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Dynamic structural equation modeling (DSEM) is a novel, intensive longitudinal data (ILD)
analysis framework. DSEM models intraindividual changes over time on Level 1 and allows the
parameters of these processes to vary across individuals on Level 2 using random effects.
DSEM merges time series, structural equation, multilevel, and time-varying effects models.
Despite the well-known properties of these analysis areas by themselves, it is unclear how their
sample size requirements and recommendations transfer to the DSEM framework. This article
presents the results of a simulation study that examines the estimation quality of univariate 2-
level autoregressive models of order 1, AR(1), using Bayesian analysis in Mplus Version 8.
Three features are varied in the simulations: complexity of the model, number of subjects, and
number of time points per subject. Samples with many subjects and few time points are shown
to perform substantially better than samples with few subjects and many time points.

Keywords: between-level mediation model, DSEM, power, sample size

Dynamic structural equation modeling (DSEM) provides
new methods for analyzing intensive longitudinal data
(ILD) such as ecological momentary assessments, experi-
ence sampling methods, and ambulatory assessments
(Asparouhov, Hamaker, & Muthén, 2017a, 2017b). DSEM
uses two-level modeling with time on Level 1 and indivi-
duals on Level 2. It models intraindividual changes over
time and allows the parameters of these processes to vary
across individuals using random effects. There are three key
random effects of interest in psychological research of long-
itudinal data: random means, random autocorrelations, and
random variances. As an extension of conventional multi-
level modeling, DSEM allows random effects to be not only
dependent variables regressed on Level 2 covariates but also
predictors of various outcomes. The flexibility of DSEM is
made possible using Bayesian estimation.

Correspondence should be addressed to Marten Schultzberg,
Department of Statistics, Uppsala University, Uppsala 751 05, Sweden.
Email: marten.schultzberg@statistik.uu.se

Color versions of one or more of the figures in this article can be found
online at www.tandfonline.com/HSEM

Hamaker, Asparouhov, Brose, Schmiedek, and Muthén
(2017) illustrated different models and research questions
that can be investigated within the DSEM framework using
repeated measures of affect. As pointed out by the authors,
many of these models are novel and need to be studied
further. In this article, the sample size needed for good
estimation properties is studied. In two-level time-series
analysis, two aspects of sample size need to be considered
when discussing finite sample properties: the number of
individuals (V) and the number of time points (7) per
individual. Different combinations of N and T are seen in
different ILD application areas.

The following examples highlight the large variation in
both N and T covered by ILD studies. In Hamaker et al.
(2017), the data are of a daily diary type with 100 individuals
measured for 100 days in a row (i.e., N= 100 and 7= 100). In
McAdams and Constantian (1983), intimacy and affiliation of
50 individuals are measured at seven random time points a day
for 7 days (i.e., N=50, T=49). In Bolger and Schilling (1991),
neuroticism and exposure to daily stressors are measured for
339 individuals once a day for 6 weeks (i.e., N =339, T=42).
In the Shiffman and Waters (2004) study of smoking behavior
and relapse, data of an ecological momentary assessment
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(EMA) type are collected where N =215 and 7= 100. L. H.
Cohen et al. (2008) studied effects of psychotherapy with a
sample of N = 62 and 7 = 7. In Trull et al. (2008), 60
individuals (N = 60) are measured six times per day for
4 weeks (T =6 x 28 = 168) to investigate affect instability in
borderline personality disorder. In Jongerling, Laurenceau, and
Hamaker (2015), the multilevel autoregressive model is dis-
cussed and exemplified with a daily diary data set of women’s
positive affect, where 89 women (N = 89) completed daily
diaries for 42 consecutive days (7'=42). For more examples of
longitudinal studies with different kinds of data see, for exam-
ple, Bolger and Laurenceau (2013).

This article aims to give insights and guidelines regard-
ing the data requirements of some of the two-level time-
series models available in Mplus Version 8 (Muthén &
Muthén, 2017) through the DSEM framework of
Asparouhov et al. (2017b). To investigate the small sample
properties of the estimation of these models, a Monte Carlo
simulation study is conducted. The main focus of the simu-
lation study is the N and T requirements for different com-
binations of the two. Which features of the models require
large N and T, respectively, and to what extent can a large N
compensate for a small 7 and vice versa?

There have been several previous Monte Carlo simulation
studies on the topic of two-level models. Yuan and MacKinnon
(2009) made a case for Bayesian estimation as compared to
classical maximum likelihood (ML) estimation in a simulation
study of one- and two-level mediation analysis. However, that
work considers individuals on Level 1 as opposed to Level 2,
which is considered in this article. Krone, Albers, and
Timmerman (2016) found similar performance of Bayesian
Markov Chain Monte Carlo (MCMC) and ML estimation of
two-level AR(1) models in a small simulation study. The
article considers the four combinations of N = 10, 25 and
T =10, 25. Jongerling et al. (2015) carried out a simulation
study comparing different estimation methods for a multilevel
autoregressive model. The methods considered are different
kinds of ML and Bayesian estimation. The sample sizes con-
sidered are N =20, 50, 100 and 7= 10, 20, 50. The Jongerling
et al. (2015) article is highly relevant for this study. First, most
features pointed out by the authors as missing in common
multilevel software (e.g., random innovation variance and
multivariate models on the within level) are implemented in
Mplus Version 8. Second, their simulation study covers one of
the nine models covered in this article. The overlap between
the studies is limited, however, because the focus of this article
is the estimation of DSEM models in Mplus version 8, which
is not included in Jongerling et al. (2015). To the best of our
knowledge, the estimation performance of the usage of random
coefficients for autoregressive models of order 1 (AR(1)) as
mediators (i.e., both independent and dependent variables on
the between level) has not been investigated.

The rest of this article is structured as follows. The next
section gives an outline and setup of the Monte Carlo simula-
tion study and the models considered therein. The section

following that contains the results from the Monte Carlo
study. After this, caveats and important considerations when
simulating DSEM are identified. Finally, the last section con-
tains a discussion with guidelines and concluding remarks.

MONTE CARLO SETUP

In this section the Monte Carlo simulation study is moti-
vated and described in detail. First, the sequence of models
considered is defined. The effect sizes and R* of these
models are then discussed. Finally, the evaluation measures
of the simulation study are defined.

Model Sequence

The models considered in the simulation study are based on
Hamaker et al. (2017). The intent is to investigate key parts
of these models. Figure 1 displays the model diagrams of
the nine model variations considered in the Monte Carlo
simulation. The figures follow path analysis convention and
are consistent with the notation in the Mplus User s Guide
(Muthén & Muthén, 2017). A rectangle is an observed
variable and a circle is a latent variable. A single-headed
arrow from A to B means that A affects B and corresponds
to a regression slope. A single-headed arrow that does not
start at an observed or latent variable is a residual with its
corresponding variance. A filled small circle is a random
coefficient. A filled circle on the middle of a line is a
random slope. A filled circle at the end of a single-headed
arrow is a random intercept. A single-headed arrow starting
in a filled circle is a random residual variance.

In Models 1 through 3 (Figure la—c), the three para-
meters of interest are allowed to be random. Starting with
only a random mean in Model 1, Model 2 adds a random
autoregressive coefficient, and Model 3 adds a random
residual variance. In Models 4 through 6 (Figure 1d-f),
the same pattern is repeated but here the random coeffi-
cients are regressed on the added between-level covariate
W. Finally, in Models 7 through 9 (Figure 1g-i), a
dependent variable Z is added and regressed on the ran-
dom coefficients and W. This sequence gives guidelines
for the rather different settings in which the random
coefficients are random, random and used as dependent
variables, or random and used both as dependent and
independent variables.

All models considered in the study are nested in the
model displayed in Equations 1 and 2, corresponding to
Level 1 and Level 2, respectively,

Y, = %Yw,it—l + &ity (D

where the predictor Y, ;i is latent variable-centered as
Yiiro1 = Yi1 — a4, &i~N(0,06?) forallt=1, ..., T, and
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FIGURE 1 Model diagrams of the nine models considered in the Monte Carlo study.
0; = Y90 + Yo1 Wi + uoi, coefficients as mediators. Note that, to better fit the normal
o; =90+ Wi + ui, assumption, the logarithm of the variance is modeled on the
logo? =y + 721 Wi + uai, between level. The logarithm of the within-level residual
Z; = B0 + Bs1 Wi + B0t + B3, 0; + Bralogo? + us;, variance is referred to as “logv” for short. The Mplus notation

@)

where w;~N4(0,X) forall i = 1, ..., N. This is a two-level
time-series model with random mean, random autoregressive
parameter, and random residual variance. Equation 2 displays
the between-level mediation model with the random

convention uses the name of the within-level dependent
variable as the name of the random mean on the between
level. Accordingly, the random coefficients are referred to as
Y or random mean, ¢ or random autoregressive coefficient,
and logv or logarithm of the random residual variance. On
the between level, the random coefficients are all regressed
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on the covariate W. In addition, a between-level dependent
variable Z is regressed on all the random coefficients and W.
All technical details of the implementation of DSEM models
in Mplus Version 8 can be found in Asparouhov et al.
(2017b). The other eight models in the sequence can be
obtained from this model by constraining parameters to
zero. The models in this article are estimated under the
correct model assumption, with the exception of the model
misspecification sensitivity analysis performed later.

R? and Effect Sizes

To mimic analysis of real data as far as possible, the popula-
tion parameter values are chosen to achieve certain R* and
effect sizes. The effect sizes and R used in data generation
are specified for each model in the online supplemental
materials (www.statmodel.com). Generally, R is set to values
between 0.2 and 0.5. To formalize the effect sizes, the frame-
work suggested by J. Cohen (1992) is used. A weak effect is
around a 0.3 SD change in the dependent variable for a 1 SD
change in the independent variable. A moderately strong
effect is around a 0.5 SD change in Y for a 1 SD change in
X. The effect sizes in the simulation studies are set to 0.2 to
0.3. Given the type of between-level model in the set of
Models 7 through 9, the effect size and R” in the regressions
of the random coefficients on W are constrained by the effect
sizes and R? of the regression of Z. For this reason the effect
sizes and R differ to some extent between models.

Evaluation Measures

For each cell of the Monte Carlo study, 500 replications were
used. This means that 500 data sets were generated and
analyzed. The Monte Carlo output given in Mplus sum-
marizes the results of the 500 replications. For each parameter
considered in the output, five measures are given to evaluate
estimation performance. The definition of each measure used
to evaluate the estimation quality is given in Equation 3.

A timat
Relativebias = Average esumate
True value
A SE estimat
SE/SD — verage SE estimate

Standard deviation of the estimates from the replications
Zjir;p * (Estimate; — True value)®
Number of replications
Number of credible intervals covering true value

MSE

95% C =
% Coverage Number of replications

Number of credible intervals not covering zero
Power =

Number of replications

©)

Here the parameter estimate is taken as the median of the
posterior distribution of the parameters. The choice of the
median is discussed later. The Bayesian 95% credible inter-
vals, used in the 95% coverage and power measures, are

based on percentiles of the posterior distribution of the corre-
sponding parameter. However, because the intervals are eval-
uated from a frequentist’s point of view, they are referred to
as confidence intervals (CI) throughout the article.

The relative bias takes the value one when the point
estimate is unbiased. A value of, for example, 1.5 implies
that the average estimate is one and a half times larger than
the true parameter.

In the SE/SD measure the empirical standard deviation (SD)
is used; that is, the standard deviation of the point estimates
from all replications. The SD is compared to the average of the
SE estimates over the replications. If the SD and SE are similar,
the SE estimate captures the true variability of the estimates
and the SE/SD measure will be close to one.

Mean squared error (MSE) can be defined as a function
of bias and standard error. If the bias and SE are small the
MSE is close to zero. This is used as an overall precision
measure in the result section, especially for comparison
between different N and T allocations.

The 95% coverage measure gives the proportion of repli-
cations for which the CI covered the population value.

Power is the proportion of 95% ClIs that did not cover
zero, that is the proportion of parameters that would be
interpreted as significantly different from zero. Power is
presented only for between-level regression slopes.

When inspecting the 95% coverage and the power
results, it should be noted that the accuracy of the percentile
estimates on which the interval is based is a function of
number of iterations of the Bayesian algorithm, in this case
the number of iterations of the Gibbs sampler. Because high
accuracy in estimation of small and large percentiles
requires a very large number of iterations such as 10,000
or 50,000, it is not feasible to attain perfect accuracy in this
simulation study due to computational time. Ninety-five
percent coverage between 0.92 and 0.98 is considered
good coverage, which is accurate enough for all the pur-
poses of this article. All technical details of the Mplus setup
and example syntax can be found in the Appendix.

RESULTS

This section highlights patterns of estimation behavior for
key parameters in the models. Note that all results, including
results not presented here, for all estimated parameters and
all the models are available in the online supplementary
materials (www.statmodel.com), together with the specific
effect sizes and R* for all models. Three different cases are
considered in this section. Case 1 has a fixed number of
subjects (N = 200) where the number of time points per
subject varies as 7 = 10, 15, 20, 25, 50, 100, 200. This
serves to illustrate how many time points per subject are
needed in a design with many subjects (200). Case 2 has a
fixed number of time points per subject (7= 100) where the
number of subjects varies as N = 10, 15, 20, 25, 50, 100,
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200. This serves to illustrate how many subjects are needed
in a design with many time points per subject (100). Case 3
has N and T equal and each varies as 10, 25, 50, 75, 100,
150, 200, 300. This serves to give insights into how small N
and 7 can be in combination.

As afirst step, the results of these three cases are compared.
Looking at the results together makes the comparison of N and
T allocations easier, which might be helpful for designing
studies. In addition to the comparisons of the cases, detailed
results for each or some of the cases are given for chosen
models. We then give the result of a model misspecification
sensitivity analysis. Using different sample sizes, this section
illustrates what happens if a parameter that is random in the
population is fixed in analysis.

N and T Comparisons

This section gives the results for Models 1 through 3, 4
through 6, and 7 through 9 separately. Note that the x-axis
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of the plots in this section uses N*7, N or T depending on
which cases are considered.

Models 1 through 3

For Models 1 through 3, the means of the random coeffi-
cients have relative bias and SE/SD close to 1 for 7> 10 and
N >15. The variances of the random coefficients require N
and T of between 50 and 75 for similar good performance.
Figure 2 displays the bias of the variance of the random ¢
for Models 2 and 3 as functions of N and 7, respectively. A
very small 7 gives a somewhat larger relative bias than a
very small N. For N and T larger than 20, however, increas-
ing N reduces the relative bias faster than increasing 7.

Coverage is between 0.92 and 0.98 for all parameters.
Power is presented only for between-level regression slopes.
Because of this, power is not relevant for Models 1 through
3. Because the performance is good and similar for all three
(N=200, T=100, N=T) cases, Models 1 through 3 are not
discussed further here.
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Relative bias of the variance of the random coefficient ¢. N = 200 and 7' = 100 for Model 2 and 3.
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all three cases N =200, T= 100 and N=T.

Models 4 through 6

The relative bias and SE/SD measures of Model 4 indi-
cate that the precision in the slope of Y regressed on W is
good for all N and 7. The only measure that substantially
differs between the cases is power. Figure 3 displays the
power of the slope of the random mean Y regressed on W
for the N =200, 7= 100 and N = T cases. The N = 200 case
consistently has the highest power in the range of total
number of observations 2,000 to 10,000; that is, N = 200
and 7T between 20 and 50. N = T'is the second best option in
this interval. This indicates that there is no benefit of having
a large T without a substantial N, whereas a large N always
seems beneficial.

Figure 4 displays the power and MSE for the two
between-level slopes of Model 5 for all three cases. The
power patterns are very similar to those of Model 4. MSE
follows the same pattern as the power, where N = 200 has
the lowest (i.e., best) MSE, followed by N = T and finally
T =100. All cases have MSE close to zero and power close
to one for a total number of observations larger than 10,000.

Figure 5 displays the 7= 100 case for Model 5. When
T = 100, Model 5 requires N > 50 for power above 0.8
together with low MSE. For similar quality of estimation in
the N = 200 case, T > 10 is sufficient.

MSE of Model 6 is close to zero for all sample sizes
except for N =T = 10. MSE of Model 6 is slightly lower
than that of Model 5. A probable explanation for this is that
the R? is a few percent higher for Model 6 than Model 5. The
power and MSE of the very small sample sizes seem sensi-
tive to effect size and R*. This is confirmed by results from
running the same model with different effect sizes (see, e.g.,

the results from Model 9, displayed later). Figure 6 displays
the power and MSE of the between-level slopes of Model 6.
Again, the pattern from Model 4 and 5 is repeated. The
additional random logv has higher sample size requirements
than Y and ¢. This is evident in Figure 6¢ where not even the
N = 200 case attains power above 0.8 for all considered total
number of observations. Coverage is between 0.92 and 0.98
for Models 4 through 6 for all cases.

Models 7 through 9

Figures 7 through 9 and Figures 11 through 12 display
power for the between- level slopes of Models 7 through 9.
The power patterns of the random coefficients regressed on
W all follow the same pattern as those of Models 4 through
6. In fact, the power and MSE performances are only
slightly worse for these slopes when the regression of Z is
added. This indicates that the estimation performance of the
slopes in Models 4 through 6 does not suffer severely from
adding a between-level dependent variable, such as Z.

Figure 7 displays the power and MSE of the between-
level slopes of Model 7. The slopes of Z regressed on the
random coefficients and W have substantial MSE for the
T'=100 and N = T cases until the total number of observa-
tions is larger than approximately 5,000. The MSE of the
N =200 case is small for all 7 The power is also highest for
the N =200 case followed by N = T and lowest for 7= 100.
For a total number of observations larger than 10,000, MSE
is close to zero and power above 0.8 for all cases.

Figure 8 displays the power and MSE of the slopes of Z
regressed on the random coefficients and W for Model 8.
The power results for the slopes of Z regressed on the
random coefficients and W have several interesting aspects.
For a total number of observations between 2,000 and
10,000, the N = 200 case has the highest power followed
by the N = T case and last the 7= 100 case. However, the
power of N= Tand 7= 100 crosses at N =7 = 100 (10,000
on the x-axis) from where 7 = 100 has the second highest
power after N = 200. At a total number of observations
larger than 20,000, 7= 100 has the highest power followed
by N =200 and last N = T. For a total number of observa-
tions larger than 20,000, all cases have MSE close to zero
and power above 0.8. The MSE patterns of the three cases
are more similar to each other than the power patterns for
the same range of total number of observations. However
they still have the same internal ordering, crossing at the
same places. For a total number of observations larger than
20,000, all cases have MSE close to zero and power above
0.8. Note that the N = 200 case attains similar properties
already at a total number of observations larger than 10,000
(i.e., N=1200, T > 50).

Figure 10 displays the relative bias of Z regressed on the
random ¢ and W for Model 8 in the N = 200 case. The
relative bias of ¢ is unstable for 7 < 25, indicating that the
estimation of this model is not working properly for such
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few time points. At 7'> 50 the relative bias stabilizes around Model 9 contains many parameters of potential interest.
one and the power comes close to 0.8. The SE/SD is close to To give extra insight, two effect sizes are considered for this
one for 7> 15. model, a weak effects model and a moderately strong effects
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model. For Model 9, some sample size settings were
excluded due to convergence issues. These settings required
as many as 40,000 iterations to properly converge, thus
running 500 replications was impractical due to

computational time. This was a problem also for the mod-
erately strong effects model, which indicates that this is
probably not only due to the small effect sizes. Judging by
the results of the included sample sizes here, the excluded
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sample sizes are too small for any reasonable estimation
properties regardless of convergence.

Figure 12 displays the power and MSE of the slopes of Z
regressed on the random coefficients and W for Model 9.
The power and MSE patterns are very similar to those of
Model 8. One important difference is that the requirements
for good properties are substantially higher. No parameters
for any of the three cases attain power above 0.8 in the
studied range of sample sizes.

The slope of Z regressed on W has power far below 0.8
for all cases. Because the effect sizes of the random coeffi-
cients on Z are between 0.20 and 0.23, whereas the corre-
sponding size of W is only 0.15, the power is expected to be
very low. It is clear that the power is consistently highest for
the slope of the random mean, with power higher than 0.8
already for 7> 50. The corresponding 7 requirement for the
random ¢ is 7> 100. The random logv does not attain 0.8
power for 7 < 200.
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Power and mean squared error for between-level slopes of the random coefficients regressed on W in Model 8 with all three cases N = 200,

For Model 9 with moderately strong effects the results
change substantially. Figure 13 displays the power of the
slopes of Z regressed on the random coefficients and W for
the moderately strong effects version of Model 9 in the
T = 100 case. When the effects are stronger the sample
size requirements drastically decline. For this case,
T =100, N = 100 (total number of observation = 10,000)
give power above 0.8 for all slopes in the Z regression.

Figure 14 displays results from Model 9 with moderately
strong effects in the N = 200 case. Note that the power is
systematically lower for Z regressed on W than for Z
regressed on logv even when the population effect size is
slightly larger for the slope of W (0.30) than logv (0.26).
SE/SD and coverage results are similar to the weak effects
model.

Although the effect size in the moderately strong effects
for Model 9 implies an implausibly large R* in the Z
regression, around 80%, this setup serves to illustrate that
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autoregressive coefficient ¢ in Model 8 with N = 200..

the pattern and differences between, for example, the slopes
of Z regressed on logv and W are at least partly due to the
choice of effect size. There is a substantial increase in the

power of Z on logv, even though the effect size only
increased from 0.224 to 0.257 between the weak and strong
effects model. Coverage is between 0.92 and 0.98 for
Models 7 through 9 with a few small deviations for
Models 8 and 9.

Note that the simulations are performed under balanced
samples; that is, with no missing data at any time point.
Simulations with missing values (missing completely at
random) on the within-level variable were performed for
Model 3. The results showed that, beyond the expected
decline in estimation quality due to a smaller effective
sample, Model 3 showed little sensitivity to unbalance.
That is, even if not all subjects are measured at each time
point, as long as the observed sample size is still large
enough, the model seems to perform well.

Summary

The comparisons of the three cases N =200, 7'= 100, and
N = T give several interesting insights. For an especially
small total number of observations, a large N is always better
than a large 7. This is true for practically all parameters.
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The power and MSE patterns in the regression of the
random coefficients regressed on W are very similar for
Models 4 through 6 and Models 7 through 9. The patterns
of Z regressed on the random coefficients and W are also
similar to those of the random coefficients regressed on W,
but with the important difference that the sample size
requirements for all cases increase substantially. N = 200
is best until the total number of observations is between
10,000 and 20,000, where T = 100 becomes better. N = T'is
better than 7 = 100 up until N = T = 100, after which
T = 100 is better than N = T. Note that this pattern is in
line with the conclusion that large N is most important as
after 20,000 total number of observations, the 7= 100 case
has larger N than the N = 200 case. The results of this
section also point to the conclusion that the random mean
requires a lot smaller sample than the random ¢ and logyv,
both as a dependent and as an independent variable.

Comparing the N = 200 case against the 7= 100 case
gives interesting insights for designing studies of time ILD.
The N = 200 results highlight the substantially different
requirements across the nine models. N = 200 seems to
give very good performance overall, even for 7 as small as
10 for some models. However, the most complex models,
using random coefficients as predictors, require substantially
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on the random coefficients in Model 9 with weak effects and 7= 100.

larger T to attain the same properties. For all models there
are indications that the random ¢ and logv are a lot more
demanding than the random mean Y. The results from
T = 100 indicate that even in the simplest empty two-level
models, Models 1 through 3, the relative bias is substantial
for very small N, which is not the case for small 7 in the
N =200 results.

Model Misspecification

In this section, Model 6 is investigated further as three mis-
specification scenarios are analyzed. In Model 6, the mean,
autoregressive coefficient, and logv are random and regressed
on a between-level covariate W. In these scenarios ¢, logv, or
both ¢ and logv are incorrectly estimated as fixed, instead of
the correct specification as random. The runs are performed
with N = T. The x-axis of the plots in this section uses the
total number of observations (i.e., N*T). For instance, 10,000
on the x-axis implies N = T'= 100.

Incorrectly fixed phi

In this section, data generated from Model 6 are analyzed
in two ways: with the correct model specification (i.e.,
random mean), ¢ and logv, and with incorrectly fixed ¢.
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FIGURE 14

Figure 15 displays the MSE of the slope of the random
mean Y and the random residual variance logv regressed
on W. The difference between the correctly specified
model and the model with incorrectly fixed ¢ is not
substantial.

Incorrectly fixed logv

In this section, data generated from Model 6 are analyzed
in two ways: with the correct model specification (i.e.,
random mean), ¢ and logv, and with incorrectly fixed logv.
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Relative bias and power for between-level slopes of Z regressed on the random coefficients in Model 9 with weak effects and 7 = 100.

Figure 16 displays the MSE of the slope of the random
mean Y and the random autoregressive coefficient ¢
regressed on W. The difference between the parameter
estimates of the correctly and incorrectly specified model
are similar to when ¢ is incorrectly fixed above (i.e., not
substantial).

Incorrectly fixed ¢ and logv simultaneously

In this final section of misspecification sensitivity, data
generated from Model 6 are analyzed in two ways: first,



508  SCHULTZBERG AND MUTHEN

YonW, T=N Y onW, T=N
w @
o | < |
w " w "
(%] (%}
= =
[ o |
o o
Q
1 ]
o O—p. o o O—0o
° TT T T T e TT T T T
7 7
700 25, 00g, 2250, 700 2500 %00, <2500
TN N
(a) Correct (b) Fixed phi
logv on W, T=N logv on W, T=N
v | ©
o | <
W= W=
[%} (%}
= =
| ©
o o
=] L o L
° TT T T T e TT T T T
70p 2500 70000 29500 700 2500 70000 22500

TN
(c) Correct

FIGURE 15

misspecification of the random coefficient ¢.

with the correct model specification (i.e., random mean), ¢
and logv; second, with simultaneously incorrectly fixed ¢
and logv.

Figure 17 displays the results. In this case the MSE
becomes very large when N = T > 100. The lower plots
explain this pattern. The SE estimate becomes strongly
underestimated as the total number of observations
increases. This indicates that when both ¢ and logv are
incorrectly fixed, the model specification is too far off and
the model estimation breaks down.

Summary

The results of this small model misspecification sensitivity
analysis indicate that if either the random ¢ or logv are incor-
rectly fixed, the model seems to be able to compensate for that
to some extent. The slope of Y on W is practically not affected
by the misspecification. When ¢ is incorrectly fixed, the resi-
dual variance of the random mean Y is overestimated by a
factor of approximately 2. When logv is incorrectly fixed, the
residual variance of the random mean is unbiased. However,

TN
(d) Fixed phi

Mean squared error for the slope of W regressed on the random coefficients. Data generated from Model 6 and analyzed with model

when both ¢ and logv are incorrectly fixed, the model breaks
down with strongly underestimated between-level SEs as a
consequence. This in turn might cause Type I errors. The
quadratic pattern in Figure 17b is likely explained by two
different mechanisms. With small N and 7 there are estimation
problems due to too little information. With larger N and 7, on
the other hand, the probability of sampling an individual with a
deviating ¢ or logv increases with N. In addition, the prob-
ability that a large deviating realization occurs for such indivi-
duals increases with 7. Therefore, the fixed parameters become
increasingly unable to describe the diversity across subjects
with increasing N and 7.

Analysis Strategies

In exploratory analysis of two-level time-series data, there
are a few important considerations. The results from the
models with incorrectly fixed parameters earlier indicate
that it is a good idea to always analyze two-level data with
the residual variance specified as random, at least initially.
There are two reasons for this: It is very often a reasonable
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misspecification of the random coefficient logv.

assumption, as discussed in Jongerling et al. (2015), and it
causes large relative biases in the random mean modeling if
not correctly included. If, on the other hand, the residual
variance is in fact not random, that will show up as a very
small variance for the random residual variance. This sug-
gests the somewhat unusual exploratory approach, starting
with the most complex empty two-level model and then
restricting the parameters with nonsubstantial variance.

CAVEATS WHEN SIMULATING TWO-LEVEL TIME-
SERIES MODELS

This section collects things that are good to be aware of
when working with two-level time-series models, especially
when doing simulations.

Time-Series-Related Caveats

There are some features of the models considered in this
article that call for extra caution in simulation studies. The
most crucial component to keep an eye on in all the models
considered is the random autoregressive coefficient ¢. For

MSE

MSE
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an autoregressive process of order 1 (the only AR process
considered in this article) to be stationary, |¢|<1 must hold.
When generating the random ¢ from nontruncated normal
distributions, values violating the stationarity assumption
can of course be obtained. If, for example, the distribution
for ¢ is set to be normal with p = 0.2 and o = 0.2, the
probability of drawing a value larger than 1 is small, around
1/30,000. With N = 200 and 500 random draws, ¢>1 is
expected to be generated for approximately three subjects. If
a subject has a nonstationary process, it can explode (take
very large values) due to the variance becoming nonfinite
(see, e.g., Hamilton, 1994). If the outcome of the process
becomes large enough, Mplus Version 8 will discover the
large numerical values in the data and skip that replication.
If the values are not large enough,' however, estimation will
proceed, usually with biased estimates that distort the simu-
lation summary results. A two-step internal—external Monte
Carlo simulation can be set up to study this (Muthén &

! Mplus version 8 will automatically not run analysis on a data set if any
variable in the generated data set has values larger than 10,000. An error
message is printed if this happens (Muthén & Muthén, 2017).



510  SCHULTZBERG AND MUTHEN

YonW, T=N

© |

o |
w =
[2]
=

w

9

o RO%

e TT T 7 T 2 T

700 2500 00, 0 250, 0
™N
(a) Correct
Y onW, T=N

o

2

© |
[a]
o o O
w - Y
2]

© |

o

=

e TT T T T

700 <50p 7000, <55,
N

(c) Correct

FIGURE 17

random coefficients.

Muthén, 2017). The data sets from the internal runs can be
saved and inspected. The data sets with exploding series can
then be deleted and the external Monte Carlo simulation run
only with the remaining data sets. It can be hard to detect
issues directly from data, whereas it usually becomes a lot
clearer in the estimates.

Bayes-Related Caveats

Very few problems related to the usage of the Bayes esti-
mator in Mplus came up during this study. The only caution
is the fact that the power and 95% coverage measures are
based on the percentiles of the posterior distribution of the
parameters. This means that if few samples are drawn, the
high and low percentiles will be poorly estimated and the
coverage and power estimates less reliable. The choice of
using the default median estimate as point estimator is
discussed in the Appendix.

Residual Variance of ¢

Figure 18 displays a comparison of the MSE of slope of Z
regressed on ¢ in Model 8, with different residual variances
of ¢. It might at first look counterintuitive that a smaller
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with two different population residual variances of phi.

residual variance is associated with a higher MSE. This,
however, has a simple explanation. If the variance of the
random ¢ is too small it makes no sense to specify it as



random or to model the variation with a between-level
covariate. However, even if ¢ has a reasonable variation
there are some things to be aware of. Consider, for example,
the case when ¢ is regressed on the between-level covariate
W and the between-level dependent variable Z is regressed
on both W and ¢, as in Model 8. This model is saturated,
which implies that the slope of Z regressed on ¢ is essen-
tially identified by the residual variance of ¢, not the full
variation of ¢. Because of this, if the residual variance is
small, the slope of Z regressed on W is poorly identified.
This makes sense because if W explains almost all variation
in ¢, it is redundant to regress Z on both W and ¢. It can be
thought of as a multicollinearity problem in the regression
of Z. Of course, if this situation occurs the substantive
question and natural temporal ordering should decide
which model to use. Because the variation of ¢ is naturally
small in a sample of stationary processes, it is good to keep
this potential problem in mind.

Sample Size

Because the total number of observations (N*7) grows very
quickly with N and 7, it becomes impractical to use the
same number of iterations for all cases. In the N = T case,
the total number of observations increases quadratically:
N =T=10 gives 10*10 = 100, and N = T = 100 gives
100*¥100 = 10,000. The estimation time increases approxi-
mately linearly with the total number of observations (an
increase in T being somewhat more demanding than in N).
Thus N = T = 100 takes about 100 times longer than
N = T = 10. Even though the Bayes estimation is fast, the
complex nature of some of the models covered in this article
and the 500 replications make the simulations time consum-
ing. Because convergence is generally faster (in terms of
number of iterations) for larger samples, a large N causes no
convergence issues in the study.

DISCUSSION

One of the most striking results of this simulation study is the
performance of the random mean. Its performance is good in
all models, with MSE close to zero and power close to 1 for
most considered sample sizes. Even though the mean is
expected to have good properties, it is reassuring to see that
the novel feature of a slope for a between-level dependent
variable regressed on the random mean also has very good
power results. With N > 200, Model 7, which has a random
mean modeled as a mediator on the between level, has power
close to 1 for T"as small as 10. Thus, using the random mean
as dependent variable, independent variable, or both seems
reasonable in many not-so-large-sample settings.

The second main finding is the sensitivity of the random
autoregressive coefficient > 200. It is sensitive in several
ways. First, generating data with normally distributed
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random ¢ implies that it can take absolute values larger
than 1, which in turn can give exploding series (very large
values) for those subjects. In addition, as discussed earlier,
the variance or residual variance of ¢ cannot be too small.
For a saturated mediation model on the between level to
make sense, the random ¢ must naturally have variation to
be explained by the between-level covariates. Less obvious
is the fact that the random ¢ must have substantial variation
in the residual for the regression slope of Z on ¢ to be well
identified. That is, the random ¢ must have unique variation
beyond what is explained by W. This applies to all random
coefficients modeled as mediators on the between level and
is nothing new to mediation modeling. However, the varia-
tion of the random ¢ in stationary two-level time-series data
must have quite small variation to begin with to fulfill the
stationarity assumption of |p|<1. These models are therefore
perhaps more likely to suffer from these modeling features
than mediation models in general.

Given DSEM’s large span of features, it is not mean-
ingful to talk about sample size requirements for DSEM
models in general. Instead, requirements for specific fea-
tures, such as type of model on the between level and
different types of random coefficients covered by DSEM,
are more informative. For large sample sizes such as N and
T > 100, random mean, random ¢, and random logv work
well both as dependent variables and as predictors on the
between level. In general, the sample size demands for good
performance are lower for slopes of the random coefficients
regressed on between-level covariates than a between-level
dependent variable regressed on the random coefficients and
between-level covariates. The random mean has consistently
lower sample size demands than the random ¢ and logyv,
both as a dependent and independent variable. The random
@ has in turn lower demands than the random logv, although
the difference is smaller between these two than between the
random mean and the random ¢.

Natural questions after this summary are as follows:
What is worse, having a lower N or a lower 77 Can large
N compensate for small T better than large 7 can compen-
sate for small N? The answer seems to be clear: Large N is
better. That is, large N seems able to compensate for small 7,
better than large 7 can compensate for small V. This means
that for outcomes that are expensive or difficult to measure
many times, one can get away with using many individuals
and few time points. With that said, the random ¢ and logv
do need fairly large 7 to be well estimated. If ¢ or logv is of
substantive interest rather than just a heterogeneity feature
to control for, many repeated measures will be needed.

It might seem obvious to some that the between-level
parameters, describing between-subjects variation, benefit
from many subjects (large N). However, this logic does not
trivially hold in this case. The within-level model is an
autoregressive model of order one; that is, an AR(1) time-
series model. In the N = 1 time-series literature, the smallest
recommended 7" for AR models is usually 50 or even 100
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(see, e.g., Chatfield, 2016). This requirement is to get good
estimation quality for the parameters from the analysis of one
time series. Crude extrapolation to the DSEM models would
suggest that time series of each subject would need 50 to 100
time points for the AR(1) model parameter estimates to be
estimated with sufficient precision. This would matter also for
the precision in the estimation of the between-level model
because the estimates from the within level are used as
variables. Approaching the same matter from the two-level
modeling perspective gives other insights. If clusters share
common parameters, the estimation of cluster-specific para-
meters benefits from a two-level modeling approach. This is
because the subjects can “borrow” information from each
other about the common parameter.

Taking both these perspectives into account, it is reason-
able that for DSEM models with some fixed within-level
parameters, the 7' requirements would be somewhat lower
than the N = 1 time-series literature suggests. This reasoning
does not, however, predict any large reductions in sample
size requirements for the models where all three within-level
parameters are random because subjects no longer have
common parameters. Subjects do, however, still share the
model assumption of the within-level AR(1) model with
normally distributed random coefficients. It is not obvious
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from either the N = 1 time-series literature or the two-level
literature how the subject-specific coefficients benefit from
this common model assumption in a two-level time-series
context. It is therefore striking that, if N is sufficiently large,
this study suggests that 7 can be a lot smaller than 50 for
models with all three coefficients random.

Guidelines Under the Correct Model

To simplify the results of this simulation study, a final set of
summary guidelines are presented in the form of Figure 19
and Figure 20. These guidelines apply to models with weak
to moderately strong effects and R between 0.2 and 0.4, if
nothing else is stated. These are recommendations for attain-
ing the following estimation quality of the slopes of the
between-level model: power above 0.8, relative biases less
than 10% away from one, and SE/SD less than 15% away
from one. In addition, the remaining parameters have MSE
close to zero and coverage between 0.92 and 0.98.

The shaded areas of Figures 19 and 20 show recom-
mended sample sizes for Models 4 through 9 as a function
of N and T. The small circles represent all combinations of N
and T that have been investigated for the respective model.
For instance, Figure 19c displays the recommendations for
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Recommended sample sizes for Model 9. The investigated combinations are marked with small circles. The shadowed areas are

recommended sample sizes. The recommendations for the weak effects model do not include the slope of Z regressed on W.

Model 6. As can be seen in Figure 19c, good estimation
quality can be attained by measuring 150 subjects 25 times,
75 subjects 75 times, or 50 subjects 150 times. For Model 9
with weak effects, displayed in Figure 20a, the slope of Z
regressed on W did not attain these requirements for any of
the considered sample sizes. The guidelines hold for all
other parameters in Model 9. The guidelines for the moder-
ately strong effects model, displayed in Figure 20b, do
include the slope of Z regressed on W.

These plots confirm that a large N is more beneficial than
a large 7. This is clear from comparing, for example,
Models 4 and 7, displayed in Figure 19a and Figure 19d.
For Model 4, large T can compensate for N as small as 50.
For the more complex Model 7, however, large T can no
longer compensate for N smaller than 80. It is therefore
interesting that a sufficiently large N allows for T as small
as 10 for both these models. This pattern is also evident in
general. For the plots of Figure 20, the shaded area tends to
move to the right (larger N requirements) for more complex
models, but only slightly upward (larger 7 requirements).

The effect sizes and R? in this study were chosen to give
lower bounds for sample size in models with the smallest
reasonable effects and R%. This means that the guidelines are
conservative but still apply for models with larger expected
effect sizes and R”. This is clear in the comparison of Model 9
with weak and moderately strong effects where the sample size
requirements for the weak effect model give very good estima-
tion quality for the corresponding moderately strong effects
model.
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APPENDIX

Technical Details of the Mplus Setup

All simulations are performed in Mplus Version 8
using the built-in Monte Carlo procedure (Muthén &
Muthén, 2017). The Mplus input syntax for Model 9 is
given in the next section.. The Bayes estimator is used
with default noninformative priors (see Asparouhov &
Muthén, 2010a, 2010b) for details. The parameter esti-
mate is taken as the median of the posterior distribution
of the parameters. Wang and Preacher (2015) found
biases associated with the default median Bayesian point
estimator in Mplus. A comparison of several runs from
this study raises no such problems for these models. The
mean and median have very similar results and there is no
apparent pattern in their small differences in favor of one
of the estimators. Each cell of this study is replicated 500
times; using 1,000 replications did not change the results
substantially. For all models at least 20 different combi-
nations of N and T are investigated; these form the main
focus of the study. For the set of Models 4 through 9,
additional sample sizes are considered to better pinpoint
the sample size requirements. For some models many
more settings are investigated as well as different effect
sizes, all described in detail in the article.

The MplusAutomation R package (Hallquist, 2011)
was used to manage all simulations in this study. A

minimum working example, with instructions on how to
use the package, is available on request from the first
author.

The biter = (5000); option is used if nothing else is
stated. This option specifies that at least 5,000 iterations of
the Gibbs algorithm will be performed. This means that
5,000 samples from the posterior distribution of the para-
meters will be generated. After 5,000 iterations, Mplus will
stop based on the Potential Scale Reduction (PSR) conver-
gence criterion (Gelman et al., 2013). The first half is a so
called burn-in phase and those iterations are discarded
(Muthén, 2010) The second half of the iterations are used
to calculate the estimates. With the default
PROCESSORS = 2; option, which gives two MCMC
chains, this means that 5,000 (2,500 + 2,500) draws are
used to describe the posterior distribution. For some very
small N and T values at least 10,000 are used. For T and N
simultaneously larger than 200, at least 2,000 iterations are
used. One potential risk with having too few iterations is the
so-called premature stoppage problem, which occurs when
the PSR becomes very close to one by chance rather than
because the algorithm has converged. If more iterations are
carried out, the PSR might suddenly increase again before
converging. For all settings, multiple trace plots are
inspected for sequences three times longer than used. No
premature stoppage was detected. Sometimes replications
are skipped due to large values in the time series in the
generated data set, discussed further in the text. This
occurred in at most 10 out of the 500 replications if nothing
else is stated.

Mplus Syntax for Model 9

TITLE: Model 9
MonteCarlo: NAMES ARE Y w Z;

NOBS = 10000;
NREP = 500;
NCSIZES = 1;

CSIZES = 200(50) ;
LAGGED = Y (1) ;
BETWEEN = w Z;
ANALYSIS: TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITHER = (5000) ;
BSEED = 9553;
MODEL POPULATION:
% WITHIN %
phil YonY I;
logv]| Y;

% BETWEEN %
wk0. 119; [wx0];

Y ON w*0. 41;


https://www.statmodel.com/TimeSeries.shtml
http://dx.doi.org/10.1080/00273171.2014.1003772
http://dx.doi.org/10.3389/fpsyg.2016.00486
http://dx.doi.org/10.1037/0022-3514.45.4.851
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http://www.statmodel.com
http://dx.doi.org/10.1037/0022-006X.72.2.192
http://dx.doi.org/10.1037/a0012532
http://dx.doi.org/10.1037/a0016972

Y*0. 07; [Y*0. 5] ;

phi ON w*0. 31;
phi*0. 04; [phi*0. 2] ;

logv ON w*0. 225;
logv*0. 02; [logv*—1. 18] ;

Z ON Y*0. 5 phi*0. 57 logv*0. 75 w*0. 15;

7%0.2; [7*1];

MODEL:

% WITHIN %
phi| YonY 1;
logv]| Y:

% BETWEEN %
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wk0. 119; [wx0];

Y ON w*0. 41;
V0. 07; [Y*0. 5] ;

phi ON w%0. 31;
phi*0. 04; [phi*0. 2] ;

logv ON w*0. 225;
logv*0. 02; [logv*—1. 18] ;

Z ON Y*0. 5 phi*0. 57 logv*0. 75 w*0. 15;
7%0.2: [Z%1];

logv WITH Y; logv WITH phi; phi WITH Y;
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