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Objective: We examined the effects of non‐steroidal anti‐inflammatory drugs on cognitive decline as a
function of phase of pre‐clinical Alzheimer disease.

Methods:Given recent findings that cognitive decline accelerates as clinical diagnosis is approached, we
used rate of decline as a proxy for phase of pre‐clinical Alzheimer disease. We fit growth mixture
models of Modified Mini‐Mental State (3MS) Examination trajectories with data from 2388
participants in the Alzheimer’s Disease Anti‐inflammatory Prevention Trial and included class‐specific
effects of naproxen and celecoxib.

Results: We identified three classes: “no decline”, “slow decline”, and “fast decline”, and examined the
effects of celecoxib and naproxen on linear slope and rate of change by class. Inclusion of quadratic
terms improved fit of the model (−2 log likelihood difference: 369.23; p< 0.001) but resulted in reversal
of effects over time. Over 4 years, participants in the slow‐decline class on placebo typically lost 6.6 3MS
points, whereas those on naproxen lost 3.1 points (p‐value for difference: 0.19). Participants in the fast‐
decline class on placebo typically lost 11.2 points, but those on celecoxib first declined and then gained
points (p‐value for difference from placebo: 0.04), whereas those on naproxen showed a typical decline
of 24.9 points (p‐value for difference from placebo: <0.0001).

Conclusions:Our results appeared statistically robust but provided some unexpected contrasts in effects
of different treatments at different times. Naproxen may attenuate cognitive decline in slow decliners
while accelerating decline in fast decliners. Celecoxib appeared to have similar effects at first but then
attenuated change in fast decliners. Copyright # 2011 John Wiley & Sons, Ltd.
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Introduction

The relationship between inflammation, non‐steroidal
anti‐inflammatory drugs (NSAIDs), and Alzheimer
disease (AD) is complex, as evidenced by conflicting
ight # 2011 John Wiley & Sons, Ltd.
findings on the effects of NSAIDs on AD and AD risk.
Given the public health impact of AD (Wimo et al.,
2006), and the widespread use of NSAIDs among the
older individuals (SloaneReport, 2006), it is important to
determine under what circumstances these medications
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may be helpful or harmful. We will argue that the pre‐
clinical period of AD can be usefully divided into three
phases and that these phases can be characterized by the
rate at which individuals are declining. Further, we will
argue that the role of inflammation in the pathogenesis
of AD varies between these different pre‐clinical phases.
As such, the effects of NSAID exposure on cognitive
decline would also be expected to vary by phase of pre‐
clinical AD.

Conflicting results from non‐steroidal anti‐inflammatory
drug trials

Studies of the effects of NSAID exposure on AD
and AD risk have yielded conflicting results. A number
of observational studies suggest that NSAIDs are
associated with reduced AD risk. A meta‐analysis of
seven non‐prospective studies of AD and lifetime
NSAID use yielded a combined odds ratio of 0.51
(95% confidence interval (CI): 0.40, 0.66), whereas
three prospective studies yielded a combined relative
risk of 0.42 (95% CI: 0.26, 0.66) (Szekely et al., 2004).
More recent studies, including the Cardiovascular
Health Study (CHS) and a case–control analysis of
246,199 US veterans, also report reduced AD risk
among NSAID users, although a 12‐year cohort study
of 1019 older Catholic clergy found no association
(Arvanitakis et al., 2008; Szekely et al., 2008a; Vlad
et al., 2008).

By contrast, randomized placebo‐controlled trials
(RCT) of diclofenac, nimesulide, and naproxen failed
to show an effect (Scharf et al., 1999; Aisen et al., 2002,
2003). One trial showed a positive effect of indometh-
acin, but a subsequent study failed to replicate that
finding (Rogers et al., 1993; de Jong et al., 2008). Three
trials of cyclooxygenase (COX) 2 specific inhibitors
and one of aspirin also showed no benefit (Aisen et al.,
2003; Reines et al., 2004; Soininen et al., 2007; AD2000
Collaborative Group et al., 2008).

Non‐steroidal anti‐inflammatory drug prevention
trials in mild cognitive impairment (MCI) and normals
showed a potential increase in AD risk. A large RCT of
rofecoxibMCI showed increased AD hazard (Thal et al.,
2005). Previously, in the Alzheimer’s Disease Anti‐
inflammatory Prevention Trial (ADAPT), we reported
hazard ratio estimates of 1.99 (95% CI: 0.80, 4.97) and
2.35 (95% CI: 0.95, 5.77) for celecoxib and naproxen,
respectively (ADAPT Research Group et al., 2007). After
exclusion of seven AD cases adjudicated to have been
present at the time of randomization, these hazard ratio
estimates increased to 4.11 (95%CI: 1.30, 13.0) and 3.57
(95% CI: 1.09, 11.7) (ADAPT Research Group et al.,
2007). Subsequent analyses of cognitive outcomes
Copyright # 2011 John Wiley & Sons, Ltd.
demonstrated a significant difference in global summary
score decline for naproxen (β=−0.05; 95% CI: −0.09,
−0.01) as compared with placebo and significant
Modified Mini‐Mental State (3MS) Examination
differences in decline for both celecoxib (β=−0.32;
95% CI: −0.62, −0.02) and naproxen (β=−0.36; 95%
CI: −0.68, −0.04) as compared with placebo (ADAPT
Research Group, 2008).

Phases of pre‐clinical Alzheimer disease

Alzheimer disease develops over the course of decades,
and the pre‐clinical period can be usefully divided into
three phases (Lyketsos et al., 2008), which can be
characterized by rate of cognitive decline. These phases
are distinct and separate from previously described
stages of AD, which follow clinical diagnosis. During
the first phase, there is little or no cognitive decline.
Supporting this period as a distinct phase are findings of
stage A amyloid deposits and stage I/II neurofibrillary
changes in the brains of individuals autopsied as young
as 40 years, studies with 11C‐PET‐PiB confirming the
presence of amyloid in the brains of non‐impaired older
individuals, and magnetic resonance imaging studies
showing brain atrophy in cognitively normal subjects
(Braak and Braak, 1997; Aizenstein et al., 2008; Fripp
et al., 2008; Fennema‐Notestine et al., 2009).

Several prospective studies of asymptomatic individ-
uals with higher genetic risk have documented subtle
memory declines, which predicted conversion to MCI
and correlated with cerebral glucose metabolism
(Reiman et al., 1996; Casellie et al., 2008). Additional
long‐term prospective studies have demonstrated
differences on cognitive tests in individuals who ulti-
mately developed dementia as early as 9 years prior
to diagnosis and who experienced steeper declines
2–3 years prior to diagnosis (Small et al., 2000; Chen
et al., 2001; Bäckman et al., 2005; Small and Backman,
2007; Amieva et al., 2008; Howieson et al., 2008). These
findings support further division of the pre‐clinical
period into slow (phase 2) and fast (phase 3) periods of
cognitive decline. We would expect that a sample of
older individuals without clinical diagnoses of demen-
tia would contain individuals in each of these three
pre‐clinical phases (as well as some who were not des-
tined to develop dementia). If followed, their cognitive
trajectories could then be classified as belonging to one
of the three cognitive decline phases. Such an analysis
has been performed using growth mixture models
(GMMs) and data from the Cambridge City over 75
Cohort Study, and the authors reported findings in
support of three classes of trajectories based on patterns
of mini‐mental state exam scores over 21 years: one
Int J Geriatr Psychiatry 2012; 27: 364–374.
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class starting out unimpaired at baseline with a slow
decline, a second starting outmoderately impaired with
sharper decline, and a third starting out moderately
impaired but with an accelerating rate of decline
(Terrera et al., 2009).

Changing role of inflammation during the phases of
pre‐clinical Alzheimer disease

The pathogenesis and progression of AD are attended
by a variety of inflammatory processes, but it is unclear
whether these processes cause, are a byproduct of, or
ameliorate the proliferation of amyloid plaques,
neurofibrillary tangles, and neuronal loss (Akiyama
et al., 2000; Wyss‐Coray, 2006). According to the amy-
loid cascade/neuroinflammation hypothesis, amyloid‐
beta (Aβ) activates microglial cells, which promote
amyloid plaque formation (Akiyama et al., 2000). This
is supported by reports of Aβ secretion by cultured
microglia and by evidence that microglia are involved
in the laying down of amyloid fibrils (Bauer et al.,
1991; Wisniewski andWegiel, 1994; Bitting et al., 1996).
In autopsy studies of normal older individuals,microglia
were associated with neuritic but not diffuse plaques
(Mackenzie et al., 1995; Sasaki et al., 1997). Interleukin‐1
over‐expression by activated microglia has also been
shown to cause tau phosphorylation and tangle
development (Mrak and Griffin, 2005). Hence, inflam-
mation in the form of microglial activation promotes
AD neuropathy in the early phase(s) of pre‐clinical AD.

Inflammatory processes can also be neuroprotective.
Microglia also participate in plaque phagocytosis
(Shaffer et al., 1995; Paresce et al., 1997). The
cytokine interleukin‐3 (IL‐3) has been shown to inhibit
Aβ(1–42)‐mediated neuronal death (Rojo et al., 2008),
and compared with normal older controls, those with
mild AD have lower secretion of IL‐3 by mononuclear
cells (Huberman et al., 1994). This suggests that
inflammatory processes play a role in plaque and tangle
formation, but some are also involved in plaque
clearance and neuroprotection.

Non‐steroidal anti‐inflammatory drug effects on
cognitive decline vary by timing of exposure

We hypothesize that the role of inflammation changes
during the course of pre‐clinical AD, such that it is
harmful during the early phases (1 and 2), when
plaques and tangles are being formed, but that once
substantial numbers of plaques have formed (phase 3),
inflammation is helpful and necessary for plaque clear-
ance. Therefore, we would expect NSAID exposure
during early phases to be protective but harmful during
Copyright # 2011 John Wiley & Sons, Ltd.
the later phase. To date, there are no analyses stratifying
individuals by pre‐clinical phase. However, analyses
stratified by age of NSAID exposure yield comparable
results. In the CHS, reduced risk of AD in NSAID users
was only significant in the younger group (Szekely et al.,
2008b). In the Cache County Study on Memory and
Aging, individuals using NSAIDs before age 65 years
had shallower cognitive decline compared with non‐
users, whereas decline for those who began after
65 years was steeper (Hayden et al., 2007). In the Adult
Changes in Thought study, hazard ratios for current
heavy users was higher than those of remote users,
suggesting a gradient of risk with timing of exposure
(Breitner et al., 2009). Finally, in the ADAPT study,
when the study interval was divided into pre‐defined
early and late periods, risk of incident ADwas increased
early on in both the celecoxib and naproxen treatment
groups for 54 individuals who had MCI at enrollment
and who were likely in the third phase of pre‐clinical
AD (Breitner, 2009).

If the pre‐clinical phase were an observed variable
(e.g., measureable by some biomarker), our hypoth-
esis could be tested using phase‐stratified analyses. In
the absence of such a biomarker, we will use GMMs to
differentiate the pre‐clinical phases as latent classes
based on observed trajectories of cognitive decline.
We will then test for latent class‐specific effects of
NSAID treatment. The objectives of these analyses are
as follows: (i) to empirically confirm the existence of
three classes of trajectories of cognitive decline
(representing the three phases of pre‐clinical AD)
using longitudinal scores on the 3MS; (ii) to
determine if NSAID treatment differentially affects
rate of decline by phase of pre‐clinical AD; and (iii) to
validate the model by replicating the number of
classes of trajectories, as well as the differential NSAID
effects by class, on a second measure, the Dementia
Severity Rating Scale (DSRS).
Methods

Study population and design

The ADAPT was a randomized, placebo‐controlled,
multisite primary prevention trial. Study methods have
been previously reported in detail (ADAPT Research
Group et al., 2007). Participants were recruited through
mailings to Medicare beneficiaries near the study’s
field sites (Baltimore, MD; Boston MA; Rochester,
NY; Seattle, WA; Sun City, AZ; and Tampa, FL).
Eligible participants were older than 70 years and had at
least one first‐degree relative with Alzheimer‐like
Int J Geriatr Psychiatry 2012; 27: 364–374.
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dementia. This study was registered on ClinicalTrials.
gov (#NCT00007189) and approved by local institu-
tional review boards. Informed consent was obtained
from each participant along with an informant. The
2528 participants received 200mg of celecoxib bid
(Celebrex, Pfizer, New York, NY), 220mg of naproxen
sodium bid (Aleve, Bayer HealthCare, Pittsburgh, PA),
or matching placebo. Randomization was on a 1:1:1.5
basis, stratified by age and study site. At baseline and
yearly, participants were evaluated with a cognitive
assessment battery, including the 3MS (Teng and Chui,
1987) and the DSRS (Clark and Ewbanks, 1986). The
3MS is a widely used, 100‐point global cognitive
measure with higher scores indicative of better
cognitive functioning. For parity with other ADAPT
analyses, we used education‐adjusted 3MS scores in all
analyses (Elkins et al., 2006; ADAPT Research Group,
2008). The DSRS is a multiple‐choice questionnaire
completed by a knowledgeable informant who rates
impairment in 12 cognitive and functional domains.
Scores range from 0 to 54; higher scores indicate greater
impairment (Clark and Ewbanks, 1986). On 17
December 2004, treatment was suspended because of
safety concerns, but yearly cognitive testing continued
until September 2007 (ADAPT Research Group,
2008). Analyses were conducted as “intent‐to‐treat”,
such that individuals stayed in their treatment groups
even after treatment was halted.

Analytic methods

Growth mixture models allow for the grouping of
individuals based on similarities among their trajec-
tories on an outcome measured over time. They are
based on an underlying assumption that each
individual’s scores over time are the result of their
being a member of a latent (unobserved) class. For
each latent class of trajectories, the average intercept,
slope, and quadratic term are estimated. For each
individual, probabilities of membership in each class
are calculated based on how well their trajectory
matches the mean trajectories of each of the classes,
and these probabilities can be used to assign
individuals. GMMs also allow for the inclusion of
treatment effects on the slope and quadratic terms of
each trajectory class, and these are analogous to
interactions between treatment and time or time
squared in standard longitudinal regression models.
These models also allow for the inclusion of variables
that predict class membership. For more details on
GMMs, please see Appendix A.

After determining the appropriate number of latent
trajectory classes, we added treatment effects for both
Copyright # 2011 John Wiley & Sons, Ltd.
celecoxib and naproxen on the slope and quadratic
terms. We compared a model in which the treatment
effects on the trajectories were the same across all
classes with a model in which they were allowed to be
different by using a likelihood ratio test. We then
added age and apolipoprotein E (APOE) genotype as
predictors of class membership. We then compared
numbers of individuals randomized to each treatment
and mean time on treatment across latent classes.
Ideally, the fitted model would be replicated in an
independent sample. As it is unlikely that the ADAPT
study will ever be replicated, instead, we replicated the
class structure and treatment effects by using an
additional measure, the DSRS. Programming details
and model output are available from the first author
upon request.
Results

Demographics and other sample information are
reported elsewhere; treatment groups did not differ
significantly on any baseline variables (ADAPT
Research Group, 2008). Growth mixture models were
run using data from 2388 individuals with complete
covariate (age and APOE) information. Years on
treatment did not differ by treatment assignment:
placebo, 1.79 (1.05); celecoxib, 1.83 (1.02); naproxen,
1.81 (1.05). Based on fit statistics, bootstrapped
likelihood ratio tests (BLRTs), and estimability, we
chose a three‐class model. Inclusion of the quadratic
term improved fit (−2 log likelihood difference
(−2LLD): 369.23; p < 0.001). A model allowing
different treatment effects on trajectories between
classes fit the data significantly better than a model in
which treatment effects were constant across classes
(−2LLD: 369.23; p< 0.001). The inclusion of APOE
and age at baseline as predictors of class membership
improved the fit further (−2LLD: 106.65, p< 0.001).
Age was a significant predictor of baseline 3MS score.
Table 1 shows estimates from the final model. The
majority of individuals (86%) were in the “no‐decline”
class with high baselines and minimal declines. A
smaller group (10%) was in a “slow‐decline” class with
lower baselines and shallow declines. The remaining
4% were in a “fast‐decline” class with the lowest
baselines and sharp declines. The three classes did not
differ significantly by proportion of individuals on
celecoxib and naproxen (class 1: 0.29, 0.29; class 2: 0.29,
0.28; class 3: 0.29, 0.29) or by mean years of treat-
ment prior to discontinuation (class 1: 1.82(1.09); class
2: 1.79(1.04); class 3: 1.58(1.14)). As expected, APOE
was significantly associated with increased log odds of
Int J Geriatr Psychiatry 2012; 27: 364–374.



Table 1 3MS growth mixture model parameter estimates

Class 1 (no decline) Class 2 (slow decline) Class 3 (fast decline)

Prevalence 0.86 0.10 0.04
Baseline 3MS score 94.73 (0.08)a 91.7 (0.27) 86.31 (0.28)
Rate of declineb −0.32 (0.09)** −0.84 (0.53) 5.63 (0.81)**
Change in rate of declinec 0.04 (0.02)* −0.20 (0.07)* −2.11 (0.11)**
Effect of age on baseline
3MS score

−0.13 (0.02)**

Log odds of class membership Age 0.13 (0.03)** 0.07 (0.04)
APOE 1.12 (0.23)** 0.89(0.28)**

Effect of celecoxib on Rate of declined −0.20 (0.13) −0.88 (0.68) −2.87 (1.64)
Change in rate of declinee 0.06 (0.03) −0.02 (0.11) 1.49 (0.25)**

Effect of naproxen on Rate of decline 0.05 (0.14) −1.73 (0.75)* −3.30 (0.97)**
Change in rate of decline −0.02 (0.03) 0.65 (0.10)** −0.03 (0.19)

3MS, Modified Mini‐Mental State Examination; APOE, apolipoprotein E.
aParameter estimate (standard error).
bEffect of time.
cEffect of time squared.
dInteraction between treatment and time.
eInteraction between treatment and time squared.
*p < 0.05; **p < 0.01.
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class membership in classes 2 and 3 relative to class 1.
Higher age at baseline was significantly associated with
membership in class 2.

Table 2 shows expected 3MS score changes over the
first 4 years for each class. In class 1 (no decline),
individuals in all three treatment groups were stable
over 4 years. In class 2 (slow decline), the expected
declines for placebo, naproxen, and celecoxib were
6.6, 3.1, and 10.5 points, respectively, but these
differences were not statistically significant. In class 3
(fast decline), individuals on placebo were expected to
lose 11.2 points, individuals on naproxen were
expected to lose 24.9 points, but those on celecoxib
were expected to gain 1.1 points. Both treatments
were statistically significantly different from placebo.
Figure 1 shows fitted trajectories (bold lines) for each
Table 2 Predicted 3MS changes over 4 years per latent class and treatment g

2ssalC1ssalC

Placebo -0.59 (-1.33, 0.16)a -6.62 (-10.62, -

p = 0.27b

Naproxen -0.74 (-1.3, -0.19) -3.14 (-7.44, 1.

p = 0.34

Celecoxib -0.52 (-1.01, -0.02) -10.46 (-14.71,

3MS, Modified Mini‐Mental State Examination.
aPredicted change in the 3MS score after 4 years for individuals in class 1 wh
bp‐value for the within‐class comparison of predicted 4‐year change in the 3M

Copyright # 2011 John Wiley & Sons, Ltd.
treatment group along with individual observed
trajectories (thin lines) for all study participants.

We followed a similar model‐fitting process with our
validating outcome, DSRS. As with the 3MS, we chose a
three‐classmodel; amodel with class‐specific treatment
effects fit better than a model with class‐invariant
treatment effects (−2LLD= 34.77, p< 0.001). Both
APOE and age were significantly associated with
membership in classes 1 and 2 (−2LLD= 62.09,
p< 0.001). The direct effect of age on intercept was
not statistically significant but was retained in the
model to facilitate comparisons between the 3MS and
DSRS models. Table 3 shows expected DSRS score
changes over the first 4 years for each class. Figure 2
is analogous to Figure 1, but in order to facilitate com-
parisons, the vertical axes have been reversed.
roup

3ssalC

2.61) -11.23 (-15.55, -6.91) 

p = 0.19 p < 0.001

17) -24.9 (-28.49, -21.32) 

p = 0.14 p = 0.04

 -6.21) 1.12 (-10.6, 12.83) 

o were treated with placebo (95% CI).
S score on naproxen versus placebo.
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each treatment group) denote predicted class‐specific trajectories. Thin lines denote observed 3MS scores over time for each individual in the study,
color coded per treatment. For this figure, individuals were assigned to the class of which they were most likely to be a member. 3MS, Modified Mini‐
Mental State Examination.
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The 3MS and DSRS classes and NSAID effects are
comparable despite the differences in scale and scope
of the two measurement instruments. For both
measures, the three‐class models were estimated,
and the shapes of those trajectories (no decline, slow
decline, and fast decline) were similar. Looking at the
4‐year expected changes in both models, celecoxib had
no effect on the no‐decline class, a deleterious (but
not significant for the 3MS) effect on the slow‐decline
class, and a substantial and statistically significant
ameliorative effect on the fast‐decline class. The
results for naproxen were less clear. In both models,
it had no effect on the no‐decline class, but in the 3MS
model, it was associated with a shallower downward
slope relative to placebo for the slow‐decline class,
whereas in the DSRS model, it was associated with a
steeper slope, although neither of these differences
was statistically significant at 4 years. For the fast‐
decline class, naproxen was associated with worse
outcome in both models, but this difference was only
statistically significant in the 3MS model.
Table 3 Predicted DSRS changes over 4 years per latent class and treatment

2ssalC1ssalC

Placebo 0.36 (-0.19, 0.91)a 1.81 (0.50, 3.12

p = 0.40b

Naproxen 0.32 (-0.57, 1.21) 2.2 (0.89, 3.51) 

p = 0.40 

Celecoxib 0.35 (-0.7, 1.4) 3.07 (2.02, 4.12

DSRS, Dementia Severity Rating Scale.
aPredicted change in DSRS score after 4 years for individuals in class 1 who
bp‐value for the within‐class comparison of predicted 4‐year change in DSRS

Copyright # 2011 John Wiley & Sons, Ltd.
Discussion

Data from both the 3MS and the DSRS supported a
three‐class model: no decline, slow decline, and fast
decline. We hypothesized that NSAID exposure would
slow cognitive decline in the slow‐decline group and
speed cognitive decline in the fast‐decline group, as
compared with individuals on placebo. The results
were not clear cut: naproxen seemed to confirm this
hypothesis in the 3MS model, but in the DSRS model,
although naproxen appeared harmful for the fast‐
decline class, it did not differ from placebo in the
slow‐decline class. Celecoxib showed a completely
different pattern than expected: with both outcomes,
it appeared harmful for individuals in the slow‐decline
class and helpful for individuals in the fast‐decline
class. In post‐mortem studies of individuals at
different stages of AD (both pre‐clinical and post‐
clinical), neuronal COX‐2 expression peaks early in
the pre‐clinical period and then decreases, whereas
COX‐1‐expressing microglia are rarer early on but
group

3ssalC

) 9.04 (5.64, 12.44) 

p = 0.33 p = 0.33

10.53 (6.98, 14.08) 

p = 0.02 p = 0.08

) 4.19 (-0.09, 8.47) 

were treated with placebo (95% CI).
score on naproxen versus placebo.
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increase rapidly immediately prior to diagnosis
(Hoozemans et al., 2008, 2011). If these processes
are adaptive rather than harmful, it would explain
why COX‐2 inhibition with celecoxib in the earlier
(slow‐decline) phase appeared harmful and why
COX‐1 inhibition by the non‐specific COX inhibitor
naproxen appeared harmful for individuals in the later
(fast‐decline) phase. Recent reports have shown
that some NSAIDS (including celecoxib, but not
naproxen) lower Aβ‐42 levels, independent of their
anti‐inflammatory properties. However, a combined
analysis of observational studies comparing NSAIDs
with and without this property found no difference,
although they did not stratify by pre‐clinical disease
stage or age (Szekely et al., 2008b).

There are several strengths to our analyses. Limiting
enrollment to individuals over 70 years of age with a
family history of AD likely enriched the sample for pre‐
clinical AD. As an RCT, the timing, amount, and type
of NSAID exposure are known and the results are not
subject to the biases inherent in observational studies.
The inclusion of both treatments allowed for differen-
tiation between a COX‐2 specific inhibitor and a non‐
specific COX1/COX2 inhibitor. Further, the use of
GMMs is a significant advance over previous analyses
that did not allow for NSAID effects to vary by pre‐
clinical phase. Apart from this, our analyses differ from
previous ADAPT reports because the entire period of
observation up to 5 years is included.

Several potential weaknesses related to the trial’s
design are noted. First, the results are not directly
comparable with the bulk of findings from observa-
tional studies in which the most commonly used
NSAIDs were aspirin and ibuprofen. Also, as treat-
ment was halted because of safety concerns, and
Copyright # 2011 John Wiley & Sons, Ltd.
enrollment occurred on a rolling basis, individuals
were exposed to treatment for varying portions of the
total time of observation. Although time on treatment
did not vary significantly by treatment or class
membership, there was a clear trend for shorter time
on treatment for members of class 3 (fast decline). As
treatment comparisons were made within rather than
across classes, this is likely to have biased the results
toward the null hypothesis by effectively decreasing
the sample size in that class. Another potential issue is
the assumption that all individuals experiencing
cognitive decline are on an AD trajectory. Although
the majority (67/75) of dementia cases have been
adjudicated as AD, it is likely that some of these cases
also have a vascular component, along with many
individuals who have not yet received a clinical
diagnosis. Less is known about the trajectory of
individuals with vascular dementia, but it can be
assumed that inclusion of individuals on a non‐AD
path would increase the “noise” within the sample,
introduce uncertainty in class membership, and bias
the results toward the null.

It is premature to make a clinical recommendation,
but our findings point to several potential avenues of
research. First, these results should be replicated in
one or more existing large observational studies.
Further observation of ADAPT participants will make it
possible to model drug effects on AD‐free survival as a
function of latent trajectory class. Although more
clinical trials are unlikely in the near‐term, further
in vitro and animal research into the role of inflamma-
tion and NSAIDs on AD pathogenesis is warranted,
specifically with regard to differentiating which inflam-
matory processes are adaptive and which are potentially
harmful and when during the pre‐clinical period these
Int J Geriatr Psychiatry 2012; 27: 364–374.
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processes occur. Even if this work does not directly
result in a treatment, it will have provided a valuable
window on the pathophysiology of AD.
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Key points

• Heterogeneity in cognitive trajectories among
individuals without dementia can be accounted
for by the existence of phases of pre‐clinical
disease.

• The effects of NSAIDs on cognitive decline may
vary as a function of the timing of exposure
during the pre‐clinical period.

• The effects of NSAIDs on cognitive decline may
also vary as a function of the type of NSAID
(COX‐2 vs. non‐specific).

• These findings suggest that inflammation plays a
complex and dynamic role in the pathogenesis
of Alzheimer disease.
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Appendix A. Growth mixture modeling

Longitudinal data from clinical trials are typically analyzed
using either marginal or mixed effects regression models.
Marginal models are appropriate in cases where one is
interested in the population‐averaged effects of treatment
(Diggle et al., 2002). By contrast, mixed effects models
allow for the modeling of heterogeneity in both intercept
and slope (Diggle et al., 2002), thus acknowledging that
individuals both start and end at different places, in terms
of their outcome scores measured over time. Both of these
approaches, though, carry the assumption that all individ-
uals originate from the same population. In some cases, it is
reasonable to hypothesize that a sample is comprised of
individuals from more than one population. Acknowledg-
ing this is particularly important if treatment effects vary by
population. In an extreme case, if a treatment were helpful
in one group, but harmful in the other, analyses which
ignored group membership would suggest (erroneously)
that the treatment had no effect on longitudinal course.
When group membership is known, separate analyses by
group is a simple solution. However, when group member-
ship is unknown, or latent, then group/class membership can
be modeled using a mixture, or latent, class model. In fitting
these models, it is assumed that each individual is a member
of one and only one class, and that although class
membership is unobserved, it can be inferred based on an
individual’s observed data. Standard latent class analysis is
based on patterns of responses on categorical, typically
dichotomous, observed variables. Recently, a longitudinal
extension has been developed which groups individuals
based on the shapes of their longitudinal trajectories
(Muthén and Asparouhov, 2009). These GMMs have been
increasingly used to model heterogeneity in development
(Muthen et al., 2002; Greenbaum et al., 2005; Kreuter and
Muthen, 2008) and to model class‐specific treatment effects
(Muthén and Brown, 2009). Adaptation for use in dementia
research is a natural extension (Terrera et al., 2009).

The simplest possible GMM has a single class. By letting yij
represent the outcome measure for the ith person at the jth
timepoint aj, a trajectory can be modeled as yij= I+ Saj+
Qaj+ εij, where I, S, andQ represent the fitted intercept, slope,
and quadratic term, respectively. As written, this is a marginal
or population‐averaged model, because intercept, slope, and
quadratic terms are the same for all individuals. If instead we
wanted to allow these terms to vary by individual, we would
write it as yij ¼ Ii þ Siaj þ Qia2j þ εij. Specifically, we want to
allow these terms to vary as a function of class membership
(indexed by k). We therefore write Ii=αI, k+ ζI, i, Si=αS, k+ ζS, i,
Int J Geriatr Psychiatry 2012; 27: 364–374.



Figure 3 Schematic of growth mixture model.
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andQi=αQ. k+ ζQ, i, where αI, k, αS, k, and αQ, k are class‐specific
intercept, slope, and quadratic terms, respectively.

Now we wish to add treatment effects, with treat-
ment as a dichotomous variable T. With a simple marginal
model , we could add two interact ion terms:
yij ¼ I þ Saj þ γS T � aj

� �þ Qa2j þ γQ T � a2j

� �
þ εij. The

interpretation of the interaction terms γS and γQ are then the
differences in slopes and quadratic terms, respectively,
between those treated and untreated. To allow these terms
to vary by class, we now include these interactions into the
equations for S and Q and write Si= αS, k+ γS, kT+ ζS, i and
Qi= αQ. k+ γQ, kT+ ζQ, i.

With GMMs, it is also possible to model predictors of
class membership. These variables are different from the
longitudinal outcomes because they are conceptualized as
causes, rather than effects, of latent class membership.
Specifically, one models log odds of membership in a
specific latent class, relative to a reference class. Typically,
the largest class, or the one containing the most “normal”
individuals, is chosen as the reference class.

The fitting of GMMs entails the estimation of a large
number of parameters and assumptions regarding the
variances of the intercept, slope, and quadratic terms for
each class. Additionally, the number of classes that are
estimated affects substantially the parameter estimates and
their interpretation. Therefore, GMM models should be
built in a careful and sequential manner. Jung and
Wickrama (2008) provide an excellent and accessible guide
to this process. First, the number of classes of trajectories to
estimate should be decided by fitting simplified (e.g.,
without drug effects or predictors of class membership)
models with numbers of classes ranging from 1 to 5 and
examining Bayesian information criteria statistics, BLRTs,
graphical model fit, and parameter estimates (Nylund et al.,
2007). If there is evidence of curvature in the trajectories, or
an a priori hypothesis that such curvature will be present,
then this process should be repeated with models which
include quadratic terms. Models with and without qua-
dratic terms can then be compared via likelihood ratio tests.
If the p‐value for the likelihood ratio test is less than 0.05, it
can be taken as evidence that the model with fewer
parameters (in this case, the model without the quadratic
term) fits the data less well than the model with more
parameters.

After determining an appropriate model for the
observed outcome variables (Ys), treatment effects can then
be added. To determine if drug effects vary by latent class,
one can compare, again via likelihood ratio test, two
models: one in which the treatment effects are constant
across all of the classes and one in which the treatment
effects vary between classes. As a last step, predictors of
class membership are added to the model. Figure 3 shows a
schematic of the model estimated in this paper.
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In some cases, there is a need to make additional
comparisons among the latent classes. One approach is to
assign individuals to the class of which they are mostly likely
to be a member and then stratify the analyses. However, this
approach introduces bias in that it treats class membership
as if it had been directly observed. A better approach is to
multiply impute class membership and then combine the
results across the imputations, producing a standard
error estimate that takes into account the variability
across the imputations (Bandeen‐Roche et al., 1997;
Leoutsakos et al., 2010).

Appendix B. ADAPT research group

Resource Centers. Chairman’s Office, Veteran Affairs Puget
Sound Health Care System: John Breitner, MD (chairman);
Jane Anau (coordinator); Janette Negele (previous coordi-
nator); Melisa Montero (previous coordinator); Elizabeth
Aigbe, MS; Jill Dorje; and Brenna Cholerton, PhD. Coordi-
nating Center, Johns Hopkins Bloomberg School of Public
Health: Curtis Meinert, PhD (director); Barbara Martin, PhD
(deputy director); Bonnie Piantadosi (coordinator); Robert
Casper, MS; Michele Donithan, MHS; Hsu‐Tai Liu, MD,
MPH; Steven Piantadosi, MD PhD; Anne V. Shanklin, MA,
CCRP; and Paul Smith.

Project Office, National Institute on Aging: Neil
Buckholtz, MD (project officer); Laurie Ryan, MD (project
officer); and Susan Molchan, MD.

Field Sites. Johns Hopkins School of Medicine:
Constantine G. Lyketsos, MD, MHS (director); Martin
Steinberg, MD (associate director); Jason Brandt, PhD
(neuropsychologist); Julia J. Pedroso, RN, MA (coordinator);
Alyssa Bergey; Themos Dassopoulos, MD; Melanie Dieter,
MA; Carol Gogel, RN; Chiadi Onyike, MD; Lynn Smith;
Veronica Wilson‐Sturdivant; and Nadine Yoritomo, RN.
.
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Boston University School of Medicine: Robert Green,
MD (director); Sanford Auerbach, MD (associate director);
Robert Stern, PhD (neuropsychologist); Patricia Boyle, PhD
(previous neuropsychologist); DawnCisewski, PhD (previous
neuropsychologist); Jane Mwicigi, MD, MPH (coordinator);
Mary‐Tara Roth, RN, MSN, MPH (previous coordinator);
Lorraine Baldwin; Margaret Brickley, MS, RN, NP; Patrick
Compton, RN; Debra Hanna, RN, BC, MPH; Sylvia
Lambrechts; Janet Nafissi, MSN, APRN, BC; Andreja
Packard, MD, PhD; and Mayuri Thakuria, MD, MPH.

University of Rochester School of Medicine: Saleem
Ismail, MD(director); Pierre Tariot, MD (previous director);
Anton Porsteinsson, MD (associate director); J. Michael
Ryan, MD (previous associate director); Robin Henderson‐
Logan, PhD, ABPP‐cn (neuropsychologist); Connie Brand,
RN (coordinator); Colleen McCallum, MSW (previous
coordinator); Suzanne Decker; Laura Jakimovick, RN, MS;
Kara Jones, RN; Arlene Pustalka, RN; Jennifer Richard;
Susan Salem‐Spencer, RN, MS; and Asa Widman.

Veteran Affairs Puget Sound Health Care System and
University of Washington School of Medicine: Suzanne
Craft, PhD (director); Mark Fishel, MD (associate
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director); Laura Baker, PhD (neuropsychologist); Deborah
Dahl, RN (coordinator); Kathleen Nelson, RN (previous
coordinator); Susan Bigda, RN; Yoshie Biro; Ruth
Boucher, RN; Nickolas Dasher; Edward DeVita, MD;
Grace Garrett; Austin Hamm; Jeff Lindsey; and Laura
Sissons‐Ross.

Banner Sun Health Research Institute: Marwan
Sabbagh, MD, FAAN (director); Joseph Rogers, PhD
(associate director); Donald Connor, PhD, PhD (neuropsy-
chologist); Carolyn Liebsack, RN, BSN, CCRC (coordinator);
Nancy Thompson, RN (previous coordinator); Joanne
Ciemo, MD; Kathryn Davis; Theresa Hicksenhiser, LPN;
Sherry Johnson‐Traver; Healther Kolody; Lisa Royer, RN;
Nina Silverberg, PhD; and Deborah Tweedy, RN, MSN, CNP.

The Roskamp Institute Memory Clinic: Michael Mullan,
MD, PhD (director); Cheryl Luis, PhD (associate director,
neuropsychologist); Timothy Crowell, PsyD (previous
associate director, neuropsychologist); Julia Parrish,
LPN (coordinator); Laila Abdullah (previous coordinator);
Theavy Chea; Scott Creamer; Melody Brooks Jayne,
MD; Antoinette Oliver, MA; Summer Price, MA; and
Joseph Zolton, ERT.
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