorability for missing-
ness of outcomes in the presence of a covariate (SE and coverage in parentheses).

Deviation from CE Deviation from SI (difference between mg, and mg,)

0% 10% 20% 30%

OR (I',) = 1.0 0.506 0.507 0.505 0.506
(0.106, 92.6%) (0.100, 95.2%) (0.095, 94.0%) (0.090, 94.6%)

OR (T',) = 1.5 0.421 0.424 0.427 0.432
(0.111, 88.8%) (0.104, 89.4%) (0.098, 89.2%) (0.093, 89.2%)

OR (I',) = 2.0 0.365 0.370 0.375 0.383
(0.115, 77.6%) (0.108, 78.8%) (0.101, 76.2%) (0.095, 76.0%)

OR (T'y,) = 2.5 0.324 0.330 0.337 0.347

(0.119, 68.0%) (0.111, 67.8%) (0.104, 66.4%) (0.097, 62.6%)
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5 CONCLUSION

It was demonstrated in this study that causal effect estimates can be quite sensitive
to violation of the exclusion restriction in outcome missingness, which is less known
than the impact of violating the exclusion restriction in observed outcomes (Angrist
et al., 1996; Jo, 2002). The results call for reconsideration of the notion that latent
ignorability is always advantageous or at least harmless, and for more careful decisions

in applying ignorability or latent ignorability models.

The relative benefit of models assuming ignorability and latent ignorability de-
pends on the degree of deviation from ignorability and compound exclusion. As shown
in the simulation study, in some situations, the impact of deviation from ignorability
may outweigh the impact of deviation from compound exclusion, resulting in more
biased causal effect estimates in models assuming standard ignorability than in mod-
els assuming latent ignorability. In other situations, the impact of deviation from
compound exclusion may outweigh the impact of deviation from ignorability, result-
ing in more biased causal effect estimates in models assuming latent ignorability than

in models assuming standard ignorability.

Evaluating scientific plausibility of compound exclusion and latent ignorability
is often difficult due to the various known and unknown possibilities. To empirically
examine the plausibility of standard ignorability and compound exclusion, it is useful
to conduct sensitivity analyses of models imposing different combinations of these
assumptions, and ultimately to relax both assumptions. These investigations can be
carried out by relaxing compound exclusion (e.g., Frangakis et al., 2002; Hirano et

al., 2000), or by employing alternative structural assumptions (e.g., Jo, in press).
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However, the applicability of these alternative models has been explored only in the
context of the standard exclusion restriction. More research is necessary to exam-
ine the efficiency of these approaches in exploring potential violation of compound

exclusion under latent ignorability.

In examining the bias mechanism in CACE estimation, this study assumed a
50% compliance rate and a 50% average response rate in the control conditionm.
Therefore, sensitivity of CACE estimates and the relative benefit of assuming stan-
dard ignorability and latent ignorability may vary in settings different from those
employed in the current study. More in-depth examination is necessary considering
a broad range of parameter values (including compliance rates and response rates)
to systematically investigate sensitivity of causal effects under different missing-data
mechanisms. This study also assumed in its investigation that the exclusion restric-
tion holds in observed outcomes. However, the exclusion restriction can be violated
for both observed outcomes and missingness of the outcomes. Therefore, to gauge
the overall impact of violating compound exclusion, one needs to consider devia-
tions from the exclusion restriction in both outcomes and missingness of outcomes. It
would be interesting to study how these violations interplay and simultaneously affect
causal effect estimates. Pre-treatment covariates were also considered as sources of
information that may decrease sensitivity of causal effect estimates to model misspec-
ifications. This study examined only the case, in which covarites are good predictors
of compliance. However, in principle, covariates may also be associated with out-
comes and missingness of outcomes. It is not well known how this information affects

sensitivity of causal effects under different missing-data mechanisms. Further study
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is needed to explore various factors associated with insensitivity of ignorability and

latent ignorability models to model misspecifications.
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