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1 Introduction

Test of fit for models with categorical variables can be obtained in two ways.
The traditional way, is based on evaluating the statistical significance of the
difference between Var(Y*|H1) and Var(Y*|H0). Here Y* is the underlying
continuous variable that is cut to obtain the categorical values. The exis-
tence of such variable is guaranteed by the probit link function. The HO
model is the SEM model and the H1 model is the multivariate unrestricted
probit model. The H1 model can be estimated in Mplus with the WLS type
estimators as well as the Bayes estimator. For the WLS type estimator we
obtain a chi-square value while in the Bayesian case we obtain a PPP value.

An alternative way to evaluate the model fit is to consider the differences
between the two distributions of the observed values Y instead of the latent
variable Y*. The distribution of Y is essentially the contingency (multivariate
frequencies) tables. Therefore, model fit can be established by comparing
the observed and the estimated contingency tables. Such comparisons are
available in Mplus for all three of the estimators available for estimating SEM
with categorical variables: ML, WLS(MV), and Bayes. The contingency
table comparisons are obtained with the option OUTPUT:TECH10. There
are three types of contingency tables reported in that output: univariate
tables, bivariate tables, and the full multivariate table.

There are three ways these results can be used. First, for every cell in
every contingency table, Mplus computes a standardized residual estimate
(Z-score). Thus, one can determine which frequency cells are not fitted suffi-
ciently well and modify the model accordingly. Here one should be aware of



the fact that the tables are subject to multiple testing issues. Even though
the cell tests are not completely independent of each other, we can generally
expect that one out of every 20 cell will be misfitted at the nominal 95%
level.

The contingency tables can also be used for comparative purposes. One
can compare for example, across different models and even estimators, the
total number of misfitted cells (standardized Z-score above 1.96) or the total
sum of all Pearson chi-square statistics across all (univariate and bivariate)
contingency tables, see equation (44) in Asparouhov and Muthén (2021). Al-
though such a comparison does not have an associated statistical significance,
it is nevertheless a valuable way to quantify the fit of the model. This ap-
proach is unique in being able to compare models across different estimators.
Both the total number of misfitted univariate and bivariate cells as well as
the total Pearson chi-square statistic for the univariate and bivariate tables
are reported in the Mplus output. The full contingency table is somewhat
more difficult to use. It is quite common to have many of the cells in that
table have very low frequency, simply because the full table will have a very
large number of cells. To make this somewhat easier to use, Mplus also pro-
duces a table with 20 most frequent patterns from the full contingency table
as well as the total number of cells misfitted in those 20 patterns (Z-score
above 1.96), which can also be used for comparative purposes.

The third way the contingency table results can be used is via proper
statistical tests. Such tests are available in two cases. The first case is the
classic Pearson/Chi-Square test of fit for the full contingency table available
in Mplus with the ML estimators. The second case is the Pearson PPP
described in Section 3.8 in Asparouhov and Muthén (2021) which uses as
the fit statistic the sum of univariate and bivariate Pearson statistics for all
univariate and bivariate contingency tables.

One important question that arises is how the classic latent Y™ testing
and the techlO observed Y testing compare. In many situations the two
will be comparable and will lead to the same conclusion, however, there are
situations where the two versions are completely different. We will mention
just two situations here to illustrate the possibilities but these are by no
means the only reasons the two statistics will differ. The first situation is the
case where the Y* testing does not reject the model while the Y testing rejects
the model. This can happen when the H1 multivariate probit model is not a
sufficiently good fit for the observed data. This happens when the data is for
example generated from a Mixture model, and is analyzed as a single-class



model. It will also happen when the data is generated with two-part ordinal
model but is analyzed with standard SEM model based on fitting the data via
the probit link function. The second situation is where the Y* testing rejects
the model while the Y testing does not reject the model. An example of this
is a SEM model that includes both continuous and categorical indicators.
The Y contingency table testing only concerns the categorical variables and
that part of the model can be fitted well, while the Y* testing includes the
continuous variables which can be misfitted. Here the role of the continuous
dependent variable can also be taken by covariates. The contingency tables
do not provide information on how well the covariates predict the outcomes.
Thus, it would not be unusual to have well fitted contingency tables that are
rejected by the classic chi-square due to problems with the predictive part of
the model.

In this paper we provide several technical details on the computations
implemented in Mplus. First, we focus on the computation of the estimated
contingency tables. Depending on the estimator, different methods are used.
Second we show how the standardized residuals are computed and inter-
preted. Finally we describe the computation for two special models, the
two-part ordinal model and the model with observed mediators.

2 Estimated contingency tables

The computations vary somewhat between the different estimators. First we
consider computation with the Bayes estimator using probit link functions.
Let’s first consider the univariate contingency tables. The estimated SEM
model can generally be represented as

Y*'=a+pZ+¢

where € represents the residual and Z represents all predictors for Y including
latent predictors, other observed dependent variable predictors and covari-
ates. From here we compute the unconditional distribution of Y* ~ N(u, o)
assuming normal distribution for Z and . At this point the estimated prob-
ability is given by

P(Y =1i) = ®((ri — p)/v/0) = 2((7i-1 — 1) /V/0),

where 7 are the threshold parameters and ® is the standard normal distri-
bution function.



For the bivariate probability we similarly derive from the model (Y}*, Y5") ~
N(p,X) from the structural model where 4 is a vector of size 2 and ¥ is a 2
by 2 variance covariance matrix.

P(Y1 =i, Y =ig) = @o,((Tiy 1 — 11)//O11, (Tin 2 — H2)/\/022))+

Do, ((Tiy—11 — 1) /11, (Tip—12 — H2) /\/022))—
Dy (i1 — 1)/ /011, (Tip—12 — H2)/\/022)) —
Do p((Tis—1,0 — 11)/ /011, (Tin 2 — H2)/\/T22)),

where ®, , is the bivariate distribution function for a normal distribution
with variances of 1 and correlation p. With logit link function and the Bayes
estimator, the residual probit variance of 1 is replaced by the logit variance of
72 /3. There are some other variations in this computation across the different
estimators. With the WLSMV estimators, the covariates are not integrated
with the rest of the variables but are conditioned on. This means that the
probabilities are computed for each individual conditional on the covariates
and are averaged across the sample. Such a computation is somewhat more
precise but also would be computationally more intensive. With the ML
estimator we express the SEM model slightly differently. For the univariate
probability the model is expressed as

P(Y =i|Z) = ®((ri — Zo)) — ®((1i-1 — Zo),

where Zy = a+ Z ~ N(u, V). Then the probability is computed as
P =) = [ @((ri—p=2VV)S(2)d(2)~ [ @((ris—u—2VV)o(2)d(2),

where ¢ is the standard normal density function. The two integrals are then
computed numerically with a 1-dimensional numerical integration. Similar
variation is used for the bivariate probability which leads to a 2-dimensional
numerical integration.

The estimated univariate and bivariate tables are compared to their ob-
served quantities. If there is missing data, however, the observed quantities
might not be comparable to the estimated. The univariate observed tables
are computed with listwise deletion. This means that missing values are
simply deleted. In the bivariate case the quantities in the observed table
are computed from those observations where both variables are observed.



It is well understood that such listwise approach may lead inaccurate val-
ues if the missing data is not MCAR. Therefore the comparisons between
the estimated and observed univariate and bivariate tables is primarily valid
when the missing data is MCAR or a small deviation of MCAR or when the
amount of missing data is small.

The full patterns estimated frequencies are computed as follows. With the
Bayes and WLSMV estimators the model estimated Y* joint distribution is
derived from the estimated structural model for the full vector of underlying
latent variables Y* ~ N(u,Y). Here the dimensions of 1 and ¥ is the number
of categorical variables in the model p. A random sample with 10000 draws
is taken from this multivariate normal distribution which are cut according
to the estimated thresholds to obtain a sample of categorical data based on
the estimated model. The frequencies of this sample are then computed to
produce the model estimated frequencies. With the ML estimator a different
approach is used. Conditional on the latent variables and other predictors,
in the ML framework, the categorical variables are independent of each other
because WITH statements are not allowed in that framework. In that case
the conditional probability is just the product of the individual probabilities

The individual probabilities are directly computable from the model. To get
the unconditional probability the above equation is integrated out with the
integration method used for the model estimation, i.e., if there is one latent
variable, a one dimensional numerical integration is used, etc.

In the presence of missing data, the full contingency table produced by
Mplus will contain also the estimated probability for the particular missing
data pattern in addition to the actual observed values. It is important to
note here that the estimated model does not condition on the missing data
pattern. It simply computes the probability of the observed values. If the
missing data is not MCAR but it is MAR and the missing data pattern was
known a different quantity would be produced. None of the Mplus estimation
methods however produce a missing data mechanism estimation and there-
fore such computation that is conditional on the missing data pattern is not
possible. Therefore, we can say here that the estimated probability is com-
puted as if the missing data mechanism in MCAR. Furthermore, since the
actual quantities that are compared is the Mplus output are not the probabil-
ities but the frequency counts, the issue arises then regarding how to convert



the probability to a frequency count. To do that, one needs an estimate for
the number of observations in the missing data pattern. For this purpose we
use the quantity found in the sample. We explicate below with an example.
Suppose that there are 3 categorical variables in the model and we need to
estimate the frequency of the cell [Y; = iy, Yy = missing, Y3 = missing].
The frequency count is estimated as follows

P(Y1 = i) P(Y, = observed, Yy = missing, Y3 = missing) N = P(Y; = iy) Ny,

where NV is the total sample size and N is the number of observations in the
sample that have the pattern [Y; = observed, Yo = missing, Y3 = missing|.
This kind of comparison is valid when the missing data is MCAR or when
the deviation from MCAR is small or when the amount of missing data is
small. When the missing data is substantially different from MCAR and the
amount of missing data is substantial as well, the comparison is not valid
and the differences in the frequency counts maybe due to the missing data
mechanism.

There are some extreme examples that are worth mentioning here. If the
sample contains a single observation of a particular missing data pattern, such
as for example [Y] = observed, Y, = missing, Y3 = missing|, the estimated
quantity is P(Y; = 4y), while the observed quantity is 1. Clearly such a
comparison is not a reliable indicator of model fit.

3 Z-score for cells in the contingency tables

For each contingency table cell we can easily compute the probability that
the observed values occurs given the estimated probability. Suppose that
the cell probability is q. We form the binary indicators W;, where W; is 0
if the 1—th observation does not belong in the cell and it is 1 if the i—th
observation belongs in that cell. The observed probability is then

Wi+ Wo+ ...+ Wy
N .

Using the law of large numbers, the distribution of W is approximately
N(q,q(1 —q)/N) and the standardized Z-score is computed as

 W-q
g(1—q)/N
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This approach is used in all contingency tables: univariate, bivariate and
full pattern. The formula is also applied in the situation where we compare
frequency counts rather than probabilities (which are essentially multiples of
the probabilities).

The full contingency table has to also deal with two other issues. When
the number of variables is large the contingency table is very large and a
large number of cells have very small estimated probabilities. These are rare
outcomes. The variance of W for such rare outcomes is difficult to estimate.
We use an alternative approach to the above formula

Var(W) ~ maz(q,(1—q,)/N +q(1—¢q) /10000, ¢(1 —q) /N +q(1 —q)/10000).

In the above formula we have added the variance for ¢ because that is also
estimated from the montecarlo draws and there is uncertainty in that es-
timate. Also, we use the observed frequency qg as an alternative estimate
for the variance estimation purposes to prevent divisions by zero when the
montecarlo draws do not contain the rare outcome.

4 The two-part ordinal model

The two-part ordinal model is a special case that requires a different compu-
tation for the purposes of contingency table comparison. This computation
is implemented with the Bayes estimator. Consider a two part ordinal vari-
able Y. The variable is decomposed as two categorical variables Y, and
Y, If Y = 0 then ¥; = 0 and Y, is missing. If ¥ > 0 then Y; = 1 and
Y, =Y. If Y is missing, both Y, and Y}, are missing. Essentially, the cat-
egorical variable Y is replaced by two categorical variables Y; and Y, and
the first category of Y (namely the zero category) is treated as a special cat-
egory that deserves its own categorical variable. Multivariate models with
large amount of 0 observations often can not be fitted well by the mul-
tivariate probit model and thus the two-part model offers a more flexible
framework that nevertheless is much more parsimonious that a contingency
table model. In the multivariate probit model the variable Y is represented
by a single normal variable Y*, while in the two part ordinal model the vari-
able is represented by two normally distributed latent variables Y and Y.
In the multivariate two-part model, more correlations can be added to the
model between the underlying latent variables, making it more flexible than
the multivariate probit model. If Y and Z are two-part ordinal variables,
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the bivariate two-part model can estimate these 4 correlations Corr(Yy, Z),
Corr(Y,), Z}), Corr(Yy, Zy), Corr(Y,, Z5). The correlations Corr(Yy,Y,)
and Corr(Zg, Zy) are generally unidentified because when Y}, is observed Yj
is constant, and the same applies to Z. The bivariate probit model offers
just one correlation Corr(Y™*, Z*).

In principle, it is possible to consider the contingency table fit for Yy and
Y,, however, there are two reasons why this is not a good idea. First, Y,
has a very strong MAR missing data and that essentially nullifies the contin-
gency table comparison (which ignores the known missing data mechanism).
Second, the contingency tables for Y, and Y, are less desirable as they do
not directly address the fit to the data. Only contingency tables for Y can
do that.

The estimation of the univariate, bivariate and full pattern tables are
estimated as described earlier for the full pattern estimates. That is, the
multivariate distribution for (Y{",Y;) ~ N(u,3) is derived from the model,
a random sample is drawn from that distribution with 10000 observations,
the estimated thresholds are used to cut the variable to produce the observed
values for Y and Y, the observed values are then converted to the observed
value of Y according to the two-part conversion, and finally the population
of 10000 Y values is used to obtain estimated univariate, bivariate, and full
contingency tables.

For applications of two-part ordinal modeling, see Mplus Web Talk No.
4, Part 2, https://www.statmodel.com/Webtalk4P2.shtml.

5 Observed mediator models

The observed mediator models available in Mplus with the option media-
tor=observed, also require a special technique for estimating the contingency
tables. With this modeling option, when a categorical variable Y is used as
a predictor, the actual observed value Y is used and not the latent underly-
ing variable Y* (which is what Mplus will use by default with the Bayes and
WLSMYV estimators). Here again we obtain the estimated contingency tables
using a montecarlo method. The first step in the computation is to order
the categorical variables in precedence so that Y, can be predicted by Yi,...,
Y,—1, Yp—1 can be predicted by Yi,..., Yo, etc. Then, using the estimated
model, we obtain the distributions for Y}*, [Y5|Y3], [Y5|Y4, Ya], ete. All of
these distributions are conditional univariate normal distribution. We then


https://www.statmodel.com/Webtalk4P2.shtml

generate a sample with 10000 observations where the categorical variables are
generated sequentially from Y;,..., Y, one at a time, from the corresponding
conditional distributions. The generated 10000 observed vectors are then
used to construct the estimated contingency tables.

The contingency table fit can be used to compare the observed and latent
mediator models. Such examples are given in Mplus Web Talk No. 4, Part
2, https://www.statmodel.com/Webtalk4P2.shtml.
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