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Section 1 Introducing the Example
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Grumpy or Depressed Data

Data from a study designed to detect at-risk mood profiles related to
depression in adolescents

ESM questionnaires measuring positive and negative affect in Dutch
adolescents ages 12 to 16, 63% girls

Positive and negative affect are measured as an average of six
7-category items

Tiredness is measured on a 7-point scale

N = 240, several measures per day for 7 days, Tuesday - Monday

Covariates: Gender, SDQ (measure of childhood emotional problems)

de Haan-Rietdijk, Voelkle, Keijsers, Hamaker (2017). Discrete- vs.
continuous-time modeling of unequally spaced experience sampling
method data. frontiers in Psychology

Bengt Muthén Longitudinal Modeling 5/ 130



Schedule of Measurements

Participants filled out ESM questionnaires throughout the day,
including during school hours

Questionnaires delivered on the adolescents’ own smartphones

Eight measurements taken randomly in 3 blocks of time between 8 am
and 10pm

A morning measurement between 8 am and 10 am
Six measurements between 10 am and 8 pm
An evening measurement between 8 pm and 10 pm
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Section 2 How to Handle Varying Times of
Measurement
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Varying Times of Measurement:
Understanding the TINTERVAL Option

Times of measurement are not the same across people - data are
misaligned with respect to time due to random measurement occasions

Varying times of observation are common in longitudinal data but
needs special attention in DSEM due to its use of lagged effects:

The time distance between measurements at time t−1 and time t
needs to be the same across people
This can be accomplished by inserting missing data to align time:
The TINTERVAL option
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Hypothetical Case 1: Frequent Measurements

Original data Aligned data

ID = 1 ID = 2 ID = 1 ID = 2
Data row t y t y t y t y

1 9 y1, 9 9 y2, 9 9 y1, 9 9 y2, 9
2 10 y1, 10 11 y2, 11 10 y1, 10 * *
3 11 y1, 11 12 y2, 12 11 y1, 11 11 y2, 11
4 13 y1, 13 * * 12 y2, 12
5 13 y1, 13 * *

Insertion of missing data rows using a time interval of 1 is obtained by
the VARIABLE command option TINTERVAL = t(1); where t is the
name of the time variable (e.g. hour) in the data set

Data row = bin number = time used in the analysis
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Hypothetical Case 2: Infrequent Measurements

With infrequent measurements, time interval = 1 gives many missing
data rows: Wider time interval needed

Original data Tinterval = 2 Aligned data
Data row t y Bin Bin range

1 9 y9 1 9-10 9 y9
2 13 y13 2 11-12 * *
3 16 y16 3 13-14 13 y13
4 19 y19 4 15-16 16 y16
5 21 y21 5 17-18 * *

6 19-20 19 y19
7 21-22 21 y21
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Choosing Tinterval for the Grumpy or Depressed Data

The total number of hours for the study is 24 x 7 = 168

The smaller the time interval, the better the match to the data, but the
more missing data inserted

Time interval = 1 gives 24/1 = 24 time points per day. Maximum
number of time points = 24 x 7 = 168. Coverage = 0.171
Time interval = 2 gives 24/2 = 12 time points per day. Maximum
number of time points = 12 x 7 = 84. Coverage = 0.341
Time interval = 3 gives 24/3 = 8 time points per day which was
the aim of the study. Maximum number of time points = 8 x 7 =
56. Coverage = 0.507

Coverage = proportion not missing
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Tinterval Examples: ID = 41 with Interval 3 (3 Hours)

Bin # Bin Observed Observed New time mid
(bin time) range time time rearranged point of bin range

1 0-2 * * 1.5
2 3-5 * 7 4.5
3 6-8 7, 8 8 7.5
4 9-11 11 11 10.5
5 12-14 12, 14 12 13.5
6 15-17 16 14 16.5
7 18-20 18 16 19.5
8 21-23 * 18 22.5 (SMSE=4.5)

9 24-26 * * 25.5
10 27-29 * 31 28.5
11 30-32 31, 32 (7, 8 am) 32 31.5
...

The range is more precisely stated as [low-high), e.g. [21 - 24): ≥ 21 and < 24

If there is more than 1 observed time per bin, rearrange observed time into neighboring
bins: 1 move due to bin 3 and 3 moves due to bin 5

4 of 8 observed times are misaligned in the first day: 7, 14, 16, and 18

Misalignment is quantified by the difference between the observed time and the new time
midpoint: Time interval plot with SMSE (squared root of mean square error = distance)
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Tinterval Examples: ID = 41 with Interval 2

Bin # Bin Observed
(bin time) range time

1 0-1 *
2 2-3 *
3 4-5 *
4 6-7 7
5 8-9 8
6 10-11 11
7 12-13 12
8 14-15 14
9 16-17 16

10 18-19 18
11 20-21 *
12 22-23 *

13 24-25 *
14 26-27 *
15 28-29 *
16 30-31 31
17 32-33 32
...

Perfect alignment, no need to rearrange observed time
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ID = 20, Tinterval = 2, Day 1

Bin # Bin Observed Observed New time mid
(bin time) range time time rearranged point of bin range

1 0-1 * * *
2 2-3 * * *
3 4-5 5 5 5
4 6-7 7 7 7
5 8-9 * 10 9
6 10-11 10,11 11 11
7 12-13 13 13 13
8 14-15 * * *
9 16-17 16 16 17

10 18-19 18 18 19
11 20-21 * * *
12 22-23 * * *

1 misalignment: 10
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ID=20, Tinterval = 2, Day 2

Bin # Bin Observed Observed
(bin time) range time time rearranged

13 24-25 * *
14 26-27 * *
15 28-29 * *
16 30-31 30 30
17 32-33 33 33
18 34-35 * 36
19 36-37 36 38
20 38-39 38, 39 39
21 40-41 41 41
22 42-43 * *
23 44-45 * *
24 46-47 * *

2 misalignments. 2 moves.
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Section 3 Descriptive Analyses
to Understand the Data

TYPE = TWOLEVEL BASIC
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Data Structure and Analysis Steps
Data in long format: Time (hours) nested in individuals (ID)

ID HOURS PA

1 9 4
1 10 5
1 11 5
1 13 6
2 9 5
2 11 7
3 . . .

Step 1: TYPE = TWOLEVEL BASIC to check histograms, within- and
between-level variation and between-level plots (MLR)

Step 2: TYPE = TWOLEVEL (RANDOM) modeling of variation in
mean, variance, and correlation (Bayes), regular twolevel analysis

Step 3: TYPE = TWOLEVEL (RANDOM) DSEM analysis, bringing
in time (Bayes): Univariate

Step 4: TYPE = TWOLEVEL (RANDOM) DSEM analysis, bringing
in time (Bayes): Bivariate

Step 5: TYPE = CROSSCLASSIFIED (Bayes)
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Step 1: TYPE = TWOLEVEL BASIC
for PA, NA, Tired, and Hrs. CLUSTER = ID

USEVARIABLES = pa na tired hrs;
CLUSTER = id;

ANALYSIS:
TYPE = TWOLEVEL BASIC;

PLOT:
TYPE = PLOT3;

*** WARNING
One or more individual-level variables have no variation within a
cluster for the following clusters.

Variable Cluster IDs with no within-cluster variation
PA 240 249 78 531
NA 240 442 45 249 319 531 263 200 160 2 320 352 260 119

254 503 347 385 570 523 313 338 462 256
TIRED 29 383 442 249 531 24 160 320 165 406 454

These individuals may be deleted (discussed later)
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Step 1: Summary of Data

240 individuals with an average cluster size (number of time points) of 24

Size (s) Cluster ID with Size s

1 238 549
2 161 29 240 383 442 45 572
3 206 249
4 319 176 197 78 276
5 456 531 415 571 196
6 263 24 200 380 51 388 392
7 359 100 160 224
9 92
10 71 2 13 320
11 12 7 204 341 352 357
12 205 22 561 28 485
13 314 260 119 433 254 348
14 503 107 47 552 277 137 188
15 5 361
16 36 401 507 518 403 373 428 280 221 347
17 407
18 165 351 521 528 4 447 452 554 560 302 414 155
19 1 49 186 406 295 203 310 385 152
20 514 122 31 207 454 547 144 457 463 258 491 360 56
21 445 175
22 411 32 266 520 64
23 371 102 211 243 570 469 470
24 557 235 374 340 85 556

Size (s) Cluster ID with Size s

25 129 43 393 159 111 309 555
26 465 386 419 475 523 558 83 148 542 313 327
27 95 213 178 455 296 446
28 6 372 338 94
29 279 417 52 365 499 429 87
30 232 480 460 40
31 66 30 305
32 278 462 75 177 286 234 389 130 300 398 546 23
33 473
34 543 126 288
35 317 439 298
36 225 227 163 394 69 65 118 20
37 287 468 50 171 89 438 101 573
38 209 307 297 541 162 70 16
39 109 246 440 256
40 510 537
41 181 220
43 508 46 431 358 79 328 346
44 478 382 252 27 228
45 81 501 322 443
46 331 41 525 466
47 343 448
48 370
49 106
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Step 1: Intraclass Correlations

Estimated Intraclass Correlations for the Y Variables

Intraclass Intraclass Intraclass
Variable Correlation Variable Correlation Variable Correlation

PA 0.570 NA 0.467 TIRED 0.477

ICC = V(Between)/(V(Between) + V(Within))
= Variation across individuals / Total variation

Variation across individuals is viewed as variation of a random mean,
a variable corresponding to individuals’ mean across time,
that is, variation across individuals in the average level; a trait variable
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Step 1: Histograms for PA, NA, and Tired

PA: 22% ceiling effect.

NA: 60% floor effect.

Tired: 23% floor effect.
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Step 1: Histogram for Hours Variable

Max time = 168 but some beyond (check data)

Dropoff of people over time

Few observations late at night and early morning

Histogram display properties changed from default of 20 to 100 bins
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Step 1: Between-Level Histogram Plot of PA

Between-level histogram of person average over time

Less skewed than overall histogram - only 2% at max value vs 22%

(a) Based on average over time (b) Based on individual values

Between-level histogram of averages over time corresponds to the
distribution of random intercepts which is assumed to be normal
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Step 1: Between-Level Scatter Plot
of PA Mean and Variance

The variance varies over people and is correlated -0.43 with the mean

NA scatterplot shows a correlation of 0.65. Tired shows no correlation
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Section 4 Regular twolevel analysis
TYPE = TWOLEVEL (RANDOM)
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Step 2: TWOLEVEL Modeling of PA, NA, and Tired
Model 1: Random Mean

What portion of the total variance is due to variation across individuals
in their means across time ? What are the predictors of the variation?

Single outcome, random mean, fixed residual variance:

yit = αi + εit, (1)

where αi is the random mean, that is, an average over time that
varies across individuals, also seen as a latent trait. The residual
εit ∼ N(0,σ2) is assumed uncorrelated across individual and time
The random mean (latent trait) accounts for the correlation across
time as expressed by the intraclass correlation

ICC = V(α)/V(y) = V(B)/(V(B)+V(W)) (2)

The ICC is the R-square for the variance of the outcome
explained by the random mean, that is, the R-square due to the
latent trait
The random mean plays the role of the intercept growth factor
(λ = 1) in a growth model analyzed in a twolevel, long format
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Step 2 Model 1 for PA: Formula, Diagram, and Input

yit = αi + εit

y: observed PA variable (square)

α: latent PA variable on Between (circle)

ε: latent PA variable on Within (circle)

Diagram drawn like RI-CLPM

WithinBetween

PA

PA

PA

USEVARIABLES = pa;
CLUSTER = id;
! 24*7 = 168 (same as time >84):
USEOBSERVATIONS =
hrs LE 168 AND id NE 240
AND id NE 249 AND id NE 78
AND id NE 531;

ANALYSIS: TYPE = TWOLEVEL;
ESTIMATOR = BAYES;
BITERATIONS = (1000);
PROCESSORS = 8;

MODEL: %WITHIN%
pa (w);
%BETWEEN%
pa(b);

MODEL
CONSTRAINT: NEW(icc);

icc = b/(b + w);
! PA icc estimate = 0.57 (.024)
! PA(W) = 0.56, PA(B) = 0.75
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Step 2: TWOLEVEL Modeling of PA, NA, and Tired
Model 2: Random Residual Variance

How much does the residual variance vary across individuals? What
are its predictors? What is the correlation between the mean and
residual variance?

Single outcome, random mean, random residual variance:

yit = αi + εit, (3)

where αi is the random mean and the residual εit ∼ N(0,σ2
i ), that

is, the variance also varies across individuals (logσ2
i ∼ N(µ,σ2))
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Step 2 Model 2 in Formula and Diagram Form

yit = αi + εit, εit ∼ N(0,σ2
i )

y: observed PA variable

α: latent PA variable on Between

ε: latent PA variable on Within

The random residual variance σ2
i is represented by logv

WithinBetween

logv

logv

PA

PA

PA
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Step 2 Model 2 Input

USEVARIABLES = pa;
CLUSTER = id;
! 24*7 = 168 (same as time >84):
USEOBSERVATIONS =
hrs LE 168
AND id NE 240 AND id NE 249
AND id NE 78 AND id NE 531;

ANALYSIS:
TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
BITERATIONS = (1000);
PROCESSORS = 8;

MODEL:
%WITHIN%
logv | pa; ! Random residual var
%BETWEEN%
pa WITH logv;
[logv] (m);
logv (s);

MODEL
CONSTRAINT:

NEW(meanv);
meanv = EXP(m + s/2);

OUTPUT:
STANDARDIZED TECH1
TECH4 TECH8;

PLOT:
TYPE = PLOT3;
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Understanding logv

Random effects are assumed to be normally distributed which is not
suitable for a variance since has a chi-square like distribution and is
never negative. Because of this, the log of the variance is instead
modeled which is emphasized by calling it logv

The mean m of the random variance logv can be negative because it is
on the log scale (negative values for residual variances less than 1)

To get the mean on the regular scale, the logv mean should be
exponentiated. The correct exponentiation also involves s, the variance
of logv: The mean of the variance = exp(m + s/2). The theory behind
this expression draws on the mean of the log normal distribution.

The median is exp(m) and is more useful for the skewed distribution of
the variance

The mean and median of the variance can be expressed in MODEL
CONSTRAINT which also gives the confidence interval (Bayes allows
a potentially non-symmetric CI)

A fuller discussion of logv is presented later in connection with Step 3
Model 2
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Step 2 Model 2 Output Excerpts

Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

Within Level
Between Level
PA WITH

LOGV -0.464 0.074 -0.613 -0.330 *
Means

PA 5.759 0.056 5.642 5.858 *
LOGV -1.025 0.074 -1.168 -0.880 *

Variances
PA 0.735 0.074 0.603 0.895 *
LOGV 1.108 0.115 0.902 1.339 *

New/Additional
Parameters

MEANV 0.626 0.058 0.527 0.760 *

The S.D. column corresponds to SE for ML. Estimate/SD is
approximately a z-score but the CI is a better statistic to report

The correlation between the random mean PA and the random logv
residual variance is -0.52 (the scatterplot correlation was -0.43)
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Step 2: TWOLEVEL Modeling of PA, NA, and Tired
Model 3: Random Residual Covariance

New in Version 8.9

How much do the residual covariances between different variables vary
across individuals? What are their predictors?

Bivariate (or multivariate) outcome, random means, random
residual variances and covariance:

yit = αyi + εyit, (4)
zit = αzi + εzit, (5)

where the residuals have individually-varying variances,
εyit ∼ N(0,σ2

yi) and εzit ∼ N(0,σ2
zi), as well as

individually-varying covariance ρi

√
σ2

yi

√
σ2

zi where ρi is the

correlation (Fisher z-transform of ρi ∼ N(µr,σ
2
r ); see

Asparouhov & Muthén (2010). Bayesian analysis using Mplus:
Technical implementation. http:
//www.statmodel.com/download/Bayes3.pdf)
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Step 2 Model 3: Random Residual Variances and
Residual Covariance for Two Outcomes with a Covariate

WithinBetween

x

logvy

logvz

y

z

z

y

logvy

logvz

ρ

ρ

αy

αz

Bengt Muthén Longitudinal Modeling 34/ 130



Input for Model 3 with Random Residual Covariances

USEVARIABLES = pa na tired;
CLUSTER = id;
! 24*7 = 168 (same as time >84):
USEOBSERVATIONS = hrs le 168
AND id ne 240 AND id ne 249
AND id ne 78 AND id ne 531;

ANALYSIS:
TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
BITERATIONS = (2000);

MODEL:
%WITHIN%
logvpa | pa;
logvna | na;
logvti | tired;
cpn | pa with na;
cpt | pa with tired;
cnt | na with tired;
%BETWEEN%
pa na tired logvpa-cnt;
[logvpa] (mpa);
[logvna] (mna);
[logvti] (mti);

logvpa (spa);
logvna (sna);
logvti (sti);
[cpn] (mc1);
[cpt] (mc2);
[cnt] (mc3);

MODEL
CONSTRAINT:

NEW (meanvpa meanvna meanvti
medrpn medrpt medrnt);
meanvpa = exp(mpa+spa/2);
meanvna = exp(mna+sna/2);
meanvti = exp(mti+sti/2);
! Inverse of Fisher’s z to get the median corr.:
medrpn = (exp(2*mc1)-1)/(exp(2*mc1)+1);
medrpt = (exp(2*mc2)-1)/(exp(2*mc2)+1);
medrnt = (exp(2*mc3)-1)/(exp(2*mc3)+1);

OUTPUT:
TECH1 TECH4 TECH8 STANDARDIZED;

PLOT:
TYPE = PLOT3;
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Output for Model 3 with Random Residual Covariances

Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

Between Level
Means

PA 5.792 0.054 5.686 5.897 *
NA 1.336 0.029 1.281 1.393 *
TIRED 3.330 0.084 3.157 3.490 *
LOGVPA -1.020 0.074 -1.164 -0.870 *
LOGVNA -2.638 0.138 -2.908 -2.374 *
LOGVTI 0.164 0.086 -0.013 0.328
CPN -0.462 0.028 -0.516 -0.409 *
CPT -0.250 0.019 -0.287 -0.212 *
CNT 0.094 0.020 0.054 0.132 *

Variances
PA 0.669 0.066 0.553 0.819 *
NA 0.176 0.020 0.141 0.220 *
TIRED 1.567 0.158 1.296 1.903 *
LOGVPA 1.117 0.115 0.919 1.361 *
LOGVNA 4.279 0.413 3.560 5.181 *
LOGVTI 1.553 0.164 1.262 1.909 *
CPN 0.113 0.016 0.087 0.147 *
CPT 0.043 0.009 0.027 0.061 *
CNT 0.032 0.008 0.020 0.051 *

New/Additional
Parameters

MEANVPA 0.632 0.060 0.528 0.762 *
MEANVNA 0.607 0.170 0.389 1.029 *
MEANVTI 2.553 0.315 2.069 3.320 *
MEDRPN -0.432 0.023 -0.475 -0.388 *
MEDRPT -0.245 0.018 -0.279 -0.209 *
MEDRNT 0.094 0.020 0.054 0.132 *
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Output for Model 3 with Covariates (Standardized)

Posterior 95% C.I.
Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance

Between Level
PA ON

SDQEMOTAA -0.331 0.046 0.000 -0.416 -0.239 *
GIRL 0.003 0.045 0.474 -0.083 0.088

NA ON
SDQEMOTAA 0.314 0.047 0.000 0.213 0.401 *
GIRL -0.018 0.046 0.336 -0.108 0.072

TIRED ON
SDQEMOTAA 0.222 0.048 0.000 0.126 0.315 *
GIRL 0.104 0.046 0.014 0.012 0.193 *

LOGVPA ON
SDQEMOTAA 0.194 0.050 0.000 0.093 0.286 *
GIRL 0.069 0.048 0.066 -0.023 0.163

LOGVNA ON
SDQEMOTAA 0.264 0.046 0.000 0.173 0.354 *
GIRL 0.000 0.046 0.498 -0.089 0.088

LOGVTI ON
SDQEMOTAA 0.005 0.052 0.460 -0.097 0.101
GIRL 0.047 0.049 0.172 -0.051 0.144

CPN ON
SDQEMOTAA -0.066 0.059 0.137 -0.186 0.048
GIRL -0.077 0.057 0.093 -0.190 0.029

CPT ON
SDQEMOTAA -0.050 0.070 0.231 -0.190 0.089
GIRL -0.027 0.070 0.340 -0.162 0.111

CNT ON
SDQEMOTAA 0.213 0.081 0.004 0.052 0.368 *
GIRL 0.042 0.076 0.293 -0.110 0.187
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Why Are These Twolevel Models Not Sufficient
for Intensive Longitudinal Data?

What is lacking in the two-level analyses just presented? Model 1 has

yit = αi + εit. (6)

This model accounts for correlation of observations across time using
the random mean αi (the latent trait)

But there is further correlation to take into account: The residuals εit
are likely correlated across time due to measurements close in time.
For two time points t1 and t2, Corr(εit1,εit2) = ρ |t1−t2|, that is, there is
a non-zero correlation with size depending on the distance in time

A common way to model this correlation is the lag-1 auto-correlation
model εit = βεit−1 +ζit (see, e.g., Chi & Reinsel, 1989, JASA)

Not only does this take into account residual correlation but it
also offers substantively interesting modeling - DSEM
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Why Are These Twolevel Models Not Sufficient, Cont’d
Relation to DSEM

Consider the model with auto-correlated residuals,

yit = αi + εit, (7)
εit = βεit−1 +ζit. (8)

Inserting (8) into (7) says that

yit = αi +βεit−1 +ζit. (9)

Equation (7) for t-1 implies that εit−1 = yit−1 −αi. Inserting this into
(9), shows that the model of (7) and (8) implies a within-level part of
DSEM with latent variable centering of yit−1,

yit = αi +β (yit−1 −αi)+ζit, (10)
yit −αi = β (yit−1 −αi)+ζit, (11)

yW
it = βyW

it−1 +ζit, (12)

where yW
it = εit.

Bengt Muthén Longitudinal Modeling 39/ 130



Section 5 Two-Level Analysis
Bringing Time Into the Model:
DSEM for a Single Outcome
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Step 3: Two-Level Modeling Using DSEM
Univariate Analysis of PA

3 ways to describe the model:
Model diagram
Formulas
Mplus input

Alternative ways to draw the model diagrams:
Balance between statistical accuracy and visual simplicity
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Two-Level Modeling Using DSEM: Model Diagram

Within level: Variation over time (lag-1 shown in figure)

Between level: Variation over individuals

WithinBetween

PA PAt-1

PAt-1 PAt

PAt

The observed variable is decomposed into a Within and a Between
part. The Between part is a random intercept varying over persons
(also referred to as a latent trait)

The model diagram is in line with the drawing of the random intercept
in Mplus Web Talk 3 and RI-CLPM (Mulder & Hamaker, 2021)
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Two-Level Modeling Using DSEM:
Model Diagram Drawing Conventions

WithinBetween

PA PAt-1

PAt-1 PAt

PAt

Only two adjacent time points are shown

The observed PA variables are shown outside the within and between boxes because they
are neither within-only or between-only variables

The regression coefficients for the observed PA variable on the latent between PA
variable and latent within PA variables are all fixed at 1 and the residual is zero (the
observed PA is the sum of the two latent PAs reflecting a within-between decomposition
of the observed variable)

The latent within-level PA variables have residuals

The full within-part of the model is shown only for time point t
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Two-Level Modeling Using DSEM: Formulas

WithinBetween

PA PAt-1

PAt-1 PAt

PAtβ

ε

The observed variable PAt is expressed in terms of a random intercept
α (labeled PA in the diagram) and the latent-variable centered PAit−1,

PAit = αi +β (PAit−1 −αi)+ εit, (13)

where the latent variable centering avoids Nickell’s bias (Asparouhov
et al., 2018). Hamaker & Grasman (2015) also discuss centering

Defining the latent within variable PA(W)
it = PAit −αi, (13) is the same

as
PA(W)

it = βPA(W)
it−1 + εit. (14)
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Step 3 Model 1: Mplus Input

WithinBetween

PA PAt-1

PAt-1 PAt

PAt

Mplus MODEL command:

MODEL: %WITHIN%
pa ON pa&1;
%BETWEEN%
pa;

The within-level slope (AR) and residual variance can be random
(individual-specific), adding latent variables to the between level

Mplus allows a full SEM to be specified on both levels
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Two Alternative Ways to Draw DSEM Model Diagrams

Mplus User’s Guide with random effects marked as filled circles on
within and open circles (latent variables) on between

Within
Between

PAt-1 PAt

PA

PAtPAt-1

PAt

(w) (w)

PAt
(w)

PA
(b)

PA
(b)

Hamaker papers/talks emphasizing decomposition into within- and
between-level variation

Within
Between

PAt-1 PAt

PA

PAtPAt-1

PAt

(w) (w)
PAt

(w)

PA
(b) PA

(b)

Decomposition

B
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Diagram Style Chosen for this Web Talk

WithinBetween

PA PAt-1

PAt-1 PAt

PAt

MODEL: %WITHIN%
pa ON pa&1;
%BETWEEN%
pa;

Compared to the User’s Guide style, there is no filled circle for the
random intercept and it is made clear that the regression is for the
within variables, implying latent variable centering

Compared to the Hamaker style, there is no decomposition drawn, the
role of the Between PA as a random intercept is emphasized, and there
are no (w), (b) superscripts for the variables but instead the variable
names match those of the input
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What Defines a DSEM (Time Series) Run in Mplus
as Opposed to a Regular Two-Level Analysis?

The LAGGED option triggers DSEM (time series analysis) by
allowing &

The TINTERVAL option can be used only with LAGGED

TINTERVAL is not necessary for LAGGED

Not using the TINTERVAL option assumes that time is 1, 2, 3,...
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Stationarity

Stationarity of the time series implies that the mean and variance of the
outcome are time invariant

This is not a modeling limitation but is necessary to match the
type of data we are considering

Without variance stationarity, data would have values that explode over
time due to increasingly large variances, that is, data with exponential
growth that we typically don’t see in our applications

Consider again the AR(1) model with the within-level part (dropping
the W superscript as in the input)

PAit = βPAit−1 + εit, (15)

with the residual variance V(εit) = θ

Stationarity requires that |β |< 1 (auto-regression slope less than 1)
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Stationarity vs Non-Stationarity

What is the variance of PAit = βPAit−1 + εit? Stationarity implies

V(PAit) = β
2V(PAit)+θ , (16)

V(PAit) = θ/(1−β
2); |β |< 1 (17)

The variance stationarity also implies that the unstandardized β

estimate is the same as the standardized

Non-stationarity example: Consider 10 consequtive timepoints 1, 2, 3,
..., 10 where V(PAi1) = 1:

V(PAi2) = V(βPAi1 + εi2) = β
2 + ..., (18)

V(PAi3) = V(β (βPAi1 + εi2)+ εi3) = β
4 + ... (19)

etc
The variance of PAi10 is dominated by the first term β 2×9

For example, β = 1.5 results in V(PAi10) = 1.518 = 1,478!

Non-stationarity of the mean may occur with a trend over time

A function of time may be used as a covariate, so that RDSEM
can be applied with stationarity for the residuals
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Step 3 Model 1: Full Input Including
Intraclass Correlation in DSEM

USEVARIABLES = pa;
! 24*7 = 168 (same as time >84):
USEOBSERVATIONS = hrs le
168 AND id ne 240
AND id ne 249 AND id ne 78
AND id ne 531;
CLUSTER = ID;
! The LAGGED option
! triggers time series analysis:
LAGGED = pa(1);
! New in version 8.9:
TINTERVAL = hrs (2 time);

ANALYSIS:
TYPE = TWOLEVEL;
ESTIMATOR = BAYES;
BITERATIONS = (1000);
PROCESSORS = 8;

MODEL: %WITHIN%
pa ON pa&1 (r);
pa (resvar);
%BETWEEN%
pa (bvar);

MODEL
CONSTRAINT: NEW(wvar icc);

! wvar: total within var
! which is time invariant
! so that
! wvar = r*r*wvar + resvar
! which means that:
wvar = resvar/(1-r*r);
icc = bvar/(bvar + wvar);
! icc = 0.56 (.025)

OUTPUT: STANDARDIZED
TECH1 TECH4 TECH8;

PLOT: TYPE = PLOT3;

Bengt Muthén Longitudinal Modeling 51/ 130



TINTERVAL Change in Version 8.9

Version 8.9 has changed TINTERVAL to work the same way for
TWOLEVEL and CROSSCLASSIFIED DSEM

Initial missing values for an individual are no longer dropped for
TWOLEVEL

The change causes minimal differences in estimates
The old approach can be obtained by adding DROP as a third
argument in parenthesis for TINTERVAL

The orginal time variable (hrs in the previous example) is no longer
changed by TINTERVAL but a new time variable that the user names is
used in the analysis (time in the example) and can be modified in
DEFINE

If no new time variable is named by the user, BINT is used
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Step 3 Model 1 Output Excerpts

Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

Within Level
PA ON

PA&1 0.414 0.014 0.387 0.441 *
Residual Variances
PA 0.483 0.009 0.466 0.502 *

Between Level
Means

PA 5.756 0.058 5.639 5.871 *
Variances

PA 0.735 0.074 0.611 0.908 *
New/Additional
Parameters

WVAR 0.583 0.011 0.561 0.605 *
ICC 0.557 0.025 0.508 0.610 *

The S.D. column corresponds to SE for ML. Estimate/SD is
approximately a z-score but the CI is a better statistic to report

Bengt Muthén Longitudinal Modeling 53/ 130



Step 3 Model 1 Output Continued

STANDARDIZED MODEL RESULTS
STDYX Standardization

Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

Within Level
PA ON

PA&1 0.414 0.014 0.387 0.441
Residual Variances
PA 0.828 0.012 0.805 0.850 *

Between Level
Means

PA 6.710 0.337 6.024 7.372 *
Variances

PA 1.000 0.000 1.000 1.000

Within-level R-square is 1 - 0.828 = 0.172
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Summary of Results for PA Analysis
using TINTERVAL = 1, 2, 3 (No Logv)

Tinterval = 1 Tinterval = 2 Tinterval = 3

Time interval
plot information
(metric is hours)

Avg. SMSE 0.500 0.832 1.872
Max. SMSE 0.500 1.732 4.517

Missing data coverage 0.171 0.341 0.507
Within Est’s

AR (1) 0.547 (.014) 0.414 (.014) 0.378 (.014)
Resvar 0.410 (.010) 0.483 (.009) 0.501 (.010)

Between Est’s
Mean 5.754 (.058) 5.756 (.058) 5.756 (.057)
Var 0.734 (.073) 0.735 (.074) 0.725 (.072)

Tinterval = 1 matches the data best but the low coverage (many
missing data rows) makes convergence difficult for complex models

AR(1) values decline with increasing Tinterval but 0.414 is not
0.547*0.547 as expected, suggesting that lag-1 is not sufficient
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Taking a Step Back:
N = 1 DSEM (Classic Time Series Analysis)

PAt-1 PAt

This model has 3 parameters

Common multivariate model:
Vector auto-regressive (VAR)
- like CLPM

Mplus allows a full SEM to
be specified

USEVARIABLES = pa;
USEOBSERVATIONS = id eq 41;
LAGGED = pa(1);
TINTERVAL = hrs (2 time);

ANALYSIS: ESTIMATOR = BAYES;
BITERATIONS = (1000);
PROCESSORS = 8;

MODEL: pa ON pa&1;
OUTPUT: STANDARDIZED TECH1

TECH4 TECH8;
PLOT: TYPE = PLOT3;

A between model is not specified
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N = 1 DSEM for PA using ID = 41 (7 days: Tue - Mon)

Time Series plot:

X-axis: 79 time points (12 occasions per day for 7 days = max 84)

46 of them non-missing: Sample size = 46
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Output for N = 1 DSEM for PA using ID = 41 (N = 46)

PAt-1 PAt

Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

PA ON
PA&1 0.636 0.120 0.373 0.848 *

Intercepts
PA 2.175 0.725 0.842 3.735 *

Residual Variances
PA 1.071 0.274 0.705 1.757 *

The N = 1 model has PAt = ν +βPAt−1 + εt

Stationarity implies E(PAt) = E(PAt−1) = µ so that

µ = ν +β µ, (20)
µ = ν/(1−β ). (21)

Here, µ = 5.97 as shown in TECH4 and RESIDUAL output
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Joint N = 1 Analysis of All Individuals

N = 1 analysis of all individuals together can be carried out and
estimates averaged using the TYPE = MONTECARLO option of the
DATA command in line with User’s Guide ex 12.6

Mplus DSEM input shown at https:
//ellenhamaker.github.io/DSEM-book-chapter/

See section Empirical Illustration: Part 1 on page 580 of Hamaker,
Asparouhov & Muthén (2023). Dynamic structural equation modeling
as a combination of time series modeling, multilevel modeling, and
structural equation modeling. Chapter 31 in Handbook of Structural
Equation Modeling (2nd edition); Rick H. Hoyle (Ed.); Publisher:
Guilford Press.
http://www.statmodel.com/download/
HamakerAsparouhovMuthen21.pdf
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Step 3 Model 2: Two-Level Modeling Using DSEM
with Random Residual Variance

The Step 1 TYPE = TWOLEVEL BASIC between-level scatterplot of
PA variance and mean showed strong heteroscedastic variance which
was correlated with the mean

logv
logv

WithinBetween

PA PAt-1

PAt-1 PAt

PAt

The residual variance is interpreted as variation in innovation or
random shocks (different reactions to events)

Random AR(1) can also be added (interpreted as inertia)
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Step 3 Model 2 Twolevel DSEM Input

USEVARIABLES = pa;
! 24*7 = 168 (same as time >84):
USEOBSERVATIONS = hrs LE 168 AND
id NE 240 AND id NE 249 AND id NE 78 AND id NE 531;
CLUSTER = id;
LAGGED = pa(1);
TINTERVAL = hrs (2 time); ! New in version 8.9

ANALYSIS:
TYPE = TWOLEVEL RANDOM
ESTIMATOR = BAYES;
BITERATIONS = (1000);
PROCESSORS = 8;

MODEL:
%WITHIN%
pa ON pa&1;
logv | pa;
%BETWEEN%
pa WITH logv;

OUTPUT: STANDARDIZED TECH1 TECH8;
PLOT: TYPE = PLOT3;

FACTORS = ALL(50);
SAVEDATA: FILE = patint2.dat;
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Number of Time Points for Different Individuals (Clusters)

SUMMARY OF DATA
Number of clusters 240

Size (s) Cluster ID with Size s

6 45
9 238

10 197 196 319
17 572
18 161
19 456
21 415
22 357
31 276
33 176 107
34 29 47
35 352
40 254 457 549 204
41 469 224 205
42 165 36 200
43 433 406 371
44 314 13 320 347 7
46 221 51 383 385 277 175
53 351
55 122 313
56 2 160 554 49
58 503 556 71
64 560 130
65 445 428
66 92 442
67 28
68 317 463 361 155 537

Size (s) Cluster ID with Size s

69 129
70 452 454 491 278 20
75 310
76 1 234 40 552 102 260 12

571 119
77 309 263 507 394 542 32

338 280 373 438 473 485
78 558 118 83 66
79 211 528 43 94 152 111

322 480 557 380 159 499 206
80 411 307 419 101 85 258 188

89 547 374 220 24 6 388 465
203 561 401 296

81 341 31 455 137 207 209 279
466 144 213 297 300 302 305
178 392 514 523 181 148 227
543 56 4 246 69 429 22 327
23 443 570 340 448

82 16 393 75 398 286 403 287
407 288 414 126 417 79 298
81 431 30 50 439 440 87 41 52
446 447 27 95 100 225 162 228
460 462 232 328 331 468 163
470 235 475 478 64 343 346 243
501 171 252 508 510 65 518 520
521 358 525 359 360 541 256 365
546 370 106 372 177 555 5 266
382 109 46 386 70 389 573

83 295 348 186
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Number of Time Points Continued

Note that the number of time points per individual in a run using the
TINTERVAL option includes time points with missing data that was
inserted by the TINTERVAL option to synchronize the timing of the
measurements

Consider for example the first individual on the list, ID = 45
which has 6 time points - 4 of those timepoints have missing data

To see the number of time points without inserted missing data, do a
run without TINTERVAL

See the data summary for the Step 1 TYPE = TWOLEVEL
BASIC run - this shows that ID = 45 is observed at 2 time points

It is important to have a sufficient number of time points without
missing data when estimating random effects such as regression
coefficients because the estimation is based on computing the random
effect value for each individual for which “N” is the number of
observed timepoints (Asparouhov & Muthén, 2022, Practical Aspects
of Dynamic Structural Equation Models. Technical Report)
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Model Results Without and With Logv

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.5% Upper 2.5% Sig.

Within Level
PA ON PA&1 0.414 0.014 0.000 0.387 0.441 *
Residual Var 0.483 0.009 0.000 0.466 0.502 *

Between Level
Mean 5.756 0.058 0.000 5.639 5.871 *
Variance 0.735 0.074 0.000 0.611 0.908 *

Within Level
PA ON PA&1 0.426 0.015 0.000 0.396 0.453 *
Residual Var NA

Between Level
PA WITH LOGV -0.472 0.073 0.000 -0.628 -0.344 *
Mean PA 5.753 0.056 0.000 5.644 5.867 *
Mean LOGV -1.161 0.072 0.000 -1.314 -1.014 *
Var. PA 0.735 0.074 0.000 0.611 0.908 *
Var. LOGV 1.101 0.120 0.000 0.896 1.375 *

Jongerling, Laurenceau, Hamaker (2015) in MBR: Bias when ignoring random logv
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Understanding the Random logv Residual Variance for PA

V(ε) = v, where v has a lognormal distribution (> 0 and skewed):

Because v has a lognormal distribution, logv ∼ N(µ,σ2)

This fits with the assumption of normally distributed random
effects in Mplus

The lognormal distribution implies that v has

Median = eµ

Mean = eµ+σ2/2

Variance = (eσ2 −1)e2µ+σ2

Equivalent expression: V(ε) = es (variance > 0) so that log V(ε) = s
has a normal distribution
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Understanding the Random Residual Variance, Continued

For a skewed distribution like the lognormal for the random residual
variance v, quartiles are better summaries than means and variances

The quartiles can be obtained from the normal logv distribution

50% of the normal distribution lies between the 25th and 75th quartiles
(0.675 SD from the mean)

Because the lognormal is a monotonic function of the normal, the
quartiles for the residual variance are obtained by exponentiating the
normal distribution quartiles
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Understanding the Random Residual Variance Continued

The quartile estimates and their CIs are obtained by adding
MODEL CONSTRAINT with parameter labels from MODEL:

MODEL: %WITHIN%
pa ON pa&1;
logv | pa;
%BETWEEN%
pa WITH logv;
[logv] (m);
logv (s);

MODEL
CONSTRAINT: NEW(medianv 25qv 75qv);

medianv = EXP(m);
! 25th and 75th quartiles
! based on normal dist of logv:
25qv = exp(m - sqrt(s)*0.675);
75qv = exp(m + sqrt(s)*0.675);

medianv = 0.313 (0.023), CI = [0.269 0.363]
25qv = 0.154 (0.013), CI = [0.129 0.178]
75qv = 0.635 (0.052), CI = [0.543 0.751

The non-random residual variance in Model 1 is 0.483

The square roots of the quartiles correspond to SDs which can be
related to the scale of the variable
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TECH4 Output

With TYPE = RANDOM, the within-level covariance matrix changes
over individuals. TECH4 gives the average over individuals for within
(TECH4(CLUSTER) gives cluster-specific results)

AVERAGE ESTIMATES DERIVED
FROM THE MODEL FOR WITHIN

ESTIMATED MEANS
FOR THE LATENT VARIABLES

LOGV PA PA&1

-1.093 5.741 5.741

ESTIMATED COVARIANCE MATRIX
FOR THE LATENT VARIABLES

LOGV PA PA&1

LOGV 0.000
PA 0.000 0.642
PA&1 0.000 0.272 0.642

The between-level part of TECH4 is as usual

Bengt Muthén Longitudinal Modeling 68/ 130



SAVEDATA Information (New in Version 8.9)

Save file
patint2.dat

Order and format of variables
PA F10.3
PA&1 F10.3
HRS F10.3
NEWTIME F10.3

TIME F10.3
ID I4

HRS: Original hours variable

NEWTIME: Midpoints of time ranges implied by TINTERVAL (only
used in the Time interval plot)

TIME: Name given by user to the time variable created by
TINTERVAL = hrs(2 time) and used in the analysis (same as bin
number). If name not given by user, the default name is BINT
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Saved Data for First Day of ID = 20 (Tinterval = 2)

PA PA&1 HRS NEWTIME TIME ID

* * * * 1.000 20
* * * * 2.000 20

6.167 * 5.000 5.000 3.000 20
5.833 6.167 7.000 7.000 4.000 20
5.667 5.833 10.000 9.000 5.000 20
5.833 5.667 11.000 11.000 6.000 20
6.000 5.833 13.000 13.000 7.000 20

* 6.000 * * 8.000 20
5.833 * 16.000 17.000 9.000 20
5.667 5.833 18.000 19.000 10.000 20

* 5.667 * * 11.000 20
* * * * 12.000 20

Compare with slide 14 showing what Tinterval does
First response at 5am (HRS column)
Misalignment at 10am (10 and 11 in the same 2-hour bin so 10 is moved to earlier)
Handling night time is a research topic (night AR ̸= day AR)
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Overview of Plot Menu Choices

Plot - View plots:

Histograms

Scatterplots

Between level scatterplots

Time series plots

Histogram of subjects per time
point

Time interval plots

Bayesian posterior parameter
distributions

Bayesian posterior parameter
trace plots

Bayesian autocorrelation plots

Bengt Muthén Longitudinal Modeling 71/ 130



Time Interval Plot for ID = 20 (see Slides 14, 72)

12 occasions per day for 2 days = 24 time points on the x-axis

The time points on the x-axis represent the values of the TIME variable

SMSE = square root of mean square error over all time points (average
distance between observed time and new time midpoint)
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Time Series Plot of PA Averages

Tinterval = 1 vs 2

Tinterval = 1 vs 3
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Time Series Plot of PA for 4 Persons (Tinterval=2)

Hard to see a pattern from any one individual - DSEM combines
information across individuals to get the pattern for the population
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Three Kinds of Between-Level Histograms of Means

(1) The observed mean for each person

Average over time for each person

(2) The estimated between-level mean for each person

Requires FACTORS = ALL (50) in the PLOT command: The
histogram is based on the Bayes estimates of each person’s
random effect value (factor score) averaged over the 50 draws
from the posterior distribution of all parameter estimates (which
includes random effects)
Referred to as B PA, mean in the Between-level Histograms
choice of the Plot menu

(3) Cluster mean

For each person, this is the average of the random mean over all
iterations during the estimation. Used in the OUTPUT option
RESIDUAL(CLUSTER)
Referred to as PA (estimated cluster mean) in the Between-level
Histograms choice of the Plot menu
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Three Kinds of Between-Level Histograms, Cont’d

Summary of Between-level histogram choices (3rd line):

(1) PA (average over Within)
(2) B PA, mean
(3) PA (estimated cluster mean)
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Between-Level Scatterplots

y-axis: Estimated cluster mean factor scores (2)

x-axis: Observed average over within (1)

Some clusters show a discrepancy - most likely due to missing data
handled better by the estimated cluster mean (y-axis), drawing on
correlated variables in the model

For more on factor scores, see multiple imputation on slide 95
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Random Effects (Factor Score) Distribution Plots

Latent variable distribution plots (last line)
Requires FACTORS = ALL (50) in the PLOT command: The
estimated betwen-level mean for each person using several
imputations (draws) from the posterior distribution of all
parameter estimates (which includes random effects)

Each person’s random effect (or factor) distribution is created by
50 draws after the last Bayes iteration, and the whole distribution
is based on the number of people (clusters) times 50. This gives a
smoother representation of the histogram (2) of estimated
between-level means
Imputations - also called plausible values - allow uncertainty in the
estimates to be accounted for (not just a point estimate for each
person)
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Histogram of Estimated Between-Level Mean
vs Latent Variable Distribution

Similar shape (normality is assumed in the model but the
posterior updates this prior using the data)
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Mplus Runs

Mplus outputs and plots

Step 1: TYPE = TWOLEVEL BASIC
Step 2: TYPE = TWOLEVEL RANDOM (regular twolevel)
Step 3, Model 2: Twolevel DSEM with random residual variance

Plotting for Mac and Linux users: The GH5 file that the PLOT
command produces can be used for plots in R:
http://www.statmodel.com/mplus-R/

New feature: Simple user interface added for R plots with the use
of R Shiny
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Section 6 Two-level DSEM and RDSEM Analysis
Two Outcomes
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Step 4 Model 1: Bivariate Modeling in DSEM
Cross-Lagged Analysis of PA and Tired

PA

WithinBetween

PAt-1 t

PA tPA t-1

Tired
t-1 tTired

Tired
t-1 tTired

PA

Tired

MODEL: %WITHIN%
pa ON pa&1 tired&1;
tired ON tired&1 pa&1;
%BETWEEN%
PA WITH tired;
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Step 4 Model 1 Stand’d Within Estimates for Cross-Lagged
DSEM Analysis of PA and Tired (TINTERVAL = 2)

Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

Within Level
PA ON
PA&1 0.398 0.015 0.369 0.426 *
Tired&1 -0.084 0.016 -0.114 -0.052 *

Tired ON
Tired&1 0.460 0.015 0.431 0.489 *
PA&1 -0.007 0.015 -0.035 0.022

Tired with PA -0.189 0.013 -0.215 -0.163 *
Residual var’s

PA 0.819 0.013 0.795 0.843 *
Tired 0.786 0.013 0.760 0.811 *

Small effect of Tiredt−1 → PAt. Larger lag0 effect?
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Step 4 Model 1 with All Random Effects and Covariates

Between

x

Tired

logvt

logvp

logvt

PA

rp

logvp

rt

spt

stp

cpt

PA

Within

PAt-1 t

PA tPA t-1

Tired
t-1 tTired

Tired
t-1 tTired

rp

rt

stp

spt
cpt
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Random Covariance (New in Version 8.9)
The model allows individually-varying covariance
ρi

√
σ2

PAi

√
σ2

Tiredi
where ρi is the correlation

But ρi is not normally distributed so we transform it
Fisher z-transform: z = 1

2 ln[(1+ρi)/(1−ρi)],z ∼ N(µ,σ2)

The reverse formula is ρ = (e2z −1)/(e2z +1)
The median of the original ρ is obtained as (e2µ −1)/(e2µ +1)
z and ρ are almost identical for ρ values between -0.5 and +0.5
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Asparouhov & Muthén (2010). Bayesian analysis using Mplus: Technical
implementation. http://www.statmodel.com/download/Bayes3.pdf
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Step 4 Model 1 with All Random Effects: Input

USEVARIABLES = pa tired
SDQemotAA girl;
LAGGED = pa(1) tired(1);
TINTERVAL = hrs(2 time);
CLUSTER = id;
BETWEEN = SDQemotAA girl;
! 24*7 = 168 (same as time >84):
USEOBSERVATIONS = hrs le 168
AND id ne 240 AND id ne 249
AND id ne 78 AND id ne 531;

DEFINE: girl = sexAA - 1;
CENTER
SDQemotAA(GRANDMEAN);

ANALYSIS: TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
BITERATIONS = (2000);
THIN = 10;
PROCESSORS = 8;

MODEL: %WITHIN%
rp | pa ON pa&1;
logvp | pa;
rt | tired ON tired&1;
logvt | tired;

spt | pa ON tired&1;
stp | tired ON pa&1;
cpt | pa WITH tired;
%BETWEEN%
pa tired rp-cpt ON SDQemotAA girl;
pa tired rp-cpt WITH pa tired rp-cpt;
spt (vspt);
stp (vstp);
[logvp] (mpa);
[logvt] (mti);
logvp (spa);
logvt (sti);
[cpt] (mc);

MODEL
CONSTRAINT: NEW(sdspt sdstp);

sdspt = sqrt(vspt);
sdstp = sqrt(vstp);
NEW (meanvpa meanvti medrpt);
meanvpa = exp(mpa+spa/2);
meanvti = exp(mti+sti/2);
medrpt = (exp(2*mc)-1)/(exp(2*mc)+1);
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Step 4 Model 1 with All Random Effects:
Analysis Strategies

It is important to have a sufficient number of time points without
missing data when estimating random effects such as regression
coefficients because the estimation is based on computing the random
effect value for each individual for which “N” is the number of
observed timepoints - many individuals with few timepoints may
complicate the convergence

Asparouhov & Muthén (2022). Practical Aspects of Dynamic
Structural Equation Models. Technical Report

Convergence made harder by including individuals that do not
vary across time
Number of random effects should ideally be smaller than the
number of time points
Problems can be avoided by building up the model in steps:
Random intercepts only, adding random effects looking for
z-values > 3 for their variances, don’t correlate the random
effects right away
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Number of Time Points for Each Individual (Cluster)

Is the number of time points sufficient for 9 random effects?

Tinterval = 2 with inserted missing data versus the original data

Size (s) Cluster ID with Size s

6 45
9 238

10 197 196 319
17 572
18 161
19 456
21 415
22 357
31 276
33 176 107
34 29 47
35 352
40 254 457 549 204
41 469 224 205
42 165 36 200
43 433 406 371
44 314 13 320 347 7

Size (s) Cluster ID with Size s

1 238 549
2 161 29 240 383 442 45 572
3 206 249
4 319 176 197 78 276
5 456 531 415 571 196
6 263 24 200 380 51 388 392
7 359 100 160 224
9 92

10 71 2 13 320
11 12 7 204 341 352 357
12 205 22 561 28 485
13 314 260 119 433 254 348
14 503 107 47 552 277 137 188
15 5 361
16 36 401 507 518 403 373 428 280 221 347
17 407
18 165 351 521 528 4 447 452 554 560 302 414 155
19 1 49 186 406 295 203 310 385 152
20 514 122 31 207 454 547 144 457 463 258 491 360 56
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Standardization with TYPE = RANDOM

Schuurman, Ferrer, de Boer-Sonnenschein, & Hamaker (2016). How to
compare cross-lagged associations in a multilevel autoregressive
model. Psychological Methods, 21, 206-221

Standardization using individual-specific variances for models with
random slopes or variances

Analogous to N = 1 analysis

Mplus computes the standardized values for each individual and
presents the average random slope over individuals
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Step 4 Model 1 with All Random Effects:
Non-Stationarity Warning

WARNING: PROBLEMS OCCURRED IN SEVERAL ITERATIONS IN THE
COMPUTATION OF THE STANDARDIZED ESTIMATES FOR SEVERAL
CLUSTERS. THIS IS MOST LIKELY DUE TO AR COEFFICIENTS
GREATER THAN 1 OR PARAMETERS GIVING NON-STATIONARY
MODELS. SUCH POSTERIOR DRAWS ARE REMOVED. THE
FOLLOWING CLUSTERS HAD SUCH PROBLEMS:

45 238 197 196 319 572 161 456 415 357 276 176 107 29 254 549 204 224
205 165 200 433 406 371 314 13 320 347 7 221 51 383 385 277 175 351 122
2 160 554 49 503 556 71 560 445 428 92 442 317 463 361 454 20 234 552
260 309 263 394 542 32 338 373 438 485 66 211 152 480 557 380 499 419
101 85 258 188 374 220 388 465 203 561 401 341 31 207 279 144 302 392
514 148 327 443 570 448 393 398 286 403 407 414 30 439 440 41 27 100
225 228 462 328 468 163 243 508 65 518 521

Far fewer clusters are mentioned when the auto-correlations are not
random
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Non-Stationarity Warning Continued

FAQ: Standardized coefficients in DSEM/RDSEM http:
//www.statmodel.com/download/FAQ-DSEMStand.pdf

Message can typically be ignored (Mplus handles it optimally)

Typical reasons:

Major cause is random auto-correlations where in some iterations
for some individuals, some part of the posterior distribution is
> 1 so that variances are negative under stationarity assumption
which means that standardization cannot be done
Small sample size or small number of timepoints for many
individuals

Further information about causes can be obtained by

N = 1 analyses
Examining factor scores to find clusters with large
auto-correlations (see later slide)
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Step 4 Model 1 with All Random Effects
Unstandardized between-level estimates

Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

Intercepts
PA 5.755 0.088 5.582 5.927 *
TIRED 3.139 0.144 2.859 3.433 *
RP 0.346 0.044 0.257 0.427 *
SPT -0.063 0.019 -0.103 -0.028 *
RT 0.352 0.041 0.268 0.428 *
STP -0.027 0.060 -0.140 0.094
LOGVPA -1.426 0.131 -1.685 -1.167 *
LOGVTI -0.153 0.149 -0.449 0.141
CPT -0.193 0.035 -0.262 -0.122 *

Residual Variances
PA 0.617 0.068 0.501 0.766 *
TIRED 1.483 0.153 1.228 1.820 *
RP 0.064 0.011 0.046 0.088 *
SPT 0.005 0.002 0.002 0.009 *
RT 0.048 0.009 0.033 0.070 *
STP 0.029 0.013 0.011 0.061 *
LOGVPA 1.176 0.132 0.948 1.463 *
LOGVTI 1.661 0.192 1.325 2.057 *
CPT 0.033 0.009 0.018 0.053 *

New/Additional
Parameters
SDSPT 0.069 0.012 0.045 0.094 *
SDSTP 0.171 0.037 0.104 0.247 *
MEANVPA 0.433 0.067 0.327 0.594 *
MEANVTI 1.972 0.362 1.419 2.845 *
MEDRPT -0.191 0.034 -0.256 -0.121 *

The unstandardized, non-random estimate for Model 1 without covariates = -0.048
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Within-Level STD Estimates Averaged Over Clusters
Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

RP | PA ON
PA&1 0.352 0.019 0.315 0.389 *

SPT | PA ON
TIRED&1 -0.056 0.012 -0.081 -0.035 *

RT | TIRED ON
TIRED&1 0.417 0.019 0.380 0.453 *

STP | TIRED ON
PA&1 -0.032 0.033 -0.094 0.037

CPT | PA WITH
TIRED -0.166 0.015 -0.199 -0.138 *

LOGVPA |
PA 0.458 0.019 0.425 0.499 *

LOGVTI |
TIRED 1.437 0.058 1.340 1.566 *

STD standardization has no effect here due to no latent variables, making the results
comparable to the unstandardized between-level estimates
Note that LOGV entries are on the variance scale (so pos. values; no exp needed)
SE’s of these cluster averages decrease as a function of cluster size
For significance testing of a random slope mean, the unstandardized mean should be
used, not the cluster-averaged standardized slope
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Step 4 Model 1 Regression on Covariates
Unstandardized between-level estimates

Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

RP ON
SDQEMOTAA 0.001 0.012 -0.022 0.023
GIRL 0.011 0.054 -0.094 0.115

SPT ON
SDQEMOTAA -0.004 0.005 -0.015 0.005
GIRL 0.012 0.020 -0.029 0.051

RT ON
SDQEMOTAA 0.007 0.010 -0.013 0.029
GIRL 0.106 0.049 0.009 0.203 *

STP ON
SDQEMOTAA 0.005 0.013 -0.019 0.030
GIRL -0.006 0.065 -0.142 0.118

LOGVPA ON
SDQEMOTAA 0.125 0.038 0.048 0.196 *
GIRL 0.230 0.165 -0.107 0.566

LOGVTI ON
SDQEMOTAA -0.011 0.044 -0.099 0.077
GIRL 0.099 0.190 -0.290 0.459

CPT ON
SDQEMOTAA -0.007 0.009 -0.026 0.011
GIRL -0.007 0.042 -0.089 0.076

PA ON
SDQEMOTAA -0.178 0.027 -0.233 -0.126 *
GIRL 0.004 0.115 -0.225 0.225

TIRED ON
SDQEMOTAA 0.187 0.043 0.105 0.272 *
GIRL 0.346 0.184 -0.021 0.705
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3 Ways to Examine the Individuals’ Values
of the Random Effects (Factor Score Values)

(1) To view the factor score distribution:
PLOT command using FACTORS = ALL (50), or FACTORS =
list, and using the Latent variable distribution plot

(2) To get factor score mean, median, variance and percentile
summaries saved in a file together with the rest of the data for a
follow-up analysis:

SAVEDATA command using SAVE = FSCORES (50 10), where
10 refers to thinning

(3) To get multiple imputations of factors scores and save all the
between-level information per imputation to be subsequently analyzed
in a single-level model using TYPE = IMPUTATION in the DATA
command:

SAVEDATA command using SAVE = FSCORES (200),
FACTORS = list, and FILE = name imp*.dat
Asparouhov & Muthén (2010). Plausible values for latent
variables using Mplus. Technical Report http:
//www.statmodel.com/download/Plausible.pdf
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Example of (2): Saving Factor Score Summaries
SAVEDATA: SAVE = FSCORES(50 10); FILE = fscoresM1.dat;

PA F10.3
TIRED F10.3
PA&1 F10.3
TIRED&1 F10.3
HRS F10.3
NEWTIME F10.3

TIME F10.3
RP Mean F10.3
RP Median F10.3
RP Standard Deviation F10.3
RP 2.5% Value F10.3
RP 97.5% Value F10.3
SPT Mean F10.3
SPT Median F10.3
SPT Standard Deviation F10.3
SPT 2.5% Value F10.3
SPT 97.5% Value F10.3
RT Mean F10.3
RT Median F10.3
RT Standard Deviation F10.3
RT 2.5% Value F10.3
RT 97.5% Value F10.3
STP Mean F10.3
STP Median F10.3

STP Standard Deviation F10.3
STP 2.5% Value F10.3
STP 97.5% Value F10.3
LOGVPA Mean F10.3
LOGVPA Median F10.3
LOGVPA Standard Deviation F10.3
LOGVPA 2.5% Value F10.3
LOGVPA 97.5% Value F10.3
LOGVTI Mean F10.3
LOGVTI Median F10.3
LOGVTI Standard Deviation F10.3
LOGVTI 2.5% Value F10.3
LOGVTI 97.5% Value F10.3
B PA Mean F10.3
B PA Median F10.3
B PA Standard Deviation F10.3
B PA 2.5% Value F10.3
B PA 97.5% Value F10.3
B TIRED Mean F10.3
B TIRED Median F10.3
B TIRED Standard Deviation F10.3
B TIRED 2.5% Value F10.3
B TIRED 97.5% Value F10.3
ID I4
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Follow-Up Two-Level Basic Analysis
of the Saved Factor Scored Summaries

Between-level scatterplot of PA Auto-Correlation’s 97.5 Percentile vs
PA Average

Pointing at top left individual (cluster) with the highest percentile value
(y-axis) of 0.97 shows that it is ID = 414

Unusual individual with a very low PA average - outlier to be deleted?
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Step 4 Model 2: Adding a Lag0 Effect of Tiredt → PAt
to the Cross-Lagged Analysis of PA and Tired

PA

WithinBetween

PAt-1 t

PA tPA t-1

Tired
t-1 tTired

Tired
t-1 tTired

PA

Tired

MODEL: %WITHIN%
pa ON pa&1 tired tired&1;
tired ON tired&1 pa&1;
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Model 2 Standard’d Estimates for Cross-Lagged Analysis of
PA and Tired Without and With Lag0 Effect of Tiredt → PAt

Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

Only Lag1 effect of Tired
Within Level

PA ON
PA&1 0.398 0.015 0.369 0.426 *
Tired&1 -0.084 0.016 -0.114 -0.052 *

Lag0 and Lag1 effect of Tired
Within Level

PA ON
PA&1 0.396 0.015 0.366 0.423 *
Tired -0.193 0.014 -0.220 -0.165 *
Tired&1 -0.005 0.018 -0.029 0.039
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Step 4 Model 3: RDSEM

Within-level part of the model:

PA tPA t-1

Tired
t-1 tTired

PA tPA t-1

Tired
t-1 tTired

DSEM RDSEM

%WITHIN%
PA ON TIRED;
PA ON PA&1;
TIRED ON TIRED&1;

%WITHIN%
PA ON TIRED;
PA^ ON PA^1;
TIRED^ ON TIRED^1;

RDSEM is like regular twolevel analysis regressing PA on Tired:
No lagged effects but instead auto-correlated residuals

RDSEM = DSEM if no covariates (Tired in this case)
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DSEM vs RDSEM Continued

PA tPA t-1

Tired
t-1 tTired

PA tPA t-1

Tired
t-1 tTired

DSEM RDSEM

Apart from Tiredt �PAt, the two models have different implications:

DSEM: Indirect influence Tiredt−1 �PAt−1 �PAt
RDSEM: Only the residual of PAt−1 influences PAt

The 2 models give different estimates of the regression of PAt on Tiredt
- small difference in this example but this is not always the case

Asparouhov & Muthén (2019). Comparison of models for the analysis
of intensive longitudinal data. SEM journal. Tables 6 and 7

RDSEM can be used to study the relationship between two outcomes
controlling for covariates, e.g., a trend such as daily cycles
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RDSEM Analysis with a Random Slope
Regressed on Between-Level Covariates

PA tPA t-1

Tired
t-1 tTiredGirl

Tired

PA

s

SDQ

Between Within

s
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RDSEM Input

USEVARIABLES = pa tired SDQemotAA girl;
LAGGED = pa(1) tired(1);
TINTERVAL = hrs(2 time);
CLUSTER = id;
BETWEEN = SDQemotAA girl;
! 24*7 = 168 (same as time >84):
USEOBSERVATIONS = hrs LE 168
AND id NE 240 AND id NE 249
AND id NE 78 AND id NE 531;

DEFINE:
girl = sexAA - 1;
CENTER SDQemotAA(GRANDMEAN);

ANALYSIS:
TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
BITERATIONS = (1000);
THIN = 10;
PROCESSORS = 8;

MODEL:
%WITHIN%
s | pa ON tired;
paˆ ON paˆ1;
tiredˆ ON tiredˆ1;
%BETWEEN%
pa tired s ON SDQemotAA girl;
pa tired s WITH pa tired s;

OUTPUT:
STANDARDIZED TECH1
TECH4 TECH8;

PLOT:
TYPE = PLOT3;
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RDSEM Output, Standardized Estimates

Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

Within-Level Standardized Estimates Averaged Over Clusters
S | PA ON

TIRED -0.199 0.015 -0.228 -0.169 *
PAˆ ON

PAˆ1 0.390 0.016 0.359 0.419 *
TIREDˆ ON

TIREDˆ1 0.460 0.015 0.431 0.488 *
Residual Variances
PA 0.781 0.012 0.758 0.805 *
TIRED 0.788 0.014 0.762 0.814 *

Between Level
S ON

SDQEMOTAA -0.168 0.068 -0.297 -0.029 *
GIRL 0.005 0.070 -0.133 0.145

PA ON
SDQEMOTAA -0.330 0.046 -0.418 -0.241 *
GIRL 0.007 0.047 -0.090 0.091

TIRED ON
SDQEMOTAA 0.227 0.049 0.132 0.323 *
GIRL 0.100 0.049 0.000 0.190 *
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Alternative RDSEM Between Model: Mediation

Girl

SDQ

s

PA

Tired

%BETWEEN%
pa ON tired SDQemotAA girl;
tired ON SDQemotAA girl;
s ON tired SDQemotAA girl;
pa WITH s;

Standardized between-level estimates

Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

PA ON
TIRED -0.435 0.055 -0.536 -0.319 *
SDQEMOTAA -0.230 0.047 -0.320 -0.137 *
GIRL 0.055 0.043 -0.035 0.139

TIRED ON
SDQEMOTAA 0.228 0.047 0.142 0.326 *
GIRL 0.104 0.049 0.015 0.202 *

S ON
TIRED -0.332 0.118 -0.525 -0.049 *
SDQEMOTAA -0.092 0.073 -0.233 0.037
GIRL 0.039 0.075 -0.098 0.192
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Section 7 Categorical Outcome
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Categorical Outcome: Negative Affect

60% at the lowest value of NA: Treating the variable as continuous
leads to model misspecification of linear models such as DSEM
typically causing underestimated regression slopes

Dichotomize the variable (trichotomize?). Censored? Two-part?

Asparouhov et al. (2018). Dynamic structural equation models. SEM

Normally distributed latent response variable Y* underlying the
categorical observed variable Y is assumed with the regular linear
DSEM applied to Y* (see also Mplus Web Talk 4, Part 2)
Nominal and count not available for DSEM
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Binary Outcome: Input for Dichotomized NA
Individuals not Changing over Time Deleted

USEOBSERVATIONS = hrs le 168
AND id ne 240 AND id ne 249
AND id ne 78 AND id ne 531
AND id ne 45 AND id ne 319
AND id ne 352 AND id ne 254
AND id ne 200 AND id ne 320
AND id ne 347 AND id ne 385
AND id ne 313 AND id ne 2
AND id ne 160 AND id ne 503
AND id ne 442 AND id ne 260
AND id ne 119 AND id ne 263
AND id ne 338 AND id ne 523
AND id ne 570 AND id ne 462
AND id ne 256;

USEVARIABLES = pa nabin;
CATEGORICAL = nabin;
CLUSTER = id;
TINTERVAL = hrs (2 time);
LAGGED = pa(1) nabin(1);

DEFINE:
IF(na GT 1)THEN nabin = 1
ELSE nabin = 0;
! Alternative: Use CUT na(1);
! and keep the variable name na

ANALYSIS:
TYPE = TWOLEVEL;
ESTIMATOR = BAYES;
BITERATIONS = (2000);
THIN = 10;
PROCESSORS = 8;

MODEL:
%WITHIN%
pa ON pa&1 nabin&1;
nabin ON nabin&1 pa&1;
%BETWEEN%
pa nabin WITH pa nabin ;
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Binary Outcome: Original NA vs Binary NA
Standardized Output

Original NA (treated as continuous)

Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

Within Level
PA ON

PA&1 0.414 0.017 0.379 0.445 *
NA&1 -0.002 0.017 -0.034 0.032

NA ON
NA&1 0.251 0.019 0.210 0.285 *
PA&1 -0.039 0.019 -0.075 -0.001 *

Binary NA (dichotomized)

Within Level
PA ON

PA&1 0.368 0.017 0.336 0.403 *
NABIN&1 -0.192 0.022 -0.236 -0.149 *

NABIN ON
NABIN&1 0.501 0.033 0.437 0.566 *
PA&1 -0.089 0.022 -0.133 -0.045 *
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Random Residual Correlation with Binary NA

MODEL:
%WITHIN%
pa ON pa&1 nabin&1;
nabin ON nabin&1 pa&1;
logvp | pa;
! binary na does not have a free
! residual variance parameter
c | pa WITH nabin;
! random biserial correlation
%BETWEEN%
pa nabin logvp c WITH pa nabin logvp c;
[logvp] (mp);
logvp (sp);
[c] (mc);

MODEL
CONSTRAINT:

NEW (meanvp medr);
meanvp = exp(mp+sp/2);
medr = (exp(2*mc)-1)/(exp(2*mc)+1);
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Section 8 Cross-Classified Analysis
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Cross-Classified Analysis: Looking for Trends Over Time

Time series plots of PA and Tired averages in the sample:

The sample averages have varying precision over time
- can we get a time series plot for model-estimated values?

Yes, by cross-classified analysis
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Cross-Classified Time Series Analysis (N > 1)

Two between-level cluster variables: person crossed with time (one
observation for a given person at a given time point)

Generalization of the two-level model providing more flexibility:
random effects can vary across not only persons but also time

Consider the two-level model with a random intercept/mean:

yit = α +αi︸ ︷︷ ︸
Between person

+β yw,it−1 + εit︸ ︷︷ ︸
Within person

. (22)

The corresponding cross-classified model is:

yit = α +αi︸ ︷︷ ︸
Between person

+ αt︸︷︷︸
Between time

+β yw,it−1 + εit︸ ︷︷ ︸
Within person

. (23)

αi and αt are normally distributed with zero means
The Bayes MCMC algorithm is more complex and slower
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Step 5: Cross-Classified Analysis of PA and Tired
Mplus Input

USEVARIABLES = pa tired;
LAGGED = pa(1) tired(1);
TINTERVAL = hrs(2 time);
CLUSTER = id time;

ANALYSIS:
TYPE = CROSSCLASSIFIED;
ESTIMATOR = BAYES;
BITERATIONS = (2000);
THIN = 10;
PROCESSORS = 12;

MODEL:
%WITHIN%
pa ON pa&1;
tired ON tired&1;
pa ON tired tired&1;
tired ON pa&1;
%BETWEEN id%
pa WITH tired;
%BETWEEN time%
pa WITH tired;

OUTPUT:
STANDARDIZED TECH1 TECH8;

PLOT:
TYPE = PLOT3;
FACTORS = ALL(50);
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Comparing Two-Level and Cross-Classified Estimates

Standardized within-level estimates

Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

Two-level
Within Level

PA ON
PA&1 0.395 0.015 0.366 0.424 *
Tired -0.193 0.014 -0.220 -0.166 *
Tired&1 -0.005 0.018 -0.030 0.042

Cross-classified
Within Level

PA ON
PA&1 0.383 0.016 0.393 0.413 *
Tired -0.193 0.013 -0.218 -0.166 *
Tired&1 -0.012 0.017 -0.020 0.045
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ID Between-Level Estimates: Two-Level vs Cross-Classified

Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

Two-level
PA WITH

TIRED -0.549 0.085 -0.737 -0.401 *
Means

PA 5.747 0.058 5.630 5.858 *
TIRED 3.386 0.084 3.222 3.558 *

Variances
PA 0.738 0.074 0.610 0.898 *
TIRED 1.487 0.156 1.229 1.850 *

Cross-classified
PA WITH

TIRED -0.555 0.084 -0.730 -0.408 *
Means

PA 5.746 0.061 5.630 5.865 *
TIRED 3.394 0.112 3.169 3.612 *

Variances
PA 0.738 0.076 0.604 0.896 *
TIRED 1.550 0.155 1.253 1.857 *
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Between-Level Estimates of Cross-Classified Analysis

Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

Between ID Level

PA WITH
TIRED -0.555 0.084 -0.730 -0.408 *

Means
PA 5.746 0.061 5.630 5.865 *
TIRED 3.394 0.112 3.169 3.612 *

Variances
PA 0.738 0.076 0.604 0.896 *
TIRED 1.550 0.155 1.253 1.857 *

Between TIME Level

PA WITH
TIRED -0.022 0.013 -0.052 -0.001 *

Variances
PA 0.012 0.004 0.006 0.023 *
TIRED 0.265 0.062 0.173 0.412 *
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Comparing Stand’d Results for Tinterval = 1, 2, 3

Posterior 95% C.I.
Estimate S.D. Lower 2.5% Upper 2.5% Significance

Tinterval = 1
Within Level
PA ON

PA&1 0.517 0.016 0.486 0.547 *
TIRED -0.163 0.016 -0.194 -0.129 *
TIRED&1 0.017 0.020 -0.023 0.055

TIRED ON
TIRED&1 0.565 0.014 0.534 0.592 *
PA&1 -0.031 0.015 -0.060 -0.002 *

Tinterval = 2
Within Level
PA ON

PA&1 0.383 0.016 0.353 0.413 *
TIRED -0.193 0.013 -0.218 -0.166 *
TIRED&1 0.012 0.017 -0.020 0.045

TIRED ON
TIRED&1 0.416 0.015 0.387 0.445 *
PA&1 -0.026 0.016 -0.057 0.005

Tinterval = 3
Within Level
PA ON

PA&1 0.349 0.015 0.320 0.378 *
TIRED -0.204 0.013 -0.230 -0.177 *
TIRED&1 0.008 0.015 -0.022 0.039

TIRED ON
TIRED&1 0.373 0.014 0.344 0.400 *
PA&1 -0.024 0.014 -0.054 0.004
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Time Series Plot of Estimated Random Effects
(Factor Scores) for PA and Tired

Cross-classified analysis with CLUSTER = id time

The two between levels are referred to as level2a for time and
level2b for id
The acronym B2a is used for the between-time level factor score
to be plotted

Plotting:

PLOT option: FACTORS=ALL(50)
Plot menu option: Time series plots (sample value, ACF, PACF,
estimated factor score)

B2a PA, mean
B2a Tired, mean
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Time Series Plot for PA and Tired Factor Scores, Tue-Mon

How do you model these trends/cycles? Future DSEM web talk
See also Short Course Topic 13, Part 8 with a heart rate example

Bengt Muthén Longitudinal Modeling 120/ 130



Mplus Run for CrossClassified

Plots for step 5 cross-classified analysis of PA and Tired
Time series plot for estimated factor scores:
B2a PA, B2a Tired
Right-click options: Mean line, time lines

More plot options discussed in future web talk
Loop insert (cycles, weekday effects)
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Section 9 How Large do N and T Have to Be?
Monte Carlo Simulations
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How Large do N and T Have to Be? Checklist

Do you have enough timepoints? Recommendations:

At least 15 - 20 (if not, do single-level, wide analysis)
At least 25 for good performance with random slopes and var’s
At least 50 for good N = 1 performance

Do enough individuals have enough timepoints without missing?

If not, random slope and variance estimation can be problematic

Does your outcome have variation across time?

Delete individuals with no variation

Do you have enough individuals for random effects modeling on
between?

A minimum of 50 recommended but many more may be needed
for between-level variances (500 in the simulation below)

Does your outcome have a strong trend that should be modeled?

If yes, use RDSEM with a function of time as covariate

Do your own Monte Carlo simulation
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How Large do N and T Have to Be? Monte Carlo

Schultzberg & Muthén (2018). Number of subjects and time points
needed for multilevel time series analysis: A simulation study of
dynamic structural equation modeling. Structural Equation Modeling

9 univariate DSEM models with varying complexity
Example: A univariate model with random intercept, random
auto-regression and random residual variance needed T = 25 for
N = 150 and T = 50 for N = 100
“What is worse, having a lower N or a lower T? Can large N
compensate for small T better than large T can compensate for
small N? The answer seems to be clear: Large N is better. That is,
large N seems able to compensate for small T, better than large T
can compensate for small N. — With that said, the random AR
and residual variance do need fairly large T to be well estimated.
If AR or residual variance is of substantive interest rather than
just a heterogeneity feature to control for, many repeated
measures will be needed.” (p. 511)

Current study: N = 240 and average T = 24, so sufficient for a
univariate model - is it sufficient for a multivariate model?
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Monte Carlo Simulations

Parameter values obtained via SVALUES in the real-data run based on
Step 4 Model 2 (lag-0 effect of Tired on PA)

N = 250, T = 25

MONTECARLO:
NAMES = pa tired;
NOBSERVATIONS = 6250;
NREPS = 500;
CSIZES = 250(25);
NCSIZES = 1;
LAGGED = pa(1) tired(1);
! See UG ex12.6:
! REPSAVE = ALL;
! SAVE = step4Model2rep*.dat;
! Or for one replication:
! SAVE = step4Model2.dat;

ANALYSIS:
TYPE = TWOLEVEL;
ESTIMATOR = BAYES;
BITERATIONS = (1000);
PROCESSORS = 8;

MODEL
POPULATION: %WITHIN%

pa ON pa&1*0.39510;
pa ON tired*-0.11099;
pa ON tired&1*0.00309;
tired ON tired&1*0.46071;
tired ON pa&1*-0.01164;
pa*0.46190;
tired*1.39159;

%BETWEEN%
pa WITH tired*-0.54293;
[ pa*5.74638 ];
[ tired*3.39010 ];
pa*0.73492;
tired*1.48918;

MODEL:
! Copy MODEL POPULATION
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Monte Carlo Results Summary

N = 250, T = 25: Excellent results (estimates, SEs, coverage)

N = 250, T = 15: Good results (a bit low coverage for Tired AR)

N = 250, T = 10: Not acceptable results

A more realistic analysis is obtained with varying cluster sizes
(individuals with different number of time points)

The real data has max 84 time points and average number of time
points = 24

An approximation to this is obtained by e.g. the 5 cluster sizes:
CSIZES = 10(5) 65(15) 100(25) 65(50) 10(80);

10 clusters of size 5, 65 clusters of size 15, etc for a total of 250
clusters (N)
Still excellent results
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Monte Carlo Simulations with Random Slopes

Parameter values obtained via SVALUES in the real-data run based on
Step 4 Model 1 with added random slopes, random variances, and
random covariance (total of 9 random effects)

N = 250 with the 5 cluster sizes used on the previous slide
Good results, except between-level variances have somewhat
biased estimates (overestimated) and SEs - N ≥ 500 is needed

New in version 8.9 (message shown in TECH9):
351 CLUSTERS WERE REMOVED BECAUSE THEIR
GENERATED RANDOM EFFECTS PRODUCED
NON-STATIONARY TIME SERIES OR NON-POSITIVE DEFINITE
COVARIANCE MATRICES.

With random slopes, variances, and covariances, non-stationarity is
likely for some clusters in some replications

In the past, such replications have been deleted leading to a low
percentage of reported replications - now the cluster is thrown out but
the replication kept

351 clusters is less than 1% of the 250*500 of the generated clusters
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CrossClassified Monte Carlo

MONTECARLO:
NAMES = pa tired;
NOBSERVATIONS = 21000;
NREPS = 100;
CSIZES = 10[5(1)] 65[15(1)]
100[25(1)] 65[50(1)] 10[80(1)];
NCSIZES = 5[5];
LAGGED = pa(1) tired(1);

ANALYSIS:
TYPE = CROSSCLASSIFIED;
ESTIMATOR = BAYES;
BITERATIONS = (1000);
PROCESSORS=8;

MODEL
POPULATION: %WITHIN%

pa ON pa&1*0.38327;
pa ON tired*-0.11689;
pa ON tired&1*0.00723;
tired ON tired&1*0.41643;
tired ON pa&1*-0.04240;
pa*0.45668;
tired*1.26884;
%BETWEEN level2a%
pa WITH tired*-0.02232;
pa*0.01241;
tired*0.26523;
%BETWEEN level2b%
pa WITH tired*-0.55530;
[ pa*5.74610 ];
[ tired*3.39425 ];
pa*0.73831;
tired*1.55047;

In the SVALUES from the real-data run, %Between time% has to be replaced by
%Between level2a% and %Between id% has to be replaced by %Between level2b%
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Section 10 References
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DSEM References and Workshop Videos

Technical and applied papers:
http://www.statmodel.com/TimeSeries.shtml

Short Course YouTube videos and handouts:
http://www.statmodel.com/topic12.shtml
http://www.statmodel.com/topic13.shtml

Hamaker YouTube video tutorials:
https://www.youtube.com/watch?v=dA3HvJZDzeo&
list=PLet3DgvxBn2S7N2hVW4COAwH3_VaRoujd

Bayesian analysis in Mplus:

Short Course Topic 9:
http://www.statmodel.com/topic9.shtml
Quick version; Short Course Topic 11:
http://www.statmodel.com/topic11.shtml
Chapter 9 in the Muthén, Muthén & Asparouhov (2016) book
Regression and Mediation Analysis Using Mplus
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