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Abstract

This study examines various factors that affect statistical power in random-
ized intervention studies with noncompliance. Based on Monte Carlo simulations,
this study demonstrates how statistical power changes depending on compliance
rate, study design, outcome distributions, and covariate information. It also
examines how these factors influence power in different methods of estimating
intervention effects. ITT (intent to treat) analysis and CACE (complier average
causal effect) estimation are compared as two alternative ways of estimating in-
tervention effects under noncompliance. The results of this investigation provide
practical implications in designing/evaluating intervention studies taking into

account noncompliance.
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Introduction

In randomized field experiments, noncompliance (non-adherence) can be a major threat
to obtaining power to detect intervention effects. Noncompliance occurs when study
participants does not follow randomized assignment, and it has several forms (Angrist,
Imbens, & Rubin, 1996). The most common form is represented by individuals who
are assigned to the experimental group and fail to show up and receive the treatment
(never-takers). Other, less frequent forms are represented by individuals assigned to
the control group who nevertheless find ways to receive the treatment targeted for the
experimental group (always-takers), or individuals who do the opposite of what they
are asked to do (defiers). Among these types, this study will focus on never-takers as

the most common type of noncompliers.

In laboratory experimental studies, it is relatively easy to assure compliance with
randomized assignment. Under these well-controlled circumstances noncompliance is
unlikely to occur, because a small number of individuals are closely supervised. In
non-laboratory environments, some researchers limit noncompliance through on-site
randomization. On-site randomization invites all recruited individuals to an initial
meeting and then assigns them to the treatment or the control condition on site. The

intervention (usually a single session) is given on-site right after assignment.

Although effective in reducing noncompliance rates, laboratory experiments and
on-site randomization and treatment are not always possible in practice. First, these
strategies are not easy to apply when managing a large number of study participants.
Second, intervention trials often deliver an intensive treatment regime. Thus, admin-

istering the entire treatment on one occasion is not possible. Third, it is not easy
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to motivate individuals to show up at the intervention site without informing them
whether they are getting treatment or not. Thus, while laboratory experiments and
on-site randomization are ideal, they are often the exception rather than the rule in

intervention studies.

Two studies that employed randomization, but not on-site and not under labora-
tory conditions, are discussed here. The Job Search intervention study (JOBS II: Little
& Yau, 1998; Vinokur, Price, & Schul, 1995; Vinokur & Schul, 1997) was a randomized
field experiment intended to prevent poor mental health and to promote high-quality
reemployment among unemployed workers. In JOBS II, neither laboratory experiment
nor on-site randomization was an option, because of intensive treatment protocols and
the large scale of the study. Recruited individuals were randomized to either the con-
trol or the intervention condition. Individuals assigned to the intervention group were
invited to a series of training sessions. The problem of noncompliance arises in this
situation, because a substantial proportion of individuals who were assigned to the
intervention condition did not show up to the intervention. For example, even though
randomization was carried out among individuals who agreed to participate in the
study, their motivation could have changed by the time of intervention. Also, some
individuals might have found a job quickly, leaving no need to attend the intervention

sessions.

The Johns Hopkins University Preventive Intervention Research Center study
(JHU PIRC: Ialongo et al., 1999) was designed to improve academic achievement and
to reduce early behavioral problems of school children. As in JOBS II, laboratory and

on-site settings were not applicable in the JHU PIRC study, because of the long dura-
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tion and intensity of the intervention protocols. First-grade children and their parents
were randomly assigned to the Family-School Partnership intervention condition or the
control condition. In the intervention condition, parents were asked to do a series of
take-home activities related to literacy and mathematics. If parents did not carry out
these activities, their children would not receive the intended intervention. In this set-
ting, parents comply with the intervention by actually implementing the intervention.
The advantage of this setting (self-administration) is that there is no need for parents
to show up at the intervention site, which eliminates obstacles such as finding trans-
portation to the site and being unable to choose convenient time. The disadvantage of
this setting is that parents have to sacrifice other activities and motivate themselves
to administer the intervention in the absence of supervision. Therefore, despite the

flexibility, parents can still be prone to noncompliance.

Noncompliance affects planning and evaluation of randomized intervention trials.
In planning a new intervention trial, the possibility of noncompliance needs to be con-
sidered to better estimate statistical power and sample size. For example, estimated
sample size based on results from a small laboratory experiment may not yield expected
statistical power when applied to a large-scale community trial, where noncompliance
is more likely to occur. Recent developments in statistical methods provide options
for researchers to estimate intervention effects with noncompliance. Depending on the
purpose of the intervention, one can decide whether to estimate the overall intervention
effect for the entire sample, or to estimate the intervention effect for only those who
comply with the treatment. Intent to treat (ITT) analysis is a widely accepted method
for the first purpose, while CACE (complier average causal effect) estimation is a rela-

tively new method that serves the second purpose. The way, in which noncompliance
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affects statistical power, however, has not been explicitly studied in either context.

Based on Monte Carlo simulations, this study examined how noncompliance af-
fects statistical power in various settings of intervention trials. The degree of receipt
of treatment can vary among study participants who receive the treatment (i.e., there
could be partial compliers); however, in this article, discussion is limited to situations
in which participants receive either all or none of the intervention treatment. Based on
dichotomous treatment receipt status, this study demonstrates how statistical power
changes depending on compliance rate, study design (e.g. balanced or unbalanced),
outcome distributions, and covariate information. The study also examines how these
factors influence power in different methods of estimating intervention effects. ITT
(intent to treat) analysis and CACE (complier average causal effect) estimation are
compared as two alternative ways of estimating intervention effects under noncompli-
ance. The results of this study provide useful answers to several questions that arise in
intervention trials with noncompliance; particularly, how to estimate sample size and

power, what affects power, how to improve power, and how to reduce cost.

Estimation of Intervention Effects with

Noncompliance

The randomization procedure of assigning individuals to an experimental group and
a control group is intended to create equivalent groups that can later be compared to
determine the effects of treatment. However, if noncompliance occurs (i.e., randomized

assignment is not followed by study participants), there is a serious risk that the groups
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may not be equivalent, and the comparison between them after the treatment may
confound the effect of treatment with the initial difference in their composition. For
example, a significant proportion of those randomly assigned to the experimental group
may not show up to receive the treatment because of lack of motivation. In this case, if
the data are analyzed without including individuals who did not show up (per-protocol
analysis), the resulting treatment effect estimate may not represent the causal effect
of the treatment since the experimental group would be composed of individuals who
are more highly motivated than those in the control group. If the data are analyzed
treating individuals who did not show up as a part of the control group (as-treated
analysis), the resulting treatment effect estimate will not represent the causal effect of
the treatment since the experimental and the control groups lose comparability based

on random assignment.

This study will focus on two methods of estimating causal effects of treatment
assignment (ITT analysis and CACE estimation) and will not discuss methods that
may not yield causal effect estimates (e.g., per-protocol analysis, as-treated analysis).
Statistical assumptions required to make causal inferences are clearly addressed in Ru-
bin’s causal model (RCM: Holland, 1986; Rubin, 1974, 1978, 1980) approach. In RCM,
the possibility of statistical causal inference is built based on the effect of treatment at
the individual level. The RCM begins with the consideration of an ideal case in which
each individual hypothetically could be separately given the treatment and the control
condition at the same time. In this hypothetical situation, the equivalence between
the two conditions is guaranteed in the absence of treatment and each individual’s
potential outcome can be directly compared between the two conditions. However,

in practice one individual cannot be exposed to different treatment conditions at the
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same time (see Holland, 1986, for more discussion). Given the two assumptions below,

unbiased estimation of the average causal effect can be achieved.

Assumption 1 (Stable Unit Treatment Value: SUTVA): Potential out-
comes for each person are unrelated to the treatment status of other individuals in the
sample (Rubin, 1978, 1980, 1990). For example, if individuals assigned to the control
condition have contact with individuals assigned to the treatment condition, control
group individuals may become demoralized if the treatment condition is perceived to
be more attractive. West, Biesanz, and Pitts (2000), and Winship and Morgan (1999)

provide illustrations of cases in which violations of SUTVA are likely to occur.

Assumption 2 (Randomization): Treatment assignment is random. This as-
sumption enables field experiments to approximate equivalence between the treatment
and the control condition prior to the delivery of the intervention. If randomization
is successfully done, average characteristics (pre-treatment covariates) of individuals
will be very similar between the treatment condition and the control condition, which

provides the basis for fair comparison (i.e., causal inference).

Standard ITT Analysis

ITT (intent to treat) analysis is a standard way to estimate treatment effects in ran-
domized experimental designs. In this method, average outcomes are compared without
considering the aspect of receipt of treatment. Therefore, the I'TT effect provided by
this method can be thought of as the causal effect of treatment assigned, but not nec-
essarily the causal effect of treatment received. If the purpose of the trial is to estimate

overall causal effects of treatment assignment, I'TT analysis is an appropriate method.
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For example, if public health researchers want to learn the overall effectiveness of a
new vaccination program in reducing the outbreak of influenza in the community, both

compliers and noncompliers should be included in the analysis.

ITT effect (i.e., average causal effect of treatment assignment) can be defined as
ITT = uy — o, (1)

where j1; denotes population mean potential outcome when assigned to the treatment
condition (Z = 1), and p denotes population mean potential outcome when assigned

to the control condition (Z = 0).

Under assumptions 1 and 2, the unbiased estimate of the ITT effect is
ITT = 31 — o, (2)

where 7; is the sample mean outcome of individuals assigned to the treatment group,

and 7y is the sample mean outcome of individuals assigned to the control group.

Estimation of CACE

The CACE (complier average causal effect) estimation method considers both the
assignment and the receipt of intervention treatment to estimate intervention efficacy.
In this method, average outcomes are compared between the treatment and the control
condition, but only for compliers. Therefore, the CACE estimate can be thought of
as the causal effect estimate of treatment assignment for compliers. If the purpose
of the trial is to estimate the effect of treatment when it is actually received, CACE
estimation is an appropriate method. For example, the purpose of the JOBS II and the

JHU PIRC trials was to estimate the intervention effect when it is actually received
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rather than to estimate the overall effect. The CACE estimate is often of interest in
medical research (e.g., clinical trials to test the effect of new drugs, procedures, and
therapies).

Bloom (1984) introduced the idea of estimating CACE based on an instrumental
variable (IV) approach, where treatment effect estimates are adjusted by considering
the noncompliance rate. More recently, a refined form of the IV approach based on Ru-
bin’s causal model has been proposed (Angrist et al., 1996; Imbens & Angrist, 1994).
CACE estimation shown in this study is based on assumptions addressed by Angrist et
al. (1996), which are described in assumptions 1 to 5 in the present article. Along with
Rubin’s causal model approach, likelihood-based estimation methods accelerated devel-
opment in this area. Imbens and Rubin (1997) demonstrated CACE estimation through
the maximum-likelihood (ML) estimation method using the expectation-maximization
(EM) algorithm (Dempster, Laird, & Rubin, 1977; Little & Rubin, 1987; McLachlan &
Krishnan, 1997; Tanner, 1996) and a Bayesian approach using the data augmentation
(DA) algorithm. Little and Yau (1998) incorporated covariates in this framework and

applied the ML-EM method.

In line with RCM, individuals can be categorized not only based on potential
treatment assignment, but also based on a second indicator of treatment receipt status.
Assuming that the treatment has only two levels (D = 1: received, D = 0: not
received), potential compliance types (C;) of individuals based on combinations of Z
(Z = 1: assigned to the treatment condition, Z = 0: assigned to the control condition)
and D can be classified into four categories. Angrist et al. (1996) labeled the four

categories as complier, never-taker, defier, and always-taker. Compliers are individuals
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who would receive the treatment only if they are assigned to the treatment condition.
Never-takers are individuals who would not receive the treatment even if they are
assigned to the treatment condition. Defiers are individuals who would do the opposite
of what they are assigned to do. Always-takers are individuals who would receive the
treatment no matter which condition they are assigned to. Among these four potential
compliance types, the current study considers only compliers and never-takers, which
is the case when individuals assigned to the control condition do not have access to
the treatment, as in the JOBS II and the JHU PIRC studies. The assumption of

monotonicity (Imbens & Angrist, 1994) excludes the possibility of having defiers.

Assumption 3 (Monotonicity): There are no defiers. This assumption will
hold if study participants are prohibited from receiving a different intervention treat-
ment than the one they were assigned. Although defiers are usually considered as the
least likely type of noncompliers, violation of this assumption can have a serious impact

on the CACE estimate.

The average causal effect of treatment assignment for compliers can be expressed

in terms of potential outcomes as

CACE = Hiec — Hoc, (3)

where 111, denotes population mean potential outcome for compliers when assigned to
the treatment condition (Z = 1), and . denotes population mean potential outcome
for compliers when assigned to the control condition (Z = 0). The problem with
this definition in practice is that pg. cannot be directly estimated from the sample
statistics. Since individuals assigned to the control condition are not allowed to receive

the treatment, their potential compliance behavior cannot be observed. Only the
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overall mean pq is estimable from the control condition. That is,

Ho - Te Loe + Hon (4)

where f1, denotes population mean potential outcome for noncompliers when assigned
to the control condition (Z = 0). . is the proportion of compliers in the population,
and 7, is the proportion of noncompliers in the population (7. + 7, = 1). Both =,
and 7, can be directly estimated from the sample statistics, because the compliance
rate can be observed in the treatment condition. Based on randomization, it can be

assumed that the control condition has the same (potential) compliance rate.

Here, the exclusion restriction plays a critical role in identifying CACE models by
assuming no effect of treatment assignment for noncompliers. Since this study assumes

no always-takers, assumption 4 applies only to never-takers.

Assumption 4 (Exclusion Restriction): For never-takers and always-takers,
the distributions of the potential outcomes are independent of treatment assignment
(Angrist et al., 1996). In other words, never-takers and always-takers receive identical
treatment regardless of which treatment condition they are assigned to (no assignment
effect). This assumption can be violated if treatment is not identical in different treat-
ment conditions, or if treatment assignment has a psychological effect. For example, in
the JHU PIRC study, if a parent assigned to the control condition somehow (e.g., from
her friend assigned to the intervention condition) obtain a part of the home learning
activity materials (i.e., always-taker), her child may experience only part of the in-
tervention, which may not be identical to getting the intervention when assigned to
the intervention condition. In the JOBS II study, individuals who were assigned to

the treatment condition but failed to attend the intervention seminars (never-takers)
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could be demoralized by failing to take the intervention opportunity. This negative
psychological effect would not occur for never-takers assigned to the control condition,
since the treatment is never offered.

If the exclusion restriction assumption holds, the potential outcomes of noncom-
pliers are the same regardless of treatment assignment (i.e., po, = f1,). Therefore,

equation (4) can be rewritten by replacing po, with pq, as

fo = Teloe+ Tn fhin, (5)

where p11, denotes population mean potential outcome for noncompliers when assigned

to the treatment condition (Z = 1).

Then, from equation (5), . can be expressed using parameters that are estimable

based on sample statistics. That is,
Hoc = (,UO — Tn H’ln) /7Tc' (6)

Finally, equation (3) can be rewritten by replacing pg. with the right part of

equation (6). That is,
CACE = Hic — (/JJO — T, ,uln) /7Tc
= (11— po) / . (7)
In equation (7), assumption 5 excludes the possibility of a zero denominator (i.e,
7. > 0).
Assumption 5 (Nonzero Average Causal Effect of Z on D): The average
causal effect of Z on D is not equal to zero (Angrist et al., 1996). In other words, the

compliance rate cannot be zero. This assumption can be violated if none of the study

participants receives the treatment even though it is offered.
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Under assumptions 1 and 5, the unbiased estimate of CACE is
CACE = (1 — ¥o) / Pe, (8)

where ¢, is the sample mean outcome of individuals assigned to the treatment group,
Yo is the sample mean outcome of individuals assigned to the control group, and p. is

the sample proportion of compliers in the treatment group.

The current study employs a maximum likelihood (ML) estimation approach,
which is known to be often more efficient than the IV approach in estimating the CACE
(Imbens & Rubin, 1997; Little & Yau, 1998). By maximizing the likelihood in equation
(9) with respect to the parameters of interest 6, ML estimates are obtained. The un-
known compliance status is handled as missing data via the expectation-maximization
(EM) algorithm (Dempster, Laird, & Rubin, 1977; Little & Rubin, 1987; McLachlan
& Krishnan, 1997; Tanner, 1996). ML-EM procedures for CACE estimation have been
previously presented in Little and Yau (1998). In the current study, ML-EM estima-
tion of CACE was carried out by the Mplus program (Muthén & Muthén, 1998-2001).
Parametric standard errors are computed from the information matrix of the ML es-
timator using both the first- and the second-order derivatives assuming conditional
normality (i.e., conditional on compliance types and covariates). Mplus input codes
used in this study can be obtained by contacting the author, or from the Mplus website

(http://www.statmodel.com /mplus/examples/penn.html#Jol).
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Given that compliance type cannot be observed in the control condition, the

observed-data likelihood function assuming a normally distributed outcome is

L(0 | data) o H T f (Wi | p1n, 031,) X H e f(Yi | e, Jg)
ic{Z;=1,D;=0} iC{Z;=1,D;=1}
X II (7o f (i | ton> 02) + e f(Yi | t10e: 02)], 9)

’L'C{ZZ':O,Di:O}
where 0 = (7, Te, flins fics fons focs O, 02) is the set of parameters in the model, and
f(yi | p, 0?) denotes the probability density of a normal distribution with mean x and

2

variance 0. o2 denotes variance for never-takers, and o denotes variance for compliers.

If pre-treatment covariates are available in the study, the magnitude and the
precision of the CACE estimate can be adjusted depending on the influence of covariates

on the outcome measure and compliance status.

In equation (10), two dummy variables are used to represent compliers and non-
compliers. That is, ¢; = 0 and n; = 1 for a noncomplier, and ¢; = 1 and n; = 0 for a
complier. A continuous outcome variable Y for individual ¢ with compliance status c¢;

and n; can be expressed as
Yi=anni+ Qi+ 7e¢i Zi+ Ay nii + A€ Ti + €ni + €qi (10)

where x is a vector of covariates, «,, is an intercept for noncompliers, and «. is an
intercept for compliers. 7. represents the average causal effect of treatment assignment
for compliers (CACE). A, represents covariate effects on the outcome for noncompliers,
and A, represents covariate effects on the outcome for compliers. ¢€,; is a normally
distributed residual with zero mean and variance o2, and e is a normally distributed

residual with zero mean and variance o2.
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The logistic regression of compliance on covariates is described as
Ple;=1|x;) = ma,
Ple;=0x;) =1 — 7ei = Tpiy
logit(mei) = Bo+ B i, (11)

where 7. denotes the probability of being a complier, m,; denotes the probability
of being a noncomplier, (B, represents a logit intercept, and (3 is a vector of logit

coeflicients, which represent the association between compliance and covariates.

Statistical Power and Noncompliance: Simulation

Studies

Statistical power is a major element considered in planning intervention trials. In
general, power to detect intervention effect decreases under noncompliance. However,
the impact of noncompliance on power can be influenced by various factors such as
outcome distributions, covariate information, and study design. Furthermore, non-
compliance may affect power differently depending on the method used to estimate
intervention effects. Focusing on the ITT analysis and CACE estimation methods, the
simulation studies in this section demonstrate how statistical power changes in various

settings of intervention studies.

Given the possible heterogeneity between compliers and noncompliers, it is un-
clear, in both the I'TT analysis and CACE estimation methods, how to estimate sample
size and statistical power by applying standard power calculation methods. For ex-

ample, conventional power calculation methods (e.g., Cohen, 1988), which are based
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on ITT effect, cannot reflect change in power due to distributional (i.e., means and
variances) differences between compliers and noncompliers. Noncompliance also poses
a problem in applying standard power calculation methods in the context of CACE es-
timation. If compliance type is completely observed, statistical power can be estimated
for compliers, assuming normality. Otherwise, CACE estimation involves subgroups
of individuals with unknown group membership (i.e., finite mixtures: Titterington,
Smith, & Makov, 1985; McLachlan & Peel, 2000), which excludes the possibility of

applying standard power calculation methods.

The estimation of statistical power in this study is based on empirical results
from Monte Carlo simulations (detailed information about the simulation procedures
can be obtained by contacting the author). Although a number of variations can
be considered for intervention settings with noncompliance, the current study focuses
on simple settings that have been frequently discussed in the recent literature. The
assumptions required for CACE estimation (Assumptions 1-5 above) are satisfied in
the simulation studies. It is also assumed that participants assigned to the control
group do not have access to the intervention treatment, and participants assigned to

the intervention group receive either all or none of the intervention treatment.

Based on I'TT analysis and CACE estimation, the simulation studies demonstrate
how statistical power is influenced by various aspects of intervention trials. First, the
simulation studies show how the compliance rate affects power. Second, the studies
show how the use of balanced or unbalanced design affects power. Third, it is shown
how heterogeneity between compliers and noncompliers in outcome distributions affects

power. Finally, it is shown how covariate information affects power.
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Compliance Rate and Statistical Power

This section demonstrates how the rate of compliance affects the magnitude and preci-
sion of intervention effect estimates and consequently affects power to detect interven-
tion effects. Noncompliance has a negative impact on power in both the I'TT analysis
and CACE estimation methods. However, loss in power due to noncompliance is driven

by different mechanisms in I'TT analysis and CACE estimation.

In ITT analysis, the magnitude of intervention effect estimate (effect size) is
dependent on the rate of compliance. Based on equations (1) and (7), the relationship

between I'TT effect and CACE can be described as
ITT = 7, x CACE, (12)

where 7, is the rate of compliance. This systematic relationship shows that the size of
the ITT effect estimate will decrease as the rate of compliance decreases. For example,
if the CACE estimate is —0.5, the I'TT effect estimate will be also approximately —0.5
when there is no noncompliance. However, if the compliance rate is 0.3, the ITT
effect estimate will be approximately —0.15 (= 0.3 x (—0.5)), which is only 30% of the

magnitude of the intervention effect when there is no noncompliance.

In CACE estimation, precision of intervention effect estimates is dependent on the
rate of compliance. Low precision in the CACE estimate is partly due to sub-sampling
of the entire sample, and partly due to missing compliance information. CACE analysis
focuses on estimating the intervention effect for compliers only, and the number of
compliers decreases as compliance rate decreases, which results in a wider confidence
interval for the CACE estimate. Missing compliance information also contributes to

a wider confidence interval in the CACE estimate. Given that compliance status is
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not completely observed, precision of the CACE estimate depends on precision in

estimating missing compliance information.

Simulation studies reported in Figure 1 show statistical power in the I'TT analysis
and CACE estimation methods for various combinations of effect size and compliance
rate. To demonstrate the relationship between power and sample size, various sample
sizes ranging from 200 to 600 are used. All simulation studies reported in this paper
are based on 1000 replications. Power is defined as the proportion of replications out
of 1000 replications where the intervention effect estimate is significantly different from
zero (a = 0.05). Equal probability of intervention/control assignment (i.e., balanced
design) is assumed, and three conditions of compliance rate are considered (30%, 50%,

and 70%).

Without covariates, the continuous outcome Y assuming mixture distributions of

compliers and noncompliers with compliance status ¢; and n; can be described as
Yi=ap,n;+ acc; + Ye Ci Zi+ €ni + €cis (13)

which is a simpler form of equation (10).

In the simulation studies shown in Figure 1, the true control group mean is 1.5
for both compliers (a.) and noncompliers (o). The true residual variance is 1.0 for
both compliers (02) and noncompliers (¢2). In line with Cohen (1988), three different
conditions of effect size (low, medium, and large) are chosen. True intervention effects
for compliers (7. = CACFE) are —0.2, —0.5, and —0.8, which correspond to 0.2 (small),
0.5 (medium), and 0.8 (large) in terms of effect size. The negative sign of the causal

effect reflects the typically desired outcome in intervention research, reduction of a

problem behavior. The true noncomplier mean is 1.0 both in the intervention and
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control conditions assuming the exclusion restriction.

The model described in equation (13) is used in generating data for the simulation
studies, and the same model is used to estimate intervention effects in the CACE
estimation method. Equation (14) shows the model assuming a single population,

which is used to estimate intervention effects in the ITT analysis.

Yi=a+vZ + €, (14)

where a represents the overall mean outcome for the control group, and ~ is the overall
effect of intervention (I7'T). ¢; is a normally distributed residual with zero mean and

variance 2.

[Figure 1]

It is demonstrated in Figure 1 that compliance rate has a remarkable influence on
statistical power to detect intervention effects both in the I'TT analysis and CACE esti-
mation methods. To maintain a desired level of statistical power under noncompliance,
sample size adjustment is necessary, which usually increases the cost of intervention
trials. For example, to reach a power of 0.8 with an effect size of 0.5, a sample size
less than 200 is required if 100% of individuals comply with the intervention. If 50%
of individuals comply with the intervention, a sample size greater than 500 is required
to reach a power of 0.8. If compliance rate is very low (30%), power to detect an
intervention effect is under 0.5 even with a sample size of 600. Simulation results in

Figure 1 clearly illustrate the importance of having a higher rate of compliance.

It is also shown in Figure 1 that ITT analysis and CACE estimation methods have

little difference in power, despite the fact that the ITT effect and the CACE estimate
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have a substantial difference in effect size under noncompliance. If there are no other
sources of information than effect size and compliance rate, I'TT analysis and CACE
estimation methods have little difference in power, since there is little information that
distinguishes compliers and noncompliers. For the same reason, standard power calcu-
lation methods (e.g., Cohen, 1988) and Monte Carlo simulations will provide similar
results if compliance rate is taken into account. For example, if one expects a compli-
ance rate of 0.5 and a complier effect size of 0.5, statistical power and sample size can
be estimated using conventional methods with an effect size of 0.25 (see equation (12))
and perfect compliance. However, in practice, compliers and noncompliers can be het-
erogeneous in outcome distributions and auxiliary information such as from covariates.
Conventional power calculation methods do not reflect this heterogeneity, which influ-
ences power in both I'TT analysis and CACE estimation. Therefore, estimated power
and sample size using conventional methods may deviate from what will be obtained
in a new intervention trial. Monte Carlo simulations can be used to better estimate
power in the presence of auxiliary information that might reflect heterogeneity between

compliers and noncompliers.

Study Design and Statistical Power

While individuals’ compliance behavior is hard to control, the ratio of the intervention
and the control condition individuals can be controlled in the design stage. Depend-
ing on the situation, total cost of an intervention study can be somewhat reduced by
controlling this ratio. Simulation results reported in Figure 2 show total cost of an in-

tervention study to reach a power of 0.8 at various choices of this ratio. The proportion
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of individuals assigned to the intervention condition ranges from 20% (under-sampling
for the intervention condition) to 80% (over-sampling for the intervention condition).
Simulation results are based on a 50% compliance rate and an effect size of 0.5 (true
CACE = —0.5). Asin Figure 1, the model described in equation (13) is used in generat-
ing data for the simulation study, and the same model is used to estimate intervention
effects in CACE estimation. The true control group mean is 1.5 for both compliers (o)

and noncompliers (). The true residual variance is 1.0 for both compliers (¢2) and

2
n

noncompliers (o). The results reported in Figure 2 are based on CACE estimation.

Similar results can be also obtained when ITT analysis is applied (not shown).

Cost of treating each individual in the control condition usually differs from that
in the intervention condition. The relationship between the total cost of an intervention
trial and the ratio of the intervention and the control group individuals varies depending
on the relative cost to treat intervention and control group individuals. The simulation
study shown in Figure 2 considers various costs of treating the control group individuals
relative to costs of treating the intervention group individuals. Assuming that cost to
treat each complier in the intervention group is 1.0, the total cost to reach power of 0.8
is calculated. Cost of treating each individual in the control group varies from 0.0 to
0.7. In some situations, managing an intervention group individual can be very costly.
Therefore, cost of treating each control group individual is relatively very low (e.g.,
0.0). In other situations, cost of treating each individual in the control group is not
dramatically different from that in the intervention group (e.g., 0.7). In Figure 2, it is
assumed that the cost of treating an intervention noncomplier is the same as the cost
of treating an intervention complier. For example, if the main intervention activity is

a small group seminar led by a psychologist and the cost for each psychologist is fixed,
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cost of treating each seminar group will not be reduced even though some individuals

assigned to that group do not show up for the seminar.

[Figure 2]

It is shown in Figure 2 that a desired level of power may be obtained at a lower
cost by assigning a smaller number of individuals to the intervention group (unbalanced
design), if the cost of treating an individual assigned to the control group is much lower
than the cost of treating an individual assigned to the intervention group. For example,
if the cost of treating a control group individual is 0.1, the total cost using the balanced
design is 286, and the total cost using the unbalanced design (proportion of intervention
group = 30%) is 232. Therefore, the total cost of the unbalanced design is about 19%
less than that of the balanced design. If the cost of treating a control group individual
is 0.0, the total cost using the balanced design is 260, and the total cost using the
unbalanced design (proportion of intervention group = 20%) is 177. In this case, the

total cost of the unbalanced design is about 32% less than that of the balanced design.

Depending on intervention treatments, the cost of treating an individual who
receives the intervention treatment can be different from the cost of treating an indi-
vidual who fails or refuses to receive the intervention treatment. Figure 3 investigates
the same set of conditions as in Figure 2 except that it is now assumed that the cost of
treating an intervention noncomplier is the same as the cost of treating an individual
in the control condition, where the cost is limited to collecting pre-intervention and
follow-up information. For example, if a doctor gives an injection of medicine to par-
ticipants in the intervention group, and the unused medicine due to noncompliance can

be saved for later use or can be returned to the manufacturer, the cost for intervention
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treatment applies only to individuals who actually receive the treatment.

[Figure 3]

It is shown in Figure 3 that a desirable level of power may be obtained at a lower
cost by assigning a smaller number of individuals to the intervention condition, if the
cost of treating a control group individual is much lower than the cost of treating an
intervention complier. Since the total cost of an intervention is generally lower in this
setting, the effect of under-sampling intervention group individuals is not as dramatic
as in the setting shown in Figure 2. For example, if the cost of treating a control group
individual is 0.1, the total cost using the balanced design is 169, and the total cost using
the unbalanced design (proportion of intervention group = 30%) is 147. Therefore, the
total cost of the unbalanced design is about 13% less (compared to 19% less in Figure

2) than that of the balanced design.

In estimating cost of intervention trials, this study assumed that the cost for
measuring compliance is trivial. However, measuring compliance can be costly in some
situations, and the cost of intervention trials may be reduced by measuring compliance
behavior for only subgroups of study participants (Frangakis & Baker, 2000). Another
design possibility that could be considered is having a run-in period before the main
trial to select potential compliers (Sheiner & Rubin, 1995). In this setting, only individ-
uals selected as potential compliers will be randomly assigned to treatment conditions
in the main trial. This method seeks to maximize the proportion of potential compliers.

However, this method is not always applicable for practical and ethical reasons.
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Outcome Distributions and Statistical Power

Simulation studies shown in previous sections assumed a setting where compliers and
noncompliers have minimal difference in terms of outcome distributions (i.e., means
and variances). However, individual differences between the complier and noncomplier
groups may lead to different distributions even in the absence of treatment. If outcome
distributions of compliers and noncompliers are different from those in the simulation
setting used in Figure 1, precision of the I'TT effect and CACE estimates will not nec-
essarily remain the same. Also, the difference in power between the ITT effect and
CACE estimates will change, since differences between compliers and noncompliers in
outcome distributions affect the precision of the I'TT effect and CACE estimates differ-
ently. This section demonstrates that it is useful to examine how outcome distributions
of compliers and noncompliers are different, because this will give a better idea about

the expected level of statistical power.

It is demonstrated in Figure 4 how statistical power changes in I'TT analysis and
CACE estimation methods as the distance between mean outcomes of compliers and
noncompliers changes. Simulation results reported in Figure 2 are based on a sample
size of 300, an effect size of 0.5 (true CACE = —0.5) and a 50% compliance rate. As
in Figure 1, the model described in equation (13) is used in generating data for the
simulation studies, and the same model is used to estimate intervention effects in the
CACE estimation method. The model described in equation (14) is used to estimate
intervention effects in the I'TT analysis. The true residual variance is 1.0 for both
compliers and noncompliers. The true control group mean is 1.5 for compliers (av).

The true noncomplier mean (o) has values ranging from 0.0 to 3.0, which results in



Statistical Power and Noncompliance 26

the distance between means of compliers and noncompliers ranging from 0.0 to 1.5 in

terms of the pooled standard deviation of 1.0.

[Figure 4]

It is shown in Figure 4 that the difference in power between I'TT analysis and
CACE estimation methods increases as the distance between mean outcomes of com-
pliers and noncompliers increases. Precision of the CACE estimate benefits from re-
moteness between two means, since compliance status can be estimated with a greater
precision when compliers are more distinguishable from noncompliers. In contrast, re-
moteness between two means has a negative influence on precision in the I'TT effect
estimate, since the overall variance estimate will increase as the distance between means
of compliers and noncompliers increases. The relationship between mean difference and
variance is illustrated in Figure 5. If compliers and noncompliers are allowed to have
different means, the distance between two means will not affect variance estimates of
compliers and noncompliers. However, if a single distribution is assumed, the overall

variance estimate will increase as the distance between two means increases.

[Figure 5]

Figure 6 demonstrates how statistical power changes in I'TT analysis and CACE
estimation methods as the difference between variances of compliers and noncompliers
changes. In this simulation setting, true means of compliers and noncompliers with a
minimal distance are chosen to emphasize the influence of having different values of

variances. The true control group mean is 1.5 for both compliers (a..) and noncompliers
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(an). True variance for compliers (¢2) is 1.0. True variance for noncompliers (¢2) ranges

from 0.25 to 2.00, which is one fourth to twice the size of true complier variance.

[Figure 6]

It is shown in Figure 6 that statistical power increases in the CACE estimation
method as the size of noncomplier variance becomes smaller than the size of complier
variance. When noncomplier variance is smaller than complier variance, the difference
in size of variances results in higher precision in estimating compliance, since compliers
are more distinguishable from noncompliers in terms of variance. Also, as noncomplier
variance becomes smaller, the mean outcome for noncompliers will be estimated with
higher precision, which will result in higher precision in estimating the mean outcome

for compliers and the intervention effect for compliers.

Figure 6 also shows that statistical power remains stable in the CACE estimation
method as the size of noncomplier variance becomes larger than the size of complier
variance. When noncomplier variance is larger than complier variance, the difference
in variances has a positive effect on precision in estimating compliance. However, as
noncomplier variance becomes larger, precision in estimating the noncomplier mean will
decrease, which will result in a decreased precision in estimating complier mean and
intervention effect for compliers. Since having a larger noncomplier variance relative
to complier variance has both positive and negative influence on precision, statistical
power in CACE estimation remains stable. If noncomplier variance is much larger than
complier variance (e.g., o2 = 1.0, 02 = 4.0), statistical power in CACE estimation will
increase (not shown), because having a larger noncomplier variance relative to complier

variance has more positive than negative influence on precision.
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The relationship between power and variance difference is more straightforward
in ITT analysis. It is shown in Figure 6 that the size of noncomplier variance has a
linear effect on statistical power in I'TT analysis, given that true complier variance is
invariant. Since the difference between compliers and noncompliers is not considered
in I'T'T analysis, the overall variance estimate will increase as the variance of noncom-
pliers increases and will decrease as the variance of noncompliers decreases. Therefore,
precision of the I'TT effect estimate also will increase or decrease depending on the size

of the overall variance estimate.

Covariate Information and Statistical Power

While neither the compliance rate nor the outcome distribution is directly under the
control of the investigator, the investigator can design the study to collect auxiliary in-
formation from pre-treatment covariates. Pre-treatment covariates contain two sources
of information that may affect the precision of intervention effect estimates. One source
of information is based on the association between covariates and the outcome mea-
sure. The other source of information is based on the association between covariates
and compliance. Simulation results reported in Figures 7 and 8 show how this infor-
mation affects statistical power in I'TT analysis and CACE estimation. Simulation
studies are based on a sample size of 300, an effect size of 0.5 (true CACE = —0.5) and
a 50% compliance rate. The true control group mean is 1.5 for both compliers (a..) and
noncompliers (a,). The true total variance (pooled across the control and intervention
groups) is 1.0 for both compliers and noncompliers. For simplicity, one continuous

covariate X is used in the simulation study, where X is normally distributed with zero
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mean and the variance of one.

In Figure 7, regression coefficients A\, and A. represent covariate effects on the
outcome for noncompliers and compliers (see equation (10)). The true value for A,
and . is either 0.0 (effect size = 0.0) or 0.6 (effect size = 0.6). Depending on A, and
A values, the true value for residual variances (02 and o?) is either 1.0 or 0.64, so
that the total variance is 1.0 for both compliers and noncompliers taking into account
the variance due to covariate X. In other words, the correlation between Y and X is
0.0 or 0.6 in each compliance group. To emphasize the effect of a covariate associated
with outcome, it is assumed that there is no association between the covariate and

compliance. The model described in equation (10) is also used as the model for CACE

estimation. The model used for I'TT analysis is described as

}/;:Oé+f}/Zi+)\X¢+€i7 (15)

where « is the overall mean outcome for the control group, 7 is the overall effect of
intervention (ITT effect), A is the overall effect of covariate X on the outcome, and ¢;

is a normally distributed residual with zero mean and variance o?.

[Figure 7]

It is shown in Figure 7 that strong association between covariate and outcome
generally improves power to detect intervention effects in I'TT analysis and CACE
estimation. It is also shown that this association affects precision of ITT effect and
CACE estimates differently. In ITT analysis, where covariate effects on the outcome
for compliers and noncompliers are not differentiated, precision of the intervention

effect estimate benefits the most when the covariate has strong and similar effects
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on the outcome for compliers and noncompliers (i.e., A\, = A, = 0.6). In CACE
estimation, where covariate effects on the outcome for compliers and noncompliers
can be differentiated, precision of the intervention effect estimate benefits the most
when the covariate has strong effect on the outcome only for compliers (i.e., A, = 0,
Ae = 0.6). Improvement in precision is less dramatic when the covariate has strong but
similar effects on the outcome for compliers and noncompliers, because compliers and
noncompliers are less distinguishable from each other based on covariate effects on the

outcome.

Figure 8 demonstrates how the association between covariate and compliance
affects power in I'TT analysis and CACE estimation. To emphasize the effect of this
association, it is assumed that there is no association between covariate and outcome.
The logistic regression of compliance on covariate has been described in equation (11).
In the simulation study shown in Figure 8, three different situations are considered:
when there is no covariate, when there is moderate association between covariate and
compliance, and when there is high association between covariate and compliance.
The true logit coefficients (f; in equation (11)) for moderate and high association are
—0.693 and —1.204 respectively, which correspond to 0.5 and 0.3 in terms of the odds
ratio (approximately —0.4 and —0.6 in terms of the biserial correlation). Equation
(11) is a part of the CACE estimation model. However, this part is not included in the
ITT analysis, where compliance information is not utilized in estimating intervention

effects.

[Figure 8]
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It is shown in Figure 8 that strong association between covariate and compliance
improves power to detect intervention effects in CACE estimation. In ITT analysis,
association between covariate and compliance has little impact on precision of the
intervention effect estimate. As a result, the difference in power between I'TT analysis
and CACE estimation methods increases as the level of association between compliance
and covariate increases. As discussed previously in the context of Bayesian inference
(Frangakis, Rubin, & Zhou, 1998; Imbens & Rubin, 1997), covariates associated with
compliance are unique sources of information that can be utilized in CACE estimation.
Covariate information can often be collected from various sources such as background
variables, initial status of the target outcome measure, and other relevant covariates

that may reflect the characteristics of compliance behavior.

Summary

This study examined how noncompliance affects statistical power in the I'TT analysis
and CACE estimation methods. If there are no other sources of information than
effect size and compliance rate, ['TT analysis and CACE estimation methods have little
difference in power, and standard power calculation methods with adjusted effect size
can be used as a crude way of estimating statistical power. In both methods, simulation
studies showed that compliance rate has critical impact on power. To maintain a desired
level of statistical power under noncompliance, sample size adjustment is necessary,

which usually increases the cost of intervention trials.

Cost of intervention trials may be reduced by controlling the design of randomized

trials, depending on where the major concern lies in terms of cost. Simulation studies
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showed that a desired level of power may be obtained at a lower cost by assigning
a smaller number of individuals to the intervention condition (unbalanced design), if
the cost of managing individuals in the control group is much lower than the cost of

managing individuals in the intervention group.

Statistical power can be affected by outcome distributions of compliers and non-
compliers. Further, outcome distributions influence power differently in I'TT analysis
and CACE estimation, which may cause a larger difference in power between the two
methods. It was shown that remoteness between complier and noncomplier means
has a negative effect on power in I'T'T analysis, but has a positive effect on power in
CACE estimation. Statistical power in I'TT analysis increases as the overall variance
decreases, and decreases as the overall variance increases. In CACE estimation, hetero-
geneity between complier and noncomplier variances has a positive influence on power,

while the magnitude of these two variances has a negative influence on power.

Along with outcome distributions, pre-treatment covariates are another source
of information that potentially increases the difference in power between I'TT analysis
and CACE estimation. Unlike outcome distributions, collecting covariate information
is relatively controllable in intervention studies. Including covariates that are highly
associated with outcome may increase power in both methods. Precision in I'TT anal-
ysis benefits the most when covariates have strong and equal effects on the outcome.
Precision in CACE estimation benefits the most if covariate effects are stronger among
compliers than among noncompliers. Covariates associated with compliance provide
unique sources of information that may improve power in CACE estimation. Although

this study assumed constant effects of covariates, treatment effects may vary depending
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on covariate values. To avoid bias in CACE estimation, interaction effects should be
properly specified. However, including unnecessary interaction parameters may reduce

gains in precision due to covariate information.

Limitations

Based on Monte Carlo simulations, this study examined several factors that affect sta-
tistical power in intervention studies with noncompliance. The study was intended to
help researchers to focus on controllable factors that may improve power in future inter-
vention studies, and to evaluate completed studies with fuller understanding. However,
this study did not cover many other factors that might affect power depending on spe-
cific settings. For example, randomized trials may face not only noncompliance, but

also other complications such as clustering and attrition.

In intervention trials, the unit of intervention or the unit of randomization is often
a cluster (group) of individuals. In the JOBS II study, job search seminars were given
to groups of participants. In this setting, individuals belonging to the same group may
interact with each other, and share common features of the treatment. In the JHU
PIRC study, the unit of randomization was a classroom. Therefore, students belonging
to the same classroom naturally share the same classroom environment including the
teacher. The resemblance among individuals due to clustering needs to be taken into
account to avoid overestimation of statistical power. Adjusting statistical power is fur-
ther complicated, if clustering is accompanied by noncompliance (Jo, Muthén, Talongo,
& Brown, 2001). This study did not include this situation, which is quite common in

intervention trials.
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Nonresponse (attrition, dropout) is another common complication that was not
considered in this study. Intervention trials often suffer from both noncompliance and
missingness in outcome due to nonresponse. For example, in JOBS II, a substantial
number of individuals did not respond at follow-up surveys, and nonresponse rates were
different for compliers and noncompliers. Yau and Little (2001) demonstrated simulta-
neous modeling of noncompliance and nonresponse using ML-EM and Bayesian estima-
tion methods assuming no correlation between noncompliance and nonresponse (i.e.,
missing at random, Little & Rubin, 1987). Frangakis and Rubin (1999) demonstrated
simultaneous modeling of noncompliance and nonresponse using Bayesian estimation
methods allowing for possible correlation between noncompliance and nonresponse (i.e.,
missing not at random, Little & Rubin, 1987). Statistical power will be affected not
only depending on whether this missingness is taken into account, but also depending

on what is assumed for the relationship between noncompliance and nonresponse.

Researchers also need to be aware that the results of CACE estimation shown in
this study are based on the five statistical assumptions originally outlined by Angrist et
al. (1996). Violating statistical assumptions has a critical impact on statistical power
and needs to be carefully examined. Although violating any of these assumptions
will also affect ITT analysis, consequences of violation are more critical in CACE
estimation, because it claims to target compliers. If compliers and noncompliers are well
separated without violating any of these assumptions, CACE estimation will provide
unbiased treatment effect estimate and statistical power for compliers. However, if
underlying assumptions are violated, validity of the CACE estimate and its power will

be challenged.
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The exclusion restriction is one of the critical underlying assumptions in the esti-
mation of CACE. The assumption provides the basis for identifiability in CACE models,
given that compliance status is not observed completely. However, this assumption can
be often unrealistic in practice (Hirano, Imbens, Rubin, & Zhou, 2000; Jo, in press-a,
b; West & Sagarin, 2000). For example, in JOBS II, noncompliers in the treatment
condition could be demoralized by failing to take the intervention opportunity. This
negative psychological effect would not occur for never-takers in the control condition,
since the treatment is not offered. In this situation, the CACE estimate can be un-
derstated by ignoring the effect of treatment assignment on noncompliers. As a result,
statistical power assuming the exclusion restriction (i.e., no assignment effect) could

be underestimated.

This study also assumed that participants receive either all or none of the in-
tervention treatment. However, the generalizability of this setting is often limited
in reality. Intervention trials often include several treatment sessions or doses, and
study participants may choose different levels of exposure. For example, in the JHU
PIRC Family-School Partnership intervention, parents could choose to implement 0
to 66 activities. Previous research (Angrist & Imbens, 1995; Efron & Feldman, 1991;
Goetghebeur & Molenberghs, 1996; Holland, 1988) has shown some possibilities for
estimating treatment effects taking into account the varying intensity of compliance
(or dose). However, applicability of these methods in psycho-social intervention studies

has not been fully studied.

This study did not deal with situations with interaction effects. For example,

effects of covariates may vary depending on treatment assignment condition. Given



Statistical Power and Noncompliance 36

underlying assumptions such as the exclusion restriction, CACE models do not require
constant effect of treatment to maintain identifiability. In other words, both the main
and the interaction effect can be estimated for compliers. If interaction effects are not
specified in the model, the resulting CACE estimate should be interpreted carefully
given possible confounding with interaction effects. To avoid bias in CACE estima-
tion, interaction effects should be properly specified. However, including unnecessary
interaction parameters may reduce gains in precision due to covariate information. To
minimize loss in power, CACE models need to be structured in a more parsimonious
way by focusing only on plausible interactions. This study investigated covariate effects
on statistical power assuming a linear relationship between outcome and covariate, and
between compliance and covariate. More study is needed to clarify potential compli-
cations in estimating intervention effects when covariates have a nonlinear relationship

with outcome and compliance.
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Figure Captions

Figure 1. Noncompliance and power to detect intervention effects. The true CACE is
—0.2 in panel (a), —0.5 in panel (b), and —0.8 in panel (c¢), which corresponds to effect

size (ES) of 0.2, 0.5, and 0.8 respectively. No covariates are included.

Figure 2. Design and cost of intervention studies: when the cost of treating an in-
diviual in the intervention condition is the same regardless of compliance status. The
results are based on CACE estimation with desired statistical power of 0.8. The true
compliance rate is 0.5, and the true CACE is —0.5 (ES = 0.5). Cost of treating one

individual in the intervention condition is 1.0. No covariates are included.

Figure 3. Design and cost of intervention studies: when the cost of treating a noncom-
plier in the intervention condition is the same as the cost of treating a control condition
individual. The results are based on CACE estimation with desired statistical power
of 0.8. The true compliance rate is 0.5, and the true CACE is —0.5 (ES = 0.5). Cost

of treating one complier in the intervention condition is 1.0. No covariates are included.

Figure 4. Mean difference and power to detect intervention effects. The true com-

pliance rate is 0.5, the true CACE is —0.5 (ES = 0.5), and the sample size is 300. The

2

n

true «a, is 1.5, and the true 02 is 1.0. The true «,, varies from 0.0 to 3.0. The true o

is 1.0. No covariates are included.

Figure 5. Distributions of compliers and noncompliers with different means.
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Figure 6. Variance difference and power to detect intervention effects. The true com-

pliance rate is 0.5, the true CACE is —0.5 (ES = 0.5), and the sample size is 300. The

2

n

true a. is 1.5, and the true Uf is 1.0. The true «,, is 1.5, and the true o2 varies from

0.25 to 2.0. No covariates are included.

Figure 7. Statistical power and covariate effects on outcome. The true compliance
rate is 0.5, the true CACE is —0.5 (ES = 0.5), and the sample size is 300. One contin-
uous covariate (mean=0, variance=1) is included. The regression coefficient (\,, A.)

represents the level of association between outcome and the covariate.

Figure 8. Statistical power and covariate effects on compliance. The true compliance
rate is 0.5, the true CACE is —0.5 (ES = 0.5), and the sample size is 300. One con-
tinuous covariate (mean=0, variance=1) is included. The biserial correlation between

compliance and the covariate is presented in parentheses.
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