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ABSTRACT

In this article we study the approximately unbiased multilevel pseudo maximum likeli-

hood (MPML) estimation method for general multilevel modeling with sampling weights.

We conduct a simulation study to determine the e®ect various factors have on the estimation

method. The factors we included in this study are scaling method, size of clusters, invariance

of selection, informativeness of selection, intraclass correlation and variability of standard-

ized weights. The scaling method is an indicator of how the weights are normalized on each

level. The invariance of the selection is an indicator of whether or not the same selection

mechanism is applied across clusters. The informativeness of the selection is an indicator

of how biased the selection is. We summarize our ¯ndings and recommend a multistage

procedure based on the MPML method that can be used in practical applications.

1. INTRODUCTION

Multilevel models are frequently used to analyze data from cluster sampling designs. Such

sampling designs however often use unequal probability of selection at the cluster level and

at the individual level. Sampling weights are assigned at one or both levels to re°ect these

probabilities. If the sampling weights are ignored at either level the parameter estimates can

be substantially biased.

Weighting for unequal probability of selection in single level models is a relatively well es-

tablished procedure. The pseudo maximum likelihood (PML) method developed by Skinner
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(1), following ideas of Binder (2), can estimate any single level model when the data is ob-

tained by unequal probability sampling. The PML parameter estimates and their asymptotic

variance/covariance estimates are consistent. For multilevel models however the situation

is completely di®erent. There is currently no well established general multilevel consistent

estimation method. Several methods have been proposed recently in the literature for ex-

ample in Graubard and Korn (3), Grilli and Pratesi (4), Korn and Graubard (5), Kovacevic

and Rai (6), Pfe®ermann et al. (7), Pfe®ermann et al. (8) and Stapleton (9). However,

the asymptotic properties of these estimators, when increasing the number of clusters to

in¯nity but bounding the cluster sample size, are unknown. These estimators can produce

biased parameter estimates and the size of the bias can be evaluated only through a limited

simulation study. General comparison between the methods is not available. Many of the

limited comparisons that are available are inconclusive to some degree and depend on the

particular model and sampling mechanism. Simulation studies have clearly indicated that as

the number of clusters and the cluster sample sizes increase the parameter bias can generally

be eliminated. Estimation methods that possess this property are called approximately un-

biased. Often however this property has been veri¯ed only through simulation studies and

the exact conditions for it to hold are unclear. In addition the previously proposed methods

apply only to certain multilevel models and parameters, and cannot be extended beyond the

framework they are de¯ned in.

In this article we introduce the multilevel pseudo maximum likelihood (MPML) estima-

tion method for a general multilevel model which can be seen as a natural extension of the

PML method as de¯ned in Skinner (1) for the single level models. This method has been

previously studied also in Grilli and Pratesi (4) in the context of multilevel probit regres-

sion. In this article we ¯nd exact conditions which guarantee that the parameter estimates

are approximately unbiased and ¯nd the asymptotic covariance of the parameter estimates.

For certain special models we obtain a closed form expression for the parameter estimates,

which enable us to compare this method with other previously proposed methods. The main

advantage of this method is that it can be applied to any general multilevel model just as
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the PML method can be applied to single level models. The method is also °exible and it

can be modi¯ed for di®erent estimation problems. In Section 2 we provide more background

information on unequal probability sampling in multilevel settings. In Section 3 we de¯ne

the MPML method and describe the variance estimation for the parameter estimates. In

Section 4 we clarify the concept of weights scaling, which has been the primary bias reduc-

tion tool for example in Pfe®ermann et al. (7) and Stapleton (9), and we show that di®erent

scaling methods should be used depending on whether or not the sampling mechanism is

of two di®erent types: invariant and non-invariant. In Section 5 we develop a measure for

the level of informativeness of the selection mechanism which can be used to evaluate the

e®ect of di®erent selection mechanisms on the estimation method and to compare di®erent

simulation studies and simulation studies with practical applications. The measure of in-

formativeness can also be used in evaluating the need for incorporating the weights in the

analysis. In Sections 6 and 7 we conduct simulation studies that evaluate the e®ect of several

components on the MPML estimation method. These components are informative index,

sample cluster size, invariance of sampling mechanism and scaling method. In Section 8 we

evaluate the e®ect of intraclass correlation on the MPML estimates. In Section 9 we show

that the MPML method produces biased estimates even for non-informative sampling and

study the e®ect of the variability of the standardized weights on that bias. In Section 10

and 11 we conduct a simulation study on a multilevel logistic regression and a multilevel

mixture model, which currently can be estimated only by the MPML method. In Section 12

we summarize our ¯ndings and outline a 6 step procedure that should be followed for proper

usage of weights in multilevel models. In Appendix A we provide theoretical justi¯cation

for the MPML method and underline the conditions needed for the approximate unbiased-

ness of the parameter estimates. In Appendix B we obtain a closed form expression for

the balanced random intercept model and compare the MPML method to other previously

proposed methods.

2. BACKGROUND

In a general multilevel model the observed variable in cluster j = 1; :::;M of individual
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i = 1; :::; nj is the vector yij and the level 2 random e®ect in cluster j is the vector ´j. The

predictors on the individual level are denoted by xij and the predictors on the cluster level are

denoted by xj. A general multilevel model is speci¯ed by the density function of yij which we

denote by f(yijjxij; ´j; µ1) and the density function of ´j which we denote by Á(´jjxj; µ2). The
parameters are denoted by µ1 and µ2. These density functions can belong to any parametric

family of density functions or any parametric family of probability functions for the case when

yij or ´j are discrete variables. The general multilevel modeling framework includes but is

not limited to multilevel linear regression, multilevel logistic regression, multilevel probit

regression, multilevel factor analysis and multilevel growth mixture models. A detailed

description of a simple multilevel linear regression example is given in Appendix B.

Suppose that the data is sampled with unequal probability of selection on both levels.

Suppose that the probability of selection for cluster j is pj and wj = 1=pj. Suppose that

the probability of selection for individual i in cluster j, given that cluster j is selected, is pij

and the sampling weight is wij = 1=pij. Our goal is to estimate the parameters µ1 and µ2 by

incorporating the sampling weights wj and wij in the estimation method and thus eliminate

the selection bias.

The intricacies of multilevel weighted analysis begin with the choice of the sampling

weights. Frequently data sets are made available with weights prepared for computing means.

Unfortunately these weights are not appropriate for multilevel models and can produce

erroneous results if used with multilevel models.

The usual description of weighted two-level analysis includes weighting for unequal prob-

ability of selection at level 2 - the cluster level, weighting for unequal probability of selection

for level 1 - the individual level, or both. However, because of the PML method developed

by Skinner (1), the only case that requires new theoretical considerations is the weighting

for unequal probability of selection for level 1 units. When weights are present at level 2

only, that is to say that independent units, namely clusters, have been sampled with unequal

probability, we identify this framework as the framework of single level weighted modeling

and methods available for single level weighted analysis can be applied. A two level model
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with weights on level 2 can be presented as a multivariate single level model with weights,

which can be estimated by the single level PML method. The model estimates will be

consistent regardless of the size of the clusters. As an example, consider the linear growth

model Yit = ®i + ¯it+ "it where Yit is a normally distributed observed variable at time t for

individual i. Here ®i and ¯i are normally distributed random e®ects and "it is a zero-mean

residual. This model can be viewed as a two level model. Suppose that for each individual

there are 5 observations, given at times X = (0; :::; 4). This model is equivalent to a sin-

gle level, mean and variance model, with observed vector Yi = (Yi0; :::; Yi4). This model is

given by Yi = ¹ + "i, where the parameter ¹ are estimated under the constraint equation

¹ = E(®i) + E(¯i)X
0. Similar parameter constraint is needed for the variance of "i. The

level 2 weight variable has the role of a single level weight variable and the estimation can

be done by the single level PML technique. Simulation studies based on this approach are

conducted in Asparouhov (10).

The situation is completely di®erent when weights are present at level 1 because the

unequal probability of selection is applied to dependent units and thus the assumptions of

the single level methodology are violated. The MPML method de¯ned in Section 3 applies

to the general case of weighting on both levels. Our primary interest in multilevel weighted

analysis however is in the case when the level 1 units are weighted for unequal probability

of selection.

If the selection mechanism is not informative we should exclude the weights from the

analysis. The estimates will remain consistent and in fact will be more precise. Including

non-informative weights in the analysis can result in a substantial loss of e±ciency. The PML

parameter estimates, however, will remain consistent. This is not quite the case however for

the MPML estimator. In Section 9 we conduct a simulation study which demonstrates that

a relatively small large sample bias can arise in the estimation of multilevel models when

the cluster sample sizes are small even if the weights are non-informative on level 1. Non-

informative weights on level 2 are not a source of bias for the MPML estimates in general.

In practical applications it may not be possible to easily determine whether the selection
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is informative or not. A general method for testing the informativeness of the weights is

described in Pfe®ermann (11) and the test can be used for multilevel models as well as

single level models. A simpler but incomplete method is proposed in Section 5 based on the

informative index. If the weights are determined to be non-informative they should not be

used in the analysis. If any informativeness test is inconclusive, including the weights in the

analysis is necessary. In this article we are generally concerned with informative selection

mechanisms at level 1.

One of the key issues in the multilevel weighted estimation literature has been the fact

that the parameter estimation are usually only approximately unbiased, i.e., they are unbi-

ased for su±ciently large cluster sample size, but can be severely biased when the cluster

sample size is small. Di®erent scaling of the weights has been one of the focal points of the

bias reducing techniques for example in Pfe®ermann et al. (7) and Stapleton (9). There

have been no theoretical results to support one scaling method over another. Scaling of the

weights comprises of multiplying the weights by a scaling constant so that the sum of the

weights is equal to some kind of characteristic of the sample, for example, the total sample

size. In multilevel models the scaling modi¯cation methods scale the weights di®erently

across clusters so that the total weight of the cluster is equal to some cluster characteristic.

In single level modeling the scaling of the weights does not a®ect the PML estimator at all.

In multilevel models that is not the case however and the ratio between the true cluster

sample size and the total weight within the cluster is an important quantity since it a®ects

for example the distribution of the level 2 random e®ects conditional on all observed data.

The di®erent scaling methods however may have di®erent e®ect on di®erent estimation tech-

niques. If a scaling method performs well with the MPML approach proposed in Section 3,

it will not necessarily perform well with other estimation techniques.

Another perspective that exposes the need for scaling the weights is the following. Let

the weight for individual i in cluster j be wij. Typically wij is computed as wij = 1=pij where

pij is the probability that individual i in cluster j is included in the sample. Often however

these probabilities are very small. Thus the resulting weights are very large, which is not very
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practical and the weights are consequently rescaled. Alternatively the size of the population

that is being sampled may not be known and consequently the exact probabilities of selection

may not be known. Nevertheless unequal probability of selection could be implemented, for

example a certain ethnicity could be oversampled at a given rate even when the size of the

population is not known. In these cases the scale of the weights is undetermined and only

the relative value of the weights has practical meaning. Methods that rely on the equations

w = 1=p are not applicable directly, while scale invariant methods are.

3. MULTILEVEL PSEUDO MAXIMUM LIKELIHOOD

Let the observed variable in cluster j = 1; :::;M of individual i = 1; :::; nj be yij and

the level 2 random e®ect in cluster j be ´j. Let the individual level covariates be xij and

the cluster level covariates be xj. Let the density function of yij be f (yij jxij ; ´j ; µ1) and the
density function of ´j be Á(´jjxj; µ2), where µ1 and µ2 are the parameters to be estimated.
Let wj = 1=pj and wij = 1=pij be the sampling weights for the cluster and the individual

level. We de¯ne the MPML estimates µ̂ = (µ̂1; µ̂2) as the parameters that maximize the

weighted pseudo likelihood

l(µ1; µ2) =
Y
j

ÃZ ³Y
i

f (yijjxij ; ´j; µ1)wijs1j
´
Á(´j jxj; µ2)d´j

!wjs2j
; (1)

where s1j and s2j are level 1 and level 2 scaling constants. Let n̂j =
P
iwijs1j be sum of the

scaled weights within cluster j. The e®ect of this value on the estimation is very similar to

the e®ect of the cluster sample size on the maximum likelihood estimation without sampling

weights. Within the EM maximization algorithm for example n̂j is an indicator of the extent

to which ´j is determined by the observed data and is inversely proportional to the variance

of ´j conditional on all observed data. Thus the scale factor s1j can be used to balance this

e®ect. The second level scaling s2j can be used to counter balance the ¯rst level scaling s1j.

We will be interested primarily in the following choices s2j = 1 or s2j = 1=s1j. The MPML

estimates are approximately unbiased if

1. nj and n̂j are su±ciently large,

2. s2j and ´j are conditionally independent given all model covariates,
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3. n̂j=nj and ´j are conditionally independent given all model covariates.

The proof of the approximate unbiasedness can be found in the Appendix A. A closed

form solution for the MPML estimates for the balanced random intercept model is derived

in Appendix B. There is a considerable °exibility in the de¯nition of MPML because the

scaling constants are relatively unrestricted. A natural choice for s1j is s1j = nj=
P
iwij. In

that case n̂j = nj and the third condition above is automatically satis¯ed even when ´j and

nj are not independent.

Denote by L = log(l) the weighted log-likelihood and by Lj = log(lj) the weighted

log-likelihood of the j-th cluster, where lj is

lj =
Z ³Y

i

f(yijjxij; ´j; µ1)wijs1j
´
Á(´j jxj ; µ2)d´j : (2)

The asymptotic covariance matrix given by standard asymptotic theory is

(L00)¡1
³X

j

(s2jwj)
2L0jL

0T
j

´
(L00)¡1; (3)

where 0 and 00 refer to the ¯rst and the second derivative of the log-likelihoods.

The MPML just as the PML is de¯ned as a general estimator not connected to any

optimization algorithm. Virtually any ML optimization algorithm can be adapted to include

the weights and maximize the MPML objective function, for example the EM-algorithm,

accelerated EM-algorithm, the Quasi-Newton algorithm or the Fisher scoring algorithm. In

the extensive simulation study described in this article, all of which were done with Mplus

3 (www.statmodel.com; Muthen & Muthen (13)) using the accelerated EM algorithm, we

encountered almost no convergence problems at all.

4. SCALING

In this section we discuss in detail the concept of scaling of the weights. We assume

that the probability of selection has only a relative meaning. If pi1j : pi2j = 2 we interpret

this as indication that individuals similar to individual i1 are oversampled at a rate of 2:1

in comparison to the individuals similar to individual i2. Therefore the weights wij should

be standardized by the scale factors s1j to some meaningful values. In choosing the proper
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standardization several considerations should be made. First we need to understand whether

or not the ratio between the weights of individuals from di®erent clusters is a meaningful

quantity. That is, we have to know whether wi1j1 : wi2j2 can be interpreted in the usual

sense of oversampling. This would be so if the same sampling mechanism is used across

the clusters, i.e., no cluster random e®ect has an in°uence on the sampling. If di®erent

sampling mechanisms have been used, depending on cluster speci¯c random e®ects, then

the weights within each cluster could be on di®erent scales and direct comparison between

the weights can be detrimental. If the same sampling mechanism has been used the ratio

between the weights across clusters is a meaningful quantity we need to choose scaling that

takes advantage of that quantity and the relative information is not lost.

We say that the sampling mechanism is invariant across clusters if the sampling weight on

the individual level wij and the cluster random e®ects ´j are conditionally independent given

all model covariates xij and xj . In practice a good understanding of the selection mechanism

would be su±cient to determine if invariance holds. For example, oversampling adolescents

to adults in rates 3:1 is invariant across clusters. Oversampling the subpopulation with the

lowest y values within each cluster is invariant. However, oversampling all individuals with

y values below a certain threshold value is not invariant since the sampling weights depend

on the cluster average.

Note that scaling concerns only level 1 weights. The MPML estimates are independent

of the scale of the level 2 weights, just as in a single level model the PML estimates are

independent on the scale of the weights. In fact the scale constants s2j are not needed to

standardize the level 2 weights but to possibly counter the standardization on level 1 and

recover any information that may be lost after the level 1 standardization. Of course s2j

could not be considered as a scale factor for the level two weights also because they depend

on j. The scaling constants s2j also do not need any standardization, that is the MPML

estimates depend only on the relative values of s2j. In choosing scaling we also need to make

sure that conditions 1, 2 and 3 in Section 3 are satis¯ed so that the approximate unbiasedness

is guaranteed at least for large cluster sizes.
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We consider 6 di®erent weighting methods. Since n̂j=s1j =
P
iwij the de¯nition of the

scale constants s1j can be expressed as a de¯nition of n̂j . Also de¯ne the e®ective sample

size n0j as in Pottho® et al. (12), n0j = (
P
j wij)

2=
P
j w

2
ij. The weighting methods we are

interested in are

Method A. n̂j = nj and s2j = 1

Method AI. n̂j = nj and s2j = 1=s1j

Method B. n̂j = n0j and s2j = 1

Method BI. n̂j = n0j and s2j = 1=s1j

Method C. s1j =
P
j nj=

P
ij wij and s2j = 1

Method D. Unweighted analysis

Method E. Unscaled weighted analysis, s1j = 1 and s2j = 1

The scaling methods A and B have been proposed in the literature already in Grilli and

Pratesi (4), Pottho® et al. (12), Pfe®ermann et al. (7) and Stapleton (9). For scaling

method A conditions 2 and 3 in Section 3 are always satis¯ed and thus only condition 1 is

needed for approximate unbiasedness. The scaling methods AI and BI are based on scaling

methods A and B but also include a level two o®set scaling. The index letter I in the name

of the scaling methods AI and BI is to indicate that the methods are appropriate only for

invariant selection mechanisms. Indeed if the selection is not invariant ´j would in°uence

s1j and in turn s2j which would be a violation of condition 2 in Section 3. For invariant

selection mechanisms these methods are expected to perform better since they would use

all the information including the ratio between weights across clusters. That is because the

product of the level 1 and level 2 weights is unchanged by these scaling methods. We also

demonstrate these facts in the simulation studies in Sections 6 and 7 below. Scaling method

C is the scaling method that is traditionally used with mean estimation. This method has

constant scaling across clusters and
P
j n̂j =

P
j nj :

If simple random sampling is used at both sampling stages, then wj = wk and wij = wlj.

As a result, scaling methods A and B are identical and the MPML estimates are equal to

the ML estimates. Therefore these methods are consistent with SRS even when the cluster
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sample sizes are bounded. This is a very important property from practical point of view

because frequently sampling mechanisms only mildly deviate from SRS. Scaling methods AI

and BI are also equivalent under SRS however they are di®erent from the ML estimates

for unbalanced designs. Only condition 2 in Section 3 is needed for the consistency of the

MPML estimates with AI and BI scaling under SRS, however the estimates will be less

e±cient than the ML estimates. When the design is balanced, i.e., cluster sizes and cluster

sample sizes are constant, all 5 scaled methods A, AI, B, BI and C become equivalent to

the ML method (method D) and the parameter estimates are consistent and asymptotically

e±cient even when the cluster sample sizes are bounded. This is not however the case for

method E which remains biased unless the cluster sample sizes nj are large. We illustrate

this fact in Appendix B with the multilevel random intercept model and show exactly what

that bias is. The fact that method E is biased even in the most simple case of balanced

design with simple random sampling shows that this method is of little general interest and

we will not include this method in our simulation studies.

5. INFORMATIVE INDEX

The quality of the MPML estimates is driven primarily by two factors, the sample size of

the clusters and the degree of informativeness of the selection mechanism. While the sample

size is an explicit variable, the informativeness is not directly measurable. Such measurement

is needed however to study the dependence of the quality of the MPML estimates on the

informativeness. Pfe®ermann (11) constructs a test statistic that allows us to determine

whether the selection mechanism is informative. If µ̂w and µ̂0 are the parameter estimates of

the weighted and unweighted analysis respectively, and V̂ (µ̂w) and V̂ (µ̂0) are their variance

estimates,

I = (µ̂w ¡ µ̂0)T [V̂ (µ̂w)¡ V̂ (µ̂0)]¡1(µ̂w ¡ µ̂0) » Â(p); (4)

has approximately a chi-square distribution with p = dim(µ) degrees of freedom. The value

of I is a clear measurement of the informativeness of the selection. We now de¯ne a similar

test statistic for a speci¯c variable Y in the model. Suppose that ¹̂w is the weighted estimated

mean of Y and ¹̂0 the unweighted estimated mean of Y . Let ¾̂
2
w and ¾̂

2
0 be the estimated
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variance for ¹̂w and ¹̂0 respectively. The informativeness of the selection mechanism for

variable Y can then be measured by the T statistic

I1(Y ) =
¹̂w ¡ ¹̂0q
¾̂2w ¡ ¾̂20

: (5)

Large absolute values would indicate that the selection is informative for Y . The values of

I1(Y ) are easy to compute once the weighted and unweighted analysis have been completed.

As the sample size increases, the variance of the mean estimates decrease, and all selection

mechanisms produce high I1 values. Thus it is not possible to form recommendations based

on the value of I1 that apply to any sample size. Another problem with I1 is that it is not

de¯ned when ¾̂w < ¾̂0. This happens quite often when the sample size is not large or when

the weights are not su±ciently di®erent across individuals. An informativeness measure that

is independent of the sample size is

I2(Y ) =
j¹̂w ¡ ¹̂0jp

v0
; (6)

where v0 is the unweighted estimate of the variance of Y . This informativeness measure

depends however on the scaling and the cluster sample size since the MPML method depends

on the scaling when the cluster size is small. This leads us to de¯ne

I3(Y ) =
j¹¡ ¹̂0jp

v0
; (7)

where ¹ is the true mean of Y . This informativeness measure would be relatively independent

of the cluster size and the sample size, however in practice we can only estimate I2(Y ), and

approximate I3(Y ) by I2(Y ). This approximation will be su±cient as long as there is no

substantial bias in the mean parameter estimate. In a simulation study of course I3 can be

easily computed since the true parameter value ¹ is known.

The mean parameters are the parameters that usually are the most sensitive to selection

bias. Thus evaluating the informative index for all dependent variables will generally be

su±cient to determine whether the sampling and the resulting weights are informative. If

the sampling weights appear to be non-informative or very slightly informative it is very
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likely that the reduction in the bias due to the weighting of the analysis will be overwhelmed

by the increase in the variance of the parameter estimates. Therefore including the weights

in the analysis will in e®ect only increase the mean squared error. It is recommended that the

weights are not used at all in such cases. The informative index is a very easy to compute

and practical tool, however it is not a universal tool for detecting informative selections.

For example if the weights are only informative for variance and covariance parameters the

informative index would not detect that. In practice, however, such situations are probably

very rare.

6. INVARIANT SELECTION

We conduct a simulation study on the following model

yij = ¹+ ´j + "ij ; (8)

where ¹ = 0:5, and ´j and "ij are zero mean normal random variables with variance Ã = 0:5

and µ = 2 respectively. The selection model is de¯ned by P (Iij = 1) = 1=(1 + e
¡"ij=®), i.e.,

the probability of inclusion is dependent only on the level 1 residual and is invariant across

clusters. We use 3 di®erent values for ® to achieve 3 di®erent levels of informativeness of the

selection. For ® = 1; 2; 3 the approximate values for I3(Y ) are 0.5, 0.3 and 0.2 respectively.

Within each simulation the cluster size is constant. We use three di®erent values for the

cluster size nj = 5; 20; and 100. Each of the analyses is replicated 500 times. In all cases

we used 100 cluster units. The results of the simulation are presented in Table 1. The

table contains the absolute bias and the percentage of times the true parameter was covered

by the 95% con¯dence intervals in the parenthesis. All estimates for the µ parameter were

negatively biased. All estimates for the Ã parameter were positively biased. All estimates

for the ¹ parameter were positively biased except for method BI which had negatively biased

¹ estimates. We make the following conclusions based on the results in Table 1.

² The unweighted parameter estimates are substantially biased. The bias increase as the
informative index I3 increases but is una®ected by the cluster size nj.
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² The cluster sample size and the informative index I3 a®ect the quality of the results
for all 5 weighting methods. The most di±cult case is when the cluster size nj is small

and the selection mechanism is strongly informative. Rows 1, 2 and 4 are of this type.

None of the scaled weighted methods produced satisfactory results for all parameters

when nj = 5 and I3 = 0:3 or 0:5 or when nj = 20 and I3 = 0:5, while di®erent

parameters were estimated well by di®erent scaling methods. In the remaining 6 cases,

i.e., the cases when either the cluster size is su±ciently large or the informative index

I3 is small, the asymptotics appear to become valid to a varying extent and all 5 scaled

weighted methods appear to perform reasonably well.

² Choosing a scaling method is not an easy task. The best method for estimating ¹
is AI, the best method for µ is BI and the best method for Ã is D in our simulation

study. Nevertheless some conclusions are quite clear. Methods AI and BI, which

are designed to take advantage of the fact that the selection is invariant outperform

their non-invariant counterparts A and B, except in the ¯rst row in the Ã subtable,

which however can not outweigh all other cases. As expected also methods A and

AI perform somewhat better than B and BI for the mean parameters and worse for

variance covariance parameters.

² It is hard to recommend one scaling method for all situations. Nevertheless we single
out method AI. This method performs well when the informativeness is not very strong

or the cluster sizes are not small. If the cluster sizes are small and the informative

index is large however we would recommend that a detailed analysis is undertaken,

using several di®erent scaling methods and perhaps a single level model is used as a

¯nal model.

² It is hard to determine a speci¯c threshold level for I3 and nj that would guarantee
unbiased results in general. From what we see in this simulation study, we conclude

that if I3 < 0:2, the AI method will work su±ciently well with any sample size. If
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Table 1: Absolute Parameter Bias (Coverage). Invariant Selection.

¹ parameter

nj I3 A AI B BI C D

5 0:5 0:27(27) 0:00(95) 0:31(13) 0:13(93) 0:21(50) 0:73(0)

5 0:3 0:12(79) 0:00(94) 0:13(75) 0:02(95) 0:08(89) 0:45(1)

5 0:2 0:07(89) 0:00(96) 0:08(88) 0:00(95) 0:04(92) 0:32(10)

20 0:5 0:10(78) 0:00(93) 0:12(67) 0:15(86) 0:09(82) 0:73(0)

20 0:3 0:03(95) 0:00(96) 0:10(80) 0:02(96) 0:02(96) 0:45(0)

20 0:2 0:02(95) 0:00(96) 0:02(95) 0:00(96) 0:02(95) 0:32(1)

100 0:5 0:03(94) 0:00(94) 0:03(93) 0:09(87) 0:02(93) 0:73(0)

100 0:3 0:00(93) 0:00(92) 0:01(93) 0:01(92) 0:00(93) 0:45(0)

100 0:2 0:01(97) 0:00(96) 0:01(97) 0:00(96) 0:01(97) 0:32(0)

µ parameter

5 0:5 0:62(0) 0:47(3) 0:65(0) 0:30(82) 0:49(0) 0:51(1)

5 0:3 0:22(66) 0:14(78) 0:26(59) 0:09(91) 0:14(73) 0:19(66)

5 0:2 0:09(87) 0:05(91) 0:11(87) 0:03(95) 0:05(90) 0:08(88)

20 0:5 0:30(3) 0:21(36) 0:42(1) 0:15(94) 0:21(22) 0:53(0)

20 0:3 0:07(83) 0:04(90) 0:10(80) 0:03(97) 0:04(90) 0:20(8)

20 0:2 0:03(92) 0:02(95) 0:04(93) 0:01(97) 0:02(94) 0:10(60)

100 0:5 0:09(58) 0:06(78) 0:19(36) 0:04(99) 0:06(74) 0:53(0)

100 0:3 0:01(92) 0:01(93) 0:02(93) 0:00(97) 0:01(93) 0:20(0)

100 0:2 0:00(95) 0:00(95) 0:00(96) 0:00(96) 0:00(95) 0:10(0)

Ã parameter

5 0:5 0:29(58) 0:45(55) 0:17(80) 0:34(67) 0:30(72) 0:02(92)

5 0:3 0:11(92) 0:12(92) 0:08(93) 0:08(93) 0:11(93) 0:02(92)

5 0:2 0:05(94) 0:04(93) 0:03(94) 0:02(93) 0:04(94) 0:02(92)

20 0:5 0:15(77) 0:21(75) 0:09(88) 0:23(78) 0:15(79) 0:00(93)

20 0:3 0:03(95) 0:03(96) 0:02(95) 0:02(95) 0:03(95) 0:01(93)

20 0:2 0:01(95) 0:01(96) 0:01(95) 0:01(95) 0:01(95) 0:01(94)

100 0:5 0:04(94) 0:05(93) 0:02(93) 0:07(91) 0:04(93) 0:01(92)

100 0:3 0:01(94) 0:01(94) 0:00(93) 0:00(93) 0:01(94) 0:01(91)

100 0:2 0:00(93) 0:00(92) 0:00(93) 0:00(92) 0:00(93) 0:00(92)
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0:2 < I3 < 0:3 a cluster sample size of at least 10 is needed. If 0:3 < I3 we would

recommend using the AI method only with cluster size 35-40 and above.

² This simulation study shows that the intraclass correlation (ICC=Ã=(Ã + µ)) is over-
estimated in general by all methods to a varying degree when some selection bias

remains.

² Method AI seems to produce unbiased estimates for the mean parameter with any
cluster size and informative index.

7. NON-INVARIANT SELECTION

In this section we use the same setup as in the previous section. We only change the

selection model to P (Iij = 1) = 1=(1 + e¡yij=®); for ® = 1; 2; 3: The informative index I3

is slightly lower now but approximately unchanged. The selection is clearly non-invariant,

because ´j in°uences the selection. Thus methods AI and BI are not expected to perform

well even asymptotically. Table 2 contains the results of this simulation study. All estimates

for the µ parameter were negatively biased. All estimates for the Ã parameter were positively

biased except for method D which had negatively biased Ã estimates. All estimates for the ¹

parameter were positively biased except for method AI and BI which had negatively biased

¹ estimates. The following conclusions can be made from these results.

² Methods AI and BI are not suitable for this situation, the fact that they violate con-
dition 2 from Section 3 results in biased estimates for the ¹ parameter even when the

cluster size is large. For methods AI and BI the selection bias for the ¹ parameter fails

to decrease as nj increases.

² Methods A, B and C perform well when the cluster size is large or the informative

index is small. The case of small cluster size and large informative index is again a

di±cult one. There is no large di®erence between the three methods. However, method

C slightly outperforms method A, which slightly outperforms method B.
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Table 2: Absolute Parameter Bias (Coverage). Non-Invariant Selection.

¹ parameter

nj I3 A AI B BI C D

5 0:5 0:23(35) 0:15(87) 0:28(15) 0:31(68) 0:13(74) 0:61(0)

5 0:3 0:10(83) 0:11(83) 0:11(78) 0:13(79) 0:02(94) 0:40(0)

5 0:2 0:07(89) 0:07(89) 0:07(89) 0:08(88) 0:01(94) 0:29(11)

20 0:5 0:08(83) 0:16(70) 0:11(70) 0:39(29) 0:05(89) 0:61(0)

20 0:3 0:03(91) 0:10(77) 0:04(90) 0:13(67) 0:01(92) 0:40(0)

20 0:2 0:01(93) 0:08(83) 0:01(93) 0:09(78) 0:00(93) 0:29(4)

100 0:5 0:02(95) 0:16(52) 0:03(94) 0:39(9) 0:01(95) 0:61(0)

100 0:3 0:01(92) 0:10(72) 0:01(92) 0:13(61) 0:00(92) 0:40(0)

100 0:2 0:01(95) 0:07(85) 0:01(95) 0:08(83) 0:01(95) 0:30(1)

µ parameter

5 0:5 0:52(0) 0:42(8) 0:54(3) 0:27(80) 0:45(2) 0:47(3)

5 0:3 0:19(64) 0:13(81) 0:23(64) 0:08(92) 0:14(75) 0:19(66)

5 0:2 0:10(84) 0:07(90) 0:12(84) 0:04(92) 0:07(88) 0:10(83)

20 0:5 0:24(13) 0:18(47) 0:32(9) 0:12(96) 0:18(35) 0:48(0)

20 0:3 0:06(84) 0:04(89) 0:09(82) 0:03(95) 0:04(88) 0:19(9)

20 0:2 0:03(90) 0:02(91) 0:04(89) 0:01(93) 0:02(91) 0:10(65)

100 0:5 0:07(66) 0:05(78) 0:15(50) 0:04(98) 0:05(74) 0:48(0)

100 0:3 0:01(92) 0:01(92) 0:02(93) 0:00(97) 0:01(91) 0:19(0)

100 0:2 0:00(95) 0:00(95) 0:01(96) 0:00(97) 0:00(95) 0:10(5)

Ã parameter

5 0:5 0:15(91) 0:42(75) 0:01(93) 0:33(68) 0:20(93) 0:21(32)

5 0:3 0:08(93) 0:13(92) 0:04(95) 0:09(93) 0:09(95) 0:09(78)

5 0:2 0:04(94) 0:05(94) 0:02(94) 0:04(94) 0:04(96) 0:06(87)

20 0:5 0:08(93) 0:20(86) 0:00(91) 0:26(73) 0:08(94) 0:22(5)

20 0:3 0:02(94) 0:04(94) 0:01(94) 0:04(93) 0:02(95) 0:10(63)

20 0:2 0:01(94) 0:01(94) 0:00(94) 0:01(94) 0:01(94) 0:05(83)

100 0:5 0:02(93) 0:07(92) 0:00(90) 0:14(84) 0:02(93) 0:21(2)

100 0:3 0:00(92) 0:01(92) 0:00(92) 0:02(93) 0:00(92) 0:10(60)

100 0:2 0:00(93) 0:01(94) 0:00(93) 0:01(93) 0:00(93) 0:05(82)
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8. INTRACLASS CORRELATION

Kovacevic and Rai (6) discovered that the intraclass correlation (ICC=Ã=(Ã+ µ)) a®ects

the performance of multilevel weighted estimation. For a di®erent estimator they report that

the bias of the estimates increases as ICC decreases. This is a very important ¯nding because

in practical applications ICC is typically small and that could be a source of substantial bias

in multilevel weighted analysis. In this section we evaluate through a simulation study

the e®ect of ICC on the MPML parameter estimates under di®erent levels of informative

selections and cluster sample sizes. We use the model described in the previous section and

the same selection mechanism P (Iij = 1) = 1=(1 + e
¡yij=®): To achieve di®erent ICC we use

di®erent values for Ã and µ while keeping constant the total variance of y, Ã + µ = 2:5. We

simulate 5 di®erent ICC levels 0.50, 0.20, 0.10, 0.05 and 0.01. These values are obtained by

setting Ã to be 1.25, 0.5, 0.25, 0.125 and 0.025 respectively, while the value of µ is 2:5¡ Ã.
Since the selection mechanism is non-invariant we use scaling method A only. Note also

that the simulation study in the previous section has ICC value of 0.20. The results of the

simulation are presented in Table 3.

² We clearly see that for all parameters the bias increases as the ICC decreases which
con¯rms Kovacevic and Rai (6) ¯nding. The intuitive explanation for why this occurs is

that as the ICC decreases the estimation on the individual level becomes more in°uen-

tial, but that is exactly where the weakness of the weighted estimation is. Alternative

explanation is that when ICC converges to 1 then level 1 variation converges to zero

and the model can be approximated by a level 2 model only, i.e., a single level model.

The MPML estimator can then be approximated with the PML estimator which is

consistent and thus the bias decreases as ICC increases.

² We also see that the e®ect of ICC is substantial in rows 1, 2 and 4. This means that
the e®ect of ICC is more pronounced when the cluster sizes are small and selection is

very informative.

² The informativeness index I3 in this simulation study depends on both ICC and the
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Table 3: Absolute Parameter Bias (Coverage) For Various ICC Levels, Scaling Method A.

¹ parameter

icc icc icc icc icc

nj ® 0:50 0:20 0:10 0:05 0:01

5 1 0:14(75) 0:23(35) 0:25(19) 0:27(14) 0:28(12)

5 2 0:07(94) 0:10(83) 0:11(76) 0:12(69) 0:13(62)

5 3 0:03(92) 0:07(89) 0:07(85) 0:08(84) 0:08(79)

20 1 0:04(94) 0:08(83) 0:10(71) 0:10(67) 0:10(51)

20 2 0:01(94) 0:03(91) 0:03(90) 0:03(89) 0:04(84)

20 3 0:03(93) 0:01(93) 0:02(92) 0:02(92) 0:02(90)

100 1 0:01(94) 0:02(95) 0:02(93) 0:03(89) 0:03(83)

100 2 0:00(93) 0:01(92) 0:01(96) 0:01(95) 0:01(92)

100 3 0:01(95) 0:01(95) 0:00(93) 0:01(95) 0:01(95)

µ parameter

5 1 0:24(12) 0:52(0) 0:62(1) 0:68(0) 0:73(0)

5 2 0:08(80) 0:19(64) 0:24(60) 0:27(53) 0:29(51)

5 3 0:03(91) 0:10(84) 0:12(83) 0:13(84) 0:14(80)

20 1 0:09(46) 0:24(13) 0:31(7) 0:34(4) 0:36(4)

20 2 0:02(88) 0:06(84) 0:08(81) 0:08(80) 0:09(81)

20 3 0:01(94) 0:03(90) 0:03(92) 0:04(92) 0:04(92)

100 1 0:03(82) 0:07(66) 0:10(58) 0:11(54) 0:13(49)

100 2 0:00(94) 0:01(92) 0:02(91) 0:02(91) 0:02(91)

100 3 0:00(95) 0:00(95) 0:01(93) 0:00(94) 0:01(91)

Ã parameter

5 1 0:03(94) 0:15(91) 0:22(57) 0:28(30) 0:32(10)

5 2 0:01(92) 0:08(93) 0:11(88) 0:14(79) 0:16(59)

5 3 0:00(93) 0:04(94) 0:06(93) 0:07(93) 0:10(87)

20 1 0:00(90) 0:08(93) 0:12(68) 0:16(29) 0:17(4)

20 2 0:01(93) 0:02(94) 0:04(92) 0:04(88) 0:05(56)

20 3 0:01(94) 0:01(94) 0:02(93) 0:02(93) 0:02(90)

100 1 0:01(92) 0:02(93) 0:04(92) 0:05(69) 0:06(7)

100 2 0:02(93) 0:00(92) 0:01(95) 0:01(96) 0:01(78)

100 3 0:01(92) 0:00(93) 0:00(96) 0:00(95) 0:00(93)
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Table 4: Absolute Bias (Coverage) with Non-Informative Selection, Scaling Method AI

nj ICC n0=n = 0:95 n0=n = 0:91 n0=n = 0:78 n0=n = 0:64

µ 5 0:20 0:02(93) 0:04(92) 0:12(84) 0:25(60)

µ 10 0:20 0:01(94) 0:02(93) 0:06(89) 0:12(77)

µ 20 0:20 0:00(95) 0:01(95) 0:03(93) 0:05(88)

µ 5 0:05 0:03(92) 0:06(92) 0:14(84) 0:30(60)

µ 10 0:05 0:01(94) 0:02(93) 0:06(89) 0:14(77)

µ 20 0:05 0:00(95) 0:01(95) 0:03(93) 0:05(88)

Ã 5 0:20 0:01(92) 0:03(92) 0:10(88) 0:23(73)

Ã 10 0:20 0:00(92) 0:01(93) 0:04(94) 0:10(90)

Ã 20 0:20 0:01(92) 0:00(92) 0:02(92) 0:04(92)

Ã 5 0:05 0:03(97) 0:05(95) 0:13(84) 0:28(36)

Ã 10 0:05 0:01(93) 0:02(92) 0:06(87) 0:13(53)

Ã 20 0:05 0:00(92) 0:01(92) 0:03(92) 0:06(74)

selection model parameter ®. For example when nj = 5, the selection index I3 is 0.31,

0.45, 0.50, 0.52 and 0.53 for the 5 di®erent ICC values in Table 3 given in the same

order. Small ICC values are thus generally associated with more informative selection

as well. One could presume here that the bias increases simply because the selection

becomes more informative as ICC decreases, however that is not entirely the case. In

the next section we demonstrate that the bias increases when ICC decreases even when

I3 is held constant.

9. NON-INFORMATIVE SELECTION

In this section we examine the behavior of the MPML estimates under non-informative

sampling. In the Sections 6 and 7 we observed that as the informativeness of the selection

decreases the bias of the estimates decreases. It is important to know whether this bias

decreases to 0 while preserving the distribution of w. Denote by vw = V ar(wij)=(E(wij))
2

the relative variance of the weights. This quantity can be interpreted as the variance of the

weights which are standardized as to have an average of 1 (see scaling method C). It can
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be interpreted also as vw = (n ¡ n0)=n0 where n is the sample size and n0 is the e®ective
sample size n0 = (

P
ij wij)

2=
P
ij w

2
ij . If the sampling is simple random sampling vw = 0 and

as vw increases the weights are more disproportionate and the weighted estimation in general

becomes less e±cient. Here we conduct a simulation which shows also that as vw increases

not only the mean squared error of the estimator increases but also the bias of the MPML

estimates increases even when the weights are non-informative. This bias decreases as the

cluster sample size increases.

The model we use for this simulation is the same as the model used in Section 6 and

the selection model is P (Iij = 1) = 1=(1 + e
¡»ij) where »ij is a zero mean normal random

variable independent of yij. This selection is non-informative. Let ® = V ar(»ij). By

varying the values of ® we obtain di®erent values of vw. The values ® = 2=9; 1=2; and 2

give the same distribution of the weights as the once used in Section 6. We also simulate

data with ® = 10. For ® = 2=9; 1=2; 2; 10, the corresponding values for vw and n0 : n are

vw = 0:05; 0:10; 0:28; 0:56 and n0 : n = 0:95; 0:91; 0:78; 0:64. We use two di®erent ICC values

0.20 and 0.05 generated as in Section 8. Since the sampling is invariant we use AI scaling.

Table 4 shows the bias of the MPML estimate for µ and Ã. The estimates for ¹ are unbiased

and are not reported. We make the following conclusions from these simulation results.

² Even if the weights are not informative the MPML estimates can be biased, although
this bias disappears as the cluster sample sizes increase or the relative variance vw of the

weights decreases. This bias can be substantial particularly when the cluster sample

size is as small as 5 and the e®ective sample size (based on the level one weights) is

more than 20% smaller than the actual sample size.

² By comparing rows 1-3 and 7-9 in Table 4 with the second column of Table 1 we see
that around 1/4 of the small cluster sample size bias of the MPML estimates is due

to the variation in the weights and does not originate in the informativeness of the

weights.

² Decrease in ICC leads to an increase in the parameter bias. Since I3 = 0, the increase
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Table 5: Bias (Coverage) in Multilevel Logistic Regression, Scaling Method A.

nj s I3 ¹® ¹¯ ¾® ¾¯ ½

5 1=3 0:57 ¡0:06(89) 0:04(95) 0:39(91) 0:32(96) 0:03(95)

20 1=3 0:57 ¡0:04(78) 0:01(93) 0:06(96) 0:07(95) ¡0:01(95)
5 1=2 0:35 ¡0:04(92) 0:00(94) 0:09(95) 0:10(92) ¡0:03(95)
20 1=2 0:35 ¡0:03(92) 0:00(94) 0:00(92) 0:02(92) 0:00(94)

is due purely to the decrease in ICC and not to the level of informativeness.

10. MULTILEVEL LOGISTIC REGRESSION

In this section we illustrate the MPML estimator with a simple multilevel logistic regres-

sion. Let uij be a binary outcome variable and xij be a predictor variable with standard

normal distribution. We consider the multilevel logistic regression de¯ned by

P (uij = 1) =
1

1 + e¡(®j+¯jxij)
(9)

where ®j and ¯j are normally distributed random e®ects with means ¹® = 0:5, ¹¯ = 0:5

variances ¾® = 0:5, ¾¯ = 0:5 and covariance ½ = 0:25. The selection mechanism is de¯ned

by P (Iij = 1juij = 1) = s < 1 and P (Iij = 1juij = 0) = 1. This selection mechanism

oversamples zero outcomes at a rate of 1 : s. When s = 1=2 and s = 1=3 the oversampling

rates are 2:1 and 3:1 respectively. This selection mechanism is not invariant because the

weight variable and the random e®ects are not independent. We use scaling method A. The

computations are performed with Mplus 3 (www.statmodel.com; Muthen & Muthen (13))

and are based on adaptive numerical integration. The results of the simulation study are

presented in Table 5 and con¯rm our previous ¯ndings. The bias increases as the sample

size decreases and the informativeness increases. The performance of the MPML method is

satisfactory as long as either the sample size is not small or the informativeness is not strong.

11. MULTILEVEL MIXTURES
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Table 6: Selection Bias (Coverage) in Multilevel Mixtures, Scaling Method AI.

nj ¹ ¯ µ Ã

5 ¡0:01(94) 0:01(90) ¡0:18(85) 0:15(91)

10 0:00(92) 0:02(92) ¡0:11(92) 0:07(92)

20 0:00(94) 0:01(92) ¡0:05(96) 0:05(93)

In this section we conduct a simulation study based on the following model

yij = ¹ + ¯xij + ´j + "ij ; (10)

where xij is a binary covariate taking values 0 and 1 equally likely and where xij has missing

values resulting in a ¯nite mixture model. As in the previous sections we assume that ´j and

"ij are normally distributed random variables with variance µ and Ã. The parameter values

we use in the simulation are as follows ¯ = 1, µ = 2, Ã = 0:5 and ¹ = 0. The probability

that xij is missing is 1=(1 + e
(yij¡0:75)=4). Unequal probability of selection is induced by the

following inclusion model P (Iij = 1) = 1=(1 + e
¡"ij=2) which produces an informative index

I3(y) = 0:27. We use three di®erent values for the cluster size nj = 5; 10; and 20. Each of

the analysis is replicated 500 times. In all cases we used 100 cluster units.

This model is only a slight modi¯cation of the model considered in Sections 6 and 7

and usually its estimation would not be very di®erent. That is not the case however if the

covariate xij has missing values. When xij is missing the conditional distribution of [yijj´j]
is not normal but it is a bimodal distribution which is obtained as a mixture of two normal

distributions with equal variance and di®erent means. This is why the estimation of this

model is much more complicated than the usual multilevel model. We used the multilevel

mixture track in Mplus 3 (www.statmodel.com; Muthen & Muthen (13)) to estimate the

model with the MPML method. Because the probability that xij is missing depends on yij

the missing data type is not MCAR but it is MAR and therefore listwise deletion method

would not only reduce the sample size but would also produce biased estimates. Thus

bias in the estimates for this model can arise from not including the incomplete cases or
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from not including the weights in the analysis. The MPML method however resolves both

problems. The maximum likelihood estimates are consistent when the missing data is MAR.

This generalizes trivially to multilevel maximum likelihood estimates and to the pseudo

maximum likelihood for single and multilevel models as well. The selection is invariant

across clusters and we therefore can use the AI scaling method. Table 6 contains the bias

and coverage of the MPML estimates. The bias of the estimates is quite small except for the

two variance estimates when nj = 5. This is in line with the observations and conclusions

we made in the previous section. We therefore extend these conclusions to the multilevel

mixture models and other multilevel models. The MPML estimate would be approximately

unbiased as long as the cluster sizes are not small when the informative index is large.

12. CONCLUSION

In this article we discussed some of the intricacies of weighting for unequal probability

of selection in multilevel models. We introduced the multilevel pseudo maximum likelihood

estimation method with general scaling options and provided conditions guaranteeing that

these estimates are approximately unbiased. Through our simulation studies we demon-

strated how sample size, the informative index, the nature of the selection mechanism, the

type of scaling, the variance of the standardized weights and the intraclass correlation a®ect

the quality of the MPML estimates.

We summarize our ¯ndings in the following 6 steps procedure that can be used to steer

away from the pitfalls of weighting in multilevel modeling.

Step 1. Verify that weights are designed for a multilevel analysis. If the weights are

designed for a single level analysis, and multilevel weights can not be obtained, instead of

attempting multilevel modeling we recommend single level modeling that is designed for

strati¯ed and cluster sampling designs. Examples of this modeling approach can be found

in Asparouhov (10).

Step 2. If weights are available only at level 2 there is no need to proceed with the rest of

the steps in this procedure. Although the model is multilevel, the nature of the weighting is

not. There are no complications in this case. The MPML estimation method simpli¯es to the
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usual single level PML estimates, where the likelihood of a cluster takes the role of individual

likelihood. Thus the MPML estimates, obtained by maximizing the weighted log-likelihood,

are simply PML estimates and as such they are consistent regardless of how informative the

selection is and how large the cluster sample sizes are. However the informativeness of the

weights should still be examined as in step 6 below and if the weights are not informative

they should not be used at all.

Step 3. Determine whether or not the selection mechanism of the level 1 units is invariant

across cluster. This information could be extracted from a short description of the sampling

design. If such information is not available assume that the selection is non-invariant.

Step 4. If the selection is invariant use scaling method AI. If the selection is non-invariant

use scaling method A. Compute the weights taking the scaling method into account.

Step 5. Perform unweighted ML and weighted MPML analysis. Compute the informative

index for all dependent variable in the model. Compute the ICC for all dependent variables

in the model using the MPML parameter estimates. Compute the ratio between the e®ective

sample size based on the individual level weights and the actual sample size.

Step 6. If all informative indices are below 0.02 a complete test of informativeness using

Pfe®ermann (11) test should be conducted. If the weights are non-informative an unweighted

analysis, ignoring the weights, is recommended. If the informative index is less than 0.3 for

all variables or the average sample size is larger than 10 the MPML estimates are expected

to be trustworthy. If any of the informative indices is above 0.3 and the average cluster size

is smaller than 10 we recommend a single level analysis as described in step 1. Borderline

cases would require additional examination.

Additional steps could involve for example comparing the results from di®erent scaling

methods and also conducting simulations studies such as the ones described in this article

based on a speci¯c application.

The main advantage of the MPML method is its generality. While for some speci¯c

estimation problems perhaps a more accurate non-ML based estimator could be constructed,

the generality of MPML is unparalleled. Cautiously using the MPML method can be a very
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e®ective tool in dealing with selection bias in multilevel modeling.
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14. APPENDIX A

Here we show that the MPML estimates are approximately unbiased when the condi-

tions 1-3 given in Section 3 are satis¯ed. For brevity denote by F0j = Á(´jjxj; µ2) and by
Fij = f (yij jxij; ´j ; µ1). Let µ = (µ1; µ2) be the total parameter vector. Using the Laplace

approximation (De Bruijn (16), Lindley (17))

lj ¼ egj (µ̂0j)
p
2¼¾̂0jn̂

¡0:5
j ; (11)

where

gj(µ) = log(F0j) + s1j
X
i

wijlog(Fij); (12)

µ̂0j is the mode of gj(µ), and ¾̂
2
0j = ¡n̂j=g00j (µ̂0;j). Since gj=n̂j ! Ej(log(Fij)) as nj ! 1,

where Ej is the expectation with respect to yij conditional on individual i being in cluster

j, we get that µ̂0j ! µ̂j¡ the mode of Ej(log(Fij)). Similarly ¾̂0j ! ¾̂j as nj ! 1, where
¾̂2j = ¡1=Ej(log(Fij))00. Thus for su±ciently large nj

lj ¼ egj(µ̂j)
p
2¼¾̂j n̂

¡0:5
j : (13)

Maximizing the approximate likelihood amounts to solving the following approximate score

equations obtained by omitting the lower level terms and terms that do not depend on the

µ parameters
@

@µ1

X
j

X
i

wjwijs2js1j log(Fij(µ̂j)) = 0 (14)

@

@µ2

X
j

wjs2j log(F0j(µ̂j)) = 0: (15)
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These two equations can be approximated by

@

@µ1
E(s2jn̂jEj(log(Fij(µ̂j)))) = 0 (16)

@

@µ2
E(s2jlog(F0j(µ̂j))) = 0: (17)

Under the assumptions 2 and 3 in Section 3, these score equations are equivalent to

@

@µ1
E(njEj(log(Fij(µ̂j)))) = 0 (18)

@

@µ2
E(log(F0j(µ̂j))) = 0: (19)

At this point we see that the score equations are independent of the weights and the sampling

scheme and thus sampling weights of 1, i.e., using simple random sampling, would yield the

same approximate score equations. We conclude that the MPML estimates under unequal

probability sampling and the ML estimates under simple random sampling are asymptotically

equivalent and thus the MPML estimates are approximately unbiased for large enough nj

and n̂j.

15. APPENDIX B

Here we illustrate the MPML estimator by deriving a closed form expression for the

parameter estimates of a random intercept model. Suppose that

yij = ¹+ ´j + "ij ; (20)

where ´j and "ij are zero mean normally distributed variables with variances Ã and µ re-

spectively. The weighted likelihood of the j cluster is

lj =
Z
(2¼µ)¡n̂j=2(2¼Ã)¡1=2Exp

Ã
¡ s1j
2µ

X
i

wij(yij ¡ ¹¡ ´j)2 ¡
´2j
2Ã

!
d´j =

(2¼µ)¡n̂j=2(2¼Ã)¡1=2Exp
³
¡ s1j
2µ

X
i

wij(yij¡ ¹yj)2
´ Z

Exp

Ã
¡ n̂j
2µ
( ¹yj¡¹¡´j)2¡

´2j
2Ã

!
d´j (21)

where ¹yj is the weighted mean ¹yj =
P
wijyij=

P
wij. Using the Laplace approximation (De

Bruijn (16), Lindley (17)) formula which is exact when the function in the exponent is
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quadratic we get that

lj = (2¼µ)
¡(n̂j¡1)=2(2¼(µ + n̂jÃ))¡1=2Exp

Ã
¡ s1j
2µ

X
i

wij(yij ¡ ¹yj)
2 ¡ n̂j( ¹yj ¡ ¹)

2

2(µ + n̂jÃ)

!
: (22)

Explicit maximization of the pseudo log-likelihood is possible only when n̂j is constant across

all clusters. In that case the parameter estimates are

¹̂ =

P
j s2jwj ¹yjP
j s2jwj

(23)

µ̂ =

P
j s2js1jwj

P
i wij(yij ¡ ¹yj)

2P
j s2jwj(n̂j ¡ 1)

(24)

Ã̂ =

P
j s2jwj( ¹yj ¡ ¹̂)2P

j s2jwj
¡ µ̂

n̂j
: (25)

Weighting methods A and AI would allow explicit maximization when all cluster sample

sizes nj are equal. In that case when implementing scaling method A we get

¹̂A =

P
j wj ¹yjP
j wj

(26)

µ̂A =
1P

j wj(nj ¡ 1)
X
j

njwj

P
iwij(yij ¡ ¹yj)

2P
i wij

(27)

Ã̂A =

P
j wj( ¹yj ¡ ¹̂)2P

j wj
¡ µ̂

nj
(28)

and implementing scaling method AI we get

¹̂AI =

P
ij wjwijyijP
ij wjwij

(29)

µ̂AI =

P
ij wjwij(yij ¡ ¹yj)

2P
ij wjwij(1¡ 1=nj)

(30)

Ã̂AI =

P
ij wjwij( ¹yj ¡ ¹̂)2P

ij wjwij
¡ µ̂

nj
: (31)

The parameter estimate with scaling method A are asymptotically equivalent to Method 2

in Stapleton (9), note however that the asymptotic covariance of the parameter estimates is

not the same. The asymptotic covariance estimates for Method 2 in Stapleton (9) are nega-

tively biased while the asymptotic covariance estimates of the MPML method are generally

consistent, as it is seen in the simulation studies presented in Sections 6 and 7.
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Explicit maximization with scaling method C is possible if
P
iwij is constant across

clusters. In that case we get that

¹̂C =

P
j wj ¹yjP
j wj

(32)

µ̂C =

P
ij wjwij(yij ¡ ¹yj)

2P
j wj(

P
i wij ¡ ¹w)

(33)

Ã̂C =

P
j wj( ¹yj ¡ ¹̂)2P

j wj
¡ µ̂

n̂j
(34)

where ¹w =
P
ij wij=

P
j nj and n̂j =

P
i wij= ¹w. This method is somewhat similar to method

C described in Graubard and Korn (3) and Korn and Graubard (5), the only di®erence for

example in the µ estimation is that ¹w is replaced by 1. However, that estimator becomes

biased for small cluster sample sizes even with SRS as noted in Korn and Graubard (5),

where as the MPML estimator is consistent even for small cluster sample sizes. In fact µ̂C

could be used even in the unbalanced cases as a moment based estimator that avoids the

pitfalls of estimator C of Graubard and Korn (3) and Korn and Graubard (5).

Scaling methods B and BI have a closed form solution when the e®ective sample size

(
P
iwij)

2=
P
iwij is constant across clusters. The exact formulas are derived similarly. In

that case scaling method B produces the same parameter estimates for µ as Method 3 in

Stapleton (9), while the parameter estimate for Ã is approximately the same especially for

large cluster sample sizes, because in Stapleton (9), n̂j is replaced by nj in the computation

of the average cluster size.

Under SRS and balanced design all conditions needed for the closed form expressions

are satis¯ed and methods A, AI , B, BI , C and D produce the same estimates as the ML

estimates

¹̂ML = ¹y (35)

µ̂ML =

P
ij(yij ¡ ¹y)2
n¡m (36)

Ã̂ML =

P
j( ¹yj ¡ ¹̂ML)

2

m
¡ µ̂ML

nj
(37)
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When using the unscaled weights method E, as the sampling fraction approaches zero, n̂j

approaches in¯nity. Thus the estimates for ¹ and µ are the same while the estimate for Ã

Ã̂E ¼
P
j( ¹yj ¡ ¹̂ML)2

m
(38)

The bias of ÃE is approximately µ=nj . In the example considered in Sections 6 and 7 for

nj = 5 the bias of ÃE would be approximately 0.4 under simple random sampling.
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