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1 Introduction

The article by Barnard, Frangakis, Hill and Rubin (BFHR) is timely in that the De-
partment of Education is calling for more randomized studies in educational program
evaluation (see the discussion of the "No Child Left Behind” initiative, e.g. Slavin,
2002). BFHR can serve as a valuable pedagogical example for successful sophisticated
statistical analysis of randomized studies. Our commentary is intended to provide addi-
tional pedagogical value to benefit the planning and analysis of future studies, drawing

on experiences and research within our research group.!

BFHR provides an exemplary analysis of the data from an imperfect randomized trial
that suffers from several complications simultaneously: noncompliance, missing data in
outcomes, and missing data in covariates. We are very pleased to see their application
of cutting edge Bayesian methods for dealing with these complexities. In addition, we
believe the methodological issues and the results of the study have important implica-
tions for design and analysis of randomized trials in education and for related policy

decisions.

BFHR provides results of the New York City school choice experiment based on one
year achievement outcomes. With the planned addition of yearly follow-up data, growth
models can provide an enhanced examination of causal impact. We discuss how such

growth modeling can be incorporated and provide a caution that applies to BFHR'’s use

IThe " Prevention Science Methodology Group” (PSMG; www.psmg.hsc.usf.edu), co-PI's Brown and

Muthén, has collaborated over the last 15 years with support from NIMH and NIDA.



of only one posttest occasion. In our commentary we also consider the sensitivity of the
latent class ignorability assumption in combination with the assumption of compound

exclusion.

2 Longitudinal Modeling Issues

BFHR focuses on variation in treatment effect across compliance classes. This part
of the commentary considers variation in treatment effect across a different type of
class based on the notion that the private school treatment effect might very well be
quite different for children with different achievement development.? To study such a
"treatment-baseline interaction” (or, rather ”treatment-trajectory interaction”), we will
switch from BFHR’s pretest-posttest analysis framework, essentially a very advanced
ANCOVA-type analysis, to the growth mixture modeling framework of Muthén, Brown
et al. (2002). An underlying rationale for this modeling is that individuals at different
initial status levels, and on different trajectories, may benefit differently from a given
treatment. ANCOVA controls for initial status as measured by the observed pretest
score. Unlike the observed pretest score, the latent variable of initial status is free of

time-specific variation and measurement error.

The focus on longitudinal aspects of the New York School Choice study (NYSCS)

2Also of interest is potential variation in treatment effects across schools, with respect to both the
public school the child originated in and the private school the child was moved to, but this multilevel

aspect of the data will be left aside here for lack of space.



is both substantively and statistically motivated. First, treatment effects may not have
gained full strength after only a one-year stay in a private school.? Second, the use of
information from more timepoints than pretest and posttest makes it possible to identify
and estimate models that give a richer description of the normative development in the

control group and how the treatment changes this development.

Consider three types of latent variables for individual i. The first, C;, refers to
BFHR’s compliance principal strata. The next two relate to the achievement devel-
opment as expressed by a growth mixture model: 7T; refers to trajectory class and 7;
refers to random effects within trajectory class (within-class model is a regular mixed
effects model). Unlike the latent class variable C;, the latent class variable T; is a fully
unobserved variable as is common in latent variable modeling (see, e.g. Muthén, 2002a).
Consider the likelihood expression for individual ¢, using the [] notation to denote prob-

abilities/densities,

where X; denotes covariates, U; denotes a compliance stratum indicator (with C; per-

fectly measured by U; in the treatment group for never takers and perfectly measured

3The NYSCS currently has data from three follow-ups, i.e. providing repeated measures data from
four grades. Although BFHR used percentile scores which do not lend themselves to growth modeling,
a conversion to "scale scores” (i.e. IRT-based, equated scores) should be possible, enabling growth
modeling. Unfortunately, educational research traditionally uses scales that are unsuitable for growth
modeling, such as percentile scores, normal curve equivalents, and grade equivalents (for a comparison

in a growth context, see Seltzer, Frank & Bryk, 1994). Hopefully, this tradition can be changed.



in the control group for always takers, other group-class combinations having missing
data), and R; denotes indicators for missing data on the repeated measures outcomes Y;
(pre- and post-treatment achievement scores). This type of model can be fitted into the
latent variable modeling framework of the Mplus program (Muthén & Muthén, 1998-
2002; Technical Appendix 8), which has implemented an EM-based maximum-likelihood
estimator.? As a special case of (1), conventional random effects growth modeling in-
cludes 7;, but excludes C; and T; and assumes MAR so that the last term in (1) is
ignored. Growth mixture modeling (Muthén & Shedden, 1999; Muthén, Brown et al.,
2002; Muthén & Muthén, 1998-2002) includes n; and T;. BFHR includes C;, but not
T; (or 1;), and includes the last term in (1), drawing on latent ignorability of Frangakis
and Rubin (1999). Muthén and Brown (2002) studies latent ignorability related to T;
in the last term of (1). In randomized studies, it would be of interest to study C; and
T; classes jointly because individuals in different trajectory classes may show different

compliance and missingness may be determined by these classes jointly.

If data have been generated by a growth mixture model with treatment effects varying
across trajectory classes, what would pretest-posttest analysis such as that in BFHR
reveal? To judge the possibility of such treatment-trajectory interaction in the NYSCS,
we considered several recent applications of growth mixture modeling that have used
T; to represent qualitatively different types of trajectories for behavior and achievement
scores on children in school settings. Drawing on these real-data studies, two growth

mixture scenarios were investigated.® For simplicity, no missing data on the outcome or

4For related references, see the Mplus web site www.statmodel.com.

5A detailed description of these real-data studies and scenarios and their parameter values are given
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pretest is assumed and C; classes are not present. In a 3-class scenario, the treatment
effect is only noteworthy for a 70% middle class, assuming that the low class membership
(10%) hinders individuals from benefiting from the treatment and assuming that the high
class (20%) does not really need the treatment. The achievement development in the
3-class scenario is shown in the left panel of Figure 1 while the right panel shows the
corresponding posttest (ys) - pretest (y;) regressions. The lines denoted ANCOVA show
a regular ANCOVA analysis allowing for an interaction between treatment and pretest
(different slopes). In the 3-class scenario, the ANCOVA interaction is not significant at
n = 2000 and the treatment effect in the middle class is underestimated by 20%, while
overestimated in the other two classes. In a 2-class scenario (not shown here), where the
treatment is only noteworthy for individuals in the low class (50%), ANCOVA detects an
interaction that is significant at the NYSCS sample size of n = 2000, but underestimates
the treatment effect for most children in the low class (at the low-class average pretest

value of zero, the treatment effect is underestimated by 32%).
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Figure 1: Growth Mixture Modeling Versus Pretest-Posttest Analysis.

in Mplus Web Note #5 at www.statmodel.com/mplus/examples/webnote.html.



Although the NYSCS children are selected from low-performing schools®, there may
still be sufficient heterogeneity among children in their achievement growth to make
a treatment-trajectory interaction plausible. The 3-class scenario is possible, perhaps
with more children in the low class relative to the other two classes. If this is the case,
the ANCOVA analysis shown in Figure 1 suggests a possible reason for BFHR'’s find-
ing of low treatment effects. The empirical studies and the results in Figure 1 suggest
that future program evaluations may benefit from exploring variation in treatment ef-
fects across children characterized by different development. Using data from at least
two post-treatment time points (three time points total), the class-specific treatment
effects generated in these data can be well recovered by growth mixture modeling.” A
more flexible analysis is obtained with more post-treatment time points. An improved
design for the determination of the latent trajectory classes is to use more than one
pre-treatment time point so that the trajectory class membership is better determined

before the treatment starts.

3 Compound Exclusion and Latent Ignorability

Based on the ideas of principal stratification (Frangakis & Rubin, 2002) and latent
ignorability (Frangakis & Rubin, 1999), BFHR successfully demonstrates that the com-

plexities of educational studies can be better handled under more explicit and flexible

6The average NYSCS math and reading percentile rankings are around 23 — 28,

"Monte  Carlo simulation results are given in  Mplus Web Note #5 at

www.statmodel.com/mplus/examples /webnote.html.



sets of assumptions. Although we think the structural assumptions they employed are
reasonable in the NYSCS, we would like to add some thoughts on the plausibility of two

assumptions, considering more general situations.

Compound exclusion (CE) is one of the key structural assumptions in identifying
principal effects under latent ignorability. However, the plausibility of this assumption
can be questioned in practice (Frangakis et al., 2002; Hirano et al., 2000; Jo, in press,
2002; Shadish, Cook, & Campbell, 2002; West & Sagarin, 2000). In the NYSCS, it seems
realistic to assume that winning a lottery has some positive impact on always-takers.
However, it is less clear how winning a lottery will affect never-takers. One possibility
is that winning a lottery has a negative impact on parents, because they fail to benefit
from it. Discouraged parents may have a negative influence on children’s test scores or
response behaviors. This negative effect may become more evident if noncompliance is
due to parents’ low expectation or lack of interest in their children’s education. Another
possibility is that winning a lottery has a positive impact on children’s test scores or
response behaviors. For example, parents who are discouraged by being unable to send
their children to private schools even with vouchers may try harder to improve the
quality of existing resources (e.g., in the public schools their children attend) and be
more motivated to support their children to improve their academic performance. Given

these competing possibilities, it is not easy to predict whether and how CE is violated.

Depending on the situation, causal effect estimates can be quite sensitive to violation
of the exclusion restriction in outcome missingness (Jo, 2002b), which is less known

than the impact of violating exclusion restriction in observed outcomes (Angrist et al.,
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1996; Jo, 2002). The implication of possible violation of CE and its impact is that the
relative benefit of models assuming latent ignorability (LI) and standard ignorability (SI)
depends on degrees of deviation from CE and SI. Identification of causal effects under LI
relies on the generalized (compound) exclusion restriction (i.e., both on the outcomes and
missingness of outcomes), whereas identification of causal effects under SI relies on the
standard exclusion restriction (i.e., only on the outcomes). Therefore, in some situations,
the impact of deviation from CE may outweigh the impact of deviation from SI, resulting
in more biased causal effect estimates in models assuming LI than in models assuming
ST (Jo, 2002b). For example, if SI holds, but CE is seriously violated (say 20% increase
in the response rate due to treatment assignment for compliers and 15% increase for
never-takers), causal effect estimates and the coverage probability assuming LI and CE
can drastically deviate from the true value and the nominal level. This type of violation
does not affect models assuming SI and the standard exclusion restriction. To empirically
examine the plausibility of SI, LI, and CE, it will be useful to do sensitivity analyses of
models imposing different combinations of these assumptions. As the authors point out,
this investigation can be conducted by relaxing compound exclusion (e.g., Frangakis et
al., 2002; Hirano et al., 2000), or by employing alternative structural assumptions (e.g.,
Jo, in press). More research is necessary to examine the efficiency of these alternative
models, and to explore factors associated with insensitivity of LI models to violation of

compound exclusion.



4 Conclusion

Causal inferences of the type BFHR provide are a dramatic improvement over the exist-
ing literature now available on the question of whether school choice will produce better
achievement outcomes for children in an urban public school system. The randomized
lottery provides an exceptionally powerful tool to examine the impact of a program, far
more useful than observational studies that have causal change intertwined hopelessly
with self-selection factors. Statisticians are just now investigating variations in such
principal strata analyses, that is, those involving latent classes formed as a function of
randomized trials involving intervention invitations (such as vouchers), encouragement
designs, and field trial designs involving more than one randomization (Brown & Liao,
1999). The latent categories in this paper, which BFHR labels complier, never-taker,
always taker, and defier, represent only one type of design. There are other terms that
may be more relevant to the scientific questions underlying trials where subjects are
randomly assigned to different levels of invitation (e.g. Angrist & Imbens, 1995), or dif-
ferent levels of implementation. Such trials not only have great potential for examining
questions of effectiveness, sustainability, and scalability, but they require terms more
consistent with adherence than compliance. Again, we congratulate the authors to an
important addition to the methodological literature which we predict will have lasting

impact.
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