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Evaluating cutoff criteria of Model Fit Indices for Latent Variable Models with 

Binary and Continuous Outcomes 

 

by 

 

Ching-Yun Yu 

Doctor of Philosophy in Education 

University of California, Los Angeles, 2002 

Professor Bengt Muthén, Chair 

 

The aims of this study are to first evaluate the performance of various model fit 

measures under different model and data conditions, and, secondly, to examine the 

adequacy of cutoff criteria for some model fit measures.  Model fit indices, along with 

some test statistics, are meant to assess model fit in latent variable models.  They are 

frequently applied to judge whether the model of interest is a good fit to the data.  Since 

Bentler and Bonett (1980) popularized the concept of model fit indices, numerous studies 

have been done to propose new fit indices or to compare various fit indices.  Most of the 

studies, however, are limited to continuous outcomes and to measurement models, such as 

confirmatory factor analysis models (CFA).  The present study broadens the structure of 

models by including the multiple causes and multiple indicators (MIMIC) and latent 



 xv

growth curve models.  Moreover, both binary and continuous outcomes are investigated in 

the CFA and MIMIC models.   

Weighted root-mean-square residual (WRMR), a new fit index, is empirically 

evaluated and compared to the Tucker-Lewis Index (TLI), the Comparative Fit Index (CFI), 

the root-mean-square error of approximation (RMSEA) and the standardized 

root-mean-square residual (SRMR).  Few studies have investigated the adequacy of cutoff 

criteria for fit indices.  This study applies the method demonstrated in Hu and Bentler 

(1999) to evaluate the adequacy of cutoff criteria for the fit indices.  The adequacy of a 

conventional probability level of 0.05 for χ2 to assess model fit is also investigated.  With 

non-normal continuous outcomes, the Satorra-Bentler rescaled χ2 (SB) is incorporated into 

the calculation of TLI, CFI and RMSEA, and these SB-based fit measures are evaluated 

under various cutoff values.  An example of applying adequate cutoff values of overall fit 

indices is illustrated using the Holzinger and Swineford data.  Generally speaking, the use 

of SRMR with binary outcomes is not recommended.  A cutoff value close to 1.0 for 

WRMR is suitable under most conditions but it is not recommended for latent growth 

curve models with more time points.  CFI performs relatively better than TLI and RMSEA, 

and a cutoff value close to 0.96 for CFI has acceptable rejection rates across models when 

N ≥ 250. 
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CHAPTER 1  

INTRODUCTION 

 

In the development and evaluation of latent variable models and related procedures, 

an important and consistent theme for the last two decades has been model evaluation/ 

selection and model fit indices (e.g., Austin & Calderón, 1996; Bollen & Long, 1993).  

After a substantively based model is specified and estimates are obtained, the researcher 

might desire to evaluate its model fit and check whether the model is consistent with the 

data.  Many model fit measures have been proposed to serve this purpose of assessing 

overall model fit of a hypothesized model.   

Let Σ represent the population covariance matrix of observed variables and Σ(θ) 

represent the covariance matrix written as a function of parameters θ for a hypothesized 

model.  The overall fit measures assess whether the covariance structure hypothesis Σ = 

Σ(θ) is valid, and, if not, they measure the discrepancy between Σ and Σ(θ) (Bollen, 1989).  

There are two types of the more popular overall fit measures.  One type is the chi-square 

(χ2) test statistic, and the other type is an array of various fit indices (Hu & Bentler, 1999).  

These two types of fit measures are described below. 

In latent variable modeling (LVM), the asymptotic χ2 test statistic was developed 

under the framework of hypothesis testing and was the first one applied widely to assess 

overall model fit.  The probability level associated with the χ2 value (Chi-P) serves as a 

criterion to evaluate whether a hypothesized model is a good fit to the data, and the 

decision is to either accept or reject the specified model.  Currently the most widely used χ2 
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test statistic is obtained from maximum likelihood (ML) estimation.  However, as noted by 

many researchers, there are a few problems associated with model evaluation based on the 

ML χ2 statistical test.  One problem is that, not only model adequacy, but sample size and 

violation of some underlying assumptions also affect its value.  For continuous outcomes, a 

ML χ2 approximation makes the following assumptions (Bollen, 1989). 

1. The null hypothesis (H0 ): Σ= Σ(θ) holds exactly.  Because the χ2 statistic is a test of 

the hypothesis Σ = Σ(θ), the information it provides is whether the model fits the 

data exactly or not.  However, in practice it might not be realistic to assume that a 

specific model Σ(θ) exists in the population.  

2. The sample is sufficiently large.  By the asymptotic distribution theory the χ2 

statistic approximates a χ2 distribution only in large samples.  A simulation study 

by Anderson and Gerbing (1984) shows that the ML χ2 test statistic in small 

samples tends to be large and this leads to too many rejections of H0. 

3. The observed variables have no kurtosis.  That is, the observed variables should 

have a multivariate normal distribution.  This implies that the ML χ2 estimation is 

not accurate for non-normal or categorical data.  Leptokurtic (more peaked than 

normal) distributions result in too many rejections of the null models (Browne, 

1984).   

The general χ2 test statistic in covariance structure analysis also requires the first and 

second assumptions to be valid.  The power of the χ2 test is partially a function of sample 

size (N).  The χ2 estimator increases in direct proportion to N - 1, and its power increases as 
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N increases.  In small samples, its power is not sufficient and the chance to commit a Type 

II error increases (Tanaka, 1993).    The dependence on sample size suggests that the χ2 

statistic might not be comparable across samples.  Moreover, since the χ2 statistic assumes 

that Σ = Σ(θ) holds exactly, a trivially false model Σ(θ) (that is, residuals with no practical 

significance) might be rejected in large samples, whereas a less appropriate model might be 

accepted as adequate in small samples.  Fit indices have been designed to avoid some 

problems of the (ML) χ2 statistic mentioned above. 

A fit index is an overall summary statistic that evaluates how well a particular 

covariance structure model explains the sample data.  Rather than test hypotheses, fit 

indices are meant to quantify features such as the sum of residuals or variance accounted 

for by the proposed model (Hu & Bentler, 1998) and “to provide information about the 

degree to which a model is correctly or incorrectly specified for the given data” (Fan, 

Thompson & Wang, 1999).  Fit indices are often used to supplement the χ2 test to evaluate 

the acceptability of latent variable models.  Since Bentler and Bonett (1980) introduced the 

use of model fit indices to the analysis of covariance structures, numerous fit indices based 

on different rationales have been proposed and studied (e.g., Anderson & Gerbing, 1984; 

Marsh, et al., 1988; Bentler, 1990; Mulaik et al., 1989; Williams & Holahan, 1994).  Fit 

indices that will be investigated in this study are the Tucker-Lewis Index (TLI), the 

Comparative Fit Index (CFI), the root-mean-square error of approximation (RMSEA), the 

standardized root-mean-square residual (SRMR), the weighted root-mean-square residual 

(WRMR).  Detailed descriptions of these fit indices will be presented in the next section.   

Among the five fit indices, WRMR was recently proposed in Muthén and Muthén 
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(1998-2001) and has not yet been studied.  This study will thus evaluate WRMR and 

compare its performance to other fit indices listed above.  To investigate whether the fit 

indices are (or which fit index is) more relevant to model adequacy than the χ2 test statistic, 

it is important to evaluate the performance of fit indices under various model and data 

conditions.  The conditions investigated in the past, for example, included sensitivity of fit 

indices to model misspecification, sample size, estimation methods, model complexity, and 

violation of distribution assumptions.  My study will evaluate these fit indices under 

conditions such as model misspecification (true, misspecified and trivially misspecified 

models), type of outcome variables (normal, non-normal continuous and binary outcomes), 

type of model specification and various sample sizes.  These conditions are explained in 

detail below.  

 Satorra (1990) mentioned that two types of assumptions, structural and distributional, 

are needed to justify the validity of analyses in structural equation modeling.  Structural 

assumptions set up a model Σ(θ) and imply a specific structure for the population 

covariance matrix Σ.  A correct structural specification means that the hypothesized model 

reflects the population structure, whereas a model misspecification would result in 

violations of structural assumptions.  There are two kinds of misspecified models: 

over-parameterized (estimating one or more parameters when their population values are, 

in fact, zero) and under-parameterized misspecified model (specifying values of one or 

more parameters at zero when their population values are non-zero) (Hu & Bentler, 1998).  

Previous studies (e.g., La Du & Tanaka, 1989; Hu & Benter, 1999) have indicated that the 

over-parameterized misspecified models have zero population noncentrality and do not 
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have significantly different estimates for model fit indices.  Thus, only 

under-parameterized misspecification is considered in this study.  The χ2 test statistic has 

long been known to be too powerful for trivially misspecified models with large samples, 

thus it is interesting to compare its performance with that of fit indices in trivially 

misspecified models.  Good fit measures should be sensitive to degree of misspecification 

but should not possess too much power in trivially false models.   The performance of the 

χ2 test statistic and fit indices in the correct specified, misspecified and trivially 

misspecified models will be investigated in this study. 

The effects of violations of distributional assumptions on model fit measures will also 

be investigated.  The distribution form of observed variables is often assumed to be 

multivariate normal and the ML method is often used.  However, non-normal and 

categorical outcomes frequently occur in applications and, thus, the values of model fit 

measures based on ML estimation might be biased.  The Satorra-Bentler robust χ2 (SB) 

was proposed by Satorra and Bentler (1988) to yield a better approximation of a χ2 variate 

under non-normality.  Previous studies (e.g., Chou et al., 1991; Hu et al., 1992; Curran et al., 

1996; Anderson, 1996) have shown that, with non-normal continuous outcomes, the SB χ2 

outperforms the ML χ2 under some combinations of non-normality and model 

specification at adequate sample size.  The SB-based McDonald Fit Index was found to 

perform better in correctly specified models (Anderson, 1996), and the results in Nevitt and 

Hancock (2000) showed that, relative to the ML-based RMSEA, the SB-based RMSEA at 

a cutoff of 0.05 had better control over type I errors under non-normality and smaller 

sample size.  Thus, besides comparing the SB χ2 and ML χ2 test statistics, this study will 
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also incorporate the SB χ2 into the estimation of TLI, CFI and RMSEA and compare their 

performance under various cutoff values with the “unadjusted” ones.  In addition to normal 

and non-normal continuous outcomes, performance of model fit measures with respect to 

binary outcomes will also be investigated.    Some questions that will be discussed are: 

does the SB χ2 perform better than the ML χ2 in confirmatory factor analysis models with 

non-normal data?  Do the model fit indices such as TLI and CFI adjusted using the SB χ2 

information also perform better with non-normal data? 

Hu and Bentler (1998, 1999) have shown that some fit indices are sensitive to 

different types of model specification.  For example, the ML-based TLI, CFI, and RMSEA 

are more sensitive to models with misspecified factor loadings, whereas SRMR is more 

sensitive to models with misspecified factor covariances.  Sample size has also been shown 

to be a prominent factor that affects the performance of model fit indices.  Thus, these two 

factors will be investigated in this study.   

Most models investigated in the fit-index study have been limited to measurement 

models, such as the confirmatory factor analysis (CFA) models  (e.g., Anderson & Gerbing, 

1984; Marsh et al. 1988; La Du & Tanaka, 1989; Curran et al., 1996; Hu & Benter, 

1998:1999; Nevitt and Hancock, 2000).  However, applications of LVM have proceeded 

beyond these measurement models.  For example, since Jöreskog introduced it in 1980s 

(Jöreskog, 1971; Jöreskog & Goldberger, 1975), the multiple causes and multiple 

indicators (MIMIC) models have been frequently fitted to data by substantive researchers.  

In recent years, one trend in structural equation modeling has been to incorporate and 

conceptualize growth curve modeling under the framework of LVM (e.g., Muthén & 
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Curren, 1997; Muthén & Khoo, 1998).  Also a recent trend is to model longitudinal data 

using a combination of continuous and categorical latent variables (Muthén, 2001).  Few 

studies, however, evaluated the performance of fit indices for these more complex models.  

There is a need to expand the fit index study to a variety of models, such as structural or 

growth curve models, so that the practitioners will have some rules of thumb to apply these 

fit indices more accurately.   

Another important issue for the study of fit indices is the selection of adequate cutoff 

criteria.  Typical practice in LVM has been to adopt some cutoff criteria for fit indices as 

the decision rules to evaluate model fit.  For example, CFI values larger than 0.9 suggest 

that the model might be useful, and those below 0.9 indicate that there might be some 

inconsistency between model and data.  Similarly, Steiger (1989) and Browne and Cudeck 

(1993) suggested that, for RMSEA, values below 0.05 would suggest a good fit, and those 

larger than 0.1 would suggest a poor fit.  However, there is not enough evidence or 

rationale to support these conventional rules of thumb, and the legitimacy of these 

conventional cutoff criteria has been questioned (e.g., Marsh, 1995; Marsh & Hau, 1996; 

Carlson & Mulaik, 1993).  Hu and Benter (1999) empirically evaluated the adequacy of 

cutoff values based on the criterion that the adequate cutoff values should result in 

minimum type I and type II errors.  Their study, however, is limited to continuous 

outcomes and does not consider trivially misspecified models.  We often encounter 

categorical outcomes in social and behavioral sciences, and it is important to know how 

well fit indices perform and what their adequate cut-off values for categorical outcomes 

might be.  Thus, in addition to continuous outcomes, this study will compare these fit 
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indices and obtain their adequate cut-off values in CFA and MIMIC models with 

dichotomous outcomes.   

  

1.1 Research Questions to be Addressed 

The first purpose of this study is to compare the performance of fit indices with that of 

Chi-P and provide researchers information on how well the fit indices work under different 

model and data conditions.  In addition to CFA models, the performance of model fit 

measures in MIMIC and latent growth curve models will be evaluated.  Continuous 

outcomes will be considered in CFA, MIMIC and latent growth curve models.  Both 

continuous and binary outcomes will be investigated in CFA and MIMIC models, and the 

fit indices will be compared to Chi-P under conditions such as model misspecification, 

types of model specification and various sample sizes.   

Some questions that will be discussed in relation to sample sizes and model 

misspecification, for example, are: 

• Does sample size affect the performance of model fit indices?   

• How large should the sample size be to allow enough power for model fit 

indices? 

• Which fit index has more power to detect misspecified models? 

With respect to non-normal outcomes, some questions that will be tackled are: 

• Does the SB χ2 outperform the ML χ2? 

• Do the SB χ2-based model fit indices such as TLI, CFI and RMSEA 

outperform their ML χ2-based counterparts? 
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• Are fit indices robust to non-normality? 

The second purpose of this study is, based on the results obtained earlier, to suggest 

the adequate cutoff criteria for TLI, CFI, RMSEA, SRMR and WRMR.  The suitable cutoff 

criteria of TLI, CFI, RMSEA, SRMR, WRMR and Chi-P will be evaluated in CFA, 

MIMIC and latent growth curve models with continuous outcomes.  Some questions that 

will be discussed in relation to continuous outcomes, for example, are: 

• What are the adequate cutoff criteria (rules of thumb) for the fit indices? 

• Do the adequate cutoff criteria vary with different types of model specification and/ 

or sample sizes? 

The suitable cutoff criteria for TLI, CFI, RMSEA, SRMR and WRMR will also be 

obtained in CFA and MIMIC models with dichotomous outcomes.  Some questions that 

will be tackled in relation to dichotomous outcomes, for example, are: 

• Which cutoff criteria for the fit indices generate less type I and type II errors? 

• What are the adequate cutoff criteria for the fit indices? 

• Are cutoff values and performance of fit measures with dichotomous outcomes 

different from those with continuous ones? 

 

1.2 Scope and Significance of the Study 

 Model selection is no doubt an important part of the modeling process.  After 

specifying a model based on substantive theory and fitting the model to the data, one needs 

assistance to judge whether this model is a good or useful one.  In LVM, model fit indices 

are important alternatives to the χ2 test statistic for model selection because, for example, 
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the χ2 statistic is a function of N and it tests unrealistic null hypotheses.  Applied 

researchers often assess fit using the χ2 test statistic with a probability level of 0.05, and/ or 

using model fit indices with some conventional cutoff values.  However, the adequacy of 

these cutoff values is questionable.  This study adopts a few methods to empirically 

evaluate the performance of the model fit measures, and thus may provide more objective 

guidelines for applying these fit measures.   

 A newly developed and yet-to-be-evaluated fit index, WRMR, is included and 

compared to the other fit indices in this study.  This study will also shed new light on the 

use of model fit indices with binary outcomes, and on the use of fit indices in latent variable 

models where the predictors are included and/ or longitudinal designs are taken into 

account.  A wide array of multivariate distributions and models will be studied, and the 

robustness of the unadjusted or adjusted model fit indices against non-normality will be 

investigated.  In addition, the adequacy of using the conventional or scaled χ2 test statistics 

to assess model fit will be investigated.  This study will provide applied researchers 

valuable information concerning which fit index is preferable and which cutoff criteria for 

fit indices are more suitable.  
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 Measures Used for Assessing Model Fit 

2.1.1 Likelihood Ratio Test/ χ2 Test Statistic 

A likelihood function, L(θ), gives the probability of observing the specific data given 

a set of parameters θ that specified in our model of interest.  Once estimates of the 

specific model are obtained, the likelihood ratio test (LRT) procedure can be applied to 

test model fit.  The LRT statistic is 

LRT = -2log {max[L (θi)] / max[L(θj)]}, 

where L (θi) is the likelihood for model i with parameters θi, and L (θj) is the likelihood for 

model j with parameters θj.  Model j is the more restricted model, and is nested within 

model i.  Each likelihood is evaluated at the values of θ that maximize it.  The large sample 

distribution of LRT under H0, with estimates that maximize likelihoods, is a χ2 distribution.  

Its associated degrees of freedom are the number of difference between the freely 

estimated parameters of models i and j.  The associated probability level of the χ2 

represents the probability of obtaining a χ2 value larger than the value calculated, given 

that the H0 is true.  The higher the probability level of the calculated χ2, the better the fit of 

our hypothesized model.   

In regular practice of hypothesis testing in LVM, the model of interest is the more 

restricted model j, and it is often compared to a saturated model (H1: Σ = S).  S is the 

sample covariance matrix of the observed variables.  For a covariance structure Σ(θ), 
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population parameters θ are estimated with the goal to minimize the discrepancy between 

the observed and estimated population covariance matrices [S and Σ( θ̂ )].  The estimates θ̂  

can be obtained by minimizing a fitting function F(θ), where F(θ)  is a function 

representing the discrepancy between S and Σ(θ).  Denote the minimum of the F(θ) as F( θ̂ ) 

and assuming a Wishart distribution for S, then, under the H0, (N-1)F( θ̂ ) has an asymptotic 

χ2 distribution with degrees of freedom equal to p(p+1)/2 – q, where p is the number of 

observed variables and q is the number of parameters that are freely estimated in model 

Σ(θ).   

Currently the ML fitting function, FML(θ), is the most widely used one.  The product 

of N-1 and FML( θ̂ ), under the H0 and the assumption of multivariate normality, 

approximates a χ2 distribution in large samples.  These assumptions limit the use of the ML 

estimation under certain data and model conditions.  The χ2 approximation is sensitive to 

sample size and violation of the multivariate normality assumption.  The research done by 

Muthén and Kaplan (1992) showed that the χ2 approximation is also sensitive to model 

complexity.  Moreover, a model is tentative and is only regarded as a proxy to reality, thus 

the reject or fail-to-reject decision obtained from testing the hypothesis Σ = Σ(θ) seems not 

be the main research interest.  The information that researchers often want to know is 

whether the model fit is adequate and how closely their model fits the data.  Therefore, just 

as Jöreskog and Sörbom (1981) mentioned, the χ2 approximation is probably better 

regarded as a fit measure instead of a test statistic because its assumptions are seldom 

fulfilled in practice.   
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A few approaches have been proposed to address the limitations of the ML estimation 

method.  Among them, one is to develop alternative methods of estimation that is robust to 

small sample sizes and non-normal data.  For example, Browne (1982, 1984) proposed an 

asymptotic distribution free (ADF) method and test statistic that were not based on the 

multivariate normality assumption.  (N-1) FADF( θ̂ ) is asymptotic distributed as a  χ2 

(Browne, 1984).  However, some studies (e.g., Hu, Bentler & Kano, 1992; Yuan & Bentler, 

1998) have shown that the ADF estimator performed poorly under sample sizes of 2500.  

Additionally, Muthén and Kaplan (1992) have shown that the ADF estimator performed 

worse with increasing model complexity and/ or at smaller sample sizes.  The ADF 

estimator requires very large samples to behave like a χ2 (Bentler & Yuan, 1999), and 

models with more than 20 variables are not feasibly estimated (Browne, 1984).   

Another approach is to adjust and rescale the existing estimators.  For example, 

Satorra and Bentler (1988) rescaled the ML χ2 for the presence of non-zero kurtosis under 

non-normality, and developed the SB χ2.  Recently, Bentler and Yuan (1999) proposed a 

statistic based on an adjustment to the ADF χ2, and found it performed well at small sample 

sizes such as 60 to 120. 

 
2.1.2 Comparative Fit Indices 

Comparative fit indices measure the improvement of fit by comparing the 

hypothesized model with a more restricted baseline model.  The baseline model commonly 

used is a null or independent model where the observed variables, with variances to be 

estimated, are mutually uncorrelated (Bentler & Bonett, 1980).  The model fit information 
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obtained from these fit indices are very different from that obtained from the χ2 measure 

where a hypothesized model is compared to a saturated model. 

 

Tucker-Lewis Index (TLI) 

Originating from Tucker and Lewis (1973), Bentler and Bonett (1980) applied TLI to 

covariance structure analysis and claimed that it can be used to compare a particular model 

across samples.  TLI is calculated as 

where dfb and dfHo are the degrees of freedom for the baseline and the hypothesized (under 

H0) models, respectively.   TLI can exceed the 0 to 1 range.  Anderson and Gerbing (1984) 

show that TLI values tend toward 1 for a correctly specified model, but in small samples 

(sample size smaller than 100) its value is underestimated (that is, indicates a bad fit for an 

acceptable model) and has large sampling variability.  Hu and Bentler (1999) 

recommended a cutoff value of TLI close to 0.95. 

 

Comparative Fit Index (CFI) 

To avoid TLI’s problems concerning underestimation of fit and considerable sampling 

variability in small samples, Bentler (1995, 1990) proposed CFI in 1988.  Bentler (1990) 

conducted a simulation study to compare TLI, CFI, the Normed Fit Index (NFI) and the 

Incremental Fit Index (IFI), and concluded that CFI is the best index.   

Although TLI indicates a greater degree of misspecification, CFI has the advantages 
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of having a 0-1 range and smaller sampling variability.  CFI is defined as 

Hu and Bentler (1999) recommended a cutoff value of CFI close to 0.95.  Both TLI and 

CFI are incremental fit indices, which measure the improvement of fit by comparing a H0 

model with a more restricted baseline model. 

 

2.1.3 Error-of-Approximation Indices 

Cudeck and Henly (1991) mentioned that three types of discrepancy functions could 

be used as a basis for model selection.  They are the sample discrepancy, the overall 

discrepancy and the discrepancy due to approximation.  The sample discrepancy is F[S, 

Σ( θ̂ )], which represents the discrepancy between the sample covariance matrix S and the 

estimated covariance matrix Σ( θ̂ ) for the model fitted to the sample.  It is stochastic and 

depends on sample size.  The χ2 measure mentioned earlier are based on the sample 

discrepancy function.  Let Σ( θ~ ) denote the best fit of model to the population covariance 

matrix Σ, the discrepancy due to approximation is then F[Σ, Σ( θ~ )].  It is a population 

quantity and does not depend on sample data.  Based on the error of approximation, Steiger 

and Lind (1980) introduced fit indices, the root mean square (RMS) and RMSEA, for 

model selection.   
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Root-mean-square Error of Approximation (RMSEA) 

Introduced by Steiger and Lind (1980) and Browne and Cudeck (1993), RMSEA for 

continuous outcomes is calculated as 

where d denotes the degrees of freedom of the model, and )ˆ(θF  is the minimum of the 

fitting function )(θF .  N in (3) sometimes is replaced by N-1, which is motivated by 

assuming a Wishart distribution for S (e.g., Bollen, 1989; Nevitt & Hancock, 2000).  Here 

we adopt the use of N in Muthén and Muthén (1998-2001, p. 360).  With categorical 

outcomes, d in (3) is replaced by a function of the sample variances (Muthén & Muthén, 

1998-2001).  RMSEA has a known distribution and, thus, permits the calculation of 

confidence intervals.  Browne and Cudeck (1993) suggested that RMSEA values larger 

than 0.1 are indicative of poor-fitting models, values in the range of 0.05 to 0.08 are 

indicative of fair fit, and values less than 0.05 are indicative of close fit.  Hu and Bentler 

(1999) recommended a cutoff value of RMSEA close to 0.06. 

 
2.1.4 Residual-Based Fit Indices 

SRMR and WRMR measure the (weighted) average differences between the sample 

and estimated population variances and covariances. 

 

Standardized Root-mean-square Residual (SRMR) 

Introduced by Bentler (1995), it is a standardized version of the root mean square 

residual (RMR) which was developed by Jöreskog and Sörbom (1981).  SRMR for 

)3(,]0),1)ˆ(2
max[(

Nd
F

RMSEA −
θ

=



 17

continuous outcomes is defined as 

and e  = (p(p + 1))/2.  jks  and jkσ̂  are the sample and model-estimated covariance 

between the continuous outcomes yj and yk, respectively.  jjs  and kks  are the sample 

variances for the continuous outcomes yj and yk.  p is the number of continuous outcomes.  

When jjs  = jjσ̂  and kks  = kkσ̂ , this formula coincides with Hu and Bentler (1998). 

SRMR has a 0-1 range.  For categorical outcomes, Muthén and Muthén (1998-2001) 

define SRMR when all outcomes are categorical with no threshold structure or covariates.  

Hu and Bentler (1999) recommended a cutoff value close to 0.08 for SRMR.  
 

Weighted Root-mean-square Residual (WRMR) 

WRMR was proposed in Muthén and Muthén (1998-2001).  It is defined as  

where e  is the number of sample statistics.  rs  and rσ̂  are elements of the sample 

statistics and model-estimated vectors, respectively.  rv  is an estimate of the asymptotic 

variance of rs .  WRMR is suitable for models where sample statistics have widely 

disparate variances and when sample statistics are on different scales such as in models 

with mean and/or threshold structures.  It is also suitable with non-normal outcomes.   
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WRMR, for categorical outcomes, is equivalent to: 

where )],ˆ()'ˆ)(/min[()ˆ( σσsθ −−= − sW21F 1
D  which is the minimum of the weighted least 

squares (WLS) fitting function.  (WD)jj is the asymptotic variance of sj (see Muthén and 

Muthén,1998-2001, p. 361-362).   

 

2.2 Review of Related Monte Carlo Studies 

Small sample size and departure from normality are two factors that have been found 

to affect the estimates of fit measures.  The Monte Carlo study by Boomsma (1983) has 

shown that the χ2 approximation is not accurate for N ≤ 50, and sample sizes larger than 

200 might be necessary to avoid problems of non-convergence or improper solutions.  

Boomsma investigated four different CFA and structural equation models under various 

sample sizes with up to 300 replications, and the model parameters in his study ranged 

from twelve to seventeen.  Boomsma also found that a high skewness value might lead to 

high χ2 estimates and thus result in rejecting the population models too often. 

Hu, Bentler and Kano (1992) conducted a large-scale simulation study to evaluate the 

use of the χ2 test statistics for assessing model fit with continuous outcomes.  The χ2 test 

statistics estimated by various methods were evaluated in a fifteen-variable, three-factor 

CFA model (87 degrees of freedom) under seven data distributions at various sample sizes 

(150, 250, 500, 1000, 2500 and 5000).  The iterations were 200 per condition.  The results 

showed that the ML χ2 had inflated rejection rates under non-normality, and both ML χ2 
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and SB χ2 had inflated type I errors (reject when Chi-P < 0.05) at N ≤ 250 even with 

multivariate normal data.   

The same fifteen-variable, three-factor CFA model of Hu, Bentler and Kano (1992) 

was simulated in Hu and Benter (1998; 1999).  In the latter study, two more model 

conditions were considered.  They were model specification (misspecified factor 

covariances or factor loadings) and type of model misspecification (correctly specified or 

under-parameterized misspecifications).  Hu and Bentler (1998) investigated the 

sensitivity of the ML-, generalized least squares (GLS)- and ADF-based fit indices to 

model misspecification.  It was found that SRMR was the most sensitive to models with 

misspecified factor covariances, whereas TLI, CFI and RMSEA were more sensitive to 

models with misspecified factor loadings.  For the ML method, RMSEA, TLI and CFI 

were found to have high correlations (the absolute values of correlations ranged from 0.96 

to 1.0), and SRMR was the least similar to the other fit indices.  The use of SRMR, 

supplemented by TLI, CFI or RMSEA, was recommended.  Most of the ML-based fit 

indices outperformed the GLS- and ADF-based ones.  Hu and Bentler in 1999 examined 

the adequacy of some conventional cutoff criteria for various fit indices.  With the ML 

method, they suggested a cutoff value close to 0.95 for TLI and CFI, close to 0.06 for 

RMSEA and close to 0.08 for SRMR.  However, using the suggested cutoff criteria, 

RMSEA and TLI tended to overreject properly specified models at small sample sizes. 

Curran, West and Finch (1996) conducted a simulation study based on a 

nine-indicator, three-factor CFA model to study the robustness of the ML, SB and ADF χ2 

to non-normality.  Data were generated from three levels of data distribution (normality, 
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moderate and severe non-normality) and four different model specifications at sample 

sizes of 100, 200, 500 and 1000.  There were 200 replications per condition.  It was found 

that the SB χ2 was underestimated with increasing non-normality, and the power of the SB 

to reject misspecified models attenuated with non-normal data.  The ML χ2 was inflated 

with increasing non-normality for misspecified models.  Finally, in comparison with ML 

and ADF, the SB χ2 was found to perform better across nearly all condition.  It is notable 

that, as opposed to the results in Hu, Benter and Kano (1992), the SB χ2 was not inflated at 

small sample size in the nine-indicator model. 

Nevitt and Hancock (2000) conducted a simulation study based on the same CFA 

model as Curran et al. (1996).  Two model specifications (properly specified and 

misspecified), four sample sizes and three data distributions were considered to compare 

the use of the ML-based RMSEA to that of the SB-based and the bootstrap adjusted 

RMSEA for assessing model fit.  There were 200 replications per condition.  For properly 

specified models, it was found that the RMSEA means tended to decrease with increasing 

sample sizes.  In addition, the ML-based RMSEA increased with increased non-normality, 

whereas the SB-based RMSEA appeared to be more stable across different data 

distributions.  The ML-based RMSEA in the close-fit test (reject models when RMSEA > 

0.05) had type I error rates near 5% level across sample sizes under normality but 

overrejected true models systematically with increasing non-normality.  With respect to the 

misspecified model (under-parameterized factor loadings), average values of the 

ML-based RMSEA tended to increase while those of the SB-based RMSEA tended to 

decrease with increasing non-normality.  The rejection rates of the ML- and SB-based 
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RMSEA at a cutoff of 0.05 generally increased with increasing sample sizes.  Finally, with 

the rejection rule of RMSEA > 0.05, the power of the SB-based RMSEA tended to decrease 

with increasing departure from non-normality, and the SB-based RMSEA maintained 

better type I error control than the ML-based RMSEA under non-normality. 
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CHAPTER 3 

METHODOLOGY 

 

3.1 Estimators 

The Mplus (Muthén and Muthén, 1998-2001) program is used to assess the values of 

the model fit measures.  The χ2 test statistic and the five model fit indices can all be 

estimated with both continuous and categorical outcomes in Mplus.  Depending on scales 

of the outcomes, three different estimators are used in this study.  The first two estimators 

are ML based and are designed to estimate models with continuous outcomes.  They are 

named ML and MLM in Mplus.  For estimating dichotomous outcomes, we will use a 

robust (mean- and variance-adjusted) method of WLS; it is named WLSMV in Mplus.  

Below is a brief description of these three estimators (Muthén & Muthén, 1998-2001, p. 

38). 

ML - maximum likelihood parameter estimates with conventional standard errors and 

χ2 test statistics.  Estimates are obtained by minimizing the fitting function  

FML(θ) = tr(Σ-1 S) - log|Σ-1 S| - p,                                                                                  (8) 

with respect to θ, where p is the number of the observed outcomes (Jöreskog & Sörbom, 

1979).  Denote the minimum of (8) as FML( θ̂ ), the ML χ2 statistic is then given by 2N 

FML( θ̂ ) (Muthén & Muthén, 1998-2001, p. 359).  Note that the factor N, instead of N-1, is 

used. 

 MLM - maximum likelihood parameter estimates with robust standard errors and a 

mean-adjusted χ2 test statistic.  Estimates are obtained by minimizing the fitting function  
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FMLM(θ) = tr(Σ-1 T) - log|Σ-1 S| - p,                                                                              (9)  

where T = S + ( v  - u )( v  - u )′ ,                                                                                (10) 

v  is the sample mean vector and u  is the population mean vector (e.g., Jöreskog & 

Sörbom, 1979; Jöreskog & Sörbom, 1996; Muthén & Muthén, 1998-2001).  This 

mean-adjusted χ2 statistic is defined as 

GM = 2N F( θ̂ )/c,                                                                                                        (11) 

where c = tr( ssVU ˆˆ )/d.                                                                                              (12) 

c is a scaling correction factor.  ssV̂  is obtained from the sample covariances and 

fourth-order multivariate product moments, Û is the residual weight matrix and weight 

matrix under the model, and d denotes the degrees of freedom of the model (see pages 212 

and 218 of Bentler, 1995; or page 357 of Muthén & Muthén, 1998-2001).  This 

mean-adjusted χ2 is commonly called the SB χ2.  When the multivariate normality 

assumption underlying the ML estimation is violated, the ML χ2 test statistic is inflated and 

does not follow the expected χ2 distribution.  By modifying the model χ2 with the 

correlation factor c, the SB χ2 yields a better approximation of a χ2 variate under 

non-normality.  With normal data, the SB χ2 simplifies to the ML χ2.  

WLSMV – weighted least square parameter estimates using a diagonal weight matrix 

with robust standard errors and mean- and variance-adjusted χ2 test statistic.  As mentioned 

earlier, WLS estimates are obtained by minimizing the fitting function  

FWLS(θ) = )()'( 1
D σσ −− − sWs ,                                                                                 (13) 

where (WD)jj is the asymptotic sample variance of the outcome yj.  A mean- and 



 24

variance-adjusted χ2 statistic has similar form as (9) but with different definitions of c and 

d. 

c = tr( ssVU ˆˆ )/d′                                                                                                         (14) 

d* = [tr( ssVU ˆˆ )]2 /tr[( ssVU ˆˆ )2],                                                                              (15) 

where d* is computed as the closest integer to d′ (see pages 357 and 358 of Muthén & 

Muthén, 1998-2001). 

 

3.2 Assessment of Fit Indices  

3.2.1 Sensitivity to Model Misspecification  

Misspecifications of loadings larger than 0.7 or covariances larger than 0.3 would 

yield practically as well as statistically significant effects on the parameter estimates and 

model fit, thus model fit measures should possess strong power in this case.  Moreover, the 

more the misspecified coefficients, the larger power the fit indices should have.  The χ2 test 

statistic has long been known to be too powerful for trivially false models, thus it is 

important to know whether the alternative model fit indices have the same drawback.  

Adequate model fit measures should not have too much power in trivially false models. 

 

3.2.2 Cutoff Criteria of Fit Measures 

For each cutoff value of the Chi-P and fit indices, the rejection rates (percentage of the 

500 replications that reject the proposed model) were calculated.  Adequate cut-off values 

of fit indices should exert higher probabilities of accepting correct models and rejecting 

misspecified models (power); that is, they should have small type I and type II errors.  
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From our design, type I errors can be evaluated as the rejection rates for the true models, 

whereas type II errors can be evaluated as the acceptance rates for the misspecified models.  

Power corresponds to the rejection rates for the misspecified models, and its compliment is 

the probability of a type II error.  By balancing and minimizing type I and type II errors, we 

can then evaluate and obtain adequate cutoff values of the fit indices.  
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CHAPTER 4 

MONTE CARLO STUDY 1: CFA 

 

This paper applies a Monte Carlo method to evaluate the performance and to examine 

the adequate cutoff values for fit indices.  By means of Monte Carlo simulation, samples 

are generated from an “assumed” true model in the population and, thus, the extent to 

which the model fit indices identify the true models are known.  The class of latent variable 

models is broad, and it is plausible that the performance and suitable cutoff criteria of 

model fit measures vary with different types of models.  In this dissertation, the 

performance and adequacy of cutoff criteria for model fit measures are evaluated in CFA, 

MIMIC and latent growth curve models with the aim to expand the generalizability and 

usefulness of the fit-index investigation.  The designs of the three main Monte Carlo 

studies are summarized in Table 4.1.  For each model, the design and methods used to 

investigate the adequacy of cutoff criteria are described first, followed by discussions on 

results.   

A CFA model is often applied to “confirm” the hypothesized relationship between a 

set of observed variables and a set of latent variables.  Researchers can impose 

substantively based constraints on factor loadings, factor correlations or error variances/ 

covariances in a CFA model.  The CFA models in Hu and Bentler (1998) are used to 

evaluate model fit measures in this study.  Model fit measures are evaluated under 

conditions such as model misspecification (true, misspecified and trivially misspecified 

models), type of outcome variables (normal, non-normal continuous and binary outcomes), 
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type of model specification and various sample sizes (100, 250, 500 and 1000).  Detailed 

designs and results for the CFA models are presented next. 

 

4.1 Design of Simulation  

Model specification 

The confirmatory factor models of Hu and Bentler (1998) were used to generate data 

in this study.  There were in total fifteen observed variables and three factors.  The model 

can be expressed as y = Λ ξ + ε, where y, ξ and ε are, respectively, observed-variable, 

common-factor and error vectors; Λ is a factor loadings matrix.  

There were two types of under-parameterized misspecified models designed in this 

study; one had misspecified factor covariances (Hu and Bentler called it the “simple” 

model) and the other had misspecified factor loadings (“complex” model).  The model 

structure is presented in Figure 4.1 and values of the population parameters are listed in 

Table 4.2.  

Simple model. In the simple models there were no cross loadings.  Three 

specifications of the simple model were considered.  The first model was correctly 

specified such that the estimated parameters in the sample exactly corresponded to their 

population structure (which will be referred to as the True model).  The other two models 

excluded factor covariances from the sample that existed in the population.  The population 

covariance between factor 1 and factor 2 (COV(F1, F2)) was 0.5 and covariance between 

factor 1 and factor 3 (COV(F1, F3)) was 0.4.  The first misspecified model (referred to as 

Miss1) fixed COV(F1, F2) at zero in estimation (that is, path a of Figure 4.1 was set to 0); 
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the second one (referred to as Miss2) fixed both COV(F1, F2) and COV(F1, F3) at zero in 

estimation (paths a and b of Figure 4.1 were set to 0).  Although we estimated three factor 

covariance parameters in the simple true models, we only estimated two (or one) factor 

covariance parameters in the Miss1 (or Miss2) models. 

Complex model. In addition to the fifteen factor loadings and three factor covariances 

of the sample models, the complex models added three cross-factor loadings with values 

0.7 (paths d, e and f in Figure 4.1).  Besides the True model, two misspecified models were 

also designed for the complex models.  The first one fixed the loading of the 1st observed 

variable on F3 (path d in Figure 4.1) which existed in the population as zero, and the 

second one, in addition to path d, fixed the loading of the 4th variable on F2 (path e) as zero 

in estimation.  For the purpose of identification, the factor loading of the last indicator on 

each factor estimated in the sample was fixed at 0.8 for both simple and complex models.  

Simple model with trivial covariances (simple trivial model). The design for the 

simple trivial model was similar to the simple model, except that the covariances (path a, b 

and c in Figure 4.1; also see Table 1) were all set to 0.05 in the population structure.  The 

value of 0.05 was chosen because, first, a covariance (equal to correlation here) value of 

0.05 indicated a small and ignorable relationship.  Secondly, ignoring one or two 

covariances of 0.05 was found not to affect much the parameter estimates and the residuals 

between the observed and estimated covariances.  The relative bias of the parameter 

estimates (the obtained estimate minus the population value divided by the population 

value) was below the 10% level.  Three simple trivial models were specified for estimation.  

They were the True (correctly specified), Miss1 (misspecified path a as zero) and Miss2 
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(misspecified paths a and b as zeros), respectively. 

Complex model with trivial loadings (complex trivial model). The three cross loadings 

(paths d, e and f in Figure 4.1) were specified to be 0.1 in the population structure.  

Misspecified one or two loadings of 0.1 to be 0 was found not affect much the residual 

covariances, and the relative bias of the parameter estimates was below the 10% level.  

There were also three complex trivial models specified for estimation: the True (correctly 

specified), Miss1 (misspecified path d as zero) and Miss2 (misspecified paths d and e as 

zeros) models, respectively. 

 

Type of outcome variables 

Continuous outcomes. Three population distributions were considered for each of the 

model specifications with continuous outcomes.  The first distribution was multivariate 

normal with zero skewness and zero kurtosis.  The second distribution was moderately 

non-normal with univariate skewness of 2.0 and kurtosis of 7.0.  The third distribution 

represented severely non-normal with univariate skewness of 3.0 and kurtosis of 21.0.  

According to Curran et al. (1996), these levels of non-normality reflect the real data 

distributions that they found in community-based mental health and substance abuse 

research. 

Binary outcomes. Variables were generated from multivariate normal factors/ errors 

and then were dichotomized according to different choices of thresholds.  Two population 

distributions were considered.  Distribution 1 (referred to as an Equal case) dichotomized 

observed variables at a threshold of 0.5, and the proportion of these two categories for all 
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the fifteen observed variables was 0.31 to 0.69.  Distribution 2 (referred to as an Unequal 

case) dichotomized the fifteen variables unequally such that the proportion of the two 

categories for the 1st, 2nd, 6th, 7th, 11th and 12th observed variables was 0.4 to 0.6.  The 

proportion of the two categories for the 3rd, 4th, 8th, 9th, 13th and 14th observed variables 

was 0.25 to 0.75, and that for the 5th, 10th and 15th was 0.1 and 0.9.  The uneven 

proportion of observed variables was chosen to reflect the real data sets that we often 

encounter in applications.  Note that the variances of the fifteen outcomes were scaled to be 

one in the complex models with binary outcomes. 

 

Sample size 

Since there were thirty-three and thirty-six parameters respectively in simple and 

complex true models, a sample size of one hundred allowed for approximately three cases 

per estimated parameter and seemed minimal to estimate the models properly.  Thus, one 

hundred was chosen as the minimum sample size investigated.  Three other sample sizes of 

250, 500 and 1000 were also considered. 

 

Replications 

Five hundred replications were obtained for each condition. 

 

Procedure 

Continuous outcomes. SAS (SAS Institute, 1988) was used to generate data based on 

three different distributional specification levels (normal, moderately and severely 
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non-normal), two model specification types (simple and complex), and four different 

sample sizes (N=100, 250, 500 or 1000).  The simple and complex trivial models are 

generated under normal distributions and four different sample sizes.  Vale and Maurelli’s 

(1983) procedures were used to generate multivariate non-normal distributions.  All fifteen 

observed variables were generated from the model implied covariance matrix Σ(θ) with the 

same degree of non-normality.  The non-normal distributions were generated in the 

observed level rather than the latent level to better manipulate the degree of non-normality 

observed in applications.  The same procedures were also adopted in some previous studies 

such as Chou et al. (1991), Curran et al. (1996) and Nevitt et al. (2000).   

Correctly and incorrectly specified structural models (True, Miss1 and Miss2) were 

fitted to each simulated sample using the ML or MLM estimators in Mplus.  The maximum 

number of iterations to convergence was set to 1000 in Mplus by default.  With 

multivariate normal outcomes, the MLM estimator would generate similar results as the 

ML estimator except for sample size of less or equal to 100.  Thus, with normal outcomes 

and at the sample size of 100, MLM results for model-fit measures are also provided.  With 

moderately and severely non-normal outcomes, both ML and MLM estimation results are 

provided for Chi-P, TLI, CFI and RMSEA.  Currently WRMR is only available with the 

MLM estimator in Mplus.  Trivial models were fitted to samples with normal outcomes, 

and ML estimation results are provided.   

Binary outcomes. Data was generated based on three conditions: distributional 

specification levels (2 levels), model specification (2 types) and sample sizes (4 levels).  In 

each of the sixteen conditions, five hundred samples were drawn.  Then, correctly and 
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incorrectly specified structural models were fitted to each simulated sample using the 

WLSMV estimator in Mplus.  

A new added utility RUNALL, a set of batch files in Mplus version 2, was used in this 

simulation study.  The RUNALL utility is designed for Monte Carlo studies with data sets 

generated outside the Mplus.  It fits one model (specified in one input file) to each of the 

data sets in Mplus and automatically saves the results into one file so that values of fit 

measures can be easily accessed and summarized.  This utility can be downloaded from the 

Mplus webpage at http://www.statmodel.com/runutil.html. 

 

4.2 Results  

This section is organized as follows.  The performance and suitable cutoff criteria of 

the Chi-P and fit indices are discussed for continuous outcomes, binary outcomes and 

trivially misspecified models, respectively.  Three different continuous outcomes (normal, 

moderately and severely non-normal) and two binary outcomes (Equal and Unequal cases) 

are examined.  The performance and a conventional cutoff value of 0.05 for Chi-P are 

evaluated.  For each of the fit indices, the cutoff criteria suggested by Hu and Bentler (1999) 

are investigated first with continuous outcomes, followed by discussions on whether these 

cutoff values are applicable to other model and data conditions, such as trivial models and 

binary outcomes. 

 

4.2.1 Continuous Outcomes  

Chi-p. Table 4.3.1 presents the results of rejection rates for Chi-P under multivariate 
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normal distributions.  When N = 100 under normality, the ML-based Chi-P with a 

conventional cutoff value of 0.05 (that is, applying the rejection rule of Chi-P < 0.05) 

rejected 14.8% and 13.8% of the simple and complex true-population models; the type I 

error rates were slightly high.  With this cutoff value, the power of the χ2 test statistic 

ranged from 0.58 to 1 for the simple and complex misspecified models across sample sizes.  

The rejection rates of the SB-based Chi-P were slightly higher than those of the ML-based 

Chi-P at N = 100.  With N ≥ 250, the conventional cutoff Chi-P value of 0.05 yielded 

reasonable rejection rates for both true and misspecified models.  Tables 4.3.2 and 4.3.3 

present the results of rejection rates for Chi-P under moderately and severely non-normal 

distributions, respectively.  Consistent with previous studies, the ML χ2 under non-normal 

distributions was inflated tremendously and thus resulted in high rejection rates (for 

example, rejected 78.4% to 100% of the samples with a cutoff value of 0.05) in both true 

and misspecified models.  Moreover, increasing non-normality was accompanied by an 

increase in type I errors of the ML χ2.  In comparison with the ML χ2, the SB χ2 exhibited a 

better control over type I errors under non-normality with increasing sample sizes.  

However, with a conventional cutoff value of 0.05, the SB-based Chi-P still overrejected 

true models at N ≤ 250 under moderate non-normality (type I error rates ranged from 

16.8% to 42.4%) and across all four sample sizes under severe non-normality (type I error 

rates ranged from 14.0% to 74.2%). 

TLI. Rejection rate summaries of the ML- and MLM-based TLI for multivariate 

normal, moderately and severely non-normal distributions are presented in Tables 4.4.1, 

4.4.2 and 4.4.3, respectively.  It was shown in Table 4.4.1 that a cutoff value around 0.95 
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for the ML-based TLI has type I error rates close to the nominal rate of 5% if the 

multivariate normality assumption can sustain.  With moderately and severely non-normal 

distributions, TLI with a cutoff value of 0.95 tended to overreject true-population models at 

samples less than 250, just as Hu and Benter (1999) observed.  Table 4.4.3 shows that, 

under severe non-normality, the ML- (SB-) based TLI at a cutoff value of 0.95 rejected 

57.2% to 93% (10.6% to 73.2%) of the true models when N ≤ 250.  At a cutoff of 0.95, the 

SB-based TLI was preferable at N ≤ 250 under severely non-normal distributions, although 

its type I errors at N = 100 were still high (73.2%).  Note that, in general, the power of TLI 

deteriorated in simple models but remained strong in complex (especially for Miss2) 

models with increasing sample sizes.  The results are consistent with those in Hu and 

Bentler (1999). 

 CFI. Rejection rate summaries of the ML- and SB-based CFI for multivariate normal, 

moderately and severely non-normal distributions are presented in Tables 4.5.1, 4.5.2 and 

4.5.3, respectively.  With cutoff values less than 0.94 for the ML-based CFI under 

normality, the simple misspecified models appeared to be underrejected (rejection rates 

ranged from 0% to 33.6%).  Therefore, the ideal cutoff value of CFI should be 0.95 or 

larger.  In comparison with TLI, rejection rates of CFI were generally lower in both true 

and misspecified models with continuous outcomes.  That is, CFI, with the same cutoff 

value, had lower type I errors as well as lower power than TLI did.  With normal 

distributions, the low power associated with CFI at cutoff values of equal and less than 0.95 

in simple misspecified models can be improved by increasing the cutoff value to 0.96.  In 

doing so, CFI then had acceptable power in simple Miss2 models (rejection rates ranged 
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from 59.8% to 65.2%) along with reasonable type I error rates. 

With increasing non-normality, the ML-based CFI tended to reject a high percentage 

of true models and result in inflated type I errors at small sample sizes.  The results for the 

non-normal continuous outcomes showed that the SB-based CFI had lower type I errors 

and provided better rejection rates in true models at N ≤ 250.  With N ≥ 500, the power of 

the SB-based CFI to detect simple misspecified models deteriorated.  One might wish to 

raise the cutoff value of CFI to 0.96 to maintain sufficient power, however, the type I error 

rates of CFI at this cutoff were large at N ≤ 250 under severely non-normal distributions 

(ranged from 12% to 75%).  Under the combination of a small sample size (N = 250 or less) 

and severe non-normality, the SB-based CFI was preferable in order to control the inflated 

type I errors.  Similar to TLI, CFI had better power to detect complex misspecified models 

than to detect simple misspecified models with increasing sample size.   

RMSEA. Rejection rate summaries of the ML- and SB-based RMSEA for multivariate 

normal, moderately and severely non-normal distributions are presented in Tables 4.6.1, 

4.6.2 and 4.6.3, respectively.  Under normal distributions (Table 4.6.1), the type I error 

summary of the ML-based RMSEA at cutoff values less than 0.06 was not satisfactory at N 

= 100 (rejection rates ranged from 11.6% to 23.2% for simple true models and 11.0% to 

23.0% for complex true models).  With a cutoff value of 0.06, RMSEA had acceptable type 

I errors; its power ranged from 0.8 to 1 to detect complex misspecified models and ranged 

from 0 to .54 to detect simple misspecified models. 

With increasing non-normality, rejection rates of the ML-based RMSEA increased 

and resulted in higher type I errors at N ≤ 250.  For example, under severely non-normal 
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distributions, the ML-based RMSEA at a cutoff value of 0.06 rejected 89.6% and 95.6% of 

the simple and complex true models at N = 100, and it also rejected 55.2% and 70.4% of 

the simple and complex true models at N = 250.  Type I errors of the ML-based RMSEA 

were too high under the combination of non-normality and small sample sizes, and the 

SB-based RMSEA were able to control some of the inflated type I errors.  For example, 

with N = 250 under severe non-normality, the SB-based RMSEA only rejected up to 0.4% 

of the simple and complex true models, which exhibited a good control of type I errors. 

Tables 4.6.1, 4.6.2 and 4.6.3 show that the power of the ML-based RMSEA increased 

with increasing non-normality.  But the seeming advantage of power for the ML-based 

RMSEA should be interpreted cautiously.  Nevitt et al. (2000) argued that the high power 

of the ML-based RMSEA was only an artifact caused by the inflated ML χ2 test statistic 

under non-normality.  Their results show that with increasing non-normality, the average 

ML-based RMSEA values increased monotonously whereas the average SB-based 

RMSEA values might decrease.  Because the average ML-based RMSEA values increased 

with increasing non-normality, rejection rates of the ML-based RMSEA also increased. 

This study also found that, the ML- and SB-based RMSEA (especially the SB-based 

RMSEA) with a cutoff around 0.06 tended to underreject the simple misspecified models at 

N ≥ 250.  Reducing the cutoff value of RMSEA to 0.05, although with inflated type I errors 

at N = 100, rejected a better percentage of the misspecified models. 

SRMR. Tables 4.7.1, 4.7.2 and 4.7.3 present the rejection rates of SRMR under 

multivariate normal, moderately and severely non-normal distributions, respectively.  

Normal distribution (Table 4.7.1) is discussed first.  With a cutoff value of SRMR smaller 
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or equal to 0.06 at N = 100, true-population models were overrejected (rejection rates 

ranged from 42.4% to 97.8% for simple true models and 15.6% to 90.6% for complex true 

models).  Thus, a cutoff value higher than 0.06 should be adopted.  At a cutoff value of 0.08, 

power of SRMR to detect simple misspecified models (ranging from 99.8% to 100%) was 

much higher than its power to detect complex misspecified models (ranging from 0% to 

75.4%).  Moreover, with increasing sample size, the power of SRMR stayed large to detect 

simple misspecified models but deteriorated to detect complex ones.  In comparison with 

the cutoff value of 0.08, SRMR at a cutoff value around 0.07 demonstrated a similar pattern 

but had better power in complex misspecified models.  Thus, with normal outcomes SRMR 

≤ 0.07 seems to be a better criterion than SRMR ≤ 0.08 to indicate good models. 

The power of SRMR showed a similar pattern under non-normality (Tables 4.7.2 and 

4.7.3).  The power of SRMR in simple models was larger than that in complex models, and 

an increasing sample size was associated with a decrease of power in complex models.  

Moreover, the rejection rates of SRMR increased with increasing non-normality.  To 

maintain reasonable power in complex models at larger sample sizes, a cutoff value of 0.07 

might be better than 0.08 for SRMR when N ≥ 250. 

WRMR. Tables 4.8.1, 4.8.2 and 4.8.3 present the rejection rates of WRMR under 

multivariate normal, moderately and severely non-normal distributions, respectively.  With 

cutoff values equal to 0.6, 0.7 or 0.8 under normal distributions, the true models were 

overrejected (rejection rates ranged from 36.8% to 96.2% for simple models and ranged 

from 13.8% to 86.4% for complex models).  With cutoff values of 0.95 or 1.0, WRMR had 

moderate or strong power to detect simple and complex models (ranging from 47.6% to 
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100%) with reasonable type I errors (ranging from 0 to 3.8%).  Overall, 0.95 or 1.0 seemed 

to be appropriate cutoff values for WRMR under normality.  

 Increasing non-normality was accompanied by an increase of type I errors for WRMR 

in both simple and complex models.  Under moderate non-normality, a cutoff value of 0.95 

for WRMR exhibited small type I error rates except for the simple model at N = 100 

(rejection rate was 18.4%).  A cutoff value close to 1.0 for WRMR might be preferable in 

order to control type I errors at small samples.  Under severe non-normality, WRMR with a 

cutoff value of 0.95 should be applied with caution to the simple models at N ≤ 250 (type I 

error rates ranged from 22.2% to 43.2%).  WRMR ≤ 1.0 can be used to identify good 

complex models when N ≥ 250 and good simple models when N ≥ 500.  Different from the 

previous four fit indices (TLI, CFI, RMSEA and SRMR), the power of WRMR increased 

in both simple and complex models with increasing sample sizes.   

To evaluate the similarities between the performance of fit measures, Figure 4.2 and 

Figure 4.3 present the pairwise scatterplots for fit measures under the true and Miss1 

models based on 500 replications.  Each of these replications had a sample size of 500 with 

normal outcomes.  Under true models, it appeared that there were two clusters of correlated 

fit measures.  SRMR and WRMR clustered with high correlation (0.99), and the other 

cluster of high intercorrelations included Chi-P, TLI, CFI and RMSEA (the absolute values 

of correlations ranged from 0.84 to 0.98).  Under Miss1 models, Chi-P had values very 

close to 0 for all 500 replications.  These seemed to be still two clusters.  TLI and CFI 

appeared to be perfectly correlated, and RMSEA still correlated more highly with TLI and 

CFI than with WRMR and SRMR.  The general trend and relationships between pairs of 
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the fit indices seemed to be similar in the true and Miss1 models.  Since some fit indices 

correlated highly (such as the cluster of TLI and CFI or the cluster of WRMR and SRMR), 

it might be sufficient to use or report just one fit index from each of the clusters. 

 

 4.2.2 Dichotomous Outcomes  

Chi-P. Tables 4.9.1 and 4.9.2 present the rejection rates of Chi-P for the Equal and 

Unequal cases, respectively.  Table 4.9.1 (Equal case) shows that except for slightly low 

power in complex misspecified models at N = 100, Chi-P with a cutoff value of 0.05 had 

satisfactory power (ranging from 0.85 to 1) to detect both simple and complex misspecified 

models with acceptable type I error rates (2.4% to 5%).  Just like its performance with 

normal outcomes, the conventional cutoff value of 0.05 for Chi-P tended to overreject true 

models at N = 100 in the Unequal case (Table 4.9.2; rejection rates were 14.0% and 11.0% 

for the simple and complex true models).  The rejection rule of Chi-P < 0.05 might not be 

suitable for small samples and, to reduce the inflated type I errors, an alternative way might 

be lowering the cutoff value to, e.g., 0.01. 

TLI. Tables 4.10.1 and 4.10.2 present the rejection rates of TLI for the Equal and 

Unequal cases, respectively.  Although in the Unequal case TLI tended to overreject the 

true models at N = 100 (rejection rates were 17.6% and 9.4% for the simple and complex 

true models), a cutoff value of 0.95 seemed to still be a reasonable cutoff value for TLI with 

binary outcomes at N ≥ 250.  In contrast against the continuous outcomes, the power of TLI 

increased in simple models but decreased in complex models with increasing sample sizes 

for binary outcomes.  This resulted in better performance of TLI in models with 



 40

misspecified factor covariances rather than models with misspecified factor loadings for 

binary outcomes. 

CFI. With the same cutoff value of 0.95, the type I errors and power of CFI were 

larger than those of TLI in both Equal and Unequal (Table  4.11.1 and 4.11.2) models.  The 

rejection rule of CFI < 0.95 seemed to overreject the simple true models when N = 100 

(rejecting 10.2% and 19.6% of the samples in the Equal and Unequal cases, respectively).  

To maintain reasonable power in complex misspecified models with binary outcomes, the 

rejection rule CFI < 0.95 seemed to be better than TLI < 0.95.  At N ≥ 250, a cutoff value of 

0.96 for CFI had better type I and type II error rates than the cutoff value of 0.95.   

RMSEA. Tables 4.12.1 and 4.12.2 present the rejection rates of RMSEA for the Equal 

and Unequal cases, respectively.  With a cutoff value around 0.06, RMSEA tended to 

overreject the true-population unequal models at N = 100, especially with the Unequal case.  

For example, Table 4.12.2 shows that RMSEA rejected 21.6% and 18.0% of the simple and 

complex true models.  Thus, a cutoff value around 0.06 for RMSEA was less preferable at 

small sample sizes.  To control type I errors, it might be preferable to increase the cutoff 

value of RMSEA to 0.07 or 0.08.  However, in doing so, RMSEA underrejected the 

complex misspecified models with increasing sample sizes.  Overall, with N ≥ 250, a cutoff 

value around 0.05 was better than 0.06 for RMSEA in that the former had less type II errors.  

Similar to CFI and TLI, the power of RMSEA was larger to detect simple misspecified 

models than to detect complex misspecified models with binary outcomes. 

SRMR. Tables 4.13.1 and 4.13.2 show that, with a cutoff value close to 0.08 for SRMR, 

its rejection rates in true models were excessively large at N = 100 (ranging from 98.4% to 
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100.0%).  For the Unequal case (Table 4.13.2), the type I error rates of SRMR with the 

cutoff of 0.08 and at N = 250 were also large (67.2 and 37.8% for simple and complex 

models, respectively).  Moreover, with increasing sample sizes, the power of SRMR 

decreased substantially in complex models (ranging from 0 to 1).  With binary unequal 

outcomes, there seemed to be no adequate cutoff value for SRMR (either the type I errors 

were overly inflated at N ≤ 250 or the power were too low to reject complex misspecified 

models at N ≥ 500). 

WRMR. Tables 4.14.1 and 4.14.2 show the rejection rates of WRMR for the Equal and 

Unequal cases, respectively.  In the Unequal case, WRMR at the cutoff value of 0.95 

overrejected the simple true model at N = 100 (rejection rate was 14.4%).  In comparison 

with a cutoff value of 0.95, WRMR at a cutoff value of 1.0 had acceptable and lower type I 

error rates in both simple and complex models.  However, WRMR at a cutoff value of 1.0 

tended to underreject the complex misspecified models at small sample sizes (e.g., when N 

= 100 in the complex Miss1 models, the rejections rates were 4.8% and 14.5% for the 

Equal and Unequal cases, respectively).  Overall, 1.0 seemed to be an acceptable cutoff 

value of WRMR for both continuous and dichotomous outcomes.   

Note that, when we simply lowered cutoff criterion of the ML or SB-based Chi-P to 

0.01, the rejection rates of Chi-P were then close to those of WRMR with a cutoff value of 

1.0.  It implied that WRMR might not have much advantage over the χ2 test statistic if we 

adopted a more conservative probability level for χ2 with binary outcomes.  In addition, the 

power of WRMR and χ2 was very large (often 1.0) when sample size was large, and this 

posed a potential concern that WRMR, similar to χ2, might overreject (trivially) 
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misspecified models.  The χ2 test statistic has long been known to be too powerful for 

trivially false models, and it is important to know whether WRMR has the same pattern.  

The performance of the fit measures in trivially misspecified models is discussed below. 

 

4.2.3 Trivially Misspecified Models  

Tables 4.15 to 4.20 present the rejection rates of the Chi-P and fit indices under 

various cutoff values for normal distributions in trivially misspecified models.  Generally 

speaking, there were two patterns shown in the trivially misspecified models among the six 

model fit measures.  TLI, CFI, RMSEA and SRMR at their suggested cutoff criteria rarely 

rejected the trivially false models, especially at large sample sizes.  On the contrary, 

WRMR and Chi-P gained more power as N increased.  When sample sizes were large, the 

conventional rejection rule of Chi-P < 0.05 exhibited stronger power to reject trivially 

misspecified complex models than the other fit indices at previously suggested cutoff 

values.  The rejection rates of WRMR at a cutoff value close to 1.0 (rejection rates ranged 

from 0.6% to 18.0%) in complex trivial models were similar to those of Chi-P at a cutoff 

value close to 0.01 (rejection rates ranged from 2.6% to 21.2%).  The rejection rates of 

WRMR were very different from the Chi-P and other fit indices, however, in simple trivial 

models.  Even with just one correlation of 0.05 misspecified (simple Miss1 model), 

WRMR at a cutoff value of 1.0 rejected models over 50% of the time when N = 1000.   

 

4.3 Summary and Conclusion  

This chapter evaluated the adequacy of cutoff values for fit measures under different 
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sample size, model specification, type of model misspecification and type of outcomes 

variables for CFA models.  The results were summarized with respect to the types of 

outcomes.  When the outcomes were normal, a cutoff value of 0.05 for Chi-P overrejected 

the true models at N = 100.  Relatively speaking, for all four sample sizes, the better 

choices of cutoff values for the ML-based TLI, CFI, RMSEA and SRMR were close to 

0.95, 0.96, 0.05 and 0.07 respectively.  A cutoff value close to 0.05 or 0.045 for RMSEA 

was necessary to maintain reasonable power at N ≥ 250, although it tended to overreject the 

true models at N = 100.  WRMR ≤ 0.95 or 1.0 to indicate good fit had moderate to large 

power to detect both simple and complex misspecified models with small type I errors.  In 

some cases, a few cutoff values for the same fit index may be acceptable, such as cutoff 

values of 0.95 or 0.96 for CFI and TLI, values of 0.07 or 0.08 for SRMR, values of 0.05 or 

0.06 for RMSEA, and values close to 0.95 or 1.0 for WRMR.  Thus, the suggested cutoff 

values should not be seen as fixed rules.  Comparatively speaking, the power of TLI, CFI 

and RMSEA to detect misspecified complex models was larger than that to detect 

misspecified simple models; the power of SRMR was larger to detect misspecified simple 

models; WRMR and Chi-P had strong power to detect both types of misspecified models.    

From the previous cutoff criteria and under moderate non-normality, only WRMR 

with a cutoff value of 1.0 sustained reasonable power (ranged from 0.42 to 1) to detect 

misspecified models with acceptable type I errors for both simple and complex models 

across all four sample sizes.  The ML-based TLI ≥ 0.95, the ML-based CFI ≥ 0.95, SRMR 

≤ 0.07 and the SB-based Chi-p ≥ 0.01 seemed to be acceptable indications of good simple 

and complex models at N ≥ 250.  Note that the SB-based Chi-P, TLI, CFI and RMSEA at 
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the suggested cutoff values still overrejected true models at N = 100 under non-normality, 

although their type I error rates were greatly reduced comparing to their ML-based 

counterparts.  A cutoff value close to 0.05 for the ML-based RMSEA had reasonable 

rejection rate results at N ≥ 500. 

Under severe non-normality, none of the model fit indices at the suggested cutoff 

values had acceptable type I errors at N = 100.  SRMR at a cutoff value close to 0.7, the 

ML-based TLI and CFI at a cutoff value close to 0.95 and WRMR at a cutoff value close to 

1.0 were still applicable when sample size was equal or larger than 500.  At a small sample 

size (N = 250), a cutoff value of 0.95 for the SB-based CFI and a cutoff value of 0.07 for 

SRMR had acceptable type I and type II errors. 

With binary outcomes, the results suggested that SRMR was not a good fit index.  In 

addition, none of the fit indices had ideal type I errors and at the same time maintained 

strong power for both simple and complex models across all samples.  WRMR with a 

cutoff value of 1.0, except for its low power in complex models at small sample sizes, had 

acceptable type I and type II errors for both simple and complex models.  In comparison 

with TLI ≥ 0.95, the performance of CFI ≥ 0.95 to indicate good models was better because 

its power to detect complex misspecified models stayed strong across samples.  With 

binary outcomes, Chi-P ≥ 0.05, CFI ≥ 0.95 (or 0.96), RMSEA ≤ 0.05 and WRMR ≤ 1.0 can 

be indications of good models with binary outcomes at N ≥ 250.  

From the above summary, some cutoff values of the fit indices seemed to be 

applicable to both continuous and binary outcomes across most sample sizes.  A cutoff 

value close to 0.95 for CFI (using the SB-based CFI under the combination of severe 
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non-normality and N = 250) was applicable to both continuous and binary outcomes when 

N ≥ 250, but one needed to be cautious of its low power in simple models with normal and 

moderately non-normal outcomes, especially when a sample size was large.  Applying 

WRMR ≤ 1.0 to indicate good models, except for its potential low power at small samples 

with binary outcomes, can work well for normal continuous, moderately non-normal 

continuous and binary outcomes as well as for both simple and complex models across 

samples.  However, it appeared that WRMR might be too powerful for trivial 

misspecification of factor covariances.  A cutoff value of 0.05 for Chi-P resulted in inflated 

type I errors at N = 100 with all but binary equal outcomes.  Thus, except for binary equal 

outcomes, Chi-P ≥ 0.05 was not an appropriate good-model indicator at N = 100.  We 

would like to avoid incorrectly rejecting the model if it is true, thus the aim was to select 

cutoff values and fit measures that have minimum type I errors with acceptable type II error 

rates.  Note that the rules of thumb suggested above had type I error rates lower than 5% 

with liberal type II error rates in some cases around or up to 70%. 

Similar to previous studies, it was found that the SB χ2 and SB-based TLI, CFI and 

RMSEA outperformed the ML χ2 and ML-based TLI, CFI and RMSEA under some 

combinations of non-normality and model specification at certain sample sizes.  The SB χ2 

had much lower type I errors than the ML χ2 under non-normality, but it still overrejected 

the true models at N ≤ 250 under moderate non-normality and across all four sample sizes 

under severe non-normality.  Generally speaking, with severely non-normal outcomes and 

small sample size, the SB-based TLI, CFI and RMSEA were recommended to reduce type 

I errors.  However, the true models were still overrejected at N = 100 under non-normality 
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using the cutoff values close to 0.95 (or 0.96), 0.95 (or 0.96) and 0.05 (or 0.06) for the 

SB-based TLI, CFI and RMSEA.    
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Figure 4.1.  Structures of true-population and misspecified models for the CFA models 
 

 
 

 

 

 

 

 

 

 

 

 

 
 
   
 
 
              
 

 

 

 

 

 

Source: 

Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure analysis: Sensitivity to 

underparameterized model misspecification. Psychological Methods, 3, 424-453. 
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Figure 4.2. Scatterplot of the relationship between pairs of fit measures in the CFA true models 
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Figure 4.3. Scatterplot of the relationship between pairs of fit measures in the CFA Miss1 models 
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Table 4.1. Model and data conditions evaluated in the simulation studies 
Conditions Study 1:CFA Study 2: MIMIC Study3: Latent growth 

curve model 
Model 
misspecification 

True, misspecified, 
trivially misspecified 

True, misspecified True, misspecified 

Type of outcomes Normal, non-normal 
continuous, binary 

Normal, non-normal 
continuous, binary 

Normal 

Sample sizes 100, 250, 500, 1000 100, 250, 500, 1000 100, 250, 500, 1000 

Model 
specification 

Misspecified factor 
covariances/ loadings 

Misspecified factor 
loadings 

Misspecified growth 
trend (five and eight 
time points) 
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Table 4.2. Parameter values for the CFA simple and complex models 
Variables Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15

Factor Loadings for the simple model 
F1 .7 .7 .75 .8 .8 0 0 0 0 0 0 0 0 0 0
F2 0 0 0 0 0 .7 .7 .75 .8 .8 0 0 0 0 0
F3 0 0 0 0 0 0 0 0 0 0 .7 .7 .75 .8 .8
Error variances for the simple model 
 .51 .51 .44 .36 .36 .51 .51 .44 .36 .36 .51 .51 .44 .36 .36
Factor Loadings for the complex model 
F1 .7 .7 .75 .8 .8 0 0 0 0 0 0 0 0 0 0
F2 0 0 0 .7 0 .7 .7 .75 .8 .8 0 0 0 0 0
F3 .7 0 0 0 0 0 0 0 .7 0 .7 .7 .75 .8 .8
Factor variances and covariances 

 F1 F2 F3     
F1 1       
F2 .5 1      
F3 .4 .3 1     
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Table 4.3.1. CFA model rejection rates of Chi-P at various cutoff values under normality 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100 

 
250 500 1000

 ML SB  ML SB  
0.01     

True 4.6 6.4 2.0 1.2 1.4 3.8 7.8 1.6 1.0 1.0
Miss1 36.2 40.4 86.8 100.0 100.0 75.2 78.8 100.0 100.0 100.0
Miss2 50.6 54.6 99.2 100.0 100.0 98.8 99.0 100.0 100.0 100.0

-     
0.03     

True 11.6 13.6 4.8 4.0 3.4 10.8 12.4 4.2 4.6 2.4
Miss1 48.6 55.0 94.8 100.0 100.0 83.6 86.6 100.0 100.0 100.0
Miss2 64.0 71.0 100.0 100.0 100.0 99.6 99.8 100.0 100.0 100.0

     
0.04     

True 13.4 15.2 6.2 4.8 3.6 12.2 14.8 6.0 6.6 3.8
Miss1 53.8 61.0 95.8 100.0 100.0 85.6 88.4 100.0 100.0 100.0
Miss2 70.2 75.6 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0

     
0.05     

True 14.8 17.0 8.2 6.2 4.6 13.8 17.2 7.6 8.2 4.6
Miss1 58.0 64.4 96.8 100.0 100.0 87.8 89.4 100.0 100.0 100.0
Miss2 74.8 78.2 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0

     
0.06     

True 15.2 19.8 9.0 8.0 5.4 15.6 20.2 8.2 10.0 5.2
Miss1 62.6 65.6 98.2 100.0 100.0 88.8 90.6 100.0 100.0 100.0
Miss2 78.2 81.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 4.3.2. CFA model rejection rates of Chi-P at various cutoff values under moderate non-normality 
Simple Model Complex Model Cutoff 

Value Sample Size
100 

 
250 500 1000

Sample Size
100 

 
250 500 1000

 ML SB ML SB ML SB ML SB ML SB ML SB ML SB ML SB
0.01      

True 58.6 16.0 65.6 5.2 62.6 2.4 60.0 2.0 71.2 20.4 70.2 6.4 72.2 3.8 77.6 1.6
Miss1 86.0 47.4 99.0 79.2 100.0 99.6 100.0 100.0 97.8 81.0 100.0 98.4 100.0 100.0 100.0 100.0
Miss2 91.4 59.0 99.8 94.8 100.0 100.0 100.0 100.0 100.0 97.6 100.0 100.0 100.0 100.0 100.0 100.0
      
0.03      

True 71.8 27.0 77.6 10.8 76.2 5.0 76.6 4.0 81.6 34.0 79.6 12.8 80.8 7.6 86.0 4.4
Miss1 91.8 65.6 99.6 90.4 100.0 99.8 100.0 100.0 98.6 90.4 100.0 99.8 100.0 100.0 100.0 100.0
Miss2 96.0 75.6 100.0 97.8 100.0 100.0 100.0 100.0 100.0 99.2 100.0 100.0 100.0 100.0 100.0 100.0
      
0.04      

True 76.2 30.4 81.6 14.8 79.6 6.6 79.6 4.8 84.0 38.8 83.6 15.6 84.2 10.6 88.2 5.0
Miss1 94.2 71.0 99.6 91.4 100.0 99.8 100.0 100.0 99.2 91.8 100.0 99.8 100.0 100.0 100.0 100.0
Miss2 97.2 80.2 100.0 98.8 100.0 100.0 100.0 100.0 100.0 99.4 100.0 100.0 100.0 100.0 100.0 100.0
      
0.05      

True 78.4 33.6 83.8 16.8 82.8 8.6 82.0 6.4 86.0 42.4 85.6 17.6 85.4 12.2 89.4 6.4
Miss1 95.0 74.0 99.8 92.8 100.0 99.8 100.0 100.0 99.2 93.6 100.0 99.8 100.0 100.0 100.0 100.0
Miss2 97.8 83.0 100.0 99.2 100.0 100.0 100.0 100.0 100.0 99.4 100.0 100.0 100.0 100.0 100.0 100.0
      
0.06      

True 80.0 36.2 85.8 18.6 85.0 9.6 84.6 7.0 87.4 46.6 87.0 19.8 87.0 13.2 90.0 7.6
Miss1 95.8 76.6 99.8 93.4 100.0 99.8 100.0 100.0 99.2 94.0 100.0 100.0 100.0 100.0 100.0 100.0
Miss2 98.8 85.4 100.0 99.2 100.0 100.0 100.0 100.0 100.0 99.4 100.0 100.0 100.0 100.0 100.0 100.0
Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 4.3.3. CFA model rejection rates of Chi-P at various cutoff values under severe non-normality 
Simple Model Complex Model Cutoff 

Value Sample Size
100 

 
250 500 1000

Sample Size
100 

 
250 500 1000

 ML SB ML SB ML SB ML SB ML SB ML SB ML SB ML SB
0.01      

True 87.8 44.2 92.8 16.0 95.2 7.6 98.2 3.4 94.4 50.6 96.2 21.8 99.2 7.2 99.6 6.0
Miss1 95.0 72.2 99.8 76.0 100.0 94.8 100.0 100.0 99.8 92.2 100.0 96.2 100.0 99.8 100.0 100.0
Miss2 97.2 80.2 100.0 90.8 100.0 99.8 100.0 100.0 100.0 99.4 100.0 100.0 100.0 100.0 100.0 100.0
      
0.03      

True 92.0 60.2 95.4 26.0 97.4 15.4 99.0 8.0 96.6 67.2 98.8 35.6 99.8 14.0 99.8 11.4
Miss1 97.8 82.4 99.8 87.0 100.0 98.2 100.0 100.0 100.0 96.2 100.0 98.2 100.0 99.8 100.0 100.0
Miss2 98.6 89.2 100.0 95.8 100.0 100.0 100.0 100.0 100.0 99.6 100.0 100.0 100.0 100.0 100.0 100.0
      
0.04      

True 93.4 65.2 96.4 30.8 98.0 19.8 99.0 11.6 97.2 72.0 99.4 38.8 100.0 16.6 99.8 13.8
Miss1 98.0 85.8 100.0 88.6 100.0 99.0 100.0 100.0 100.0 96.8 100.0 99.0 100.0 99.8 100.0 100.0
Miss2 98.8 90.6 100.0 97.2 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0
      
0.05      

True 94.2 68.4 97.4 33.4 98.4 22.8 99.4 14.0 97.6 74.2 99.4 42.6 100.0 18.6 100.0 16.6
Miss1 98.2 87.6 100.0 89.8 100.0 99.4 100.0 100.0 100.0 97.2 100.0 99.8 100.0 99.8 100.0 100.0
Miss2 99.2 91.8 100.0 97.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
      
0.06      

True 95.0 71.0 97.8 37.8 99.0 24.6 99.4 16.2 98.0 77.6 99.4 44.4 100.0 19.8 100.0 18.6
Miss1 98.6 88.0 100.0 90.6 100.0 99.4 100.0 100.0 100.0 98.0 100.0 99.8 100.0 100.0 100.0 100.0
Miss2 99.4 93.0 100.0 98.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 4.4.1. CFA model rejection rates of TLI at various cutoff values under normality 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100 

 
250 500 1000

 ML SB  ML SB  
0.90     

True 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 3.0 3.8 0.0 0.0 0.0 13.6 17.0 0.2 0.0 0.0
Miss2 8.4 9.8 0.2 0.0 0.0 69.0 70.4 74.2 80.8 89.8

     
0.93     

True 0.4 0.6 0.0 0.0 0.0 0.4 0.4 0.0 0.0 0.0
Miss1 21.2 24.8 1.2 0.0 0.0 49.4 51.2 28.4 14.2 6.0
Miss2 35.0 38.0 7.6 0.4 0.0 93.2 94.4 100.0 100.0 100.0

     
0.94     

True 2.4 3.6 0.0 0.0 0.0 1.2 2.2 0.0 0.0 0.0
Miss1 33.6 36.6 4.6 0.0 0.0 61.2 66.4 53.4 51.0 50.4
Miss2 46.2 50.0 24.4 9.8 2.0 96.0 96.8 100.0 100.0 100.0

     
0.95     

True 7.8 9.6 0.0 0.0 0.0 3.6 4.2 0.0 0.0 0.0
Miss1 44.4 48.8 17.6 4.2 0.2 74.6 76.8 77.8 87.6 95.6
Miss2 59.6 64.8 51.4 50.2 48.0 98.6 98.6 100.0 100.0 100.0

     
0.96     

True 14.0 16.6 0.0 0.0 0.0 9.8 10.4 0.0 0.0 0.0
Miss1 55.8 61.2 43.6 34.4 26.6 83.4 85.6 93.8 99.4 99.8
Miss2 75.0 77.6 79.4 88.4 95.6 99.6 99.6 100.0 100.0 100.0

Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 4.4.2. CFA model rejection rates of TLI at various cutoff values under moderate non-normality 
Simple Model Complex Model Cutoff 

Value Sample Size
100 

 
250 500 1000

Sample Size
100 

 
250 500 1000

 ML SB ML SB ML SB ML SB ML SB ML SB ML SB ML SB
0.90      

True 13.4 3.8 0.0 0.0 0.0 0.0 0.0 0.0 11.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 44.6 23.0 2.8 0.4 0.0 0.0 0.0 0.0 68.4 48.6 20.2 7.4 1.2 0.2 0.0 0.0
Miss2 56.4 32.0 9.6 1.4 0.2 0.0 0.0 0.0 95.6 85.4 95.8 84.6 94.0 89.2 96.4 97.8
      
0.93      

True 40.8 17.0 0.2 0.0 0.0 0.0 0.0 0.0 36.6 14.6 0.2 0.0 0.0 0.0 0.0 0.0
Miss1 79.2 52.2 36.6 12.2 4.8 0.6 0.0 0.0 92.2 75.4 78.4 53.0 59.6 38.0 32.8 34.0
Miss2 85.4 64.4 63.4 28.0 24.8 7.6 2.4 1.4 99.4 97.0 99.8 99.2 100.0 100.0 100.0 100.0
      
0.94      

True 52.8 26.0 2.0 0.2 0.0 0.0 0.0 0.0 52.2 22.4 1.0 0.2 0.0 0.0 0.0 0.0
Miss1 84.6 66.0 58.8 25.6 17.0 4.8 1.0 0.2 95.4 84.4 93.4 70.8 86.2 72.4 83.4 78.8
Miss2 90.8 75.2 83.6 50.0 56.4 30.2 25.0 16.8 100.0 98.6 100.0 99.8 100.0 100.0 100.0 100.0
      
0.95      

True 66.0 34.2 7.0 0.2 0.0 0.0 0.0 0.0 67.4 31.6 4.6 0.4 0.0 0.0 0.0 0.0
Miss1 91.2 74.4 79.0 42.2 49.0 20.4 15.0 8.8 97.4 91.2 98.2 86.2 98.8 92.4 98.8 97.8
Miss2 94.6 82.4 94.0 73.8 86.0 66.2 79.0 70.2 100.0 99.4 100.0 100.0 100.0 100.0 100.0 100.0
      
0.96      

True 77.2 45.0 18.0 2.8 0.2 0.0 0.0 0.0 79.2 47.2 15.0 1.4 0.0 0.0 0.4 0.0
Miss1 95.6 82.6 92.8 68.8 83.2 55.8 66.6 50.8 99.0 94.4 99.8 95.8 100.0 99.0 100.0 100.0
Miss2 98.6 89.6 99.0 90.8 98.6 91.6 99.6 98.6 100.0 99.6 100.0 100.0 100.0 100.0 100.0 100.0
Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 4.4.3. CFA model rejection rates of TLI at various cutoff values under severe non-normality 
Simple Model Complex Model Cutoff 

Value Sample Size
100 

 
250 500 1000

Sample Size
100 

 
250 500 1000

 ML SB ML SB ML SB ML SB ML SB ML SB ML SB ML SB
0.90      

True 55.8 29.6 3.0 0.4 0.0 0.0 0.0 0.0 52.6 28.2 2.0 0.2 0.0 0.0 0.0 0.0
Miss1 77.6 57.8 32.8 6.4 2.0 0.2 0.0 0.0 91.4 76.2 63.0 34.2 21.2 7.0 3.2 2.8
Miss2 82.0 66.0 50.6 13.2 11.0 0.8 0.0 0.0 99.4 95.4 98.2 91.6 98.0 93.2 97.4 97.0
      
0.93      

True 79.0 55.2 22.0 4.2 0.4 0.0 0.0 0.0 82.6 52.6 23.4 3.4 0.4 0.0 0.0 0.0
Miss1 91.2 79.6 75.0 36.2 37.8 8.8 3.0 0.4 98.2 92.8 94.8 74.2 88.0 59.0 71.8 61.8
Miss2 94.2 86.2 86.2 58.4 68.4 29.4 23.8 9.4 100.0 99.6 100.0 99.4 100.0 99.6 100.0 100.0
      
0.94      

True 84.8 64.8 37.8 5.6 2.2 0.0 0.0 0.0 88.8 62.8 36.8 6.4 1.0 0.2 0.0 0.0
Miss1 93.4 85.4 85.4 52.6 64.4 23.6 17.2 4.4 99.2 96.0 98.8 82.8 97.8 80.4 94.8 88.2
Miss2 96.4 89.8 92.6 72.0 87.8 56.8 63.6 41.8 100.0 99.8 100.0 99.8 100.0 99.8 100.0 100.0
      
0.95      

True 89.8 73.2 58.4 10.6 8.4 0.6 0.0 0.0 93.0 74.2 57.2 13.4 4.6 0.4 0.0 0.0
Miss1 97.2 90.2 93.0 67.6 86.0 47.0 54.6 26.6 99.8 97.0 100.0 91.4 99.4 94.0 100.0 97.4
Miss2 98.4 93.8 97.8 83.8 98.0 80.0 93.4 83.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
      
0.96      

True 93.2 81.0 72.2 19.4 22.2 1.4 0.0 0.0 96.2 83.2 76.2 22.6 14.2 1.4 0.4 0.0
Miss1 98.6 94.0 97.2 80.6 97.4 74.2 92.0 70.2 100.0 99.0 100.0 96.6 100.0 98.8 100.0 100.0
Miss2 99.0 97.4 99.8 94.0 99.8 95.4 99.8 98.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 4.5.1. CFA model rejection rates of CFI at various cutoff values under normality 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100 

 
250 500 1000

 ML SB  ML SB  
0.90     

True 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 0.2 0.6 0.0 0.0 0.0 4.4 4.4 0.0 0.0 0.0
Miss2 1.0 1.8 0.0 0.0 0.0 41.2 44.2 27.6 14.0 7.6

     
0.93     

True 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 10.0 12.2 0.0 0.0 0.0 27.4 30.2 3.6 0.6 0.0
Miss2 22.0 25.0 0.6 0.0 0.0 82.0 84.6 95.4 98.8 99.4

     
0.94     

True 0.4 0.4 0.0 0.0 0.0 0.4 0.2 0.0 0.0 0.0
Miss1 19.2 22.6 0.6 0.0 0.0 44.4 47.2 18.4 7.8 1.4
Miss2 33.6 37.0 6.6 0.0 0.0 92.2 93.0 99.8 100.0 100.0

     
0.95     

True 2.4 3.4 0.0 0.0 0.0 1.0 1.8 0.0 0.0 0.0
Miss1 34.0 36.6 4.6 0.2 0.0 58.0 63.0 48.4 42.8 39.6
Miss2 47.2 51.2 26.8 11.6 3.0 95.6 96.4 100.0 100.0 100.0

     
0.96     

True 8.6 10.2 0.0 0.0 0.0 3.6 4.2 0.0 0.0 0.0
Miss1 48.6 52.2 23.2 8.2 1.6 75.4 77.4 79.2 89.0 96.2
Miss2 63.6 68.8 59.8 63.2 65.2 98.6 99.0 100.0 100.0 100.0

Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 4.5.2. CFA model rejection rates of CFI at various cutoff values under moderate non-normality 
Simple Model Complex Model Cutoff 

Value Sample Size
100 

 
250 500 1000

Sample Size
100 

 
250 500 1000

 ML SB ML SB ML SB ML SB ML SB ML SB ML SB ML SB
0.90      

True 4.6 1.8 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 28.4 9.4 0.2 0.0 0.0 0.0 0.0 0.0 43.4 21.0 1.8 0.6 0.0 0.0 0.0 0.0
Miss2 39.4 16.6 0.8 0.0 0.0 0.0 0.0 0.0 86.0 70.4 71.6 54.0 48.2 40.2 25.8 35.6
      
0.93      

True 25.8 7.8 0.0 0.0 0.0 0.0 0.0 0.0 19.0 5.4 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 64.0 38.0 13.8 3.0 0.4 0.0 0.0 0.0 81.4 60.4 45.4 24.0 13.0 6.4 1.6 1.6
Miss2 74.6 50.4 37.0 11.4 4.2 0.8 0.0 0.0 98.6 92.6 99.6 96.4 99.8 99.6 99.8 100.0
      
0.94      

True 37.2 15.8 0.2 0.0 0.0 0.0 0.0 0.0 30.2 11.4 0.2 0.0 0.0 0.0 0.0 0.0
Miss1 77.0 50.2 33.0 10.6 3.4 0.6 0.0 0.0 89.8 72.6 70.6 44.0 43.6 27.4 17.2 17.0
Miss2 85.4 63.6 61.6 26.2 22.4 7.0 2.0 0.6 99.4 96.4 99.8 99.2 100.0 100.0 100.0 100.0
      
0.95      

True 52.8 25.6 2.0 0.2 0.0 0.0 0.0 0.0 47.6 20.8 0.8 0.2 0.0 0.0 0.0 0.0
Miss1 84.8 66.0 60.0 26.0 18.2 4.8 1.0 0.4 94.8 83.2 90.6 67.2 82.0 67.2 75.6 72.2
Miss2 91.0 76.4 85.4 53.6 60.8 33.4 30.6 20.8 100.0 98.6 100.0 99.8 100.0 100.0 100.0 100.0
      
0.96      

True 68.0 35.2 7.8 0.4 0.0 0.0 0.0 0.0 67.4 31.6 4.6 0.4 0.0 0.0 0.0 0.0
Miss1 91.6 76.0 85.0 49.6 57.4 27.0 21.6 14.0 97.4 91.4 98.2 87.4 99.2 93.2 99.2 97.8
Miss2 95.6 85.6 96.2 80.2 93.0 75.0 90.6 83.8 100.0 99.4 100.0 100.0 100.0 100.0 100.0 100.0
Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 4.5.3. CFA model rejection rates of CFI at various cutoff values under severe non-normality 
Simple Model Complex Model Cutoff 

Value Sample Size
100 

 
250 500 1000

Sample Size
100 

 
250 500 1000

 ML SB ML SB ML SB ML SB ML SB ML SB ML SB ML SB
0.90      

True 36.4 17.6 0.4 0.2 0.0 0.0 0.0 0.0 32.0 13.2 0.6 0.0 0.0 0.0 0.0 0.0
Miss1 63.8 39.8 14.6 2.0 0.4 0.0 0.0 0.0 77.6 54.2 30.0 11.0 1.4 0.6 0.0 0.0
Miss2 73.0 50.2 25.0 4.0 1.2 0.2 0.0 0.0 97.2 88.8 90.2 72.4 79.4 61.2 60.4 62.6
      
0.93      

True 72.0 42.4 9.6 1.6 0.0 0.0 0.0 0.0 65.6 37.0 7.2 0.8 0.0 0.0 0.0 0.0
Miss1 85.2 72.8 56.4 19.0 13.6 1.4 0.0 0.0 96.4 85.6 83.0 51.8 48.8 24.4 18.6 13.0
Miss2 90.0 79.4 74.4 34.2 36.4 10.0 2.6 0.8 100.0 98.6 99.8 96.8 99.6 98.4 99.8 100.0
      
0.94      

True 77.4 53.6 19.2 3.8 0.2 0.0 0.0 0.0 78.0 48.0 16.2 2.0 0.2 0.0 0.0 0.0
Miss1 90.6 78.6 73.4 34.4 33.6 7.4 2.2 0.4 97.6 92.0 92.6 69.4 79.8 49.0 60.4 47.6
Miss2 94.2 86.0 85.6 57.8 67.6 28.6 22.0 8.8 100.0 99.4 100.0 99.2 100.0 99.6 100.0 100.0
      
0.95      

True 84.4 64.8 37.4 5.6 2.0 0.0 0.0 0.0 87.4 60.8 33.4 5.2 0.8 0.2 0.0 0.0
Miss1 93.6 85.4 85.6 53.6 64.8 24.2 17.2 4.6 99.0 95.6 98.6 82.4 96.2 77.4 92.8 82.8
Miss2 97.2 90.2 93.4 72.8 89.4 58.6 68.4 45.4 100.0 99.8 100.0 99.8 100.0 99.8 100.0 100.0
      
0.96      

True 90.0 74.6 61.8 11.6 11.2 0.0 0.0 0.0 93.0 74.2 57.2 13.4 4.6 0.4 0.0 0.0
Miss1 97.4 91.6 93.6 70.8 89.4 54.6 64.4 33.8 99.8 97.0 100.0 91.6 99.4 94.6 100.0 97.6
Miss2 98.8 94.8 98.6 86.8 98.6 86.6 96.4 90.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 4.6.1. CFA model rejection rates of RMSEA at various cutoff values under normality  
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100 

 
250 500 1000

 ML SB  ML SB  
0.045    

True 23.2 28.0 0.4 0.0 0.0 23.0 29.0 0.6 0.0 0.0
Miss1 69.8 74.0 72.6 79.0 87.8 92.4 94.0 100.0 100.0 100.0
Miss2 84.4 87.4 93.2 98.4 99.8 100.0 100.0 100.0 100.0 100.0

    
0.05    

True 15.0 18.4 0.0 0.0 0.0 15.8 20.2 0.2 0.0 0.0
Miss1 61.2 65.0 51.4 43.6 37.6 88.8 90.4 99.2 100.0 100.0
Miss2 76.2 79.6 81.8 90.2 97.4 100.0 100.0 100.0 100.0 100.0

    
0.055    

True 11.6 14.0 0.0 0.0 0.0 11.0 13.6 0.0 0.0 0.0
Miss1 48.6 55.0 27.4 11.8 3.2 84.4 87.0 96.4 99.8 100.0
Miss2 63.6 70.4 61.4 66.4 70.4 99.6 99.8 100.0 100.0 100.0

    
0.06    

True 6.0 8.8 0.0 0.0 0.0 7.0 9.2 0.0 0.0 0.0
Miss1 40.2 43.4 10.8 1.4 0.0 79.6 81.8 84.8 96.2 99.4
Miss2 54.2 59.6 36.8 27.0 16.0 99.4 99.4 100.0 100.0 100.0

    
0.07    

True 0.8 1.4 0.0 0.0 0.0 1.2 1.4 0.0 0.0 0.0
Miss1 18.6 21.8 0.2 0.0 0.0 60.2 63.8 49.8 47.0 43.8
Miss2 30.2 34.8 4.4 0.2 0.0 95.2 97.0 100.0 100.0 100.0

    
0.08    

True 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0
Miss1 6.6 7.6 0.0 0.0 0.0 34.4 41.4 9.4 2.4 0.0
Miss2 12.6 16.0 0.2 0.0 0.0 87.8 89.6 97.4 99.8 100.0

    
0.09    

True 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 0.0 1.2 0.0 0.0 0.0 14.6 19.0 0.2 0.0 0.0
Miss2 2.0 3.6 0.0 0.0 0.0 66.2 70.8 71.2 77.6 87.6

    
0.10    

True 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 0.0 0.0 0.0 0.0 0.0 3.4 4.4 0.0 0.0 0.0
Miss2 0.0 0.0 0.0 0.0 0.0 38.8 45.0 22.8 11.2 3.6

Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 4.6.2. CFA model rejection rates of RMSEA at various cutoff values under moderate non-normality 
Simple Model Complex Model Cutoff 

Value Sample Size
100 

 
250 500 1000

Sample Size
100 

 
250 500 1000

 ML SB ML SB ML SB ML SB ML SB ML SB ML SB ML SB
0.045      

True 85.4 47.4 44.6 1.6 2.4 0.0 0.0 0.0 90.4 57.8 51.2 2.6 6.4 0.0 0.0 0.0
Miss1 97.4 82.8 96.8 55.8 96.6 27.4 97.8 11.4 100.0 96.2 100.0 95.0 100.0 97.8 100.0 100.0
Miss2 99.4 89.0 99.4 83.8 99.8 71.0 100.0 71.2 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0
      
0.05      

True 79.8 35.6 24.4 0.2 0.2 0.0 0.0 0.0 87.4 46.6 35.0 0.6 0.8 0.0 0.0 0.0
Miss1 95.4 76.0 94.4 33.2 86.6 6.6 75.2 0.2 99.2 93.8 100.0 87.0 100.0 90.0 100.0 92.4
Miss2 98.4 85.0 98.2 61.6 99.0 32.8 99.2 16.4 100.0 99.4 100.0 100.0 100.0 100.0 100.0 100.0
      
0.055      

True 71.8 27.2 12.4 0.0 0.0 0.0 0.0 0.0 82.0 35.2 21.8 0.4 0.0 0.0 0.0 0.0
Miss1 91.8 65.6 86.8 17.6 64.2 1.0 31.6 0.0 98.8 91.0 99.8 73.6 100.0 64.8 100.0 56.8
Miss2 95.8 75.2 95.4 38.0 91.8 7.0 91.6 0.4 100.0 99.2 100.0 99.8 100.0 100.0 100.0 100.0
      
0.06      

True 63.0 19.2 5.8 0.0 0.0 0.0 0.0 0.0 76.0 25.0 10.6 0.0 0.0 0.0 0.0 0.0
Miss1 88.6 52.6 72.8 4.2 35.2 0.2 7.6 0.0 98.4 85.6 99.2 54.4 100.0 30.0 100.0 14.8
Miss2 91.8 61.8 90.8 14.2 73.2 1.0 52.8 0.0 100.0 98.2 100.0 99.2 100.0 100.0 100.0 100.0
      
0.07      

True 41.0 7.0 0.4 0.0 0.0 0.0 0.0 0.0 55.2 9.8 2.0 0.0 0.0 0.0 0.0 0.0
Miss1 75.8 30.2 33.0 0.2 3.2 0.0 0.0 0.0 96.0 67.0 92.0 15.4 86.4 1.0 79.4 0.0
Miss2 83.2 38.6 56.6 0.4 17.0 0.2 1.0 0.0 99.6 94.8 100.0 88.2 100.0 86.2 100.0 86.4
      
0.08      

True 22.2 1.8 0.0 0.0 0.0 0.0 0.0 0.0 32.4 2.4 0.2 0.0 0.0 0.0 0.0 0.0
Miss1 55.4 10.6 6.8 0.0 0.0 0.0 0.0 0.0 87.4 42.8 63.0 1.2 29.8 0.0 7.6 0.0
Miss2 62.4 16.0 17.6 0.0 1.4 0.0 0.0 0.0 98.6 82.8 99.8 54.0 100.0 25.6 100.0 9.8
      
0.09      

True 8.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0 15.6 0.8 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 32.6 2.8 0.4 0.0 0.0 0.0 0.0 0.0 74.4 19.0 25.4 0.0 2.8 0.0 0.0 0.0
Miss2 41.6 5.0 2.6 0.0 0.0 0.0 0.0 0.0 95.2 60.4 95.2 12.0 92.6 0.6 96.0 0.0
      
0.10      

True 2.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 15.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0 49.4 5.8 5.4 0.0 0.0 0.0 0.0 0.0
Miss2 22.2 0.8 0.0 0.0 0.0 0.0 0.0 0.0 85.6 34.0 72.6 1.0 47.2 0.0 22.8 0.0
Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 4.6.3. CFA model rejection rates of RMSEA at various cutoff values under severe non-normality 
Simple Model Complex Model Cutoff 

Value Sample Size
100 

 
250 500 1000

Sample Size
100 

 
250 500 1000

 ML SB ML SB ML SB ML SB ML SB ML SB ML SB ML SB
0.045      

True 96.6 78.0 86.2 7.0 52.0 0.0 2.0 0.0 98.6 84.6 92.6 11.4 64.8 0.0 12.6 0.0
Miss1 99.2 92.8 99.4 54.8 99.4 10.6 99.8 0.0 100.0 98.8 100.0 89.8 100.0 77.4 100.0 64.2
Miss2 99.8 95.8 100.0 74.4 100.0 36.4 100.0 5.4 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0
      
0.05      

True 94.6 70.4 77.6 2.4 31.0 0.0 0.2 0.0 98.0 77.6 87.2 5.4 45.2 0.0 2.6 0.0
Miss1 98.6 87.8 98.0 32.0 98.4 1.2 94.4 0.0 100.0 98.0 100.0 80.8 100.0 46.6 100.0 18.0
Miss2 99.4 92.6 99.6 51.6 100.0 8.6 100.0 0.2 100.0 100.0 100.0 99.4 100.0 99.4 100.0 98.8
      
0.055      

True 92.0 60.8 67.8 0.6 17.4 0.0 0.0 0.0 96.6 68.2 81.2 1.2 24.8 0.0 1.0 0.0
Miss1 97.8 82.4 94.6 15.4 92.8 0.0 74.2 0.0 100.0 96.4 100.0 64.4 100.0 19.2 100.0 2.0
Miss2 98.4 89.2 98.0 27.6 99.0 0.6 96.6 0.0 100.0 99.8 100.0 97.6 100.0 96.8 100.0 91.2
      
0.06      

True 89.6 49.6 55.2 0.4 8.6 0.0 0.0 0.0 95.6 56.6 70.4 0.0 13.2 0.0 0.2 0.0
Miss1 96.8 75.6 89.8 6.6 80.0 0.0 36.8 0.0 99.8 94.0 100.0 42.0 99.6 3.0 100.0 0.2
Miss2 97.6 82.4 95.8 12.6 95.8 0.0 84.2 0.0 100.0 99.6 100.0 93.4 100.0 79.8 100.0 59.8
      
0.07      

True 81.0 30.6 25.2 0.0 0.8 0.0 0.0 0.0 89.2 35.4 44.0 0.0 2.6 0.0 0.0 0.0
Miss1 91.2 52.8 75.2 0.4 37.2 0.0 1.6 0.0 99.2 82.6 98.8 11.2 98.2 0.0 94.0 0.0
Miss2 93.4 62.4 84.8 0.6 65.0 0.0 15.4 0.0 100.0 97.0 100.0 66.2 100.0 20.0 100.0 2.6
      
0.08      

True 69.0 14.0 8.2 0.0 0.0 0.0 0.0 0.0 80.6 17.6 20.4 0.0 0.6 0.0 0.0 0.0
Miss1 83.4 31.8 46.0 0.0 7.8 0.0 0.0 0.0 97.2 61.2 90.6 0.4 70.8 0.0 45.0 0.0
Miss2 86.4 37.2 60.6 0.0 21.6 0.0 0.8 0.0 99.8 89.2 100.0 22.4 99.8 0.8 100.0 0.0
      
0.09      

True 50.2 4.0 2.6 0.0 0.0 0.0 0.0 0.0 66.4 8.6 7.2 0.0 0.0 0.0 0.0 0.0
Miss1 70.2 13.6 20.6 0.0 0.8 0.0 0.0 0.0 93.4 37.0 70.0 0.0 29.0 0.0 5.8 0.0
Miss2 75.8 17.8 32.4 0.0 2.4 0.0 0.0 0.0 99.0 73.2 98.8 2.8 98.0 0.0 97.0 0.0
      
0.10      

True 34.0 1.6 0.6 0.0 0.0 0.0 0.0 0.0 48.0 2.8 1.4 0.0 0.0 0.0 0.0 0.0
Miss1 55.4 3.4 6.4 0.0 0.2 0.0 0.0 0.0 85.6 16.4 42.6 0.0 5.4 0.0 0.4 0.0
Miss2 61.6 4.2 10.6 0.0 0.2 0.0 0.0 0.0 97.8 50.0 89.4 0.0 79.6 0.0 56.6 0.0
Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 4.7.1. CFA model rejection rates of SRMR at various cutoff values under normality 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.045     
True 97.8 2.8 0.0 0.0 90.6 0.2 0.0 0.0

Miss1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.05     

True 89.0 0.2 0.0 0.0 67.0 0.0 0.0 0.0
Miss1 100.0 100.0 100.0 100.0 99.8 99.0 99.4 99.2
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.055     

True 68.6 0.0 0.0 0.0 38.6 0.0 0.0 0.0
Miss1 100.0 100.0 100.0 100.0 99.0 93.4 88.8 84.0
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.06     

True 42.4 0.0 0.0 0.0 15.6 0.0 0.0 0.0
Miss1 100.0 100.0 100.0 100.0 96.8 79.6 60.2 42.0
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.07     

True 5.0 0.0 0.0 0.0 2.2 0.0 0.0 0.0
Miss1 99.8 100.0 100.0 100.0 76.6 31.8 7.4 0.8
Miss2 100.0 100.0 100.0 100.0 96.8 87.0 78.6 68.4

     
0.08     

True 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 99.6 100.0 100.0 100.0 42.2 2.8 0.0 0.0
Miss2 100.0 100.0 100.0 100.0 75.4 37.0 10.6 0.8

     
0.09     

True 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 99.4 100.0 100.0 100.0 16.6 0.2 0.0 0.0
Miss2 100.0 100.0 100.0 100.0 41.0 2.4 0.0 0.0

     
0.10     

True 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 98.0 99.4 99.6 100.0 3.8 0.0 0.0 0.0
Miss2 99.6 100.0 100.0 100.0 14.6 0.4 0.0 0.0

     
0.11     

True 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 94.4 97.4 98.8 99.8 1.2 0.0 0.0 0.0
Miss2 99.0 100.0 100.0 100.0 3.0 0.0 0.0 0.0
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Table 4.7.2. CFA model rejection rates of SRMR at various cutoff values under moderate non-normality 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.045     
True 100.0 34.4 0.0 0.0 99.2 12.4 0.0 0.0

Miss1 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.05     

True 99.0 7.2 0.0 0.0 92.6 3.0 0.0 0.0
Miss1 100.0 100.0 100.0 100.0 100.0 99.4 98.0 98.4
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.055     

True 92.6 0.6 0.0 0.0 80.8 0.6 0.0 0.0
Miss1 100.0 100.0 100.0 100.0 100.0 97.2 91.6 86.2
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.06     

True 76.4 0.2 0.0 0.0 56.0 0.0 0.0 0.0
Miss1 100.0 100.0 100.0 100.0 98.6 88.0 69.0 55.8
Miss2 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0

     
0.07     

True 36.2 0.0 0.0 0.0 14.0 0.0 0.0 0.0
Miss1 100.0 100.0 100.0 100.0 90.8 48.4 19.8 3.6
Miss2 100.0 100.0 100.0 100.0 99.2 92.2 81.4 75.2

     
0.08     

True 5.6 0.0 0.0 0.0 2.2 0.0 0.0 0.0
Miss1 100.0 100.0 100.0 100.0 60.8 11.6 0.6 0.0
Miss2 100.0 100.0 100.0 100.0 88.0 57.0 23.0 6.0

     
0.09     

True 1.2 0.0 0.0 0.0 0.4 0.0 0.0 0.0
Miss1 99.6 99.4 100.0 100.0 31.0 2.6 0.0 0.0
Miss2 100.0 100.0 100.0 100.0 58.2 13.8 0.6 0.2

     
0.10     

True 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 97.4 99.0 99.4 100.0 12.8 0.2 0.0 0.0
Miss2 100.0 100.0 100.0 100.0 32.2 1.8 0.0 0.0

     
0.11     

True 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 95.4 97.2 97.4 99.4 3.6 0.0 0.0 0.0
Miss2 99.2 100.0 100.0 100.0 11.4 0.0 0.0 0.0
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Table 4.7.3. CFA model rejection rates of SRMR at various cutoff values under severe non-normality 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.045     
True 100.0 72.0 3.2 0.0 100.0 52.0 0.8 0.0

Miss1 100.0 100.0 100.0 100.0 100.0 99.8 99.8 99.8
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.05     

True 99.8 42.6 0.6 0.0 97.8 21.8 0.2 0.0
Miss1 100.0 100.0 100.0 100.0 100.0 98.8 98.8 98.2
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.055     

True 98.4 17.6 0.0 0.0 92.2 7.2 0.2 0.0
Miss1 100.0 100.0 100.0 100.0 100.0 96.6 92.2 88.8
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.06     

True 93.4 7.0 0.0 0.0 79.0 2.0 0.0 0.0
Miss1 100.0 100.0 100.0 100.0 99.4 90.0 71.0 61.0
Miss2 100.0 100.0 100.0 100.0 100.0 99.6 99.6 99.4

     
0.07     

True 65.0 0.4 0.0 0.0 39.0 0.4 0.0 0.0
Miss1 100.0 100.0 100.0 100.0 93.6 60.8 26.8 12.6
Miss2 100.0 100.0 100.0 100.0 99.2 94.0 84.8 76.8

     
0.08     

True 29.8 0.0 0.0 0.0 12.0 0.0 0.0 0.0
Miss1 99.8 100.0 100.0 100.0 72.8 27.2 5.2 0.8
Miss2 100.0 100.0 100.0 100.0 92.0 64.4 33.0 15.2

     
0.09     

True 7.6 0.0 0.0 0.0 3.6 0.0 0.0 0.0
Miss1 99.4 99.4 100.0 100.0 44.4 6.6 0.8 0.0
Miss2 100.0 100.0 100.0 100.0 74.8 29.4 5.8 0.6

     
0.10     

True 2.6 0.0 0.0 0.0 1.0 0.0 0.0 0.0
Miss1 98.4 99.2 100.0 100.0 22.2 1.2 0.0 0.0
Miss2 99.8 100.0 100.0 100.0 48.0 6.8 0.4 0.0

     
0.11     

True 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0
Miss1 94.4 95.6 98.8 99.2 8.4 0.0 0.0 0.0
Miss2 99.6 100.0 100.0 100.0 24.0 1.2 0.0 0.0
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Table 4.8.1. CFA model rejection rates of WRMR at various cutoff values under normality 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.60     
True 96.2 98.2 97.8 98.0 86.4 84.2 79.6 79.8

Miss1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.70     

True 77.8 73.8 73.2 70.6 47.8 44.8 39.6 35.2
Miss1 100.0 100.0 100.0 100.0 99.2 100.0 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.80     

True 36.8 31.6 28.8 23.6 13.8 11.6 8.4 6.0
Miss1 100.0 100.0 100.0 100.0 93.0 100.0 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 99.0 100.0 100.0 100.0

     
0.90     

True 9.2 6.0 5.0 5.2 3.6 0.6 0.6 0.2
Miss1 100.0 100.0 100.0 100.0 74.0 100.0 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 94.8 100.0 100.0 100.0

     
0.95     

True 3.6 2.2 1.8 2.8 1.4 0.2 0.0 0.0
Miss1 99.8 100.0 100.0 100.0 60.2 99.6 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 89.2 100.0 100.0 100.0

     
1.00     

True 1.4 0.8 0.4 1.6 0.2 0.0 0.0 0.0
Miss1 99.8 100.0 100.0 100.0 47.6 97.8 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 77.6 100.0 100.0 100.0

     
1.10     

True 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 99.6 100.0 100.0 100.0 22.4 88.6 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 52.4 100.0 100.0 100.0
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Table 4.8.2. CFA model rejection rates of WRMR at various cutoff values under moderate non-normality 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.60     
True 97.8 97.2 96.4 97.2 91.6 83.8 78.6 75.4

Miss1 100.0 100.0 100.0 100.0 99.2 99.8 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0

     
0.70     

True 86.8 83.0 72.6 66.8 65.4 52.4 43.4 33.2
Miss1 100.0 100.0 100.0 100.0 95.6 99.0 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 99.2 100.0 100.0 100.0

     
0.80     

True 59.2 45.6 35.6 27.8 34.6 19.4 10.0 7.4
Miss1 100.0 100.0 100.0 100.0 87.2 97.0 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 95.2 99.4 100.0 100.0

     
0.90     

True 31.0 17.6 8.8 6.0 12.8 3.8 1.6 0.6
Miss1 100.0 100.0 100.0 100.0 66.0 89.4 99.4 100.0
Miss2 100.0 100.0 100.0 100.0 84.6 98.0 100.0 100.0

     
0.95     

True 18.4 6.8 3.2 1.8 6.2 1.4 0.2 0.0
Miss1 100.0 100.0 100.0 100.0 54.8 84.8 98.2 100.0
Miss2 100.0 100.0 100.0 100.0 77.8 97.2 100.0 100.0

     
1.00     

True 9.0 2.4 0.8 0.6 2.6 1.0 0.2 0.0
Miss1 100.0 100.0 100.0 100.0 42.2 76.0 95.8 100.0
Miss2 100.0 100.0 100.0 100.0 67.6 95.2 100.0 100.0

     
1.10     

True 2.4 0.0 0.2 0.0 0.4 0.4 0.0 0.0
Miss1 100.0 100.0 100.0 100.0 22.0 55.0 88.0 100.0
Miss2 100.0 100.0 100.0 100.0 45.4 86.6 99.4 100.0
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Table 4.8.3. CFA model rejection rates of WRMR at various cutoff values under severe non-normality 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.60     
True 98.0 98.4 97.0 95.0 94.4 90.2 83.4 78.4

Miss1 100.0 100.0 100.0 100.0 98.2 99.8 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 99.4 100.0 100.0 100.0

     
0.70     

True 95.0 90.0 83.0 75.8 77.6 68.4 48.0 37.6
Miss1 100.0 100.0 100.0 100.0 94.6 98.4 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 97.4 99.6 100.0 100.0

     
0.80     

True 81.4 64.4 49.6 43.0 52.6 41.4 19.8 13.0
Miss1 100.0 100.0 100.0 100.0 87.2 93.6 99.6 100.0
Miss2 100.0 100.0 100.0 100.0 92.4 99.0 100.0 100.0

     
0.90     

True 57.0 34.8 23.8 14.0 29.4 16.8 5.8 2.6
Miss1 100.0 100.0 100.0 100.0 70.6 85.8 94.8 99.6
Miss2 100.0 100.0 100.0 100.0 83.6 96.0 100.0 100.0

     
0.95     

True 43.2 26.0 13.6 7.8 22.2 8.2 2.0 0.8
Miss1 100.0 100.0 100.0 100.0 61.0 79.4 91.0 99.2
Miss2 100.0 100.0 100.0 100.0 79.0 93.8 99.8 100.0

     
1.00     

True 29.6 15.2 7.8 2.2 14.0 4.2 1.0 0.4
Miss1 99.8 100.0 100.0 100.0 52.6 69.8 87.0 98.0
Miss2 100.0 100.0 100.0 100.0 73.2 90.0 98.4 100.0

     
1.10     

True 12.8 4.4 1.8 0.0 6.2 0.2 0.2 0.0
Miss1 99.2 100.0 100.0 100.0 32.2 46.4 68.8 94.6
Miss2 100.0 100.0 100.0 100.0 56.0 78.2 93.8 100.0
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Table 4.9.1. CFA model rejection rates of Chi-P at various cutoff values for binary equal outcomes 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.01     
True 0.8 1.6 0.6 1.0 1.0 0.8 0.4 1.6

Miss1 75.4 99.8 100.0 100.0 11.0 64.6 98.4 100.0
Miss2 88.2 100.0 100.0 100.0 27.2 95.4 100.0 100.0

     
0.03     

True 3.2 3.4 1.4 2.4 2.8 1.6 2.2 3.2
Miss1 84.4 100.0 100.0 100.0 24.0 77.8 99.2 100.0
Miss2 93.4 100.0 100.0 100.0 45.4 98.8 100.0 100.0

     
0.04     

True 4.0 3.8 2.2 2.8 4.2 2.8 3.4 4.4
Miss1 85.4 100.0 100.0 100.0 29.2 80.6 99.2 100.0
Miss2 94.4 100.0 100.0 100.0 51.4 99.4 100.0 100.0

     
0.05     

True 5.0 5.0 2.4 3.6 5.0 3.0 4.4 4.8
Miss1 86.6 100.0 100.0 100.0 32.2 84.6 99.6 100.0
Miss2 95.0 100.0 100.0 100.0 57.0 99.8 100.0 100.0

     
0.06     

True 6.6 6.0 4.0 5.4 6.0 3.8 4.4 6.0
Miss1 88.0 99.8 100.0 100.0 35.6 85.8 99.6 100.0
Miss2 95.4 100.0 100.0 100.0 61.0 100.0 100.0 100.0
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Table 4.9.2. CFA model rejection rates of Chi-P at various cutoff values for binary unequal outcomes 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100 a

 
250 

 
500 1000

0.01     
True 3.6 1.2 1.0 0.8 4.6 1.6 0.8 1.2

Miss1 74.6 98.8 100.0 100.0 15.5 47.2 96.0 100.0
Miss2 88.2 99.6 100.0 100.0 25.4 87.2 100.0 100.0

     
0.03     

True 9.4 3.0 2.8 3.8 7.4 3.2 1.6 3.0
Miss1 81.6 99.4 100.0 100.0 27.4 63.4 98.2 100.0
Miss2 94.2 99.6 100.0 100.0 43.7 93.0 100.0 100.0

     
0.04     

True 11.6 3.8 3.8 4.2 9.0 4.2 2.2 3.2
Miss1 84.6 99.6 100.0 100.0 31.6 66.0 98.2 100.0
Miss2 94.8 99.6 100.0 100.0 48.1 95.0 100.0 100.0

     
0.05     

True 14.0 4.4 5.0 5.0 11.0 5.4 3.0 4.4
Miss1 85.4 99.6 100.0 100.0 35.0 69.2 98.4 100.0
Miss2 95.8 99.8 100.0 100.0 51.9 96.6 100.0 100.0

     
0.06     

True 16.2 5.6 6.8 6.0 12.8 5.8 4.2 5.0
Miss1 87.4 99.6 100.0 100.0 39.0 71.6 98.8 100.0
Miss2 96.6 99.8 100.0 100.0 55.5 97.6 100.0 100.0

Note. a For the True models, 499 out of 500 data sets have converged results; 497 out of 500 data 
sets have converged results for the Miss1 and Miss2 models. 
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Table 4.10.1. CFA model rejection rates of TLI at various cutoff values for binary equal outcomes 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.90     
True 0.4 0.0 0.0 0.0 0.2 0.0 0.0 0.0

Miss1 75.4 87.4 95.4 98.2 2.2 0.0 0.0 0.0
Miss2 90.6 99.2 100.0 100.0 6.2 0.6 0.0 0.0

     
0.93     

True 2.8 0.0 0.0 0.0 0.4 0.0 0.0 0.0
Miss1 85.8 96.4 99.8 100.0 7.2 0.6 0.0 0.0
Miss2 95.4 100.0 100.0 100.0 18.4 10.2 3.8 0.8

     
0.94     

True 5.2 0.0 0.0 0.0 0.8 0.0 0.0 0.0
Miss1 89.4 97.8 100.0 100.0 11.6 2.8 0.0 0.0
Miss2 96.4 100.0 100.0 100.0 27.2 21.4 13.2 9.0

     
0.95     

True 7.6 0.0 0.0 0.0 2.0 0.0 0.0 0.0
Miss1 92.2 99.0 100.0 100.0 20.8 7.4 2.4 0.2
Miss2 97.2 100.0 100.0 100.0 38.6 36.2 34.8 35.4

     
0.96     

True 11.8 0.4 0.0 0.0 5.2 0.0 0.0 0.0
Miss1 94.0 100.0 100.0 100.0 30.8 18.6 11.8 6.4
Miss2 98.0 100.0 100.0 100.0 52.8 59.2 67.0 77.2
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Table 4.10.2. CFA model rejection rates of TLI at various cutoff values for binary unequal outcomes 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100 a

 
250 

 
500 1000

0.90     
True 3.8 0.0 0.0 0.0 1.6 0.0 0.0 0.0

Miss1 71.2 83.2 93.4 97.6 6.2 0.0 0.0 0.0
Miss2 89.4 98.2 99.8 100.0 11.3 1.2 0.0 0.0

     
0.93     

True 10.2 0.4 0.0 0.0 3.8 0.0 0.0 0.0
Miss1 83.0 95.6 99.8 100.0 15.3 2.6 0.2 0.0
Miss2 95.2 99.2 100.0 100.0 23.7 12.8 3.6 1.6

     
0.94     

True 13.4 0.4 0.0 0.0 7.0 0.0 0.0 0.0
Miss1 86.6 97.8 99.8 100.0 20.5 4.2 0.8 0.0
Miss2 96.2 99.2 100.0 100.0 33.0 21.6 11.2 9.0

     
0.95     

True 17.6 0.6 0.0 0.0 9.4 0.2 0.0 0.0
Miss1 92.2 98.2 100.0 100.0 27.2 11.6 1.8 0.4
Miss2 97.8 99.4 100.0 100.0 41.0 35.8 35.0 35.0

     
0.96     

True 22.2 1.4 0.0 0.0 13.4 0.4 0.0 0.0
Miss1 94.8 98.8 100.0 100.0 36.4 19.0 10.6 6.0
Miss2 98.8 99.8 100.0 100.0 51.9 58.4 68.2 75.4

Note. a For the True models, 499 out of 500 data sets have converged results; 497 out of 500 data 
sets have converged results for the Miss1 and Miss2 models. 
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Table 4.11.1. CFA model rejection rates of CFI at various cutoff values for binary equal outcomes 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.90     
True 0.6 0.0 0.0 0.0 0.4 0.0 0.0 0.0

Miss1 76.0 88.6 96.6 99.2 3.4 0.2 0.0 0.0
Miss2 89.0 98.2 99.8 100.0 10.4 8.0 4.8 2.6

     
0.93     

True 4.2 0.0 0.0 0.0 0.6 0.0 0.0 0.0
Miss1 86.2 96.4 99.8 100.0 13.2 6.4 2.2 1.6
Miss2 95.2 99.6 100.0 100.0 30.4 35.8 46.2 62.8

     
0.94     

True 6.4 0.2 0.0 0.0 2.6 0.0 0.0 0.0
Miss1 89.2 98.2 100.0 100.0 21.0 13.0 9.2 6.8
Miss2 95.4 100.0 100.0 100.0 40.6 54.6 71.0 87.6

     
0.95     

True 10.2 0.2 0.0 0.0 4.6 0.0 0.0 0.0
Miss1 91.8 98.8 100.0 100.0 30.2 25.6 25.6 26.2
Miss2 96.8 100.0 100.0 100.0 51.6 71.6 88.6 97.8

     
0.96     

True 16.2 1.4 0.0 0.0 8.0 0.2 0.0 0.0
Miss1 94.0 100.0 100.0 100.0 39.6 42.0 46.2 59.8
Miss2 97.6 100.0 100.0 100.0 64.0 87.8 97.8 100.0
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Table 4.11.2. CFA model rejection rates of CFI at various cutoff values for binary unequal outcomes 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100 a

 
250 

 
500 1000

0.90     
True 4.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0

Miss1 72.0 84.0 94.0 98.0 7.8 0.6 0.0 0.0
Miss2 87.8 96.8 100.0 100.0 15.1 5.6 2.2 0.6

     
0.93     

True 11.8 0.4 0.0 0.0 4.8 0.0 0.0 0.0
Miss1 83.2 95.4 99.8 100.0 19.3 6.8 1.8 0.4
Miss2 94.0 99.2 100.0 100.0 30.2 30.0 30.8 40.6

     
0.94     

True 15.4 0.4 0.0 0.0 7.6 0.2 0.0 0.0
Miss1 86.6 97.8 99.8 100.0 25.8 12.4 4.6 2.4
Miss2 95.8 99.2 100.0 100.0 37.8 43.4 57.8 72.4

     
0.95     

True 19.6 1.0 0.0 0.0 11.0 0.4 0.0 0.0
Miss1 92.0 98.2 100.0 100.0 32.4 18.8 16.2 14.0
Miss2 97.0 99.2 100.0 100.0 49.1 62.0 83.4 93.2

     
0.96     

True 25.6 3.0 0.0 0.0 16.2 1.0 0.0 0.0
Miss1 95.0 98.8 100.0 100.0 42.9 35.2 37.0 42.2
Miss2 98.2 99.8 100.0 100.0 58.8 78.8 94.8 99.6

Note. a For the True models, 499 out of 500 data sets have converged results; 497 out of 500 data 
sets have converged results for the Miss1 and Miss2 models. 
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Table 4.12.1. CFA model rejection rates of RMSEA at various cutoff values for binary equal outcomes 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.045     
True 26.6 2.2 0.0 0.0 21.6 1.2 0.0 0.0

Miss1 96.0 100.0 100.0 100.0 68.4 71.2 71.2 87.8
Miss2 98.4 100.0 100.0 100.0 84.8 96.8 99.8 100.0

     
0.05     

True 20.6 1.2 0.0 0.0 17.0 0.6 0.0 0.0
Miss1 94.2 99.8 100.0 100.0 60.4 55.0 53.2 59.6
Miss2 97.8 100.0 100.0 100.0 81.0 92.0 98.2 100.0

     
0.055     

True 14.4 0.2 0.0 0.0 12.6 0.0 0.0 0.0
Miss1 93.2 99.2 100.0 100.0 51.4 40.4 32.6 30.6
Miss2 97.2 100.0 100.0 100.0 75.4 85.0 90.4 99.0

     
0.06     

True 10.6 0.2 0.0 0.0 8.4 0.0 0.0 0.0
Miss1 90.2 98.2 100.0 100.0 42.8 27.8 16.4 9.8
Miss2 96.4 100.0 100.0 100.0 68.2 74.0 77.6 88.6

     
0.07     

True 3.8 0.0 0.0 0.0 4.6 0.0 0.0 0.0
Miss1 85.8 94.8 98.8 100.0 29.0 7.8 1.2 0.2
Miss2 94.8 99.6 100.0 100.0 51.0 42.4 34.2 32.8

     
0.08     

True 1.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0
Miss1 80.0 90.0 96.2 98.6 15.6 2.0 0.0 0.0
Miss2 91.2 98.8 99.8 100.0 32.6 14.8 4.6 1.2

     
0.09     

True 0.2 0.0 0.0 0.0 0.6 0.0 0.0 0.0
Miss1 71.4 81.0 86.2 93.8 6.6 0.2 0.0 0.0
Miss2 86.2 96.2 99.0 100.0 15.8 3.2 0.0 0.0

     
0.10     

True 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0
Miss1 62.2 67.4 66.4 74.2 4.0 0.0 0.0 0.0
Miss2 80.4 91.8 96.8 99.0 8.8 0.4 0.0 0.0

     
0.11     

True 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0
Miss1 53.4 48.0 40.8 37.6 1.4 0.0 0.0 0.0
Miss2 73.8 82.8 90.0 94.8 4.2 0.2 0.0 0.0
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Table 4.12.2. CFA model rejection rates of RMSEA at various cutoff values for binary unequal outcomes 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100 a

 
250 

 
500 1000

0.045     
True 34.8 2.6 0.0 0.0 31.7 2.6 0.0 0.0

Miss1 96.0 99.2 100.0 100.0 67.2 55.8 56.2 56.2
Miss2 99.4 99.6 100.0 100.0 82.5 90.4 97.4 100.0

     
0.05     

True 31.8 1.2 0.0 0.0 26.7 1.2 0.0 0.0
Miss1 95.0 98.8 100.0 100.0 61.4 41.0 30.6 25.4
Miss2 98.8 99.6 100.0 100.0 77.5 83.8 92.0 95.6

     
0.055     

True 26.0 0.4 0.0 0.0 22.4 0.6 0.0 0.0
Miss1 93.4 97.8 99.8 100.0 55.9 30.0 14.6 7.6
Miss2 98.0 99.6 100.0 100.0 72.6 72.8 78.4 82.6

     
0.06     

True 21.6 0.4 0.0 0.0 18.0 0.2 0.0 0.0
Miss1 91.6 96.0 99.6 100.0 47.5 16.2 5.6 0.4
Miss2 97.6 99.6 100.0 100.0 65.2 56.4 51.8 53.2

     
0.07     

True 12.2 0.2 0.0 0.0 10.6 0.0 0.0 0.0
Miss1 86.0 90.2 95.8 98.8 34.8 5.6 0.8 0.0
Miss2 96.6 98.8 100.0 100.0 50.5 24.8 9.6 6.0

     
0.08     

True 6.2 0.0 0.0 0.0 6.4 0.0 0.0 0.0
Miss1 78.6 77.8 85.0 91.8 20.1 1.0 0.0 0.0
Miss2 93.0 95.6 98.8 100.0 33.8 7.4 0.6 0.0

     
0.09     

True 2.8 0.0 0.0 0.0 3.2 0.0 0.0 0.0
Miss1 70.8 62.2 65.4 66.6 12.1 0.0 0.0 0.0
Miss2 87.0 89.2 95.4 98.2 20.1 1.2 0.0 0.0

     
0.10     

True 1.4 0.0 0.0 0.0 1.8 0.0 0.0 0.0
Miss1 59.2 41.0 36.4 32.0 5.8 0.0 0.0 0.0
Miss2 80.4 76.8 83.8 89.4 12.3 0.2 0.0 0.0

     
0.11     

True 0.2 0.0 0.0 0.0 0.4 0.0 0.0 0.0
Miss1 47.8 26.2 14.6 9.2 3.0 0.0 0.0 0.0
Miss2 72.0 60.2 63.0 66.4 6.6 0.0 0.0 0.0

Note. a For the True models, 499 out of 500 data sets have converged results; 497 out of 500 data sets have 
converged results for the Miss1 and Miss2 models. 
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Table 4.13.1. CFA model rejection rates of SRMR at various cutoff values for binary equal outcomes 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.045     
True 100.0 100.0 86.4 0.2 100.0 100.0 51.2 0.2

Miss1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.05     

True 100.0 100.0 45.4 0.0 100.0 99.4 14.8 0.0
Miss1 100.0 100.0 100.0 100.0 100.0 100.0 99.6 96.2
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.055     

True 100.0 99.4 12.4 0.0 100.0 92.0 1.2 0.0
Miss1 100.0 100.0 100.0 100.0 100.0 100.0 97.2 77.4
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.06     

True 100.0 94.6 0.8 0.0 100.0 72.4 0.0 0.0
Miss1 100.0 100.0 100.0 100.0 100.0 99.6 81.0 40.6
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.8

     
0.07     

True 100.0 53.4 0.0 0.0 100.0 15.8 0.0 0.0
Miss1 100.0 100.0 100.0 100.0 100.0 91.2 30.4 3.2
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 87.6 61.6

     
0.08     

True 100.0 9.6 0.0 0.0 98.4 1.6 0.0 0.0
Miss1 100.0 100.0 100.0 100.0 99.6 52.4 3.2 0.0
Miss2 100.0 100.0 100.0 100.0 100.0 90.4 41.4 7.0

     
0.09     

True 99.0 1.0 0.0 0.0 85.6 0.0 0.0 0.0
Miss1 100.0 100.0 100.0 100.0 97.6 17.6 0.0 0.0
Miss2 100.0 100.0 100.0 100.0 99.0 54.8 5.6 0.0

     
0.10     

True 88.8 0.0 0.0 0.0 58.6 0.0 0.0 0.0
Miss1 100.0 99.8 99.4 99.8 85.8 2.2 0.0 0.0
Miss2 100.0 100.0 100.0 100.0 94.6 18.0 0.0 0.0

     
0.11     

True 61.2 0.0 0.0 0.0 24.4 0.0 0.0 0.0
Miss1 99.8 97.2 98.4 98.0 62.4 0.6 0.0 0.0
Miss2 100.0 100.0 100.0 100.0 79.4 3.6 0.0 0.0



 79

Table 4.13.2. CFA model rejection rates of SRMR at various cutoff values for binary unequal outcomes 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100 a

 
250 

 
500 1000

0.045     
True 100.0 100.0 99.4 16.2 100.0 100.0 96.4 2.2

Miss1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.05     

True 100.0 100.0 93.8 1.8 100.0 100.0 76.4 0.2
Miss1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.4
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.055     

True 100.0 100.0 68.8 0.4 100.0 100.0 41.6 0.0
Miss1 100.0 100.0 100.0 100.0 100.0 100.0 99.6 91.8
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.06     

True 100.0 100.0 37.8 0.0 100.0 99.2 16.4 0.0
Miss1 100.0 100.0 100.0 100.0 100.0 100.0 97.2 68.2
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.6

     
0.07     

True 100.0 95.8 3.8 0.0 100.0 78.8 0.4 0.0
Miss1 100.0 100.0 100.0 100.0 100.0 99.8 74.2 12.8
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 97.2 82.8

     
0.08     

True 100.0 67.2 0.0 0.0 100.0 37.8 0.0 0.0
Miss1 100.0 100.0 100.0 100.0 100.0 89.8 22.6 0.0
Miss2 100.0 100.0 100.0 100.0 100.0 99.6 78.2 21.0

     
0.09     

True 99.8 24.0 0.0 0.0 99.4 8.2 0.0 0.0
Miss1 100.0 100.0 100.0 100.0 100.0 57.8 2.8 0.0
Miss2 100.0 100.0 100.0 100.0 100.0 87.6 27.4 0.8

     
0.10     

True 98.6 4.2 0.0 0.0 96.0 0.6 0.0 0.0
Miss1 100.0 99.8 99.8 99.8 99.0 26.4 0.2 0.0
Miss2 100.0 100.0 100.0 100.0 99.8 58.8 2.4 0.0

     
0.11     

True 95.2 0.6 0.0 0.0 80.8 0.0 0.0 0.0
Miss1 100.0 98.8 98.4 98.2 94.6 6.4 0.0 0.0
Miss2 100.0 100.0 100.0 100.0 97.6 25.2 0.2 0.0

Note. a For the True models, 499 out of 500 data sets have converged results; 497 out of 500 data 
sets have converged results for the Miss1 and Miss2 models.    
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Table 4.14.1. CFA model rejection rates of WRMR at various cutoff values for binary equal outcomes 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.60     
True 99.8 99.6 100.0 99.2 96.4 93.4 93.6 95.6

Miss1 100.0 100.0 100.0 100.0 99.6 100.0 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.70     

True 86.6 82.2 80.4 81.8 60.6 52.8 53.0 54.6
Miss1 100.0 100.0 100.0 100.0 91.6 99.6 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 98.0 100.0 100.0 100.0

     
0.80     

True 40.2 29.6 23.6 26.2 16.0 8.6 7.2 8.4
Miss1 98.8 100.0 100.0 100.0 61.2 91.4 99.8 100.0
Miss2 99.8 100.0 100.0 100.0 80.0 100.0 100.0 100.0

     
0.90     

True 8.8 4.0 1.2 2.2 1.6 0.2 0.2 0.8
Miss1 95.2 100.0 100.0 100.0 23.2 62.0 96.6 100.0
Miss2 99.0 100.0 100.0 100.0 46.8 94.4 100.0 100.0

     
0.95     

True 2.6 1.6 0.4 0.4 0.4 0.0 0.0 0.4
Miss1 90.8 100.0 100.0 100.0 9.0 41.4 89.8 100.0
Miss2 97.8 100.0 100.0 100.0 29.4 87.4 100.0 100.0

     
1.00     

True 0.6 0.4 0.2 0.0 0.4 0.0 0.0 0.0
Miss1 86.0 100.0 100.0 100.0 4.8 25.0 76.0 100.0
Miss2 96.2 100.0 100.0 100.0 14.2 72.6 100.0 100.0

     
1.10     

True 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
Miss1 71.6 98.4 100.0 100.0 1.2 5.6 43.8 99.6
Miss2 91.0 100.0 100.0 100.0 4.2 36.8 97.6 100.0
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Table 4.14.2. CFA model rejection rates of WRMR at various cutoff values for binary unequal outcomes 
Simple Model Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100 a

 
250 

 
500 1000

0.60     
True 99.8 100.0 99.4 99.8 99.2 98.8 98.2 98.4

Miss1 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.70     

True 92.4 90.8 86.0 87.0 79.4 71.2 66.6 65.6
Miss1 100.0 100.0 100.0 100.0 95.6 99.8 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 98.6 100.0 100.0 100.0

     
0.80     

True 59.2 43.8 39.0 36.6 33.1 20.4 14.8 12.4
Miss1 99.4 100.0 100.0 100.0 70.8 92.0 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 86.1 99.8 100.0 100.0

     
0.90     

True 23.0 6.0 5.4 4.8 11.6 2.6 0.4 0.8
Miss1 96.4 99.8 100.0 100.0 36.4 56.6 95.8 100.0
Miss2 100.0 100.0 100.0 100.0 55.1 92.4 100.0 100.0

     
0.95     

True 14.4 2.8 0.6 0.8 6.6 1.0 0.0 0.0
Miss1 92.6 99.8 100.0 100.0 23.1 38.4 88.8 99.8
Miss2 99.4 100.0 100.0 100.0 40.6 81.6 99.8 100.0

     
1.00     

True 7.2 1.0 0.0 0.2 3.4 0.4 0.0 0.0
Miss1 87.8 99.2 100.0 100.0 14.5 22.2 76.4 99.8
Miss2 98.0 99.8 100.0 100.0 24.5 67.4 99.2 100.0

     
1.10     

True 1.8 0.4 0.0 0.0 1.0 0.0 0.0 0.0
Miss1 73.0 97.8 100.0 100.0 4.0 6.4 34.8 96.2
Miss2 93.4 99.6 100.0 100.0 9.7 30.0 93.4 100.0

Note. a For the True models, 499 out of 500 data sets have converged results; 497 out of 500 data 
sets have converged results for the Miss1 and Miss2 models. 
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Table 4.15. CFA model rejection rates of Chi-P at various cutoff values in trivial models 
Simple trivial model (covariances=.05) Complex trivial model (loadings=.1) Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.01     
True 4.4 1.8 0.4 2.0 5.2 2.0 1.4 1.6

Miss1 4.6 1.6 0.6 2.6 6.0 2.6 4.8 7.6
Miss2 4.6 2.0 1.0 3.0 7.0 3.8 11.0 21.2

     
0.03     

True 9.8 5.6 3.0 3.8 10.8 4.6 4.6 2.8
Miss1 10.4 6.4 3.2 4.6 11.8 6.8 12.2 13.8
Miss2 11.0 6.8 4.0 6.4 12.6 10.6 20.4 38.2

     
0.04     

True 13.6 7.6 3.8 4.4 12.6 6.0 6.2 3.2
Miss1 13.4 8.0 5.0 5.8 13.6 9.4 13.6 17.0
Miss2 13.6 8.4 5.6 7.2 14.8 12.6 23.8 43.0

     
0.05     

True 15.8 9.4 5.4 4.4 14.8 6.8 8.4 4.2
Miss1 16.4 9.2 6.6 7.2 15.4 11.2 16.6 20.0
Miss2 17.2 10.0 7.2 8.6 17.0 14.6 27.0 48.4

     
0.06     

True 18.0 11.0 6.8 6.2 17.0 7.8 9.6 5.4
Miss1 18.8 11.4 8.0 8.2 17.2 12.4 18.0 22.0
Miss2 19.4 11.0 8.6 11.2 19.6 15.6 30.4 51.2
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Table 4.16. CFA model rejection rates of TLI at various cutoff values in trivial models 
Simple trivial model (covariances=.05) Complex trivial model (loadings=.1) Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.90     
True 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Miss1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss2 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0

     
0.93     

True 2.4 0.0 0.0 0.0 1.4 0.0 0.0 0.0
Miss1 1.8 0.0 0.0 0.0 2.0 0.0 0.0 0.0
Miss2 2.0 0.0 0.0 0.0 2.8 0.0 0.0 0.0

     
0.94     

True 4.6 0.0 0.0 0.0 4.2 0.0 0.0 0.0
Miss1 4.8 0.0 0.0 0.0 4.2 0.0 0.0 0.0
Miss2 4.4 0.0 0.0 0.0 4.4 0.0 0.0 0.0

     
0.95     

True 9.4 0.0 0.0 0.0 7.8 0.0 0.0 0.0
Miss1 9.8 0.0 0.0 0.0 8.8 0.0 0.0 0.0
Miss2 9.8 0.0 0.0 0.0 9.0 0.0 0.0 0.0

     
0.96     

True 17.4 0.0 0.0 0.0 12.8 0.0 0.0 0.0
Miss1 16.8 0.2 0.0 0.0 13.8 0.0 0.0 0.0
Miss2 17.0 0.2 0.0 0.0 15.0 0.0 0.0 0.0
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Table 4.17. CFA model rejection rates of CFI at various cutoff values in trivial models 
Simple trivial model (covariances=.05) Complex trivial model (loadings=.1) Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.90     
True 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Miss1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

     
0.93     

True 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 1.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0
Miss2 1.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0

     
0.94     

True 1.8 0.0 0.0 0.0 1.2 0.0 0.0 0.0
Miss1 1.4 0.0 0.0 0.0 1.8 0.0 0.0 0.0
Miss2 1.4 0.0 0.0 0.0 2.6 0.0 0.0 0.0

     
0.95     

True 4.6 0.0 0.0 0.0 3.8 0.0 0.0 0.0
Miss1 4.8 0.0 0.0 0.0 4.0 0.0 0.0 0.0
Miss2 5.6 0.0 0.0 0.0 4.2 0.0 0.0 0.0

     
0.96     

True 11.0 0.0 0.0 0.0 7.8 0.0 0.0 0.0
Miss1 11.6 0.0 0.0 0.0 9.4 0.0 0.0 0.0
Miss2 11.8 0.0 0.0 0.0 9.6 0.0 0.0 0.0
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Table 4.18. CFA model rejection rates of RMSEA at various cutoff values in trivial models 
Simple trivial model (covariances=.05) Complex trivial model (loadings=.1) Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.045     
True 24.0 0.2 0.0 0.0 23.8 0.4 0.0 0.0

Miss1 24.2 0.2 0.0 0.0 26.2 0.6 0.0 0.0
Miss2 24.8 0.2 0.0 0.0 27.2 1.2 0.0 0.0

     
0.05     

True 18.0 0.0 0.0 0.0 17.0 0.0 0.0 0.0
Miss1 17.8 0.0 0.0 0.0 17.2 0.0 0.0 0.0
Miss2 18.4 0.0 0.0 0.0 19.2 0.2 0.0 0.0

     
0.055     

True 10.0 0.0 0.0 0.0 11.2 0.0 0.0 0.0
Miss1 10.4 0.0 0.0 0.0 12.2 0.0 0.0 0.0
Miss2 10.8 0.0 0.0 0.0 12.6 0.0 0.0 0.0

     
0.06     

True 5.2 0.0 0.0 0.0 7.4 0.0 0.0 0.0
Miss1 5.2 0.0 0.0 0.0 8.0 0.0 0.0 0.0
Miss2 5.8 0.0 0.0 0.0 8.4 0.0 0.0 0.0

     
0.07     

True 1.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0
Miss1 1.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0
Miss2 1.0 0.0 0.0 0.0 2.6 0.0 0.0 0.0

     
0.08     

True 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss2 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0

     
0.09     

True 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

     
0.10     

True 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

     
0.11     

True 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 4.19. CFA model rejection rates of SRMR at various cutoff values in trivial models 
Simple trivial model (covariances=.05) Complex trivial model (loadings=.1) Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.045     
True 100.0 10.8 0.0 0.0 94.4 0.8 0.0 0.0

Miss1 100.0 43.2 5.4 0.0 97.6 3.0 0.0 0.0
Miss2 100.0 67.2 18.6 1.8 98.6 6.2 0.0 0.0

     
0.05     

True 96.6 2.2 0.0 0.0 76.4 0.0 0.0 0.0
Miss1 99.4 24.0 2.8 0.0 84.0 0.2 0.0 0.0
Miss2 99.6 42.6 6.8 0.4 89.4 0.8 0.0 0.0

     
0.055     

True 84.2 0.2 0.0 0.0 49.0 0.0 0.0 0.0
Miss1 95.2 11.6 1.2 0.0 61.2 0.0 0.0 0.0
Miss2 98.8 25.4 3.4 0.0 69.6 0.0 0.0 0.0

     
0.06     

True 61.0 0.0 0.0 0.0 22.8 0.0 0.0 0.0
Miss1 82.6 4.2 0.4 0.0 33.2 0.0 0.0 0.0
Miss2 92.2 14.2 1.4 0.0 41.2 0.0 0.0 0.0

     
0.07     

True 11.0 0.0 0.0 0.0 3.2 0.0 0.0 0.0
Miss1 41.0 0.2 0.0 0.0 5.0 0.0 0.0 0.0
Miss2 64.0 3.4 0.0 0.0 6.4 0.0 0.0 0.0

     
0.08     

True 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 15.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
Miss2 31.4 1.4 0.0 0.0 0.6 0.0 0.0 0.0

     
0.09     

True 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss2 14.4 0.2 0.0 0.0 0.2 0.0 0.0 0.0

     
0.10     

True 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss2 4.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0

     
0.11     

True 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss2 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 4.20. CFA model rejection rates of WRMR at various cutoff values in trivial models 
Simple trivial model (covariances=.05) Complex trivial model (loadings=.1) Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.60     
True 99.6 99.6 99.4 99.2 91.2 89.6 90.0 92.2

Miss1 100.0 99.8 99.8 99.8 96.0 95.8 98.8 99.6
Miss2 100.0 100.0 100.0 100.0 97.6 98.8 99.8 100.0

     
0.70     

True 93.6 91.4 90.6 89.8 58.0 54.0 48.8 49.8
Miss1 98.4 96.8 97.4 98.0 67.4 68.8 81.6 92.0
Miss2 99.2 98.4 99.8 99.6 73.4 78.0 93.0 99.0

     
0.80     

True 63.2 60.8 57.8 59.0 20.2 14.2 11.2 12.4
Miss1 83.0 84.4 85.8 89.8 29.4 28.0 40.4 66.0
Miss2 92.8 92.4 95.4 97.6 36.8 39.4 57.4 87.4

     
0.90     

True 22.2 23.4 17.4 19.0 5.4 2.2 1.0 1.8
Miss1 53.6 55.4 64.0 73.0 8.4 6.0 11.4 25.8
Miss2 74.4 77.0 84.6 92.6 10.4 9.6 23.0 54.0

     
0.95     

True 9.6 10.0 7.6 8.4 1.2 0.6 0.6 0.4
Miss1 38.4 43.6 51.6 65.8 3.0 2.8 4.6 13.0
Miss2 61.0 66.8 76.6 86.8 4.0 4.6 11.2 34.8

     
1.00     

True 3.0 5.6 3.2 3.8 0.4 0.0 0.4 0.0
Miss1 25.8 32.2 40.4 55.8 1.0 0.6 1.6 5.2
Miss2 48.4 54.4 65.8 82.8 1.2 1.2 4.8 18.0

     
1.10     

True 0.2 1.0 0.0 0.2 0.0 0.0 0.0 0.0
Miss1 11.6 18.6 23.0 39.8 0.0 0.0 0.4 0.4
Miss2 27.2 34.6 48.2 71.0 0.2 0.0 0.4 2.0
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CHAPTER 5 

MONTE CARLO STUDY 2: MIMIC 

 

MIMIC models were introduced by Jöreskog & Goldberger (1975).  Compared to 

CFA models, a MIMIC model has background variables, and it allows the regression of 

latent variables on the background variables.  The information gained from adding a set of 

relevant background variables allows us to validate constructs, study the relative 

importance of the predictors, detect population heterogeneity and detect measurement 

noninvariance (Muthén et al., 1993).  A typical MIMIC model has both measurement and 

structural components.  The measurement component refers to the hypothesized 

relationship between a latent variable and its indicators.  The structural component consists 

of the coefficients of regressing latent variables on the background variables, and it reflects 

the relative importance of the background variables on the latent variables.   

 

5.1 Design of Simulation  

The simulation design was similar to the first study except for the addition of a 

covariate.  A covariate (referred to as x), which was normally distributed with a variance of 

one and a mean of zero, was added to the previous CFA model to predict all the three 

factors.  The model is expressed as 

y = Λ ξ + ε,                                                                                                       (16) 

ξ = Γ x + ζ.                                                                                                        (17) 

The first equation is a regular CFA model.  Γ is a matrix that captures the regression 



 89

coefficients of factors on covariates, and it reflects the relationship between the covariate(s) 

and factors.  ζ is a vector that captures the residual variances of factors after taking into 

account covariates. 

The regression coefficients of the three factors on x were set to be 0.7, 0.5 and 0.4, 

respectively.  In doing so, the R2 values for the three factors accounted by x ranged from 

0.16 to 0.5, which are often seen in real data.  Models with misspecified factor loadings 

(the complex model) were further investigated in this study, and the parameter values for 

the measurement component of the MIMIC model were the same as the complex model in 

Table 4.2.  Three specifications of the complex model were investigated.  The first model 

was properly specified, and the other two models excluded factor loadings from the sample 

that existed in the population.  The number of free parameters were thirty-nine in the 

properly specified model.  The setup of the misspecified models stayed the same in that one 

cross loading of 0.7 (path d in Figure 4.1) was misspecified in the Miss1 model and two 

loadings of 0.7 (path d and e in Figure 4.1) were misspecified in the Miss2 model.   

For continuous outcomes, Chi-P, TLI, CFI, RMSEA, SRMR and WRMR were 

evaluated under three distributional levels (normal, moderately and severely non-normal), 

three levels of model misspecification (one properly specified and two 

under-parameterized misspecified models) and four sample sizes (100, 250, 500, 1000).  

For binary outcomes, Chi-P, TLI, CFI, RMSEA and WRMR were evaluated under two 

levels of distributional specification (equal and unequal cases), three levels of model 

misspecification and four sample sizes.  The simulation of non-normal data for continuous 

outcomes and choices of cut points for binary outcomes were the same as the previous CFA 
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study.  Note that SRMR was not included because it has not yet been defined for 

categorical outcomes with threshold structure or covariates.   

Data was generated in SAS and analyzed by Mplus 2.1.  The convergence rates ranged 

from 99% to 100%, and runs that failed to converge within 1000 iterations were discarded.     

 

5.2 Results  

It was found in the previous CFA study that a few cutoff values for the same fit index 

may be acceptable, such as cutoff values close to 0.95 or 0.96 for CFI and TLI, close to 

0.07 or 0.08 for SRMR, close to 0.05 or 0.06 for RMSEA, and close to 0.95 or 1.0 for 

WRMR.  In this section these cutoff values suggested in the previous study are evaluated 

first to see whether they can be applicable also to the MIMIC models.  In addition to the 

investigation of cutoff criteria, the performance of fit indices under different sample sizes 

and model misspecifications is also discussed. 

 

5.2.1 Continuous Outcomes  

 Tables 5.1.1 to 5.6.2 present the rejection rates of Chi-P, TLI, CFI, RMSEA, SRMR 

and WRMR under various cutoff values with continuous outcomes.  To generally evaluate 

the performance of fit indices under different sample sizes and model misspecifications for 

the CFA and MIMIC models, the values of means and standard deviations (SDs) for the six 

fit measures under normality are provided in Table 5.12.   

Chi-P. Table 5.12 shows that for both CFA and MIMIC True models with multivariate 

normal data, the ML-based Chi-P values on average tended to increase with increasing 
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sample sizes.  In both CFA and MIMIC Miss1 models, Chi-P tended to have larger average 

values (0.023) and spread (SDs ranged from 0.06 to 0.07) at N = 100, whereas at N ≥ 250 

its values were consistently close to 0.  Inspection of the rejection rates in Table 4.3.1 and 

Table 5.1.1 shows that similar to the CFA models, rejection rates of the SB χ2 were almost 

always higher than those of the ML χ2 at N = 100 in the MIMIC model.  The discrepancy of 

rejection rates between the ML-based and SB-based Chi-P in the MIMIC model appeared 

to be larger than the CFA model.  Moreover, similar to the CFA models, a probability level 

of 0.05 for Chi-P overrejected true models at N = 100 in the MIMIC models under 

normality (rejection rates were 16.2% for the ML-based Chi-P and 23.0% for the SB-based 

Chi-P).   

The ML χ2 and SB χ2 showed similar patterns and rejection rates between the MIMIC 

models (Table 5.1.2) and the CFA models (Tables 4.3.2 – 4.3.3) with non-normal data.  The 

SB χ2 had much lower type I error rates than the ML χ2 under non-normality, but it still 

tended to overreject the properly specified models at smaller sample sizes.  A cutoff value 

of 0.05 for the SB Chi-P overrejected true models at N ≤ 500 (rejection rates ranged from 

14.2% to 52.6%) under moderate non-normality and across all four sample sizes under 

severely non-normality (rejection rates ranged from 18.4% to 81.6%).   

TLI. It was indicated in Table 5.2.1 and Table 5.2.2 that a cutoff value of 0.95 for the 

ML-based TLI was still applicable across all four sample sizes under normality, at N ≥ 250 

under moderate non-normality, and at N ≥ 500 under severe non-normality in the MIMIC 

models.  The rejection rates of the ML- and SB-based TLI in the MIMIC misspecified 

models were lower than those in the CFA misspecified models.  Table 5.12 gives the means 
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and standard deviations for the ML-based TLI under normality, and it shows that the TLI 

values on average were very similar for both the CFA and MIMIC True models.  In 

addition, the TLI means in the MIMIC Miss1 model were slightly higher than the CFA 

Miss1 model.  Similar patterns occurred to CFI.  The CFI means tended to be larger and 

thus result in lower rejection rates in MIMIC misspecified models under certain cutoff 

values. 

CFI. Similar to CFA models, a cutoff value of 0.96 for the ML-based CFI exhibited 

satisfactory power (ranged from 0.7 to 0.89) with acceptable type I error rates (ranged from 

0% to 4.2%) under normality (Table 5.3.1).  A cutoff value of 0.95 appeared to lack power 

in the Miss1 models at larger sample sizes.  Under non-normality (Table 5.3.2), a cutoff 

value of 0.95 or 0.96 for the ML-based CFI had acceptable type I and type II error rates at 

N ≥ 250 under moderate non-normality and at N ≥ 500 under severe non-normality.  The 

cutoff value of 0.96 for TLI exhibited strong power but also had higher type I error rates at 

smaller sample size.  Under severe non-normality with N = 250, the rejection rates in the 

True models was 32.8% for the ML-based CFI comparing to 7.6% for the SB-based CFI at 

a cutoff of 0.95, thus the use of the SB-based CFI was more adequate. 

RMSEA. For both CFA and MIMIC complex models, a cutoff value of 0.06 for the 

ML-based RMSEA was suitable across all four sample sizes with normal data (Table 5.4.1 

and Table 4.6.1).  With this cutoff value, however, the type II error rates were too high at 

large sample size under non-normality (rejected 2.4% of the Miss1 models under moderate 

non-normality and 0% of the Miss1 models under severe non-normality at N = 1000).  The 

cutoff value close to 0.05 was still suitable for the ML-based RMSEA at N ≥ 250 under 
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normality and at N ≥ 500 under non-normality.  At N = 250, the SB-based RMSEA at a 

cutoff of 0.05 had acceptable type I and II error rates under non-normality (rejection rates 

ranged from 77.8% to 100% for misspecified models and 0% to 4% for true models in 

Table 5.4.2).  Finally, Table 5.12 shows that the average RMSEA values tend to be higher 

in the CFA models and, similar to CFI and TLI, the rejection rates of RMSEA in the 

MIMIC misspecified models were lower than those in the CFA misspecified models. 

SRMR. Table 5.5.1 shows that SRMR does not have a suitable cutoff value with 

acceptable type I error and type II error rates across all four samples under normality.  At a 

cutoff value of 0.07, SRMR only rejected 21% of the Miss2 models and 0% of the Miss1 

models at N = 1000.  One might want to decrease the cutoff value to 0.055 or 0.05, but the 

type I errors inflated tremendously at N = 100 under these smaller cutoff values.  A cutoff 

value close to 0.07 under normality and close to 0.08 under non-normality for SRMR had 

suitable type I and type II error rates at N = 100.  However a cutoff value close to 0.06 or 

0.055 was necessary to have reasonable power when sample size was larger (N ≥ 250). 

WRMR. Generally speaking, WRMR at a cutoff value of 1.0 had acceptable type I and 

type II error rates with normal and non-normal continuous outcomes (Table 5.6.1 and Table 

5.6.2).  A cutoff of 0.95 for WRMR provided better rejection rates in the Miss1 and Miss2 

models especially when N ≤ 250, but it also resulted in an inflated type I error rate (12.8%) 

at N = 100 under severe non-normality.  Similar to TLI, CFI, RMSEA and SRMR, The 

rejection rates of WRMR in the MIMIC misspecified models were smaller than those in the 

CFA misspecified models.  Table 5.12 shows that the RMSEA, SRMR and WRMR values 

on average were lower in the MIMIC Miss1 than in the CFA Miss1 models, whereas the 
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TLI and CFI mean values in general were higher in the MIMIC Miss1 model.  Except for 

Chi-P, all other fit indices tended to indicate better fit for the MIMIC misspecified models. 

 

5.2.2 Dichotomous Outcomes  

Table 5.13 provides the means and SDs for Chi-P, TLI, CFI, RMSEA and WRMR 

with binary unequal outcomes, and Tables 5.7 to 5.11 present the rejection rates of these fit 

measures under various cutoff values with binary outcomes.  A conventional cutoff value 

of 0.05 for Chi-P yielded reasonable type I error rates (rejection rates ranged from 4.2% to 

7.2%).  Its rejection rates in misspecified models ranged from 78.2 % to 100% at N ≥ 250, 

and ranged from 33.9% to 67.1% at N = 100.   

When N ≥ 250, using a cutoff value of 0.95 for TLI rejected 0 to 0.2% of the true 

models, 49% to 52.8% of the Miss 1 models, and 88.6% to 99.6% of the Miss2 models.  To 

increase power for Miss1 models, one might want to increase the cutoff value of TLI to 

0.96 (rejected 65.6% to 85.2% of the Miss1 models).  At the same cutoff value of 0.95 N ≥ 

250, CFI exhibited similar patterns as TLI.  It rejected 0% to 0.4% of the true models, 

53.2% to 72.4% of the Miss1 models, and 91% to 100% of the Miss2 models at N ≥ 250.  

To have higher power for the Miss1 models, one might also want to increase the cutoff of 

CFI to 0.96.  A cutoff value of 0.95 for TLI and CFI exerted higher power across samples 

but also inflated type I errors at N = 100 in MIMIC models.  Generally speaking, a cutoff 

value of 0.95 was still suitable for TLI and CFI with binary outcomes at N ≥ 250, and, with 

the same cutoff value, CFI exhibited higher power than TLI.   

In comparison with CFA models, it was indicated in Table 5.13 that the average CFI 
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and TLI values tended to be lower and the variability tended to be larger in the MIMIC true 

and misspecified models.   

RMSEA with a cutoff value close to 0.05 or 0.06 was not preferable at N = 100 

because it overrejected true models (rejection rates ranged from 11.8% to 27.4%).  At N ≥ 

250, the cutoff value of 0.06 for RMSEA rejected only 0.8% to 30.4% of the Miss1 models 

and 49.8% to 86.8% of the Miss2 models.  Thus, a cutoff value of close to 0.05 or 0.045 

might be more desirable in order to have reasonable power at larger sample sizes.  The 

performance of RMSEA was similar for both CFA and MIMIC complex models with 

binary outcomes.  According to Table 5.13, the means and SDs of RMSEA were very 

similar for both the CFA and MIMIC models.  In addition, comparing Table 5.10 with 

Table 4.12.1 and Table4.12.2, RMSEA seemed to have similar rejection rate summaries. 

WRMR at cutoff values close to 0.95 or 1.0 had acceptable type I error rates (ranged 

from 0.8% to 7.6%) across all four sample sizes.  However, WRMR rejected only around 

20% of the Miss1 models and rejected 43.6% to 45.1% of the Miss2 models with the cutoff 

value of 1.0 at N = 100.  With a cutoff close to 0.95, WRMR rejected 34.5% to 37.1% of the 

Miss1 models and 62% to 67% of the Miss2 models at N = 100.  In comparison with the 

cutoff of 1.0, WRMR at the cutoff of 0.95 also had much higher power (rejected 70% to 

74% of the Miss1 models and 95% to 98% of the Miss2 models) at N = 250.   

Table 5.13 shows that the average WRMR values in the MIMIC true and misspecified 

models were higher across samples and were more homogenous (especially at smaller 

sample sizes) than those in the CFA models.  Table 5.11 presents the rejection rates of 

WRMR under various cutoff values with binary outcomes.  It was found that the rejection 
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rates of WRMR in MIMIC models (Table 5.11) were generally larger than those in CFA 

models (Table 4.14.1 and Table 4.14.2) thus resulted in better power with WRMR in 

MIMIC models.   

 

5.3 Summary and Conclusion  

This chapter evaluated the adequacy of cutoff values for Chi-P, TLI, CFI, RMSEA, 

SRMR and WRMR in MIMIC models under data and model conditions such as different 

sample sizes, various types of model misspecification and outcome variables.  In 

comparison with CFA models under normality, the average RMSEA, SRMR and WRMR 

values were lower and the average TLI and CFI values were higher in the MIMIC 

misspecified models.  TLI, CFI, RMSEA, SRMR and WRMR on average tended to reject 

fewer MIMIC misspecified models.   

Continuous Outcomes. With normal data, the results indicated that a cutoff value 

close to 0.01 for Chi-P, 0.95 for TLI, 0.96 for CFI, and 0.06 for RMSEA had power around 

or above 0.7 with type I error rates lower than 5% across all four sample sizes.  A cutoff 

value of 0.95 (or 1.0) for WRMR was roughly applicable to all samples, but note that it 

only rejected about 45% (34.4%) of the Miss1 models at N = 100.  Similar to the previous 

CFA study, a cutoff value of 0.05 for the ML or SB-based Chi-P overrejected the MIMIC 

True models at small sample sizes under various data distributions.  Moreover, the SB χ2 

with the same cutoff value exerted much lower type I errors than the ML χ2 under 

non-normality, but it still overrejected true models at smaller sample sizes.  

Under moderate non-normality, cutoff values of 0.95 for the ML-based TLI and 0.96 
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for the ML-based CFI were still applicable at N ≥ 250.  A cutoff value of 0.05 for the 

ML-based RMSEA can be applicable at N ≥ 500, and the use of the SB-based RMSEA was 

preferable at N = 250.  The suitable cutoff value for SRMR varied with sample size.  The 

commonly used cutoff value of close to 0.07 was only suitable at small sample sizes.  A 

cutoff value close to 0.95 for WRMR exhibited acceptable type I and type II error rates at N 

≥ 250. 

To reduce type II errors a cutoff value of 0.95 for WRMR might be preferable, but 

with severely non-normal data, a cutoff value of 1.0 might be preferred to maintain type I 

error control at N = 100.  At N ≥ 250, WRMR at a cutoff close to 0.95 performed well.  The 

ML-based CFI at a cutoff value of 0.95 was applicable at N ≥ 500, and at N = 250 the use of 

the SB-based CFI was preferable.  With moderate non-normality, a cutoff value of 0.05 for 

the ML-based RMSEA was applicable at N ≥ 500, and the use of the SB-based RMSEA 

was preferable at N = 250.  

Binary Outcomes. In comparison with CFA models, the average Chi-P, TLI and CFI 

values were lower whereas the average WRMR values were higher in MIMIC models with 

binary outcomes.  The rejection rates of these fit indices were higher in the MIMIC models.  

RMSEA on average had similar values in the CFA and MIMIC models. 

With binary outcomes, none of the fit measures under previously investigated cutoff 

values had power larger than 0.7 with type I errors lower than 5% at N = 100.  Relatively 

speaking, at small sample sizes Chi-P at a probability level of 0.05 and WRMR at a cutoff 

value of 0.95 had better type I and type II error rates than the other fit indices.  Chi-P at a 

cutoff of 0.05 rejected 34% to 67% of the misspecified models, whereas WRMR at a cutoff 
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of 0.95 rejected 35% to 67% of the misspecified models at N = 100.  TLI at a cutoff close to 

0.95, CFI at close to 0.95 (0.96) and RMSEA at close to 0.05 (0.06) all tended to overreject 

true models at N = 100. 

Generally speaking, when only models with misspecified factor loadings (complex 

models) were taken into account, the performance and rejection rates of these fit measures 

were similar for both the CFA and MIMIC models.  The suitable cutoff criteria discussed in 

the previous CFA models also seemed to be applicable to the MIMIC models.  Table 5.14 

summarizes the suitable cutoff criteria for the CFA and MIMIC complex models.  It is 

shown in Table 5.14 that Chi-P ≥ .01, TLI ≥ .95, CFI ≥ .96, RMSEA ≤ .06 can be 

indications of good models across samples under normality with type I and type II error 

rates lower than 5% and 30%.  A cutoff value of 0.9 for WRMR also had type I and type II 

error rates lower than 5% and 30% at N ≥ 250.  Note that with different acceptable levels of 

type I and type II errors, different cutoff values may be chosen as a result.   

Under non-normality there were few suitable cutoff criteria that can maintain type I 

error rates lower than 5% and type II error rates lower than 30% across sample sizes.  The 

ML-based Chi-P at a cutoff of 0.01, CFI at 0.95 and RMSEA at 0.05 appeared to be robust 

to non-normality at N ≥ 500, and their SB counterparts were preferred at N = 250 under 

non-normality.  For SRMR and RMSEA, they tended to lack power at larger sample sizes 

under some commonly used cutoff values.  Because only complex models were 

investigated, relatively SRMR could not perform well comparing to other fit indices.  Most 

fit indices performed well with larger sample sizes.  However, with small sample sizes, 

these fit indices at commonly suggested cutoff criteria tended to have inflated type I error 
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rates and/or low power.   
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Table 5.1.1. MIMIC model rejection rates of Chi-P at various cutoff values under normality 
Complex Model Cutoff 

Value Sample Size 
100 250 500 1000

 ML SB 
0.01   

True 5.0 10.2 2.6 1.6 2.0 
Miss1 72.8 80.2 99.8 100.0 100.0
Miss2 97.4 98.8 100.0 100.0 100.0
   
0.03   

True 10.8 17.8 5.6 5.0 5.2 
Miss1 81.8 88.0 100.0 100.0 100.0
Miss2 99.2 99.6 100.0 100.0 100.0

   
0.04   

True 14.2 20.4 7.2 6.0 6.6 
Miss1 84.6 90.6 100.0 100.0 100.0
Miss2 99.6 99.8 100.0 100.0 100.0

   
0.05   

True 16.2 23.0 8.6 7.2 7.6 
Miss1 86.2 91.8 100.0 100.0 100.0
Miss2 99.6 100.0 100.0 100.0 100.0
   
0.06   

True 18.4 26.0 11.2 7.6 8.6 
Miss1 87.8 93.2 100.0 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 100.0

Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 5.1.2. MIMIC model rejection rates of Chi-P at various cutoff values under non-normality 
Moderate Non-normality Severe Non-normality Cutoff 

Value Sample Size
100 

 
250 500 1000

Sample Size
100 

 
250 500 1000

 ML SB ML SB ML SB ML SB ML SB ML SB ML SB ML SB
0.01        

True 68.0 32.0 70.0 9.2 70.6 4.4 75.4 1.6 93.4 66.6 98.2 31.6 99.4 13.0 99.8 6.4
Miss1 96.8 85.8 100.0 99.0 100.0 100.0 100.0 100.0 99.8 95.2 100.0 99.0 100.0 100.0 100.0 100.0
Miss2 100.0 98.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0
        
0.03        

True 78.8 45.6 79.0 18.8 83.2 8.0 85.6 4.8 97.4 78.2 99.0 44.2 99.8 23.2 99.8 12.8
Miss1 99.2 93.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 98.6 100.0 99.8 100.0 100.0 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
        
0.04        

True 81.6 50.2 82.0 21.8 84.6 11.2 88.6 7.4 97.4 80.2 99.0 48.4 99.8 28.2 99.8 17.2
Miss1 99.2 94.2 100.0 99.8 100.0 100.0 100.0 100.0 100.0 98.8 100.0 99.8 100.0 100.0 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
        
0.05        

True 83.6 52.6 84.8 24.6 86.4 14.2 90.8 8.6 97.4 81.6 99.4 51.8 99.8 31.0 99.8 18.4
Miss1 99.4 94.6 100.0 99.8 100.0 100.0 100.0 100.0 100.0 99.2 100.0 99.8 100.0 100.0 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
        
0.06        

True 86.0 55.2 86.4 27.4 88.0 15.8 92.2 10.2 97.8 83.4 99.4 54.2 99.8 34.6 100.0 19.4
Miss1 99.8 95.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 99.4 100.0 99.8 100.0 100.0 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 5.2.1. MIMIC model rejection rates of TLI at various cutoff values under normality 
Complex Model Cutoff 

Value Sample Size 
100 250 500 1000

 ML SB 
0.90   

True 0.0 0.0 0.0 0.0 0.0
Miss1 13.6 12.2 0.2 0.0 0.0
Miss2 62.6 67.0 55.0 58.6 62.8

   
0.93   

True 0.4 1.2 0.0 0.0 0.0
Miss1 39.0 47.4 28.4 14.2 6.0
Miss2 90.6 92.8 98.4 100.0 100.0

   
0.94   

True 1.4 2.4 0.0 0.0 0.0
Miss1 55.8 61.8 41.2 35.0 23.6 
Miss2 94.6 96.2 99.8 100.0 100.0

   
0.95   

True 3.6 7.2 0.0 0.0 0.0
Miss1 68.8 75.8 71.8 78.4 87.0 
Miss2 97.0 98.2 100.0 100.0 100.0
   
0.96   

True 9.6 13.8 0.0 0.0 0.0
Miss1 80.6 85.6 90.4 97.4 100.0 
Miss2 99.2 99.6 100.0 100.0 100.0

Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 5.2.2. MIMIC model rejection rates of TLI at various cutoff values under non-normality 
Moderate Non-normality Severe Non-normality Cutoff 

Value Sample Size
100 

 
250 500 1000

Sample Size
100 

 
250 500 1000

 ML SB ML SB ML SB ML SB ML SB ML SB ML SB ML SB
0.90        

True 10.6 3.8 0.0 0.0 0.0 0.0 0.0 0.0 52.6 31.2 3.0 1.0 0.0 0.0 0.0 0.0
Miss1 65.6 46.0 14.4 4.8 0.2 0.2 0.0 0.0 90.4 79.2 61.4 30.8 16.2 4.8 1.4 0.6
Miss2 95.2 88.2 90.8 77.8 88.0 80.0 80.6 82.0 99.4 96.4 98.4 89.2 96.2 86.6 93.2 89.2
        
0.93        

True 36.2 16.8 0.0 0.0 0.0 0.0 0.0 0.0 81.0 61.8 20.2 5.0 0.2 0.0 0.0 0.0
Miss1 90.0 77.8 72.6 47.2 43.4 27.2 17.0 15.2 98.6 93.0 95.6 73.8 84.4 54.2 56.8 37.6
Miss2 99.4 98.2 100.0 99.4 100.0 99.8 100.0 100.0 100.0 100.0 100.0 99.6 100.0 100.0 100.0 100.0
        
0.94        

True 48.8 26.8 1.6 0.0 0.0 0.0 0.0 0.0 86.2 71.2 38.2 8.4 1.4 0.0 0.0 0.0
Miss1 94.6 85.4 89.4 68.2 80.4 60.0 61.4 52.6 99.6 96.6 98.4 85.8 95.8 77.0 88.6 70.4
Miss2 100.0 99.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
        
0.95        

True 61.6 39.0 3.6 0.0 0.0 0.0 0.0 0.0 91.6 79.2 57.8 14.6 7.2 0.4 0.0 0.0
Miss1 96.8 91.4 97.2 85.6 97.2 88.4 95.6 93.0 99.8 98.8 99.0 93.2 99.6 91.4 98.6 93.8
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
        
0.96        

True 74.4 52.0 13.6 2.2 0.0 0.0 0.0 0.0 96.2 85.4 78.8 25.2 22.8 1.2 0.2 0.0
Miss1 99.0 94.8 99.2 95.6 99.4 98.4 99.8 99.6 100.0 99.6 100.0 97.6 100.0 98.0 100.0 99.4
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 5.3.1. MIMIC model rejection rates of CFI at various cutoff values under normality 
Complex Model Cutoff 

Value Sample Size 
100 250 500 1000

 ML SB 
0.90   

True 0.0 0.0 0.0 0.0 0.0
Miss1 2.4 2.6 0.0 0.0 0.0
Miss2 33.4 39.0 11.4 4.4 0.6 

   
0.93   

True 0.0 0.0 0.0 0.0 0.0
Miss1 19.4 25.6 1.6 0.0 0.0
Miss2 77.2 82.8 84.8 94.0 98.8 

   
0.94   

True 0.2 0.6 0.0 0.0 0.0
Miss1 34.6 40.4 11.8 1.0 0.4 
Miss2 88.6 91.0 97.8 100.0 100.0 

   
0.95   

True 1.4 1.4 0.0 0.0 0.0
Miss1 53.4 59.4 36.4 27.8 15.6 
Miss2 94.6 95.8 99.8 100.0 100.0

   
0.96   

True 3.6 7.2 0.0 0.0 0.0
Miss1 70.0 76.2 73.4 79.6 89.4 
Miss2 97.4 98.4 100.0 100.0 100.0
Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 5.3.2. MIMIC model rejection rates of CFI at various cutoff values under non-normality 
Moderate Non-normality Severe Non-normality Cutoff 

Value Sample Size
100 

 
250 500 1000

Sample Size
100 

 
250 500 1000

 ML SB ML SB ML SB ML SB ML SB ML SB ML SB ML SB
0.90        

True 2.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 30.6 16.0 0.6 0.2 0.0 0.0 0.0 0.0
Miss1 36.4 20.2 1.4 0.4 0.0 0.0 0.0 0.0 77.6 59.0 26.4 9.6 2.0 0.8 0.0 0.0
Miss2 82.0 68.8 56.4 39.0 28.6 21.8 9.4 10.6 97.0 88.8 87.8 65.2 67.0 44.8 35.2 35.0
        
0.93        

True 17.6 7.6 0.0 0.0 0.0 0.0 0.0 0.0 66.8 43.8 8.4 1.8 0.0 0.0 0.0 0.0
Miss1 79.2 61.8 35.8 17.0 6.4 2.2 0.2 0.2 94.4 87.8 80.6 48.2 48.4 18.6 8.8 4.6
Miss2 98.6 93.8 99.0 93.4 98.2 96.8 99.8 99.6 100.0 98.6 99.8 98.0 99.8 97.4 100.0 99.4
        
0.94        

True 28.8 13.6 0.0 0.0 0.0 0.0 0.0 0.0 78.2 57.6 14.6 4.2 0.0 0.0 0.0 0.0
Miss1 87.4 74.4 63.6 39.2 32.2 17.2 6.4 6.2 97.8 91.6 93.2 67.0 77.4 44.0 40.8 25.2
Miss2 99.2 96.8 100.0 99.4 99.8 99.6 100.0 100.0 100.0 99.8 100.0 99.4 100.0 99.4 100.0 100.0
        
0.95        

True 45.8 24.6 1.2 0.0 0.0 0.0 0.0 0.0 84.8 67.8 32.8 7.6 0.4 0.0 0.0 0.0
Miss1 93.2 84.4 87.2 62.6 73.2 54.2 51.8 45.2 99.6 95.8 98.2 83.8 94.8 73.2 83.4 64.2
Miss2 100.0 99.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
        
0.96        

True 61.6 39.0 3.6 0.0 0.0 0.0 0.0 0.0 91.6 79.2 57.8 14.6 7.2 0.4 0.0 0.0
Miss1 97.2 91.4 97.4 86.4 97.4 88.8 95.8 94.0 99.8 98.8 99.2 93.6 99.6 91.8 98.6 95.0
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 5.4.1. MIMIC model rejection rates of RMSEA at various cutoff values under normality 
Complex Model Cutoff 

Value Sample Size 
100 250 500 1000

 ML SB 
0.045   

True 22.0 30.0 0.2 0.0 0.0
Miss1 90.8 95.0 98.6 100.0 100.0 
Miss2 100.0 100.0 100.0 100.0 100.0

   
0.05   

True 15.6 23.0 0.0 0.0 0.0
Miss1 86.2 91.8 96.0 100.0 100.0 
Miss2 99.6 100.0 100.0 100.0 100.0
   
0.055   

True 9.4 16.0 0.0 0.0 0.0
Miss1 80.4 86.2 89.6 97.0 100.0 
Miss2 98.8 99.4 100.0 100.0 100.0

   
0.06   

True 5.4 10.8 0.0 0.0 0.0
Miss1 73.6 80.2 75.2 84.6 95.6 
Miss2 97.6 98.8 100.0 100.0 100.0
   
0.07   

True 1.4 3.0 0.0 0.0 0.0
Miss1 48.2 60.4 30.4 19.2 7.4 
Miss2 93.0 95.4 99.6 100.0 100.0 

   
0.08   

True 0.0 0.2 0.0 0.0 0.0
Miss1 23.0 34.6 2.2 0.0 0.0 
Miss2 80.6 86.2 86.0 94.6 99.6 

   
0.09   

True 0.0 0.0 0.0 0.0 0.0
Miss1 6.2 12.4 0.0 0.0 0.0
Miss2 53.0 66.0 41.2 33.8 25.6 

   
0.10   

True 0.0 0.0 0.0 0.0 0.0
Miss1 1.2 3.0 0.0 0.0 0.0
Miss2 23.8 35.2 6.4 0.8 0.0 

Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 5.4.2. MIMIC model rejection rates of RMSEA at various cutoff values under non-normality 
Moderate Non-normality Severe Non-normality Cutoff 

Value Sample Size
100 

 
250 500 1000

Sample Size
100 

 
250 500 1000

 ML SB ML SB ML SB ML SB ML SB ML SB ML SB ML SB
0.045        

True 87.6 61.4 47.4 3.2 2.6 0.0 0.0 0.0 98.0 88.2 95.2 14.8 69.8 0.0 7.0 0.0
Miss1 100.0 96.0 100.0 95.8 100.0 96.2 100.0 99.0 100.0 99.6 100.0 93.2 100.0 76.2 100.0 49.8
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
        
0.05        

True 83.4 52.2 31.2 0.6 0.4 0.0 0.0 0.0 97.4 81.6 90.0 7.4 48.8 0.0 2.0 0.0
Miss1 99.4 94.6 99.8 88.2 100.0 83.4 100.0 82.4 100.0 99.0 100.0 82.6 100.0 42.2 100.0 9.2
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.2 100.0 98.2
        
0.055        

True 77.8 43.2 18.2 0.0 0.0 0.0 0.0 0.0 96.8 75.8 81.2 3.0 27.6 0.0 0.8 0.0
Miss1 98.8 92.0 99.2 74.4 99.4 53.4 100.0 34.0 100.0 97.6 100.0 66.6 100.0 15.4 100.0 0.0
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.4 100.0 92.8 100.0 84.6
        
0.06        

True 69.4 33.0 7.0 0.0 0.0 0.0 0.0 0.0 94.0 67.0 70.8 1.6 13.4 0.0 0.0 0.0
Miss1 97.0 86.0 98.0 50.8 98.0 20.8 98.2 4.4 99.8 95.4 99.6 45.0 100.0 3.2 99.0 0.0
Miss2 100.0 99.0 100.0 99.4 100.0 99.0 100.0 100.0 100.0 100.0 100.0 96.0 100.0 75.2 100.0 44.8
        
0.07        

True 49.0 13.6 1.2 0.0 0.0 0.0 0.0 0.0 88.0 46.2 37.4 0.2 1.0 0.0 0.0 0.0
Miss1 92.8 70.8 82.6 11.2 65.0 0.0 40.8 0.0 99.0 86.2 97.8 10.2 92.4 0.0 76.0 0.0
Miss2 100.0 96.2 100.0 85.6 100.0 75.6 100.0 66.6 100.0 98.0 100.0 66.6 100.0 12.6 100.0 0.2
        
0.08        

True 28.6 5.4 0.0 0.0 0.0 0.0 0.0 0.0 76.0 26.0 14.4 0.0 0.2 0.0 0.0 0.0
Miss1 82.6 46.4 47.2 0.6 11.6 0.0 0.8 0.0 96.6 68.8 87.0 1.0 59.2 0.0 17.2 0.0
Miss2 98.2 83.0 99.0 42.8 98.8 10.6 99.8 1.2 100.0 91.0 100.0 21.2 99.6 0.2 99.6 0.0
        
0.09        

True 11.6 1.4 0.0 0.0 0.0 0.0 0.0 0.0 60.8 12.2 5.8 0.0 0.0 0.0 0.0 0.0
Miss1 63.2 20.2 13.2 0.0 2.8 0.0 0.0 0.0 89.8 44.6 62.2 0.2 17.2 0.0 1.0 0.0
Miss2 93.2 63.2 86.0 6.8 74.6 0.0 59.4 0.0 99.4 74.8 98.4 2.2 92.4 0.0 83.8 0.0
        
0.10        

True 4.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0 42.2 3.2 1.8 0.0 0.0 0.0 0.0 0.0
Miss1 41.6 5.8 1.2 0.0 0.0 0.0 0.0 0.0 79.6 25.0 31.0 0.0 2.6 0.0 0.0 0.0
Miss2 78.4 37.6 44.4 0.0 13.2 0.0 2.4 0.0 96.0 49.0 85.4 0.0 57.2 0.0 18.8 0.0
Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 5.5.1. MIMIC model rejection rates of SRMR at various cutoff values under normality 
Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

0.045   
True 86.8 0.8 0.0 0.0 

Miss1 100.0 100.0 100.0 100.0
Miss2 100.0 100.0 100.0 100.0

   
0.05   

True 60.6 0.0 0.0 0.0
Miss1 100.0 96.6 95.0 96.4 
Miss2 100.0 100.0 100.0 100.0

   
0.055   

True 33.8 0.0 0.0 0.0
Miss1 98.8 88.4 74.8 60.8 
Miss2 100.0 100.0 100.0 100.0

   
0.06   

True 13.6 0.0 0.0 0.0
Miss1 94.6 65.6 39.0 13.4 
Miss2 99.8 98.2 97.0 98.8 

   
0.07   

True 0.6 0.0 0.0 0.0
Miss1 66.4 13.8 1.6 0.0 
Miss2 93.8 68.2 46.0 21.4 

   
0.08   

True 0.0 0.0 0.0 0.0
Miss1 31.6 1.6 0.0 0.0 
Miss2 62.6 14.0 1.2 0.0 

   
0.09   

True 0.0 0.0 0.0 0.0
Miss1 6.2 0.0 0.0 0.0 
Miss2 28.2 0.6 0.0 0.0 

   
0.10   

True 0.0 0.0 0.0 0.0
Miss1 1.2 0.0 0.0 0.0 
Miss2 5.0 0.0 0.0 0.0 

   
0.11   

True 0.0 0.0 0.0 0.0
Miss1 0.2 0.0 0.0 0.0
Miss2 0.4 0.0 0.0 0.0 
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Table 5.5.2. MIMIC model rejection rates of SRMR at various cutoff values under non-normality 
Moderate Non-normality Severe Non-normality Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.045     
True 99.0 8.2 0.0 0.0 99.6 46.4 1.4 0.0 

Miss1 100.0 100.0 100.0 99.8 100.0 100.0 99.8 99.2 
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.05     

True 92.0 1.2 0.0 0.0 97.2 19.2 0.0 0.0 
Miss1 100.0 99.4 96.2 94.4 100.0 100.0 97.0 91.8 
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.055     

True 74.0 0.2 0.0 0.0 88.4 5.4 0.0 0.0 
Miss1 99.6 93.4 83.0 67.6 100.0 96.4 85.0 70.2 
Miss2 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0

     
0.06     

True 47.4 0.0 0.0 0.0 72.6 2.2 0.0 0.0 
Miss1 98.2 77.8 54.0 27.4 99.4 85.0 62.6 39.8 
Miss2 100.0 99.4 98.4 98.4 100.0 99.6 97.8 97.2 

     
0.07     

True 9.8 0.0 0.0 0.0 32.8 0.2 0.0 0.0 
Miss1 83.6 33.4 6.8 0.4 93.4 45.8 16.8 4.2 
Miss2 97.4 80.6 64.6 33.2 99.4 87.0 69.4 46.6 

     
0.08     

True 0.4 0.0 0.0 0.0 7.4 0.0 0.0 0.0 
Miss1 53.0 6.4 0.2 0.0 64.4 16.8 3.0 0.6 
Miss2 80.8 32.2 5.2 0.2 89.6 49.4 18.4 3.0 

     
0.09     

True 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 
Miss1 20.0 1.2 0.0 0.0 35.4 4.2 0.8 0.0 
Miss2 46.4 4.4 0.0 0.0 61.0 13.0 2.0 0.2 

     
0.10     

True 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 
Miss1 4.6 0.0 0.0 0.0 18.2 1.0 0.2 0.0 
Miss2 15.2 0.6 0.0 0.0 30.4 3.4 0.4 0.0 

     
0.11     

True 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 1.0 0.0 0.0 0.0 6.8 0.0 0.0 0.0
Miss2 3.4 0.0 0.0 0.0 13.2 0.2 0.0 0.0 
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Table 5.6.1. MIMIC model rejection rates of WRMR at various cutoff values under normality 
Complex Model Cutoff 

Value Sample Size 
100 

 
250 500 1000

0.60   
True 79.2 80.2 80.6 79.6 

Miss1 100.0 100.0 100.0 100.0
Miss2 100.0 100.0 100.0 100.0

   
0.70   

True 40.4 36.2 33.2 32.8 
Miss1 98.6 100.0 100.0 100.0 
Miss2 100.0 100.0 100.0 100.0

   
0.80   

True 12.6 6.4 7.4 5.8 
Miss1 87.2 100.0 100.0 100.0 
Miss2 98.6 100.0 100.0 100.0 

   
0.90   

True 1.2 1.2 1.0 0.4 
Miss1 63.2 99.8 100.0 100.0 
Miss2 90.0 100.0 100.0 100.0 

   
0.95   

True 0.2 0.4 0.0 0.0 
Miss1 45.2 98.8 100.0 100.0 
Miss2 79.2 100.0 100.0 100.0 

   
1.00   

True 0.0 0.4 0.0 0.0 
Miss1 34.4 94.8 100.0 100.0 
Miss2 64.6 100.0 100.0 100.0 

   
1.10   

True 0.0 0.0 0.0 0.0
Miss1 15.0 82.8 100.0 100.0 
Miss2 40.2 99.8 100.0 100.0 
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Table 5.6.2. MIMIC model rejection rates of WRMR at various cutoff values under non-normality 
Moderate Non-normality Severe Non-normality Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.60     
True 89.8 81.8 75.6 72.8 93.6 89.2 86.0 76.0 

Miss1 98.6 100.0 100.0 100.0 99.4 99.8 99.4 100.0 
Miss2 100.0 100.0 100.0 100.0 99.6 99.8 100.0 100.0 

     
0.70     

True 59.8 42.8 33.8 30.4 77.8 66.0 50.4 33.4 
Miss1 94.4 99.0 99.8 100.0 95.6 97.4 99.0 100.0 
Miss2 98.2 100.0 100.0 100.0 98.2 99.2 99.8 100.0 

     
0.80     

True 25.4 13.6 9.2 5.4 49.2 33.0 19.2 9.6 
Miss1 82.0 95.4 99.6 100.0 86.0 93.2 98.0 99.6 
Miss2 93.0 99.4 100.0 100.0 93.0 97.2 99.6 100.0 

     
0.90     

True 7.8 2.8 0.8 0.8 23.0 12.0 4.8 1.4 
Miss1 58.2 84.6 99.0 100.0 70.8 80.4 94.0 99.0 
Miss2 81.4 97.0 99.8 100.0 83.4 94.6 98.4 100.0 

     
0.95     

True 4.4 0.6 0.2 0.2 12.8 6.2 3.0 0.6 
Miss1 43.8 77.2 96.8 100.0 58.2 70.6 89.8 98.0 
Miss2 71.8 94.8 99.8 100.0 76.6 91.0 98.2 100.0 

     
1.00     

True 1.4 0.2 0.0 0.0 8.4 3.8 1.4 0.0 
Miss1 29.4 63.8 93.8 100.0 46.2 56.4 82.2 97.4 
Miss2 59.2 92.0 99.6 100.0 66.6 84.6 97.2 99.8 

     
1.10     

True 0.0 0.0 0.0 0.0 3.0 1.0 0.4 0.0 
Miss1 12.4 38.6 83.4 99.6 22.4 37.4 60.8 91.4 
Miss2 31.2 80.2 98.8 100.0 46.6 70.2 94.0 98.6 
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Table 5.7. MIMIC model rejection rates of Chi-P at various cutoff values for binary outcomes  
Equal Case Unequal Case Cutoff 

Value Sample Size 
100 a 

 
250 500 1000

Sample Size
100 b

 
250 

 
500 1000

0.01     
True 0.8 0.4 0.2 0.8 2.0 0.4 0.8 2.0 

Miss1 16.6 71.6 98.4 100.0 13.0 55.4 94.2 100.0 
Miss2 40.5 96.4 100.0 100.0 28.7 91.2 100.0 100.0 

     
0.03     

True 5.2 2.6 1.6 2.8 3.6 2.6 2.4 3.6 
Miss1 30.9 82.8 99.6 100.0 25.2 71.2 96.6 100.0 
Miss2 57.1 98.4 100.0 100.0 45.1 95.2 100.0 100.0 

     
0.04     

True 6.4 4.4 3.2 4.0 4.2 3.2 3.2 4.6 
Miss1 36.7 85.8 99.6 100.0 29.0 75.2 96.8 100.0 
Miss2 62.9 98.8 100.0 100.0 51.7 96.0 100.0 100.0 

     
0.05     

True 7.2 5.4 4.2 5.6 6.0 4.2 4.0 5.2 
Miss1 41.3 86.8 99.8 100.0 33.9 78.2 97.2 100.0 
Miss2 67.1 99.0 100.0 100.0 57.4 96.8 100.0 100.0 

     
0.06     

True 9.2 7.4 5.4 6.2 8.9 5.8 4.8 6.6 
Miss1 43.5 87.8 100.0 100.0 37.9 79.4 97.2 100.0 
Miss2 70.7 99.4 100.0 100.0 61.6 97.0 100.0 100.0 

Note. a For the True models, 498 out of 500 data sets have converged results; 499 out of 500 data 
sets have converged results for the Miss1 and Miss2 models. b There are 497, 493 and 495 
converged results for the true, Miss1 and Miss2 models, respectively. 
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Table 5.8. MIMIC model rejection rates of TLI at various cutoff values for binary outcomes 
Equal Case Unequal Case Cutoff 

Value Sample Size 
100 a 

 
250 500 1000

Sample Size
100 b

 
250 

 
500 1000

0.90     
True 2.4 0.0 0.0 0.0 4.6 0.0 0.0 0.0 

Miss1 20.6 4.4 0.6 0.0 23.7 5.8 0.8 0.2 
Miss2 47.1 30.0 23.0 15.6 46.3 32.2 20.6 17.6 

     
0.93     

True 8.2 0.0 0.0 0.0 13.5 0.0 0.0 0.0 
Miss1 41.9 24.8 11.6 6.4 43.2 25.6 13.0 5.8 
Miss2 67.7 69.8 76.4 89.4 68.3 69.6 74.0 84.8 

     
0.94     

True 12.2 0.0 0.0 0.0 17.5 0.0 0.0 0.0 
Miss1 50.5 37.2 28.8 21.2 52.3 36.0 28.4 19.4 
Miss2 75.4 83.4 89.6 97.6 74.5 79.0 87.8 96.4 

     
0.95     

True 16.3 0.0 0.0 0.0 24.7 0.2 0.0 0.0 
Miss1 60.1 52.8 49.6 51.2 60.9 51.2 47.8 49.0 
Miss2 82.6 92.4 98.0 99.6 79.0 88.6 94.6 99.4 

     
0.96     

True 24.3 0.6 0.0 0.0 33.2 2.0 0.0 0.0 
Miss1 68.3 70.2 72.8 85.2 68.2 65.6 70.8 80.2 
Miss2 86.4 96.0 99.8 100.0 85.5 94.6 99.0 100.0 

Note. a For the True models, 498 out of 500 data sets have converged results; 499 out of 500 data 
sets have converged results for the Miss1 and Miss2 models. b There are 497, 493 and 495 
converged results for the true, Miss1 and Miss2 models, respectively. 
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Table 5.9. MIMIC model rejection rates of CFI at various cutoff values for binary outcomes 
Equal Case Unequal Case Cutoff 

Value Sample Size 
100 a 

 
250 500 1000

Sample Size
100 b

 
250 

 
500 1000

0.90     
True 2.2 0.0 0.0 0.0 4.8 0.0 0.0 0.0

Miss1 21.2 7.4 1.2 0.4 22.7 5.8 1.0 0.2 
Miss2 47.7 38.6 40.2 50.0 45.7 34.8 30.8 33.8 

     
0.93     

True 8.6 0.0 0.0 0.0 11.9 0.0 0.0 0.0 
Miss1 41.9 30.6 23.2 18.2 41.0 27.8 18.2 9.4 
Miss2 68.5 78.2 89.4 98.0 68.7 73.0 81.2 94.0 

     
0.94     

True 12.0 0.0 0.0 0.0 17.5 0.0 0.0 0.0 
Miss1 51.1 44.2 40.2 44.0 52.1 38.8 32.6 28.6 
Miss2 77.0 89.0 96.8 99.4 75.6 82.8 91.0 98.4 

     
0.95     

True 16.1 0.0 0.0 0.0 24.1 0.4 0.0 0.0 
Miss1 61.3 58.6 62.2 72.4 59.2 53.6 53.2 61.0 
Miss2 83.4 94.6 99.2 100.0 79.4 91.0 97.2 99.8 

     
0.96     

True 25.7 1.4 0.0 0.0 32.6 1.8 0.0 0.0 
Miss1 69.5 75.2 82.4 93.2 67.1 68.6 75.8 87.2 
Miss2 88.2 97.4 99.8 100.0 85.1 95.4 99.4 100.0 

Note. a For the True models, 498 out of 500 data sets have converged results; 499 out of 500 data 
sets have converged results for the Miss1 and Miss2 models. b There are 497, 493 and 495 
converged results for the true, Miss1 and Miss2 models, respectively. 
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Table 5.10. MIMIC model rejection rates of RMSEA at various cutoff values for binary outcomes 
Equal Case Unequal Case Cutoff 

Value Sample Size 
100 a 

 
250 500 1000

Sample Size
100 b

 
250 

 
500 1000

0.045     
True 31.1 0.6 0.0 0.0 34.6 0.4 0.0 0.0 

Miss1 73.3 72.8 72.4 83.4 70.6 58.0 55.4 57.0 
Miss2 90.6 96.6 99.8 100.0 87.1 91.8 96.6 99.4 

     
0.05     

True 22.5 0.2 0.0 0.0 27.4 0.0 0.0 0.0 
Miss1 68.3 58.4 53.6 57.0 63.5 44.6 33.4 23.6 
Miss2 86.6 93.4 99.0 99.6 82.8 84.8 89.6 97.4 

     
0.055     

True 15.9 0.0 0.0 0.0 19.7 0.0 0.0 0.0 
Miss1 59.9 43.6 32.4 26.0 54.4 29.4 15.2 4.8 
Miss2 82.8 85.8 92.2 98.0 78.6 73.0 74.4 81.6 

     
0.06     

True 11.8 0.0 0.0 0.0 13.5 0.0 0.0 0.0 
Miss1 50.7 30.4 13.6 8.0 47.1 17.4 5.0 0.8 
Miss2 77.6 72.6 75.0 86.8 71.9 58.4 51.6 49.8 

     
0.07     

True 6.0 0.0 0.0 0.0 4.4 0.0 0.0 0.0 
Miss1 34.7 8.4 1.0 0.2 28.6 3.8 0.2 0.0 
Miss2 59.5 45.0 31.2 27.4 49.7 24.8 10.6 4.2 

     
0.08     

True 1.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0
Miss1 18.8 1.0 0.2 0.0 15.2 0.6 0.0 0.0 
Miss2 42.1 17.4 4.6 0.8 33.5 6.4 0.2 0.0 

     
0.09     

True 0.6 0.0 0.0 0.0 0.8 0.0 0.0 0.0
Miss1 8.2 0.2 0.0 0.0 6.1 0.0 0.0 0.0 
Miss2 24.6 3.8 0.2 0.0 15.8 1.0 0.0 0.0

     
0.10     

True 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0
Miss1 2.8 0.0 0.0 0.0 2.6 0.0 0.0 0.0 
Miss2 11.8 0.4 0.0 0.0 7.5 0.4 0.0 0.0 

Note. a For the True models, 498 out of 500 data sets have converged results; 499 out of 500 data 
sets have converged results for the Miss1 and Miss2 models. b There are 497, 493 and 495 
converged results for the true, Miss1 and Miss2 models, respectively. 
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Table 5.11. MIMIC model rejection rates of WRMR at various cutoff values for binary outcomes 
Equal Case Unequal Case Cutoff 

Value Sample Size 
100 a 

 
250 500 1000

Sample Size
100 b

 
250 

 
500 1000

0.60     
True 100.0 99.8 100.0 100.0 100.0 99.6 100.0 100.0 

Miss1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.70     

True 92.0 88.8 87.0 87.6 95.2 93.8 92.6 93.0 
Miss1 99.6 100.0 100.0 100.0 99.8 100.0 100.0 100.0 
Miss2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.80     

True 51.0 37.0 32.4 31.0 64.0 54.6 49.0 44.0 
Miss1 88.4 98.4 100.0 100.0 91.7 98.2 100.0 100.0 
Miss2 96.8 100.0 100.0 100.0 97.2 100.0 100.0 100.0 

     
0.90     

True 11.2 4.6 2.6 2.2 20.1 7.6 4.4 5.4 
Miss1 51.7 88.2 99.6 100.0 57.8 83.8 97.2 100.0 
Miss2 80.2 99.4 100.0 100.0 80.8 98.6 100.0 100.0 

     
0.95     

True 4.6 1.0 0.2 0.6 7.6 1.2 0.8 2.4 
Miss1 34.5 73.6 98.0 100.0 37.1 69.6 95.4 100.0 
Miss2 61.9 98.0 100.0 100.0 66.7 95.4 100.0 100.0 

     
1.00     

True 0.8 0.0 0.0 0.0 2.4 0.0 0.2 0.0 
Miss1 20.0 56.2 95.4 100.0 20.7 48.6 91.6 100.0 
Miss2 45.1 93.0 100.0 100.0 43.6 89.4 100.0 100.0 

     
1.10     

True 0.2 0.0 0.0 0.0 0.4 0.0 0.0 0.0 
Miss1 2.6 21.8 75.2 100.0 3.7 16.2 65.8 99.8 
Miss2 15.0 68.2 99.8 100.0 14.5 59.8 98.6 100.0 

Note. a For the True models, 498 out of 500 data sets have converged results; 499 out of 500 data 
sets have converged results for the Miss1 and Miss2 models. b There are 497, 493 and 495 
converged results for the true, Miss1 and Miss2 models, respectively. 
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Table 5.12. Means (SDs) for fit measures in the CFA and MIMIC models (normal outcomes) 
CFA Model  MIMIC Model  Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

Chi-P     
True 0.367 0.422 0.456 0.498 0.368 0.429 0.461 0.475 

 (0.287) (0.273) (0.295) (0.290) (0.288) (0.286) (0.286) (0.292)
Miss1 0.023 0.000 0.000 0.000 0.023 0.000 0.000 0.000 

 (0.066) (0.000) (0.000) (0.000) (0.056) (0.001) (0.000) (0.000)
     
TLI     

True 0.990 0.998 0.999 1.000 0.990 0.998 0.999 1.000 
 (0.022) (0.008) (0.004) (0.002) (0.021) (0.008) (0.004) (0.002)

Miss1 0.931 0.939 0.939 0.940 0.936 0.943 0.943 0.944 
 (0.029) (0.014) (0.009) (0.006) (0.027) (0.013) (0.009) (0.006)
     
CFI     

True 0.989 0.997 0.998 0.999 0.989 0.997 0.999 0.999 
 ().013) (0.004) (0.002) (0.001) (0.013) (0.004) (0.002) (0.001)

Miss1 0.944 0.950 0.951 0.951 0.948 0.954 0.954 0.955 
 (0.024) (0.011) (0.007) (0.005) (0.022) (0.011) (0.007) (0.004)
     
RMSEA     

True 0.025 0.013 0.008 0.005 0.025 0.013 0.008 0.005 
 (0.022) (0.013) (0.009) (0.006) (0.022) (0.013) (0.009) (0.006)

Miss1 0.072 0.070 0.069 0.069 0.068 0.066 0.065 0.065 
 (0.018) (0.008) (0.005) (0.004) (0.016) (0.008) (0.005) (0.003)
     
SRMR     

True 0.053 0.034 0.024 0.017 0.052 0.033 0.023 0.016 
 (0.007) (0.004) (0.003) (0.002) (0.007) (0.004) (0.003) (0.002)

Miss1 0.079 0.066 0.062 0.059 0.075 0.063 0.059 0.056 
 (0.011) (0.007) (0.006) (0.004) (0.010) (0.007) (0.005) (0.004)
     
WRMR     

True 0.700 0.690 0.677 0.669 0.683 0.675 0.671 0.668 
 (0.097) (0.090) (0.087) (0.083) (0.095) (0.083) (0.081) (0.078)

Miss1 0.998 1.284 1.676 2.263 0.950 1.230 1.598 2.150 
 (0.145) (0.143) (0.153) (0.161) (0.134) (0.137) (0.147) (0.146)
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Table 5.13. Means (SDs) for fit measures in the CFA and MIMIC models (binary unequal 
outcomes) 

CFA Model  MIMIC Model  Cutoff 
Value Sample Size 

100 
 

250 500 1000
Sample Size

100
 

250 
 

500 1000
Chi-P     

True 0.344 0.423 0.454 0.495 0.341 0.410 0.441 0.466 
 (0.242) (0.258) (0.270) (0.276) (0.231) (0.251) (0.261) (0.279)

Miss1 0.171 0.055 0.004 0.000 0.160 0.045 0.005 0.000 
 (0.190) (0.011) (0.025) (0.000) (0.170) (0.097) (0.031) (0.000)

     
TLI     

True 0.985 0.997 0.999 1.000 0.976 0.995 0.999 1.000 
 (0.029) (0.011) (0.005) (0.002) (0.042) (0.015) (0.007) (0.004)

Miss1 0.961 0.971 0.973 0.973 0.932 0.947 0.950 0.950 
 (0.038) (0.018) (0.010) (0.007) (0.051) (0.027) (0.018) (0.012)
     
CFI     

True 0.980 0.993 0.997 0.999 0.970 0.991 0.996 0.998 
 (0.027) (0.011) (0.004) (0.002) (0.033) (0.011) (0.005) (0.003)

Miss1 0.956 0.963 0.963 0.961 0.932 0.946 0.947 0.946 
 (0.039) (0.022) (0.013) (0.010) (0.048) (0.027) (0.019) (0.012)
     
RMSEA     

True 0.033 0.015 0.009 0.005 0.032 0.015 0.009 0.006 
 (0.029) (0.016) (0.010) (0.006) (0.026) (0.014) (0.009) (0.007)

Miss1 0.057 0.048 0.046 0.046 0.055 0.047 0.046 0.046 
 (0.030) (0.016) (0.009) (0.006) (0.025) (0.014) (0.009) (0.006)
     
WRMR     

True 0.784 0.749 0.736 0.726 0.833 0.804 0.796 0.791 
 (0.101) (0.082) (0.067) (0.064) (0.084) (0.067) (0.063) (0.065)

Miss1 0.877 0.939 1.062 1.307 0.925 1.002 1.144 1.402 
 (0.118) (0.111) (0.103) (0.119) (0.096) (0.101) (0.113) (0.116)
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Table 5.14. A summary of suitable cutoff criteria under various model and data conditions 
(MIMIC complex models1) 
Type of 
outcomes 

Sample 
sizes 

Cutoff values2 to indicate good 
models at certain N 

Criteria across all four sample 
size 

Normal N = 100  
 N = 250 WRMR (.94) 
 N ≥ 500 WRMR (.9) 

{SRMR (.07 or .08) lacks power} 

Chi-P3 (.01), TLI (.95), CFI 
(.96), RMSEA (.06). 

N = 100  
N = 250 SB Chi-P5 (.01), TLI (.95), CFI (.96), 

SB RMSEA (.05), WRMR (.9). 

Moderately  
non-normal  
continuous 

N ≥ 500 SB Chi-P (.01), TLI (.95), CFI (.96), 
RMSEA (.05), WRMR (.9). 
{RMSEA (.06) and SRMR (.07 or .08) 
lack power} 

 

Severely N = 100  
non-normal 
Continuous 

N = 250 SB CFI (.95), SRMR (.07), SB 
RMSEA (.05), WRMR (.95). 

 N ≥ 500 SB Chi-P (.01), TLI (.95), CFI (.95), 
WRMR (.95).  
{SRMR (.07) lacks power} 

 

N = 100  
N ≥ 250 Chi-P (.05), CFI (.95), RMSEA 

(.045), WRMR (.9). 

binary 
equal 

N ≥ 500  

 

N = 100  
N ≥ 250 Chi-P (.05), CFI (.95), WRMR (.9). 

binary 
unequal 

N ≥ 500  

 

1 Applied to CFA complex models as well except for binary outcomes; 2 These suggested cutoff criteria have 
type I and type II error rates close to or lower than 5% and 30%, respectively. 3 The fit measures not denoted 
specifically are ML-based. 4 Values in parentheses are the suggested cutoff values.   5 The Satorra-Bentler 
based fit indices. 
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CHAPTER 6 

MONTE CARLO STUDY 3: LATENT GROWTH CURVE MODEL 

 

One major method for analyzing longitudinal data and studying change is growth 

curve modeling.  It allows us to model individual differences in development over time and 

to explain individual differences using background variables.  Individual differences in 

growth are captured by random coefficients in growth curve models.  Latent growth curve 

modeling incorporates growth curve modeling into the framework of LVM, and random 

coefficients are conceptualized as latent variables (see, e.g., Muthén & Khoo, 1998).  

Different from the first and second studies where the mean values of latent variables and 

the intercepts of measurement equations were ignored, latent growth modeling (LGM) 

takes into account mean structures.  Therefore, it is valuable to study the performance of 

the fit indices in this new situation. 

 

6.1 Design of Simulation  

Two quadratic LGMs with normal continuous outcomes were generated: one had five 

and the other had eight time points.  The quadratic LGMs can be expressed as 

y = Λ ξ + ε,                                                                                                        (18) 

where y is a T x 1 vector of observed variables for the T time points, Λ is a T x 3 matrix of 

factor loadings, ξ is a 3 x 1 vector of growth factors, and ε is a T x 1 vector of errors.  For 

the quadratic LGM with five time points,  
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.Λ



















=

1641
931
421
111
001

 

The coefficients in the second column of Λ were for modeling linear growth whereas those 

in the third column were for modeling quadratic growth.  The population means for the 

intercept, linear and quadratic growth factors were set to be 0, 0.5 and –0.1, respectively.  

The variances of the three growth factors were 1, 0.3 and 0.1, which are common variance 

ratios among growth factors.  The intercept and linear factors had a correlation of 0.25, and 

the intercepts of the outcome variables were fixed to zero.  The five outcomes all had a 

constant R2 of 0.5.  Hence, the residual variances increased over time due to increasing 

growth curve variance.  The parameter values for the LGM with eight time points stayed 

the same. 

Sample sizes of 100, 250, 500 and 1000 were considered, and 500 replications were 

obtained for each condition.  Two specifications of the LGMs were fitted to sample mean 

and covariance matrices generated from each replication.  The first model was properly 

specified (True model) such that the estimated parameters in the sample exactly 

corresponded to their population structure (quadratic growth curve).  The LGM true 

models with five and eight time points had twelve and fifteen parameters, respectively.  

The second model was a misspecified model in which a linear growth curve was estimated 

(Miss1 model).  An adequate cutoff value of fit indices should have a high probability of 

not rejecting true models and a high probability of rejecting the misspecified linear growth 

models.  Data was generated in SAS and analyzed by Mplus 2.02.  The maximum number 

of iterations to convergence was set to 1000 in Mplus by default, and all the runs were 
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converged.  At N = 100, both ML and SB estimation results were provided for Chi-P, TLI, 

CFI and RMSEA. 

   

6.2 Results 

Tables 6.1 to 6.6 present the rejection rates of the Chi-P, TLI, CFI, RMSEA, SRMR 

and WRMR under various cutoff values, and Table 6.7 provides the means and SDs of the 

six fit measures for the LGMs with five and eight time points.  The rejection rates of Chi-P 

at a conventional probability level of 0.05 in true models varied around the expected value 

of 5% (ranged from 5.6% to 7%).  Chi-P at a cutoff of 0.05 rejected 59% to 100% of the 

LGM Miss1 models with five time points and rejected all the LGM Miss1 models with 

eight time points.  As shown in Table 6.7, Chi-P had higher values and larger spread 

(tended to accept Miss1 models) under the combination of five time points and N =100.  

Moreover, the results show that the power of Chi-P to reject linear growth models 

increased with larger sample sizes and more time points.  

At N = 100, a cutoff value of 0.95 for TLI rejected around 16% of the True models and 

74% of the Miss1 models in the five-point LGM.  With more time points, the type I error 

rates of TLI at a cutoff of 0.95 decreased and its power increased.  For example, Table 6.2 

shows that in the eight-point LGM, a cutoff value of 0.95 for TLI rejected only about 8% of 

the True models and 100% of the misspecified models.  CFI had very similar means, SDs 

and rejection rates as TLI in the five-point LGM Miss1 models.  CFI at a cutoff value of 

0.95 rejected 11.8% of the five-point true models, which was more desirable than the 

15.6% of TLI.  A cutoff value of 0.96 for CFI rejected even more true models and was less 
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suitable for LGMs under the combination of fewer time points and N = 100.  A cutoff value 

of 0.94 for CFI appeared to have type I error rates around or lower than 5% and type II error 

rates around or lower than 30% for both five- and eight-point LGMs. 

A cutoff value of 0.06 for RMSEA rejected 24.8% of the five-point LGM True models 

and 12.6% of the eight-point LGM True models at N = 100.  With a cutoff value of 0.05, 

RMSEA had inflated type I error rates not only at N = 100 but also had inflated type I errors 

in the five-point LGM (rejected 12.4% of the True models) at N = 250.  Similar to TLI and 

CFI under the suggested cutoff values, the type I error rates of RMSEA decreased and the 

power of RMSEA increased with a greater number of time points.  With fewer time points 

and at small sample sizes, one might want to increase the cutoff value to 0.09 or 0.10 for 

RMSEA to control type I error rates.  In doing so, however, the power of RMSEA to detect 

Miss1 models decreased to 0.5 or 0.6.  Similar to previous CFA and MIMIC studies, in 

LGMs the SB-based fit measures tended to have slightly higher rejection rates than their 

ML counterparts with normal data.  Overall, the SB χ2 and the SB–based TLI/ CFI/ 

RMSEA had very similar rejection rates as their ML counterparts in LGMs. 

A cutoff value of 0.08 for SRMR rejected 4.4% of the True models and 73% of the 

misspecified models at N = 100 in the five-point LGM.  However, with this cutoff value, 

the power of SRMR decreased with increasing sample sizes and it only rejected 31% of the 

Miss1 models at N = 1000.  A cutoff value of 0.07 for SRMR might be more suitable in 

terms of power at larger sample sizes.  At N ≥ 250, SRMR at a cutoff of 0.07 rejected 77% 

to 100% of the Miss1 models with very small type I errors.  

For the LGM with five time points, WRMR at a cutoff value of 1.0 rejected 3% to 6% 
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of the true models and 76% to 100% of the Miss1 models.  For the LGM with eight time 

points, however, the type I error rates of WRMR inflated tremendously.  From Table 6.7 we 

can see that, similar to SRMR, means of WRMR increased with increasing number of time 

points in both True and Miss1 models. The means of WRMR shifted very close to 0.90 and 

0.95 in the eight-point LGM thus resulting in large rejection rates of the True and Miss1 

models.  This indicated that a cutoff value of 0.95 or 1.0 for WRMR was not suitable for 

latent growth curve models with more time points.   

The scatterplots in Figure 6.1 show that the relationship between CFI and WRMR at 

N = 500 are similar under the two LGM true models (the correlation coefficient was –0.75 

in the five-point LGM, and –0.63 in the eight-point LGM).  However, while the CFI values 

ranged similarly (from 0.97 to 1.0) for both LGM true models, the WRMR values tended to 

be higher for the eight-point LGM true model (WRMR ranged from 0.2 to 1.2 for the 

five-point LGM, and 0.5 to 1.6 for the eight-point LGM).  Similarly, Figure 6.2 shows that 

the relationship between SRMR and WRMR stays very strong under both LGM models 

(the correlation coefficients were 0.99 and 0.98 for the five-point and eight-point LGMs, 

respectively).  SRMR ranged from 0.01 to 0.04 for the five-point LGM and 0.02 to 0.05 for 

the eight-point LGM, thus a cutoff value of 0.07 for SRMR rejected none of the true 

models.  On the other hand, a cutoff value of 1.0 for WRMR rejected 3.2% of the five-point 

and 26.6% of the eight-point LGM true models.  Because the WRMR values tended to 

increase significantly in LGMs with more time points, a certain cutoff value for WRMR 

tended to reject more true models with more time points.   
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6.3 Summary and Conclusion 

This chapter evaluated the performance and obtained adequate cutoff criteria for 

Chi-P, TLI, CFI, RMSEA, SRMR and WRMR in latent growth curve models with normal 

data.  For the LGMs with five time points and at N ≥ 250, Chi-P ≥ 0.05, TLI ≥ 0.95, CFI ≥ 

0.95, RMSEA ≤ 0.06 and SRMR ≤ 0.07 were suitable criteria to indicate good models.  In 

each of the case, the type I error rate was reasonable and the power was higher than 0.8.  At 

N = 100 and fewer time points, TLI, CFI and RMSEA under the suggested cutoff values 

tended to overreject true models.  Chi-P at the suggested cutoff value of 0.05 had an 

acceptable type I error rate (5.6%) with moderate power around 0.6 at N = 100.  CFI at the 

cutoff of 0.95 had inflated type I error rate (11.8%) with power of around 0.74.  A cutoff 

value of 0.94 for CFI rejected 0 to 7% of the True models and 69% to 97% of the Miss1 

models, and it seemed to be applicable across all four sample sizes.  WRMR at a cutoff of 

1.0 had acceptable type I and type II error rates across samples in the five-point LGM, but 

it overrejected true models in the eight-point LGM.   

For the LGM with eight time points, Chi-P ≥ 0.05, TLI ≥ 0.95 and CFI ≥ 0.95 (0.94) 

were suitable indications of good models across all four sample sizes.  Different cutoff 

values seemed to be necessary for WRMR in LGMs with different time points, which 

might not be desirable.  Finally, considering both LGMs, the results show that Chi-P at a 

cutoff of 0.05 performed well across all sample sizes (with moderate power under the 

combination of small sample size and fewer time points).  CFI at a cutoff of 0.94 had type I 

error rates around 5% and power higher than 0.7, and it was suitable for latent growth curve 

models across samples.   
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Generally speaking, the residual-based fit indices SRMR and WRMR performed 

differently from the other fit indices in latent growth curve models.  With more time points, 

the WRMR and SRMR values on average tended to increase considerably in both true and 

misspecified models.  Therefore, WRMR and SRMR tended to overreject true models, and 

the adequate cutoff value for WRMR and SRMR might vary with the number of time 

points.  In contrast, TLI, CFI and RMSEA tended to have fewer type I errors in the LGM 

with more time points.  Chi-P appeared to perform similarly for latent growth curve models 

with varying time points. 
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Figure 6.1. Scatterplot of the relationship between WRMR and CFI in true models based on 500 
observations. 

WRMR

C
FI

LGM with 5 time points

A

A

A
A
A

A

A
A

A

A

A A
AA A A

0.6 0.8 1.0 1.2 1.4 1.6

0.95

0.96

0.97

0.98

0.99

1.00

WRMR

C
FI

LGM with 8 time points

A

A
AA
AAA
AA
A
AAA

A

A

A
A
A
AA
AA
A
A

A

A
AAAA

A
AA
AA

A

AA

A

A
AA

AAA

A

A
A
A

AA
A

A
A

AA
A

A
A

A
A
A
A
A

A

AA
A
A

A
A
A

A

A

A

AAA
A
AA
A

A
A
A

A

A

A

A

A
AA

A

A

A

A
A

AA

A

A
A

AA

A

A

A

A
AA
AA
AA

A

A

A
A

A
A

A

A
A

A
AA

A

A

A

A

A

A

A

0.6 0.8 1.0 1.2 1.4 1.6

0.95

0.96

0.97

0.98

0.99

1.00

 



 128

Figure 6.2. Scatterplot of the relationship between WRMR and SRMR in true models based on 500 
observations. 
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Table 6.1. LGM model rejection rates of Chi-P at various cutoff values 
Five Time Points Eight Time Points Cutoff 

Value Sample Size 
100 250 500 1000

Sample Size
100 

 
250 500 1000

 ML SB ML SB  
0.01    

True 1.0 0.8 1.6 0.6 0.4 1.0 1.4 1.0 1.6 1.2 
Miss1 33.0 34.0 85.2 100.0 100.0 99.4 99.8 100.0 100.0 100.0 

    
0.03    

True 2.4 3.4 4.4 2.8 3.2 4.0 4.6 3.6 3.4 4.0 
Miss1 50.0 52.0 92.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

    
0.04    

True 4.6 4.6 6.0 4.0 4.8 5.6 6.6 4.4 5.6 5.2 
Miss1 55.0 56.8 94.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

    
0.05    

True 5.6 6.6 7.0 4.8 6.4 7.0 7.8 5.4 7.2 6.0 
Miss1 59.4 60.6 95.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

    
0.06    

True 6.6 7.4 7.2 5.4 7.8 7.8 10.0 6.2 8.2 7.4 
Miss1 62.6 63.6 95.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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 Table 6.2. LGM model rejection rates of TLI at various cutoff values  
Five Time Points Eight Time Points Cutoff 

Value Sample Size 
100 250 500 1000

Sample Size
100 

 
250 500 1000

 ML SB ML SB  
0.90    

True 2.8 3.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Miss1 42.0 40.2 39.0 36.6 29.6 98.4 98.2 100.0 100.0 100.0 

    
0.93    

True 9.4 8.8 0.6 0.0 0.0 2.2 2.2 0.0 0.0 0.0 
Miss1 61.8 63.2 69.2 80.6 89.2 100.0 100.0 100.0 100.0 100.0 

    
0.94    

True 12.6 13.0 1.2 0.0 0.0 4.2 4.4 0.0 0.0 0.0 
Miss1 69.0 68.8 76.0 91.0 97.2 100.0 100.0 100.0 100.0 100.0 

    
0.95    

True 15.6 16.0 1.2 0.0 0.0 8.2 9.2 0.0 0.0 0.0 
Miss1 73.8 74.6 83.2 95.2 99.8 100.0 100.0 100.0 100.0 100.0 

    
0.96    

True 20.0 20.0 4.6 0.0 0.0 13.2 14.4 0.0 0.0 0.0 
Miss1 77.4 78.0 90.4 98.8 99.8 100.0 100.0 100.0 100.0 100.0 

Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 6.3. LGM model rejection rates of CFI at various cutoff values  
Five Time Points Eight Time Points Cutoff 

Value Sample Size 
100 250 500 1000

Sample Size
100 

 
250 500 1000

 ML SB ML SB  
0.90    

True 1.6 1.4 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 
Miss1 42.0 40.2 39.0 36.6 29.6 99.4 99.6 100.0 100.0 100.0 

    
0.93    

True 4.6 5.2 0.2 0.0 0.0 2.2 2.4 0.0 0.0 0.0 
Miss1 61.8 63.2 69.2 80.6 89.2 100.0 100.0 100.0 100.0 100.0 

    
0.94    

True 7.0 7.0 0.6 0.0 0.0 5.2 5.4 0.0 0.0 0.0 
Miss1 69.0 68.8 76.0 91.0 97.2 100.0 100.0 100.0 100.0 100.0 

    
0.95    

True 11.8 12.4 1.0 0.0 0.0 8.6 9.8 0.2 0.0 0.0 
Miss1 73.8 74.6 83.2 95.2 99.8 100.0 100.0 100.0 100.0 100.0 

    
0.96    

True 15.6 16.0 2.0 0.0 0.0 14.2 15.2 0.4 0.0 0.0 
Miss1 77.4 78.0 90.4 98.8 99.8 100.0 100.0 100.0 100.0 100.0 

Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
 



 132

Table 6.4. LGM model rejection rates of RMSEA at various cutoff values  
Five Time Points Eight Time Points Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100 

 
250 500 1000

 ML SB  ML SB  
0.045    

True 34.0 35.2 16.4 4.0 0.2 26.8 29.4 4.4 0.2 0.0
Miss1 86.2 87.4 98.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0

    
0.05    

True 30.6 32.2 12.4 2.6 0.0 21.8 24.2 1.8 0.0 0.0
Miss1 84.4 85.4 97.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0

    
0.055    

True 28.0 29.2 9.0 0.6 0.0 16.6 20.0 0.6 0.0 0.0
Miss1 83.0 83.4 95.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0

    
0.06    

True 24.8 25.8 7.0 0.0 0.0 12.6 14.2 0.2 0.0 0.0
Miss1 81.2 80.8 94.4 99.6 100.0 100.0 100.0 100.0 100.0 100.0

    
0.07    

True 18.2 19.6 2.8 0.0 0.0 6.4 7.0 0.0 0.0 0.0
Miss1 75.2 76.8 88.2 97.6 99.8 100.0 100.0 100.0 100.0 100.0

    
0.08    

True 13.2 14.0 1.0 0.0 0.0 1.8 2.2 0.0 0.0 0.0
Miss1 69.0 69.6 77.6 91.4 97.4 99.8 99.8 100.0 100.0 100.0

    
0.09    

True 7.8 8.6 0.6 0.0 0.0 0.4 0.8 0.0 0.0 0.0
Miss1 60.0 62.2 65.6 75.8 84.2 98.2 98.6 100.0 100.0 100.0

    
0.10    

True 4.8 5.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 49.6 51.0 48.2 53.0 50.4 95.0 94.8 99.2 100.0 100.0

    
0.11    

True 1.6 2.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Miss1 38.6 40.6 30.2 27.2 18.4 87.2 89.6 97.0 100.0 100.0

Note.  ML = maximum likelihood; SB = Satorra-Bentler. 
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Table 6.5. LGM model rejection rates of SRMR at various cutoff values 
Five Time Points Eight Time Points Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.045     
True 67.6 8.6 0.0 0.0 99.2 46.8 1.8 0.0 

Miss1 99.4 99.6 100.0 100.0 100.0 100.0 100.0 100.0
     
0.05     

True 52.2 2.8 0.0 0.0 97.2 23.8 0.8 0.0 
Miss1 98.6 98.8 99.6 100.0 100.0 100.0 100.0 100.0 

     
0.055     

True 39.4 1.4 0.0 0.0 91.6 10.8 0.0 0.0 
Miss1 97.2 96.2 98.4 99.6 100.0 100.0 100.0 100.0 

     
0.06     

True 27.0 1.0 0.0 0.0 81.8 3.6 0.0 0.0 
Miss1 92.8 92.6 95.6 98.6 100.0 100.0 100.0 100.0

     
0.07     

True 11.0 0.2 0.0 0.0 53.4 0.4 0.0 0.0 
Miss1 85.2 77.0 77.8 77.6 100.0 100.0 100.0 100.0 

     
0.08     

True 4.4 0.0 0.0 0.0 24.8 0.0 0.0 0.0 
Miss1 73.4 53.2 45.2 31.2 100.0 100.0 100.0 100.0 

     
0.09     

True 1.4 0.0 0.0 0.0 9.0 0.0 0.0 0.0 
Miss1 57.2 30.2 18.8 5.0 100.0 100.0 100.0 100.0 

     
0.10     

True 0.2 0.0 0.0 0.0 3.4 0.0 0.0 0.0 
Miss1 38.6 11.2 4.4 0.4 100.0 100.0 100.0 100.0 

     
0.11     

True 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0
Miss1 24.0 2.8 0.8 0.2 100.0 100.0 100.0 100.0 
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Table 6.6. LGM model rejection rates of WRMR at various cutoff values 
Five Time Points Eight Time Points Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

0.60     
True 66.0 59.2 59.8 59.8 98.8 98.4 98.6 98.8 

Miss1 99.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0
     
0.70     

True 45.0 40.8 34.2 34.4 93.4 92.8 91.8 90.8 
Miss1 97.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.80     

True 27.0 21.2 18.6 18.6 81.4 75.8 73.6 73.2 
Miss1 92.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0

     
0.90     

True 13.0 9.8 7.6 8.8 60.0 55.4 48.8 49.0 
Miss1 86.0 99.4 100.0 100.0 100.0 100.0 100.0 100.0

     
0.95     

True 8.4 6.6 5.2 6.6 47.6 40.6 36.4 35.4 
Miss1 82.0 99.2 100.0 100.0 100.0 100.0 100.0 100.0

     
1.00     

True 6.0 3.8 3.2 4.2 37.0 30.0 26.6 27.2
Miss1 76.2 99.2 100.0 100.0 100.0 100.0 100.0 100.0

     
1.10     

True 2.8 1.4 0.4 1.4 17.2 13.0 11.4 11.2 
Miss1 64.0 96.4 100.0 100.0 100.0 100.0 100.0 100.0
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Table 6.7. Means (SDs) for fit measures in LGMs 
Five Time Points Eight Time Points Cutoff 

Value Sample Size 
100 

 
250 500 1000

Sample Size
100

 
250 

 
500 1000

Chi-P     
True 0.470 0.488 0.490 0.500 0.443 0.493 0.494 0.477

 (0.290) (0.291) (0.284) (0.285) (0.287) (0.277) (0.293) (0.292)
Miss1 0.114 0.010 0.000 0.000 0.000 0.000 0.000 0.000 

 (0.185) (0.043) (0.000) (0.000) (0.002) (0.000) (0.000) (0.000)
     
TLI     

True 0.997 0.999 1.000 1.000 0.995 1.000 1.000 1.000 
 (0.047) (0.020) (0.009) (0.004) (0.030) (0.011) (0.006) (0.002)

Miss1 0.907 0.909 0.907 0.908 0.784 0.793 0.794 0.795
 (0.071) (0.040) (0.027) (0.018) (0.060) (0.035) (0.024) (0.017)
     
CFI     

True 0.984 0.994 0.997 0.999 0.985 0.995 0.997 0.999
 (0.026) (0.011) (0.005) (0.002) (0.021) (0.008) (0.004) (0.001)

Miss1 0.905 0.909 0.907 0.908 0.761 0.771 0.772 0.773
 (0.067) (0.040) (0.027) (0.018) (0.066) (0.039) (0.026) (0.019)
     
RMSEA     

True 0.030 0.018 0.012 0.008 0.024 0.012 0.009 0.007
 (0.037) (0.024) (0.016) (0.011) (0.026) (0.016) (0.012) (0.008)

Miss1 0.094 0.097 0.101 0.101 0.137 0.136 0.135 0.135
 (0.043) (0.023) (0.015) (0.010) (0.023) (0.013) (0.009) (0.007)
     
SRMR     

True 0.052 0.032 0.022 0.016 0.072 0.045 0.031 0.022
 (0.015) (0.009) (0.006) (0.005) (0.013) (0.008) (0.006) (0.004)

Miss1 0.095 0.082 0.079 0.077 0.166 0.155 0.151 0.15
 (0.024) (0.015) (0.012) (0.008) (0.023) (0.015) (0.010) (0.008)
     
WRMR     

True 0.688 0.662 0.648 0.652 0.952 0.919 0.909 0.908
 (0.191) (0.184) (0.170) (0.179) (0.174) (0.161) (0.163) (0.161)

Miss1 1.211 1.616 2.194 2.984 2.123 3.084 4.217 5.878
 (0.288) (0.288) (0.308) (0.311) (0.278) (0.289) (0.282) (0.302)
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CHAPTER 7 

REAL DATA ILLUSTRATION 

 

To decide whether a model is a well-fitting one is not hard if all the fit indices lead to 

similar conclusions.  However, in practice researchers often encounter inconsistent results 

for fit indices.  Different cutoff criteria for fit indices in many cases also affect the decision.  

This chapter uses an actual database to illustrate the use of cutoff criteria for TLI, CFI, 

RMSEA, SRMR and WRMR in model selection.  The initial data were gathered by 

Holzinger and Swineford (1939) and a theory-based bi-factor model was fitted to the data.  

This data set is a benchmark in factor analysis for comparing methods.  The aim of this 

illustrative example is not to demonstrate how to derive a best-fitting model from the data, 

but to illustrate how to consult the previous simulation results and apply suitable cutoff 

criteria of the model fit measures to evaluate whether a model is reasonably consistent with 

the data and worthy of further investigation. 

 

7.1 Holzinger and Swineford data and the bi-factor model 

This set of data consists of a battery of 24 mental ability tests administrated to 145 

seventh- and eighth-grade children from the Grant-White Elementary School in Forest 

Park, Illinois.  The basic statistics for the 24 mental ability tests are presented in Table 7.1 

and, to check the non-normality of the data, the univariate skewness and kurtosis are also 

provided. 

The univariate skewness of these outcomes ranged from –0.77 to 1.18 and kurtosis 
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ranged from –0.68 to 2.28.  The majority of variables seemed to be normally distributed.  

The multivariate normality tests (based on Mardia’s multivariate skewness and kurtosis 

measures) indicated that the value of kurtosis observed in the data was not significantly 

different from zero (p = 0.08) but the skewness was significantly different from zero (p 

= .0003).  These variables were believed to measure mental abilities such as spatial 

relations (tests 1-4), verbal intelligence (tests 5-9), perceptual speed (tests 10-13), memory 

(tests 14-19) and deduction (tests 20-24). 

Based on Spearman’s two-factor theory in which intellectual activity was believed to 

consist of a general function and a specific function for each element (Spearman, 1904. cf. 

Harman, 1976), Holzinger and Swineford (1939) proposed the bi-factor solution and fitted 

the bi-factor solution to these twenty-four psychological tests.  Their studies aimed to 

investigate whether the unique and simple bi-factor theory can be applicable to mental 

ability tests and psychological measures.  Bi-factor refers to two different types of factors.  

One is a general factor which describes general mental abilities, and the other is an array of 

group factors which are measured by the grouping of variables.  Harman (1976) analyzed 

the data using the bi-factor method, and a re-analysis of his final solution using Mplus is 

presented here.  The parameter estimates and bi-factor pattern (one general factor and five 

group factors) are provided in Table 7.21.  

Based on the bi-factor theory, the general factor accounts for the intercorrelations 

among group factors, thus these six factors are not correlated to each other.  The residuals 

                                                 

1 The bi-factor model was fitted to data by Mplus 2.02, and the input program can be found on the Mplus 
website at http://www.statmodel.com/mplus/examples/continuous/cont14.html. 
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of the variables “addition” (Test 10) and “arithmetic problems” (Test 24) were allowed to 

be correlated in estimation.  After specifying a model based on substantive theory and 

fitting the model to the data, the χ2 and fit indices can be helpful to assess the overall fit of 

the model.  The χ2 test of model fit for the baseline model with 276 degrees of freedom was 

1639.347, p < .0001.  The observed variables were uncorrelated in the baseline model, and 

the test result indicated that further modeling should be considered.  The χ2 test of model fit 

for the bi-factor model was 308.64 with 231 degrees of freedom (p = .0005).  TLI = 0.932, 

CFI = 0.943, RMSEA = 0.048, SRMR = 0.06 and WRMR = 0.892.  Given the results of 

these overall fit indices, does the bi-factor model represent an acceptable fit?  What are the 

adequate cutoff criteria for the fit indices in the bi-factor model?  This study attempts to 

tackle these questions. 

 

7.2 Performance and suitable cutoff criteria of the fit measures 

Because the factor-covariance structure of the bi-factor model is fixed (factors are not 

correlated to each other), the misspecification of factor loadings is a more important 

concern than the misspecification of factor covariances.  According to the results of the 

earlier CFA study, when sample size is around 100 under normality for the complex models, 

the ML-based Chi-P at a cutoff of 0.01 rejected 4% of the true models and 75% to 99% of 

the misspecified models; TLI at 0.95 rejected 4% of the true models and 75% to 99% of the 

misspecified models; CFI at 0.96 rejected 4% of the true models and 74% to 99% of the 

misspecified models.  RMSEA at a cutoff of 0.06, SRMR at 0.07 and WRMR at 0.9 all had 

type I error rates lower than 5% and type I error rates lower than 25% (power higher than 



 139

075).  Note that a cutoff value of 0.9 was better than 0.95 for WRMR in terms of power in 

the CFA complex models.  Inspection of the results in the CFA trivial models shows that 

these suggested cutoff criteria did not tend to overreject trivially misspecified models 

(rejection rates were less than 10%).  However, according to these cutoff values these fit 

indices appear to disagree in this example.  The ML-based Chi-P, TLI and CFI indicate a 

lack of fit, whereas RMSEA, SRMR and WRMR indicate an acceptable fit for the bi-factor 

model.    

In this example, the bi-factor model has sixty-nine parameters and the data has a 

sample size of 145.  Past research has indicated that with small sample sizes, the test 

statistic might not be χ2 distributed and TLI might be underestimated.  The earlier 

simulation results have shown that with sample sizes of around 100, some conventional 

cutoff values for fit measures tend to overreject properly specified models.  Moreover, 

sample size, model complexity and the presence of non-normality appear to affect the 

estimates of the fit measures and the decisions of cut points.  The number of parameters in 

the bi-factor model is much higher than in Boomsma’s study and the previous CFA study of 

this dissertation (thirty-six parameters in the CFA complex true model).  Greater sample 

sizes might be needed with increasing model complexity and/or a greater number of free 

parameters in a model.  A sample size of 145 might not provide enough information for an 

accurate χ2 approximation.  To investigate whether the fit measures under the suggested 

cutoff values have strong power with minimum type I errors for the bi-factor model with N 

= 145, a small Monte Carlo study similar to the earlier studies was conducted.  This study, 

however, is based on the estimated parameter values of the real-data example. 
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7.2.1 Design of A Small Monte Carlo Study  

Five hundred data matrices with N = 145 were drawn from the bi-factor model 

structure with the parameter values in Table 7.2.  The outcome variables had values of 

skewness and kurtosis close to those provided in Table 7.1.  Two specifications of the 

bi-factor models were fitted to sample mean and covariance matrices generated from each 

of the 500 replications.  The first model was properly specified such that the estimated 

parameters in the sample exactly corresponded to the bi-factor structure (True model).  An 

evaluation of the properly specified models is important to gain insight into the behavior of 

the fit indices.  The other was a misspecified model in which an important loading (Test 9 

on the factor “verbal intelligence”) was not estimated (Miss model).  Runs that failed to 

converge within 3000 iterations or had improper solutions  (negative estimates of variances, 

also called “Haywood cases”) were discarded.  As mentioned in Boomsma (1983, p. 30), at 

least three strategies can be used to deal with replications with improper solutions.  The 

“exclusion” and “inclusion” of improper solutions are two commonly used strategies in 

literature.  Neither strategy is perfect.  In this example a decision was made to exclude the 

replications with improper solutions.  The differences between these two strategies in 

terms of rejection rates were compared, and the results did not vary significantly whether 

or not the replications of improper solutions were excluded.  We would like to avoid 

incorrectly rejecting the bi-factor model if it is true, thus an important aim is to select cutoff 

values and fit measures that have type I error rates around or lower than 5%.   
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7.2.2 Results and Discussion  

In this section the cutoff values suggested in the previous studies are evaluated, and 

the suitable cutoff criteria for the bi-factor model are provided.  The agreements between 

pairs of the fit indices under certain cutoff values are investigated.  Also discussed are the 

similarities in the performance of fit indices under different model misspecifications. 

Among the five hundred samples drawn from the population bi-factor model, 

seventy-six of them were not converged and 101 of them had improper solutions.  One 

cause of improper solutions is model misspecification, but it cannot be the case under 

properly specified models in a Monte Carlo study.  Another plausible cause of improper 

solutions is small sample size (e.g., Mattson, Olsson & Rosén, 1966; Boomsma, 1983).  

The high percentage of non-convergence and improper solutions implied that the sample 

size of 145 might not be sufficient to estimate the bi-factor model and/or that the model 

specification may be improved.  The rejection rates of the fit measures from the proper 

replications are presented in Table 7.3. 

 

Suitable Cutoff Criteria 

The earlier suggested cutoff values of 0.95 for TLI, 0.96 for CFI, 0.06 for RMSEA, 

0.7 for SRMR, 0.9 for WRMR and 0.01 for the ML-based Chi-P all had acceptable type I 

error rates.  However, they reacted differently to the misspecified model.  The ML-based 

Chi-P, TLI and CFI at the suggested cutoff values had strong power (around 0.9) to reject 

the bi-factor model with misspecified loadings.  The ML-based Chi-P, TLI and CFI in the 

bi-factor model at N = 145 appeared to have similar pattern and rejection rates as the CFA 
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complex model with normal data at N = 100.  On the other hand, the RMSEA, SRMR and 

WRMR values of this real-data example tended to be lower than the CFA complex model 

in the Miss model.  As a result, the power of RMSEA, SRMR and WRMR at the suggested 

cutoff values was low.  RMSEA at a cutoff of 0.06 and SRMR at a cutoff of 0.07 rejected 

only 15% and 1% of the misspecified model, respectively.  At the suggested cutoff values, 

SRMR and RMSEA were unable to detect models with an important loading incorrectly 

excluded.  The results seemed to explain why the RMSEA, SRMR and WRMR at the 

suggested cutoff values did not reject the bi-factor model in the real-data findings.    

A high power value associated with the fit indices implied that a lack-of-fit decision is 

likely to reject the real misspecification of important parameters in the model.  In order to 

have strong power (> 0.8) to detect the misspecification of loadings, a cutoff value of 0.045 

for RMSEA, a cutoff value lower than 0.06 for SRMR and a cutoff value lower than 0.9 for 

WRMR were needed.  Using the adjusted cutoff values for RMSEA, SRMR and WRMR 

from the small simulation study, these fit indices were consistent in indicating that further 

modeling or re-modeling should be considered.   

As was demonstrated above, the suitable cutoff values suggested from the previous 

CFA study with N = 100 were applied and compared to the bi-factor model with N = 145, 

and it was found that the same cutoff criteria might not be applicable for RMSEA, SRMR 

and WRMR in both the CFA and bi-factor models.  The CFA and bi-factor models 

investigated earlier differed not only in model complexity but also in sample size.  In 

addition, the magnitude of the misspecified factor loadings was different (0.7 in the CFA 

model versus 0.6 in the bi-factor model).  To evaluate whether the different performance of 
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RMSEA, SRMR and WRMR between the CFA and bi-factor models was due to sample 

size, the simulation results for the CFA model with N = 150 are presented in Table 7.4.  It 

was found that, except for SRMR, the suitable cutoff criteria for Chi-P, TLI, CFI, RMSEA 

and WRMR were similar in the CFA models with N = 100 and N = 150.  In the CFA models 

with N = 150, a cutoff value close to 0.055 or 0.06 for SRMR were needed to have power 

higher than 0.7.  SRMR appeared to be sensitive to sample size.  Comparing Table 7.3 with 

Table 7.4, fit indices (except for RMSEA) generally had lower type I errors in the CFA 

models than the bi-factor models.  Furthermore, CFI and TLI tended to have higher type II 

error rates whereas RMSEA, SRMR and WRMR tended to have lower type II error rates in 

the CFA models.  Again, it showed that the performance of RMSEA, SRMR and WRMR 

was different from that of CFI and TLI under misspecified models, and, regardless of 

sample size, RMSEA/SRMR/WRMR performed very differently between the 15-variable 

CFA and the 24-variable bi-factor models.  The results also implied that the best cutoff 

criteria for fit indices depended on models.   

  

Agreements and Similarities in Performance of Fit Indices 

To understand the agreements on the reject or not-reject decisions for fit indices under 

certain cutoff values, the frequency and probability of consistent decisions for pairs of fit 

indices at certain cutoff values were investigated.  The estimated probability of a consistent 

decision is calculated by 0011 ˆˆˆ ppp += , where 11p̂  is the estimated probability when both 

fit indices reject the models and 00p̂  is the estimated probability when both indices accept 

the models.  Table 7.5 presents the estimated probability and frequency of consistent 
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classifications for pairs of fit indices at certain cutoff values for the true models.  It shows 

that a cutoff value of 0.95 for TLI, 0.96 for CFI, 0.06 for RMSEA, 0.7 for SRMR, 0.9 for 

WRMR and 0.01 for the ML-based Chi-P classify over 90% of the true models 

consistently. 

Tables 7.6 and 7.7 present the estimated probability and frequency of consistent 

classifications for pairs of fit indices at certain cutoff values under the misspecified models.  

The only difference between Table 7.6 and Table 7.7 is the cutoff values for SRMR and 

RMSEA.  Similar to the true models, in the Miss models Chi-P, TLI and CFI at the 

suggested cutoff values still made consistent reject or not-reject decisions (the pairwise 

agreement rates still ranged from 0.97 to 0.99).  However, as opposed to Table 7.5, in the 

Miss models RMSEA at a cutoff of 0.06 and SRMR at 0.07 in Table 7.6 made far less 

consistent decisions with other fit indices.  The pairwise agreement rates of RMSEA at a 

cutoff value of 0.06 ranged from 0.22 to 0.49, and those of SRMR at 0.07 only ranged from 

0.07 to 0.36.  Table 7.7 shows that reducing a cutoff value of RMSEA to 0.05 and that of 

SRMR to 0.06, the agreement rates of RMSEA/ SRMR with other fit indices increased 

tremendously.  With a cutoff value of 0.05, RMSEA classified around 90% of the Miss 

models consistently with Chi-P at a cutoff of 0.01, TLI at 0.95 and CFI at 0.95, and around 

80% of the Miss models consistently with WRMR at 0.9.  SRMR at a cutoff value of 0.06 

classified around 50% of the Miss models consistently with Chi-P at 0.01, TLI at 0.95 and 

CFI at 0.95, and about 80% of the Miss models consistently with WRMR at 0.9.  Reducing 

cutoff values of RMSEA to 0.05 and SRMR to 0.06 not only increased their power but also 

increased their agreement rates with other fit indices. 



 145

To explore the similarities in the performance of fit indices in the real-data setting, the 

relationships between pairs of the ML-based Chi-P, CFI, TLI, RMSEA, SRMR and 

WRMR were investigated.  The pairwise scatterplots for fit measures under the true and 

Miss models were shown in Figure 7.1 and Figure 7.2, respectively.  Under the true models 

Chi-P, TLI, CFI and RMSEA seemed to correlate highly (the absolute value of correlations 

ranged from 0.85 to 0.96), and SRMR and WRMR correlated highly (correlation value was 

0.96).  Under the Miss models the majority of Chi-P values were close to 0 with a few 

outliers, thus it did not correlate highly with the other fit indices as in the true model.  

Similar to true models, RMSEA appeared to correlate more highly with TLI and CFI than 

with WRMR and SRMR under the Miss models.  The rejection rates and agreement rates 

between pairs of the fit indices under various cutoff values can also be eye-approximated in 

these scatterplots.  One of the characteristics that set CFI and TLI apart from RMSEA, 

SRMR and WRMR was that the TLI and CFI values were clearly lower and they had larger 

spread under the Miss models.  Thus, a cutoff value of 0.95 for TLI and CFI was sufficient 

to reject many misspecified models.   

Generally speaking, except for Chi-P, the general trend and relationships between 

pairs of the fit indices were similar for the bi-factor true and Miss models.  The results were 

very similar to Figure 4.2 and Figure 4.3 of the CFA models.  RMSEA correlated highly 

with TLI and CFI, whereas WRMR correlated highly with SRMR.  It seemed that the 

relationships between pairs of fit indices were not affected much by model complexity.  In 

terms of cutoff criteria, the suggested cutoff values for TLI, CFI and Chi-P in the earlier 

CFA study were applicable to the real-data example.  In addition, TLI at a cutoff of 0.95, 
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CFI at 0.95 and Chi-P at 0.01 had very high agreement rates for both true and misspecified 

models.  On the contrary, the suggested cutoff values of RMSEA, SRMR and WRMR in 

the CFA study needed to be adjusted in order to have high power and better agreements 

with other fit indices.  An inspection of Figure 4.3 and Figure 7.2 revealed that the RMSEA, 

SRMR and WRMR values were much lower in the bi-factor Miss models than in the CFA 

Miss1 models.  For instance, RMSEA ranged from 0.05 to 0.09 in the CFA Miss1 models 

but only from 0.02 to 0.07 in the bi-factor Miss models.  Therefore, a cutoff value of 0.06 

for RMSEA failed to reject many bi-factor Miss models.  RMSEA, SRMR and WRMR had 

better agreements with other fit indices under true models than under misspecified models. 

In LVM analyses, researchers should always choose models based more on 

psychological theory and substantive expertise.  The choice of cutoffs can vary in different 

substantive fields and can be affected by the standards set by prior work, as Bollen (1989, 

p274) mentioned.  For example, if previous research usually reported a TLI value of .90 

and RMSEA of 0.6, then a TLI value of 0.94 and RMSEA of 0.5 can indicate an important 

improvement of the modeling.  In the illustrative example, the estimates of the fit indices 

were very close to the cutoff values, and substantive expertise can play an important role in 

the decision.  If moderate power (0.5 to 0.7) is acceptable, TLI ≥ 0.93, CFI ≥ 0.94, RMSEA 

≤ 0.05 and WRMR ≤ 0.9 can also be suitable criteria to indicate good models.   

 



 147

Figure 7.1. Scatterplot of the relationship between pairs of fit measures in the bi-factor true models  
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Figure 7.2. Scatterplot of the relationship between pairs of fit measures in the bi-factor Miss1 models 
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Table 7.1. Basic statistics for the 24 mental ability tests 
Variable Mean Variance Skewness Kurtosis 
1. Visual perception 29.58 47.80 -0.12 -0.05 
2. Cubes 24.80 19.76 0.24 0.87 
3. Paper form board 14.30 7.96 0.13 0.50 
4. Flags 15.97 69.17 0.62 -0.45 
5. General information 44.85 135.91 0.19 0.56 
6. Paragraph comprehension 9.95 11.39 0.40 0.25 
7. Sentence Completion 18.85 21.62 -0.55 0.22 
8. Word Classification 28.20 28.70 -0.40 1.52 
9. Word meaning 17.28 63.16 0.73 0.23 
10. Addition 90.18 565.59 0.16 -0.36 
11. Code 68.59 277.67 0.30 0.68 
12. Counting dots 109.77 440.79 0.70 2.28 
13. Straight-curved capitals 191.78 1371.62 0.20 0.52 
14. Word recognition 176.28 117.26 -0.66 1.66 
15. Number recognition 89.37 56.89 0.21 0.35 
16. Figure recognition 103.40 46.26 0.10 -0.18 
17. Object-number 7.21 20.87 1.18 2.82 
18. Number-figure 9.44 20.29 0.38 -0.54 
19. Figure-word 15.24 12.93 -0.77 0.17 
20. Deduction 30.34 391.26 0.30 0.16 
21. Numerical puzzles 14.46 23.35 -0.32 -0.08 
22. Problem reasoning 27.73 96.52 0.14 -0.36 
23. Series completion 18.75 87.62 0.04 -0.68 
24. Arithmetic problems 25.83 22.21 -0.56 -0.01 
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Table 7.2. Bi-factor solution for the 24 mental ability tests (standardized loadings) 
 Factors 
Test General Spatial Verbal Speed Recognition Memory Residual 

variances
1 0.620a 0.206a  0.573 
2 0.408* 0.322  0.730 
3 0.428* 0.223  0.767 
4 0.563* 0.553  0.378 
5 0.587* 0.544a  0.360 
6 0.570* 0.596*  0.320 
7 0.563* 0.628*  0.288 
8 0.608* 0.361*  0.500 
9 0.594* 0.605*  0.282 
10 0.378* 0.586a  0.514 
11 0.504* 0.398*  0.588 
12 0.445* 0.615*  0.424 
13 0.579* 0.423*  0.486 
14 0.385* 0.593a  0.500 
15 0.363* 0.422*  0.690 
16 0.527* 0.295*  0.636 
17 0.411* 0.360* 0.484 0.467 
18 0.521* 0.459a 0.518 
19 0.442* 0.278 0.728 
20 0.643*  0.586 
21 0.639*  0.592 
22 0.648*  0.579 
23 0.722*  0.479 
24 0.613*  0.624 
Note. a  Fixed parameter; * Significant at 0.05 level. 
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Table 7.3. Rejection rates of fit measures for the bi-factor model  (N = 145) 
Cutoff ML 

Chi-P
SB 

Chi-P 
Cutoff TLI CFI Cutoff RMSEA SRMR Cutoff WRMR

0.01   0.9   0.045   0.7  
True 6.8 10.8 0.0 0.0 0.9 92.9 93.8
Miss 94.0 94.5 23.0 6.0 81.6 100.0 99.7

           
0.03   0.93   0.05   0.8  

True 14.9 18.6 0.0 0.0 0.0 47.1 49.8 
Miss 95.7 96.3 69.8 45.7 62.1 96.8 95.7 

           
0.04   0.94   0.055   0.9  

True 18.9 21.7 1.2 0.0 0.0 9.3 7.7 
Miss 96.0 97.7 83.0 68.7 33.9 83.3 65.2 

           
0.05   0.95   0.06   0.95  

True 20.7 24.5 5.0 1.2 0.0 0.3 0.6
Miss 96.8 98.0 92.2 83.0 15.8 44.0 38.5 

           
0.06   0.96   0.07   1.0  

True 22.6 28.8 12.4 5.9 0.0 0.0 0.0 
Miss 97.1 98.3 95.4 93.4 0.3 1.1 16.1 

Note. There are 323 proper replications for the True model and 348 proper replications for the Miss 
model. 
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Table 7.4. Rejection rates of fit measures for the CFA model (N = 150) 
Cutoff ML 

Chi-P
SB 

Chi-P 
Cutoff TLI CFI Cutoff RMSEA SRMR Cutoff WRMR

0.01   0.9   0.045   0.7  
True 2.8 4.2 0.0 0.0 7.8 36.4 44.4
Miss 95.6 96.4 4.4 0.4 98.2 100.0 99.8

           
0.03   0.93   0.05   0.8  

True 7.4 8.4 0.0 0.0 3.8 12.0 11.2 
Miss 98.2 98.8 36.2 12.6 96.2 99.8 99.2 

           
0.04   0.94   0.055   0.9  

True 8.6 9.8 0.0 0.0 1.6 2.6 1.8 
Miss 99.0 98.8 56.8 28.4 90.4 98.0 92.2 

           
0.05   0.95   0.06   0.95  

True 9.4 10.8 0.2 0.0 0.8 0.6 0.6
Miss 99.2 99.4 73.4 52.0 81.8 90.2 85.8 

           
0.06   0.96   0.07   1.0  

True 10.8 12.4 1.4 0.2 0.0 0.0 0.4 
Miss 99.4 99.4 89.8 74.6 53.2 58.6 76.2
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Table 7.5. Probability and frequency of agreements between pairs of fit measures at certain cutoff 
values under true models  (323 replications) 
Fit index Chi-P (.011) TLI (.95) CFI (.95) RMSEA (.06) SRMR (.07) WRMR (.9)

Chi-P __ 313 316 301 301 294
TLI 0.97 __ 320 307 307 300
CFI 0.98 0.99 __ 304 304 299

RMSEA 0.93 0.95 0.94 __ 323 298
SRMR 0.93 0.95 0.94 1.00 __ 298

WRMR 0.91 0.93 0.93 0.92 0.92 __
1 Values in parentheses are the adopted cutoff value for fit indices.  The underscored values in the low triangle 
are the estimated probability values.  The frequency of consistent decisions is in the up-right triangle. 
 
Table 7.6. Probability and frequency of agreements between pairs of fit measures at certain cutoff 
values under misspecified models   (RMSEA at 0.06 and SRMR at 0.07; 348 replications) 
Fit index Chi-P (.011) TLI (.95) CFI (.95) RMSEA (.06) SRMR (.07) WRMR (.9)

Chi-P __ 338 342 76 25 240
TLI 0.97 __ 344 82 31 248
CFI 0.98 0.99 __ 78 27 244

RMSEA 0.22 0.24 0.22 __ 297 170
SRMR 0.07 0.09 0.08 0.85 __ 125

WRMR 0.69 0.71 0.70 0.49 0.36 __
1 Values in parentheses are the adopted cutoff value for fit indices.  The underscored values in the low triangle 
are the estimated probability values.  The frequency of consistent decisions is in the up right triangle. 
 
Table 7.7. Probability and frequency of agreements between pairs of fit measures at certain cutoff 
values under misspecified models  (RMSEA at 0.05 and SRMR at 0.06) 

 Chi-P (.01) TLI (.95) CFI (.95) RMSEA (.05) SRMR (.06) WRMR (.9)
Chi-P __ 338 342 305 174 240

TLI 0.97 __ 344 311 180 248
CFI 0.98 0.99 __ 307 176 244

RMSEA 0.88 0.89 0.88 __ 213 259
SRMR 0.50 0.52 0.51 0.61 __ 274

WRMR 0.69 0.71 0.70 0.74 0.79 __
1 Values in parentheses are the adopted cutoff value for fit indices.  The underscored values in the low triangle 
are the estimated probability values.  The frequency of consistent decisions is in the up right triangle. 
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CHAPTER 8 

SUMMARY AND DISCUSSION 

 

The aims of this study were to first evaluate and compare the performance of various 

model fit measures under different model and data conditions, and, secondly, to examine 

the adequacy of the cutoff criteria for these model fit measures.  This study applied the 

method demonstrated in Hu and Bentler (1999) to evaluate the adequacy of the cutoff 

criteria for TLI, CFI, RMSEA, SRMR and WRMR.  The performance of Chi-P under 

various cutoff values was also evaluated and compared to fit indices.  Three major 

simulation studies based on CFA, MIMIC and latent growth curve models were conducted 

to evaluate the performance and to obtain suitable cutoff criteria for model fit measures.  

An application of the simulation results was illustrated in Chapter 7 using the Holzinger 

and Swineford data.   

 

8.1 Summary of the Results 

In the CFA simulation study, fit indices were evaluated under conditions such as 

model specification, type of outcome variables (normal, non-normal continuous and binary 

outcomes), type of model misspecification  (true, misspecified and trivially misspecified 

models) and various sample sizes.   It was found that with normal outcomes, acceptable 

cutoff values for the maximum likelihood χ2 (ML)-based TLI, CFI, RMSEA and SRMR 

were close to 0.95, 0.96, 0.05 and 0.07 respectively.  A cutoff value close to 0.05 for 

RMSEA tended to have high type I errors and was less preferable at N = 100.  This study 
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investigated a new model fit index WRMR, and WRMR ≤ 1.0 can be an indication of good 

models with normal and moderately non-normal continuous outcomes across all four 

sample sizes.  It had acceptable type I error rates across samples and distributions and its 

power ranged from 0.42 to 1.  With severely non-normal continuous outcomes and N ≥ 250, 

the SB-based CFI at a cutoff value close to 0.95 and SRMR at close to 0.07 had acceptable 

type I and type II error rates.  SRMR was found to work poorly with binary outcomes.  CFI 

≥ 0.96 and RMSEA ≤ 0.05 can be indications of good models with binary outcomes at N ≥ 

250.  WRMR with a cutoff value close to 1.0 had acceptable type I error rates with binary 

outcomes at N ≥ 250, but one might want to consider a cutoff value of 0.95 for WRMR to 

have higher power at N ≥ 250.   

The SB χ2 exhibited much lower type I error rates than the ML χ2 under non-normality, 

but it still tended to overreject properly specified models at smaller sample sizes.  When N 

≤ 250 under severe non-normality, the use of the SB-based CFI, TLI and RMSEA was 

recommended to maintain type I error control.  However, it appeared that the SB-based 

TLI, CFI and RMSEA at their suggested cutoff values still overrejected properly specified 

models at N = 100.  When sample size was equal to or larger than 500, the ML-based TLI 

and CFI at the suggested values seemed to still be applicable with non-normal data.  Note 

that the ML-based RMSEA at a cutoff value of 0.05 still had inflated type I errors at N = 

500 under severe non-normality, and it required sample sizes of 1000 or larger to be robust 

to non-normality. 

The ideal cutoff values of fit measures might vary under different conditions.  In some 

cases, a few cutoff values for the same fit index may be considered, such as cutoff values of 
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0.95 or 0.96 for CFI and TLI, values of 0.07 or 0.08 for SRMR, values of 0.05 or 0.06 for 

RMSEA, and values close to 0.95 or 1.0 for WRMR.  

In Chapter 5 the performance and adequacy of cutoff values for Chi-P, TLI, CFI, 

RMSEA, SRMR and WRMR in MIMIC models were evaluated under conditions such as 

different sample sizes, various types of model misspecification and outcome variables 

(binary, normal, moderately and severely non-normal outcomes).  The model with 

misspecified factor loadings was considered and compared to the previous CFA results.  It 

was found that rejection rates of these fit measures in the CFA and MIMIC models was 

similar, and the suitable cutoff criteria obtained earlier from the CFA study seemed to be 

applicable to the MIMIC models also.   

CFI ≥ 0.96, TLI ≥ 0.95, SRMR ≤ 0.07, RMSEA ≤ 0.06, WRMR ≤ 1.0 (or 0.95) and 

Chi-P ≥ 0.01 were acceptable indications of good MIMIC models across all four sample 

sizes with normal outcome.  Under moderate non-normality, a cutoff value of 0.95 for the 

ML-based TLI, 0.96 for the ML-based CFI, and 0.95 for WRMR were still applicable at N 

≥ 250.  A cutoff value of 0.05 for the ML-based RMSEA can be applicable at N ≥ 500, and 

the use of the SB-based RMSEA was preferable at N = 250. The cutoff values suggested 

above all had power higher than 0.7 with satisfactory type I error rates at N ≥ 250.  

Relatively speaking, at N ≥ 250, WRMR a cutoff value of 0.95 was preferable to 1.0 in both 

CFA and MIMIC models with binary, normal and moderately non-normal data in terms of 

power.  On the other hand, a cutoff value of 1.0 for WRMR had the advantage of a better 

type I error control at N = 100.  With binary outcomes, the power of WRMR at a cutoff 

value of 0.95, CFI at 0.96 and Chi-P at 0.05 tended to increase and their type I errors tended 
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to decrease with increasing sample size.  Therefore, they performed well at larger sample 

sizes (e.g. N ≥ 250).  At N = 100, cutoff values of 0.95 for WRMR and 0.05 for Chi-P had 

acceptable type I error rates with power ranging from 0.3 to 0.7.     

Note that controlling type I errors under or around the nominal level of 5% was 

considered as a more important criterion to suggest suitable cutoff values for fit indices in 

this dissertation.  We did not want to incorrectly reject true-population models.  On the 

other hand, type II errors were allowed to be liberal.  Rejection rates over 80% under 

misspecified models were deemed satisfactory, while rates of 50% to 70% were deemed 

moderate and still considered acceptable.   

Suitable cutoff criteria for fit measures under the CFA and MIMIC models with 

liberal type II error rates can be summarized as below: 

Normal Outcomes  

• Acceptable cutoff values for the ML-based TLI, CFI, RMSEA, SRMR and WRMR 

were close to 0.95, 0.96, 0.05, 0.07 and 1.0, respectively.  

• A cutoff value close to 0.05 for RMSEA tended to have high type I errors and is less 

preferable at N = 100.  

Non-Normal Outcomes 

• Under moderate non-normality, only WRMR with a cutoff value of 1.0 had 

moderate to strong power to detect misspecified models with acceptable type I 

errors across all four sample sizes.  

• Under severe non-normality, none of the model fit indices at the suggested cutoff 

values had acceptable type I errors at N = 100; at N = 250, the cutoff value of 0.95 
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for the SB-based CFI and a cutoff value of 0.07 for SRMR had acceptable type I 

and type II errors. 

Binary Outcomes 

• SRMR was found to work poorly.   

• CFI ≥ 0.96, RMSEA ≤ 0.05 and WRMR ≤ 1.0 can be indications of good models 

with binary outcomes at N ≥ 250. 

Generally speaking, the power of TLI, CFI and RMSEA to detect models with 

misspecified loadings was higher than their power to detect models with misspecified 

covariances.  The power of SRMR was larger to detect models with misspecified 

covariances.  The power of WRMR and Chi-P were similar in both types of misspecified 

models.    

In terms of the latent curve models with five and eight time points, the results show that 

Chi-P at a cutoff value of 0.05 performed well across all sample sizes.  Except for 

overrejecting the five-point LGM true models at N = 100, CFI at a cutoff of 0.95 was 

suitable for latent growth curve models across samples.  A cutoff value of 0.95 for CFI had 

the advantage of lower type I errors, whereas a cutoff value of 0.96 for CFI provided higher 

power to reject misspecified models.  The choice of adequate cutoff values for the 

residual-based fit indices WRMR and SRMR seemed to vary with time points in the latent 

growth curve model.    

The example illustrated in Chapter 7 represented the model complexity and sample 

size usually seen in practice.  Practitioners often find the similar type of inconsistency 

among fit indices.  Applying the suitable cutoff values obtained from the CFA complex 
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models produced inconsistent conclusions among the fit indices.  Chi-P at a cutoff value of 

0.01, TLI at 0.95 and CFI at 0.96 suggested a lack of fit for the theoretical bi-factor model, 

whereas RMSEA at 0.06, SRMR at 0.07 and WRMR at 0.9 suggested goodness of fit.  A 

small simulation study was conducted to investigate the adequacy of these suggested cutoff 

values in the bi-factor model with N = 145.  It was found that cutoff values of close to 0.01 

for Chi-P, close to 0.95 for TLI, and close to 0.96 for CFI suggested by the previous CFA 

study still had satisfactory power to detect the bi-factor misspecified models.  In contrast, 

the performance of RMSEA, SRMR and WRMR differed between the bi-factor models 

and the three-factor CFA models.  Comparing to the CFA models, the RMSEA, SRMR and 

WRMR values tended to be lower and thus result in lower rejection rates in the bi-factor 

misspecified model.   

The results show that suitable cutoff criteria for some fit indices are strongly 

dependent on models.  For example, the best cutoff values for RMSEA and SRMR in the 

CFA and bi-factor models at N = 150 are very different.  This suggests that to find suitable 

cutoff criteria and to understand how fit indices perform under a certain type of models 

with a certain sample size, substantive researchers might want to conduct their own 

simulation studies like the small Monte Carlo study illustrated here. 

 

8.2 Overall Discussion and Recommendation 

The simulation results have shown that sample size, model complexity and the 

presence of non-normality affect the estimates of the fit measures and the decisions of cut 

points, thus a cut point to satisfy all conditions is hard to find.  In LVM analyses, the choice 
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of cutoffs can also vary in different substantive fields and can be affected by the standards 

set by prior work.  

None of the fit measures with a specific cutoff value has minimum type I and type II 

error rates simultaneously across all sample sizes, multivariate distributions, and model 

specifications.  The cost of type I and type II errors might vary in different research fields, 

and different cutoff criteria might be chosen as a result.  For example, the choice of 0.95 or 

0.96 for CFI depends on the relative cost of the type I and type II errors.  If the type I errors 

are more costly, one might want to use a cutoff value of CFI close to 0.95.  Moreover, with 

a different preferred range of power, different cutoff values might be chosen.  For example, 

if a power value of 0.4 or 0.5 is acceptable, cutoff values of 0.95 for WRMR and 0.05 for 

Chi-P could be deemed suitable at N = 100 as well.  In spite of the complexity in studies of 

the cutoff criteria for fit indices, some general conclusions and recommendations may still 

be drawn from the four empirical studies of the CFA, MIMIC, latent growth curve and 

bi-factor models.   

1. The ML χ2 with a probability level of 0.05 results in inflated type I error rates with 

almost all outcomes at N = 100 in the CFA and MIMIC models.  The SB χ2 still tends to 

overreject properly specified models at smaller sample sizes.  Thus, the use of the ML and 

SB χ2 (with a probability level of 0.05) are not recommended at small sample sizes and/or 

with non-normal data, except for latent growth models. 

2. CFI at a cutoff value of 0.96 seems to be applicable to binary, normal and 

moderately non-normal continuous outcomes at N ≥ 250.  When N ≤ 250 under severe 

non-normality, the use of the SB-based CFI is recommended to maintain type I error 
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control.  The high agreements and similarities between CFI and TLI imply that it might be 

sufficient to just report one of them.  Relatively speaking, CFI at the suggested cutoff value 

has better type I and type II error rates than TLI at a cutoff value of 0.95 and RMSEA at 

0.05.  RMSEA at a cutoff value of 0.05 tends to overreject properly specified models at N = 

100 and, in some cases, loses power at N ≥ 500.   

3. SRMR is sensitive to sample sizes, and a specific cutoff value for SRMR across 

samples is difficult to find.  The use of SRMR with binary outcomes is not recommended.   

4. WRMR at a cutoff value of 0.95 or 1.0 has acceptable type I error rates with small 

to moderate type II error rates in the CFA and MIMIC models but rejects too many properly 

specified latent growth curve models with more time points.  It might also tend to reject too 

many models with trivial misspecification of factor covariances. 

There are a few limitations in this study that should be acknowledged.  Because an 

empirical approach is applied to explore the characteristics of these fit indices with 

unknown distributions, strong theoretical explanations for some phenomena observed in 

this study are not provided.  Several issues may be investigated further.  For example, it is 

interesting to investigate why WRMR performs less well in latent growth models with 

more time points, and why RMSEA and SRMR perform differently in CFA models with 

different number of variables and factors.  Furthermore, because the Monte Carlo method 

is used and not all possible models are studied, caution should be used in generalizing the 

results and conclusions too far beyond the models investigated.  More research with a 

wider class of models and conditions are needed.  

There are a few more potentially interesting topics.  Some other adjusted or rescaled 
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test statistics, such as the Yuan-Bentler (YB) test statistic, may be incorporated into the 

calculation of fit indices.  The SB χ2 and SB-based TLI, CFI and RMSEA at the suggested 

rules of thumb tend to have inflated type I errors at small sample sizes (e.g., N = 100).  The 

YB statistic was found to perform well in models with small sample sizes such as 60 to 120 

(Bentler and Yuan, 1999), thus the YB-based TLI, CFI and RMSEA might be useful in 

model selection with small sample sizes.  Furthermore, Hu and Bentler (1999) 

recommended the use of SRMR in conjunction with fit indices such as TLI, CFI and 

RMSEA.  Since WRMR performs relatively better than SRMR especially with binary 

outcomes, the use of WRMR in conjunction with CFI, TLI and RMSEA may be preferable 

and worthy of further investigation. 
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