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1 Overview

Here we will describe the basic continuous time survival model implemented
in Mplus and will provide some details on the basic modeling options that are
available. Introduction to continuous time survival modeling can be found in
Singer & Willett (2003), Hougaard (2000) or Klein & Moeschberger (1997).
Survival analysis: techniques for. The survival models implemented in Mplus
includes many extensions of this basic model such as mixture survival models,
survival models with random effects (frailty models), multilevel survival mod-
els, time varying covariate models, competing risk models, non-proportional
hazard models etc. Describing the details of these models is beyond the scope
of this document. In most cases however the material presented here applies
to these extensions as well. More details on the models and algorithms im-
plemented in Mplus can be found in Larsen (2004, 2005) and Asparouhov,
Masyn & Muthén (2006). Practical applications of the Mplus methodology
for continuous time survival modeling can be found in Muthén et al. (2009).

Let the variable T be a time-to-event variable such as time to death for
example. Let C' be the time when the individual leaves the target cohort
due to death or other types of censoring such as lost to follow up etc. The
survival variable T" and the censoring indicator ¢ are defined by

T = min{Tp, C} (1)

B 1 ifTy>C
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Both variables T and ¢ have to be constructed and used in the survival
analysis in Mplus. The T variable is specified via the survival= command
while the 0 variable is specified via the timecensored= command. Details on
the specification options can be found in Muthén & Muthén (2012). Let X
be an observed predictor of T

2 The Proportional Hazard Model

The proportional hazard (PH) model specifies that the hazard function is
proportional to the baseline hazard function, i.e.,

h(t) = ho(t) Exp(8X) (3)

where h(t) is the hazard function and hg(t) is the baseline hazard function
at time ¢. Two proportional hazard models are implemented in Mplus. One
of the models assumes a completely non-parametric shape for the baseline
hazard function. This model is known as the Cox regression model. The
other model is based on a parametric model for the baseline hazard function.
This model is known as the parametric PH model. The general paramet-
ric model for the baseline hazard function in Mplus is a step function with
arbitrary number of steps, however through parameter constraints this para-
metric model can serve as an approximation to any other parametric model,
including models such as Exponential, Weibull and Gompertz models. This
approximation is based on the fact that any continuous function can be
closely approximated by a step function. Note also that because of the pa-
rameter constraints the number of parameters that are freely estimated in
the approximation model will remain the same, see Section 7 for a detailed
example. First we will describe the parametric PH model implementation.

2.1 Parametric PH model

To estimate hy(t) as a step function with L intervals the survival variable is
declared as survival=T (L interval lengths). For example if survival=T(2*1
2), the length of the intervals in the baseline hazard step function are 1, 1, 2
and oo in that order, i.e., the intervals in the definition of the baseline hazard
function are [0, 1), [1,2),[2,4), [4, 00) over which we assume that the baseline



hazard is constant )
hl ifo<t <1
) hy ifl<t<2
ho(t) = hy if2<t<4 - (4)

hy if4<t<oo

The analysis command option basehazard determines how the parameters
h1, ho, ..., hy are treated. If basehazard=on these parameters are estimated
as regular parameters. Thus standard error will be computed for the baseline
hazard function. Such standard errors can be used to obtain standard errors
for the survival rates for example. They are also included as parameters in
the model and can be held equal across class for example or they can be used
in model constraint to impose certain parametric shape. Starting values can
be given for these parameters and these starting values can be perturbed
just as for other parameters. Acceptable starting values are between 0 and
00, i.e., negative values are not acceptable baseline hazard function values.
The basehazard=on option should be used if relatively few steps are used
(small L) or there are enough restrictions in the model to compensate for
a large number of steps. If L is large however, even with many restrictions
on the h; parameters, it may be difficult to estimate the model. The more
parameters are in the model the more difficult the maximization will be,
i.e., the estimation will be very computationally demanding. In addition to
that the asymptotic approximation used with MLE requires larger sample
size for models with larger number of parameters. Both the parameter esti-
mates and the standard errors may have larger biases for models with larger
number of parameters. These undesired effects can be avoided by specifying
basehazard=off and in that case the parameters hy, hs, ..., hy are treated
as nuisance parameters. The profile likelihood is formed by explicitly max-
imizing the full likelihood over these parameters. The profile likelihood is
then treated as regular maximum likelihood, see Murphy and van der Vaart
(2000). Standard errors are not computed for the baseline hazard function,
however the values of the nuisance parameters can be obtained by includ-
ing basehazard option in the output command. In mixture models Mplus will
estimate class varying baseline hazard and thus the mean of the survival vari-
able will be unidentified. With basehazard=off the estimation will typically
be less computationally demanding.



2.2 Cox Regression Model

There are a number of different methods for estimating this model. The
method that Mplus uses is based on PH parametric model estimation de-
scribed in the previous section. To obtain a fully non-parametric baseline
hazard function we just need to select sufficiently detailed step function es-
timation. This can be accomplished for example by settings such as sur-
vival=T(500%0.02) or survival=T(1000%0.01) if the T value ranges between
0 and 10. The exact specification of the step size typically will have a mini-
mal effect on the estimates. The step size however affects the log-likelihood
value. It is important that when LRT is conducted between two models the
step function framework is the same. Mplus also implements an automatic
option, survival=T(all), which will construct the step intervals from the data,
by making the steps as detailed as needed. With this option Mplus estimates
a baseline hazard step function which is constant between every two consec-
utive event times. If all event times, including censored observations are
t) <ty <...<t, then Mplus estimates

h ifty <t <t
ho(t) =472 BHTIEE (5)

hpir ift, <t <oo

Equal event times are treated as one event time. There is a direct re-
lation between the survival=T(all) specification of Cox regression and the
survival=T(M = h) specification with M large and h small. If h is smaller
than the distance between any two distinct event times and Mh is greater
than the biggest event time in the data, the parameter estimates and their
standard errors will be the same. When estimating the Cox regression model
the parameters h; should be estimated as nuisance (unrestricted) parameters,
i.e., with the settings basehazard=off. It is possible to estimate Cox regres-
sion with basehazard=on however this combination should be used with great
care as the number of parameters may be too large.

For a discussion on the different ways to estimate the Cox regression
model and the equivalence of the profile likelihood and the traditional partial
likelihood methods see Clayton (1988).



3 The Cumulative Baseline Hazard Function

Suppose that the baseline hazard function is
hy ifto=0<t<t
ho(t) = 2 it <t<t | ©)
.};LH ift; <t < oo

The cumulative baseline hazard function at time t represents the total hazard
an individual is exposed to up to time t. If {, < t < t;,1 the cumulative
baseline hazard function is

k—1

=1

4 The Survival Function

The survival function is the probability that the survival variable T is greater
than ¢
S(t) = P(T > t) = Exp(—Exp(8X)Ho(t)). (8)

The survival function complements the distribution function

F(t)=P(T <t)=1-5(t). (9)

5 The Likelihood Function

The likelihood function of the survival variable T is
L(T) = (ho(T)Exp(BX))" =V S(T) (10)

where ¢ is the censoring variable.

6 Survival Variable in Monte Carlo Simula-
tions

Survival variables can be used with Mplus simulation facilities. The step sizes
my ... my used for the generation process are specified in generate = T (s my
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... mr,). The values of the baseline hazard function are specified in the Model
Population section. These parameters are referred as T#1, ..., T#L + 1 and
should be specified in the Model Population section regardless of whether or
not they are available in the Model section. These parameters are available
in the Model section if the option basehazard=ON, however they are always
available and should be specified in the Model Population section.

The simplest example for a survival variable specification is generate=T(s).
With this specification L = 0. The hazard function has a single step, which
is the infinite interval [0, c0). In this case only one baseline hazard function
value T#1 has to be specified in the Model Population section. Thus the
specification T#1 % A defines a survival variable with constant hazard func-
tion A over the entire [0, 00) interval. Suppose that there are no X variables
in the model. In this case equation (3) says that h(t) = ho(t) = A. Equation
(7) reduces to Hy(t) = tA. Equations (8) and (9) then give us the distribution
function of T’

Ft)y=P(T<t)=1—-e", (11)

i.e., T is exponentially distributed with density function Ae~**, mean 1/\
and variance 1/A\? where 0 < A < oo. This implies that the smaller the ),
the longer the survival time. Such considerations can be used for selecting
proper values in the simulation study. For example if a predominant range
of T between 0 and 30 is desired then the hazard should be set to T#1 % 0.1.
Using the distribution function of 7" in this case we get

PO<T<10)=1-¢e"'~63%
P10 <T <20)=e¢'—e?~23%
PR0<T<30)=e¢?—e?=9%

P(30<T)=e?~5%.

7 Right Censoring of Survival Variables in
Monte Carlo Simulations

The command gentcensoring = T (A1) specifies that the hazard for the cen-
soring process is Aj, i.e., an exponential variable C with mean 1/)\; is gen-
erated as well as the uncensored survival variable Ty following the survival



variable specification. Censoring occurs if C' < Tj. In that case we set T'= C'
and the censoring indicator d to 1, i.e.,

T = min{Tp, C} (12)
i 1 if Ty >C
6_{0 ity <C - (13)

Suppose that gentcensoring = T (A1) and the baseline hazard function is
set to A by setting generate = T (s) and within Model Population T#1 x .
Then Ty and C are independent exponentially distributed random variables
with distribution 1 —e™** and 1 — e~*1* respectively. In this case the variable
T is also exponentially distributed with distribution function 1 — e~ A+t
because

P(Ty >t)=e M (14)
P(C>1t)=eM! (15)
P(T >t) = P(Ty > t)P(C > t) = ¢~ O+ (16)

If A = \; about 50% of the observations will be censored because T, and C'
would be identically distributed and the two variables are equally likely to
be the smallest.

8 Weibull PH Model Specification

The Weibull model assumes that the baseline hazard function is
ho(t) = As(At)*™1, (17)

for some parameters A and s, see Bradburn et alt. (2003). Below we de-
scribe how to set up an approximation for this model via the Mplus step
function baseline model. The precision of the approximation depends on the
number of intervals L used in the baseline step function. The more intervals
are used the better the approximation. Typically however L = 50 will be
sufficient. Suppose that most of the 7" values range from 0 to 5. We can
split this range into equal intervals of length 0.1 and specify the baseline
step function estimation by turning the option basehazard=ON and by set-
ting survival=T(50%0.1). With this setup however the baseline function will
assume an unrestricted shape. We can add labels for the basehazard param-
eters by adding this line to the model [T#1 — T#50](pl — p50). Using these
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labels we specify the Weibull shape by adding the following Model Constraint
section to the input file:
model constraint:
new (s lambda);
pl=lambda*s*(lambda*0.05)**(s-1);
p2=lambda*s*(lambda™0.15)**(s-1);

p50=lambda*s*(lambda*4.95)**(s-1);

The value for ¢ has been substituted with the midpoint for each of the
time intervals. Take for example the first interval [0,0.1]. To make the ap-
proximation as close as possible we use the midpoint of this interval 0.05
and we substitute that for ¢ in equation (17). Better approximation can
be accomplished by specifying smaller intervals for more dense time seg-
ments and larger intervals for time segments with fewer events. For example
survival=T(20*0.05 40*0.1) will lead to better approximation if for many
individuals T < 1. The LRT test can be used to test the model constraint
equations, i.e., to test the assumption of Weibull baseline hazard.

9 Types of survival variables in Mplus

Starting with Mplus version 7.2 there are four types of survival variables,
non-parametric, semi-parametric, parametric and constant-hazard. These
survival variables are specified differently and depending on the model the
Mplus program will use an optimal default choice for the modeling type. If
the survival variable is T, one can obtain the Mplus default setting simply
by specifying the survival variable by name survival=T. Note that prior to
Mplus version 7.2 that command was used to specify constant hazard survival
variable.

The second important option is the BASEHAZARD option. If this option
is turned ON then the baseline hazard parameters are treated as actual model
parameter. If this option is turned OFF then the baseline hazard parameters
are treated as auxiliary parameter.

The four different types of survival variables are specified as follows.



9.1 Non-parametric survival

The non-parametric survival variable can be specified as survival=T/(all).
This is the original Cox specification where the baseline hazard function
is completely saturated. The baseline hazard function is a stepwise hazard
function with different hazard values between every two consecutive T values
that occur in the data. This was described in more details in Section 2.2.

9.2 Semi-parametric survival

The semi-parametric survival variable is specified as survival=T(10) or sur-
vival=T(50) where the numeric value can be chosen to be any positive integer
value. The semi-parametric survival variable uses as a baseline hazard func-
tion a stepwise function with 10 or 50 jumps. The intervals are chosen by
Mplus internally as to approximate completely the non-parametric Cox step-
wise function. As the number of jumps increases the approximation becomes
better. If the number of jumps is set to a value N that is as big as the num-
ber of different points 7" that occur in the data the semi-parametric model
becomes identical to the Cox fully parametric model. Typically, 10 jumps
can be used to approximate the Cox function sufficiently well, however if
extra precisions is needed we would recommend 30 jumps. In general it is
important to ensure that the model estimates don’t depend on the number
of jumps and thus some sensitivity investigation should be conducted. The
above approximation is similar to how the sample distribution is approxi-
mated and represented by a histogram based on a number of different bins.
The semi-parametric model is an important alternative to the Cox model
because in the situations where the BASEHAZARD option is turned ON
the semi-parametric model will have much fewer parameters than the Cox
model. That is, the combination of options BASEHAZARD=0ON and sur-
vival=T(all) can be computationally very demanding, particularly when the
sample size is also large. In fact, if by default Mplus has to turn on the
BASEHAZARD, Mplus will also default to the semi-parametric model.

9.2.1 BASEHAZARD turned on by default

Now let’s focus on why Mplus might turn on by default the BASEHAZARD
option. This happens precisely when a survival variable is regressed on a
latent variable. The reason for this is because the standard errors for the



parameters currently are not implemented in that situation if the BASE-
HAZARD option is off. The auxiliary basehazard parameter maximization
will depend on the latent variables and from there on any parameter that is
involved in the latent variable distribution. Typically in the EM algorithm,
the complete data log-likelihood splits in multiple branches that can be max-
imized separately and the various derivatives can be computed separately.
That is, the model for the latent variables separates from the model of the
survival variables in the complete log-likelihood. This assumption, however,
breaks down due to the above dependence of the baseline hazard parameters
on the latent variables. The second problem that occurs is due to the fact
that the envelope theorem typically used to deal with the auxiliary param-
eters does not hold for the parameter derivatives for individual (one sample
point) log-likelihood derivatives needed for the computation of the standard
errors and those derivatives become intractable for a general model when the
the auxiliary parameters depend on the latent variables and all parameters
involved in the latent variable distribution. The dependence of the latent
variable on its variance covariance parameters would also have to involve the
Cholesky decomposition derivatives with respect to the variance covariance
parameters which are also not explicitly available and would have to involve
the integration points from the numerical quadrature.

In some special cases where survival variables are regressed on a latent
variable the above problems do not exist since the latent variable has a fixed
standard normal distribution and therefore no parameters are involved in this
cross branch dependence. One such example is a model where a survival vari-
able is regressed on a latent variable measured by an IRT model, such as in
Larsen (2005). For other models Mplus can reparameterize the model inter-
nally and still avoid the BASEHAZARD=OFF problems described above. If
this standard error problem with BASEHAZARD=OFF can not be avoided
then Mplus will still compute the point estimates but will not report any
standard errors.

None of these problems exist when the BASEHAZARD option is on since
the algorithm does not deal with auxiliary parameters and that is why Mplus
will default to that algorithm if the model involves a regression from a survival
variable on a latent variable. Note also that in this special case when the
semi-parametric model is used and the BASEHAZARD option is used the
baseline hazard parameters are not reported in the Mplus output as regular
parameters even though they are. They are reported as auxiliary parameters,
i.e., they can be obtained using the BASEHAZARD option of the OUTPUT
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command.

9.3 Parametric survival

The next type of survival variable is the parametric model described in Sec-
tion 2.1. In this model Mplus estimates a baseline hazard step function where
the number of jumps and their precise location are specified by the user. For
example survival=T(10*1) specifies that there are 10 jumps in the baseline
hazard that occur at t=1,2,3,...,10, i.e. there are 10 consecutive intervals
with constant (but different) hazard function.

9.4 Constant hazard

The final type of survival variable is the variable where we assume a constant
hazard function. This model is the simplest model to estimate and is specified
by survival=T(constant). This type should be used only is situations when
there are convergence problems with the Mplus default selection.

9.5 Likelihood-ratio testing

It is important to understand that likelihood ratio testing (LRT) between
two models should be conducted in general only if the models are based on
the same survival type. That is, the log-likelihood values for model 1 and 2
can be used for LRT if both models specify the same type of survival variable.
LRT should not in general be used to compare a nonparametric model with
a semi-parametric model.

One additional complication occurs when conducting robust LRT with
the log-likelihood values for a semi-parametric model obtained with the MLR
estimator. Typically the correction number when using the LRT is obtained
by
__ PoCo — p1a

Po— D1
where py and p; are the number of parameters in the two models and ¢
and c; are the corresponding likelihood correction numbers. When the semi-
parametric models is used the values py and p; are not the actual model
parameters but they should be the number of model parameters + all baseline
hazard parameters. This number is typically the largest parameter number
found in the technical output 1.

cd
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10 Estimating the baseline hazard function

In a recent article, Wong et al. (2018) attempt to estimate the baseline
hazard value hg(t) for particular values of ¢ and the corresponding standard
error. They found that the point estimates are consistent but the standard
errors are biased and the coverage is underestimated. These issues were
encountered due to inappropriately using the Mplus methodology for that
purpose. The authors of this article used the saturated baseline hazard ap-
proach discussed in Section 2.2, using the option survival=T(all). When
there are no ties in the data, the baseline hazard function with this option
will have as many parameters as there are observations in the data. As a
result of that, the number of parameters in the model will be larger than the
number of observations. For example, in the Wong et al. (2018) article, the
model has 430 parameters estimated with 400 observations. Such a setup of
course yields poor standard errors because these standard errors are based
on asymptotic theory, which typically requires many more number of obser-
vations than number of parameters. In addition, typically the information
matrix in such circumstances would be singular (or near singular) and Mplus
would not be able to estimate standard errors for all the parameters. In
that case, Mplus will fix parameters that appear unidentified to their point
estimates and compute standard errors for the remaining parameters. Ample
warnings are provided in the Mplus output in such circumstances. This will
also result in many parameters having zero standard errors as the parame-
ters are treated as fixed. In a simulation study, this will of course bias the
accumulated results downwards as a portion of the accumulated results are
Zeros.

When the Cox approach is used for the saturated baseline hazard model,
the results are difficult to accumulate over multiple replications as the inter-
vals of the step function change over replications. This also applies to the
semi-parametric approach implemented in Mplus where the intervals of the
step function vary over replications. The most appropriate way to conduct a
simulation study that is focused on computing standard errors on the base-
line hazard function is to use a parametric step function where the intervals
are fixed across replications.

The most problematic outcome, however, caused by the lack of parsimony
in the Wong et al. (2018) approach, is the fact that the parameter estimates
become very inefficient. That inefficiency, as will be shown below, extends to
a smaller degree into the structural parameters as well and it is not restricted
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only to the baseline hazard function parameters.

Note here that the current discussion applies to the situation where there
are no ties in the data, i.e., individual survival times are all different. If there
are many ties in the data, the saturated step function will not have a large
number of parameters and as a result of that the asymptotic theory standard
errors and the efficiency of the estimation will not deteriorate. In situations
where the survival times take 20 or 30 different values, using the saturated
baseline hazard function would yield satisfactory results.

In this section, we discuss optimal ways to estimate a survival model with
an arbitrary baseline hazard function. Wong et al. (2018) use the following
structural model in a simulation study. The model has two covariates Z; and
Zy, seven dependent variables Y;, i=1,...,7, measuring two latent factors n,
and 7, and a single survival variable T'. The first five dependent variables
are normally distributed, while the last two are binary. The model is given
by the following equations

Yi=pi+Xim +¢e,1=1,2,3 (18)

Yi=pi+ A +ei,i=4,5 (19)

N2 = Bing + & (20)

Prob(Ys = 1) = 1/(1 + Exp(pe + B2Z1 + B2 Za + Bana)) (21)
Prob(Y; = 1) = 1/(1 + Exp(ur + Bs 2y + BsZa + Banz + PsYs)). (22)

The survival variable T' follows the proportional hazard model
h(t) = ho(t) Exp(y1 21 + Y222 4+ 73Ys + 747 + 7572), (23)

where the baseline hazard function ho(t) = 2t or equivalently the cumulative
baseline hazard function Hy(t) = t*. The covariate Z; is generated from a
standard normal distribution, while the covariate Z is a binary variable with
odds set to 1. The structural parameter values (; and ; used for the data
generation can be found in Table 1 in Wong et al. (2018). The sample size
used for the simulation study is N = 400.

To estimate a this model in Mplus with a non-parametric baseline hazard
function, we estimate the model using a step function baseline hazard. A
step function can be used to approximate any function and the precision
of the approximation depends on the number and the sizes of the steps.
In a general context, setting up a step function that has many small steps
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is generally preferred as the approximation would be more precise. This,
however, is not the case in statistical applications, where there is a steep
penalty for adding many steps in the function because that increases the
number of parameters in the model and results in overparametrization and
poor quality of the baseline hazard estimates. The worst case scenario is
used in Wong et al. (2018) where the fully saturated step function is used.

To be more clear, using the fully saturated baseline hazard is the preferred
approach when we are estimating only a structural model without estimating
the baseline hazard function. This is of course the basis of the Cox propor-
tional hazard model estimation. In that case, however, the base hazard
parameters are treated as auxiliary parameters which are eliminated from
the likelihood and ultimately only the structural parameters are included in
the information matrix. The difference between the Cox proportional hazard
model estimation and the estimation used in Wong et al. (2018) is that the
the first one does not estimate the baseline hazard function while the second
does.

Because we want to evaluate the estimation method in a simulation study,
we use the parametric step function approach in Mplus where the number of
steps and the step sizes are specified before the estimation. This guarantees
that the step function has the same number of steps and the same step sizes
across the replications. The semi-parametric approach and the saturated
step-function are not feasible in a simulation study due to the fact that the
size of the intervals change across replications. In the following discussion
we consider step functions with equal steps as follows. If the step function
has L steps of size § the baseline hazard function is defined as follows

h; if(i—1)0<t<idfori=1,.., L

ho(t) = {hL+1 if (LcS < 1 ' (24)
The above function has L+ 1 parameters h; for i =1, ..., L4 1. The function
is constant in each of the first L intervals of size § and the last parameter is
the value of the remaining infinite interval. The step function hg(t) can be
thought of as a non-parametric function because it can be used to approxi-
mate any baseline hazard function. Typically, the step function is smoothed
after estimation so that it does not have discontinuities at the times 9. One
simple way of doing this is to assume that the value h; is the baseline hazard
function value at the mid-point of the i-th interval ¢; = (2i — 1)6/2. We can
then fit a spline through the points (¢;, h;), fori = 0, ..., L+1, assuming ¢, = 0
and hg = 0. For our illustration purposes, we use a linear spline smoothing
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but other splines such as quadratic or cubic can be utilized similarly. The
linear spline method gives the following smoothed baseline hazard function

it

tp41—t t—tr, .
Ll if
higi=, + hon tr <t

, hiopis + bt it <t <tifori=1,..,L+1
ho( ) = |

lr41—tr

(25)
The above formula simply says that for a point ¢ between t;_; and t; the
smoothed baseline hazard function hf(t) is a weighted average between h;_;
and h; where the weights are based on the distance of ¢ to t;_; and ¢;. Smooth-
ing the baseline hazard function would be particularly important if the num-
ber of intervals L is small (such as 5 or 10) and we are interested in estimating
the baseline hazard at values that are not among the nodes ;.

The choice of the baseline hazard function is essentially determined by the
number of intervals L and by the value Ld where the infinite interval starts.
To estimate well the parameter hy,; in the infinite interval we generally
want to have between 20 and 50 observations in that interval but not more
than 10% of the total number of observations. Assessing the data generated
in Wong et al. (2018), we see that about 10% of the observations (i.e. 40
observations) are larger than 1.5. Thus, we use as the start of the infinite
interval Lo = 1.5. We consider three different methods for determining the
number of intervals L. The first method is to choose L as the value which
minimizes the BIC criterion. Denote this value by Lg;c. The second method
is to choose L as the value which minimizes the AIC criterion. Denote this
value by La;c. The AIC criterion tends to overparameterize the model but
this could result in good approximation for the true baseline hazard function.
The BIC criterion, on the other hand, uses a penalty for overparameterization
and can be expected to yield a more parsimonious model, but still, a model
that extracts enough information from the data to appropriately model the
change of hazard across time. The third method is simply choosing L = 30
which would allow us to approximate the true baseline hazard function to a
reasonably detailed level while keeping the model within identifiable bounds.

To determine the L4;c and Lgrc we estimate the above model with L =
1,2, ... and evaluate AIC and BIC. The results, averaged over 100 replications,
are presented in Table 1. These results imply that Lg;c = 5 and therefore
O0prc = 0.3, and La;c = 12 and therefore d 470 = 0.125.

In Wong et al. (2018) the baseline hazard function is evaluated at three
particular points in time ¢ = 0.45,0.72, and 1.05 which represent 25% quan-
tile, 50% quantile and 75% quantile in the distribution of T'. We evaluate the
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Table 1: BIC and AIC for different values of L

BIC | AIC
6099 | 5975
6085 | 5957
6021 | 5889
5993 | 5857
5984 | 5844
9979 | 5836
5979 | 5831
5981 | 5830
5985 | 5329
5987 | 5828
9991 | 5828
9995 | 5827
5999 | 5827
6004 | 5828
6008 | 5829
6013 | 5829
6084 | 5841
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baseline hazard function at those three time points as well. The smoothed
values h{(t) can be computed in Mplus as new parameters in Model Con-
straint using equation (25).

Next, we present the estimation results using the above three specifica-
tions for the baseline hazard function. Table 2 contains the results based on
the Lprc estimation, averaged over 500 replications, for the baseline hazard
parameters as well as the regression parameters for the survival variable T
In addition to the bias and coverage, the table contains the square root of
the mean squared error (SMSE) for the estimates. Table 3 contains the re-
sults based on the L4;c estimation. Table 4 contains the results based on
the L = 30 estimation. In this case, since the estimated baseline hazard is
quite detailed, we can use also the baseline hazard values without smoothing.
These parameters are also included in the Table 4.

The results indicate that the bias is minimal with all three estimations.
The coverage is near the nominal level as well. The results also point out
that there is a substantial benefit in keeping the model as parsimonious as
possible. The SMSE for the baseline hazard parameters is smallest for the
Lpic estimation, followed by the L ;¢ estimation, followed by the L = 30
estimation. For the structural parameters the differences between the three
methods are minimal, however, a small SMSE advantage for the Lg;c esti-
mation can be seen. Comparing the results for the smoothed baseline hazard
function hj(t) and the baseline hazard step-function hg(t), we see that even
for the L = 30 estimation there is a benefit of smoothing the estimates. The
smoothed estimates have a smaller bias and a better SMSE. This simulation
study illustrates the fact that the standard errors for the baseline hazard
parameters are computed correctly in Mplus and that the poor coverage re-
ported in Table S1 in Wong et al. (2018) are due to inappropriately setting
up the baseline hazard function with a poorly identified model.

Next, we demonstrate how to use the baseline hazard step-function ap-
proach to model actual parametric models. In the Wong et al. (2018) sim-
ulation study the baseline hazard function is linear ho(t) = 2¢. To estimate
such a linear model we simply constrain the baseline hazard parameters h;
to follow a linear model

hi=a+b-1 (26)

for ¢+ = 1,..., L. Introducing such a constraint in the model is beneficial
not just in terms of providing an actual parametric model for the baseline
hazard function, but also in further reducing the number of parameters in
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Table 2: Model results using Lg;c

Parameter | absolute bias | coverage | SMSE
h§(0.45) 0.00 0.93 0.22
h§(0.72) 0.00 0.91 0.34
h§(1.05) 0.04 0.93 0.56

" 0.00 0.96 0.07
Yo 0.00 0.94 0.18
Vs 0.01 0.94 0.14
o 0.00 0.95 0.16
Y5 0.03 0.94 0.15

Table 3: Model results using L A;¢

Parameter | absolute bias | coverage | SMSE
h§(0.45) 0.02 0.92 0.25
h§(0.72) 0.03 0.92 0.38
h§(1.05) 0.11 0.93 0.69

" 0.00 0.96 0.07
Yo 0.00 0.94 0.18
Y3 0.01 0.95 0.14
V4 0.00 0.95 0.16
Y5 0.01 0.96 0.16
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Table 4: Model results using L = 30

Parameter | absolute bias | coverage | SMSE
h§(0.45) 0.02 0.92 0.28
h§(0.72) 0.05 0.93 0.51
h§(1.05) 0.15 0.94 0.78

" 0.00 0.96 0.07
Yo 0.00 0.94 0.18
Vs 0.01 0.94 0.14
V4 0.00 0.95 0.16
Y5 0.01 0.96 0.17
ho(0.45) 0.03 0.90 0.32
ho(0.72) 0.07 0.93 0.54
ho(1.05) 0.22 0.95 0.98

the model and making it more parsimonious. With the above constraint
the baseline hazard function would have only 3 parameters: a, b and hp;.
Table 5 contains the results for Lgro and Table 6 contains the results for
L 4o estimated with linear baseline hazard function. The results indicate
that the bias is minimal for all parameter estimates and coverage is near the
nominal levels. We also see here that introducing the linear constraint in the
model has further improved the SMSE for the baseline hazard parameters.
In addition, we see that the advantages of the Lo method over the Lo
method are now minimal. Note that the two models under the linearity
constraint have the same number of parameters. This is further evidence that
making the baseline hazard model more parsimonious leads to substantial
improvements in the precision of the estimates.

Wong et al. (2018) also report that they were unable to obtain cumulative
hazard estimates in Mplus. Using formula (7) we can obtain the cumulative
hazard values as follows. If (i — 1)d < ¢t < i) the cumulative hazards is

i—1

Hy(t) =6 hyj+ hi(t — (i — 1)9). (27)

J=1

If §(20 —1)/2 <t < (20 +1)/2, the smoothed cumulative hazard function is
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Table 5: Model results using Lg;c with linear baseline hazard

Parameter | absolute bias | coverage | SMSE
h§(0.45) 0.00 0.93 0.20
h§(0.72) 0.01 0.93 0.32
h§(1.05) 0.02 0.93 0.47

o1 0.00 0.95 0.07
Yo 0.00 0.94 0.18
V3 0.01 0.94 0.14
Va4 0.00 0.95 0.16
Y5 0.03 0.94 0.14

Table 6: Model results using L ;¢ with linear baseline hazard

Parameter | absolute bias | coverage | SMSE
h§(0.45) 0.02 0.94 0.21
h§(0.72) 0.04 0.94 0.33
h§(1.05) 0.06 0.94 0.49

"1 0.00 0.95 0.07
Yo 0.00 0.93 0.18
V3 0.01 0.94 0.14
V4 0.00 0.95 0.16
Vs 0.00 0.95 0.15

Table 7: Cumulative hazard

Parameter | absolute bias | coverage | SMSE
Hy(0.45) 0.02 0.94 0.06
Hy(0.72) 0.02 0.93 0.12
Hy(1.05) 0.03 0.94 0.25
H;(0.45) 0.02 0.94 0.06
H:(0.72) 0.02 094 | 0.12
Hi(1.05) 0.03 0.94 0.25
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computed as follows

Hi(t) =4 i hy + 6hi/2 + (t — 8(2i — 1)/2)(h5(1) + ki) /2. (28)

j=1

Both of these can be obtained in Mplus by setting the above formulas as
new parameters in the Model Constraint command. To illustrate this com-
putation we use the Lp;c estimation. The results, presented in Table 7,
show that the bias is minimal and the coverage is near the nominal level.
The difference between the smoothed and unsmoothed versions is negligible.
The smoothing advantage we saw for the baseline hazard function may not
exist for the cumulative hazard function. This is most likely due to the fact
that the cumulative baseline hazard function Hy(t) is already a continuous
function, unlike the baseline hazard function hg(t).

To conclude this section, we reiterate that the problems reported in Wong
et al. (2018) are due to inappropriate use of the methodology implemented
in Mplus. Using the same simulation study as in Wong et al. (2018), we
illustrate above that the correct estimation setup yields satisfactory results.
All Mplus input and output files used in the above simulation studies can be
found at statmodel.com.
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