Random Starting Values and Multistage
Optimization

Tihomir Asparouhov and Bengt Muthén
November 8, 2019

1 Random Starting Values

Model estimation in Mplus is typically based on a fit function maximization
where the arguments of the fit function are the model parameters. All op-
timization algorithms require a set of starting values for these parameters.
Mplus provides a set of default starting values which are constructed from
the sample statistics and can be found in the Technical output 1 section.
Alteratively, Mplus can use a set of starting values specified in the Mplus
input file using the * symbol. Another alternative for the starting value
is the randomly generated starting values. To request randomly generated
starting values, the STARTS option must be specified. The random starting
values are useful in resolving convergence problems that can occur in certain
situations. They can be used also in certain estimation problems that yield
multiple local maxima, such as mixture models and EFA models. Using mul-
tiple sets of randomly generated starting value can ensure that the global
maximum is found rather than an inferior local maximum. Random starting
values are used by defaults for every Mixture model estimation.

The generation of the random starting value is described as follows. Let
v;; be the random starting value for the i—th parameter in the j—th starting
value set. The value v;; is computed as

Vi = w; + 575, (1)

where w; is the original unperturbed starting value, either given in the in-
put file or obtained as the Mplus default starting value, 7;; is a uniformly



distributed random number in the interval [-0.5, 0.5], s is a scale variable,
and b; is the base scale for that parameter. The scale variable s determines
the strength of the random perturbations. By default s is set to 5. A larger
s value will trigger a more aggressive optimization search but may result in
more non-convergence problems and more local maxima that are inferior to
the global maximum. A smaller s value will likely produce starting values
that yield the same local maxima and may not explore the parameter space
to the needed extend. The most optimal value of s will certainly depend on
the data and the model. The option STSCALE can be used to change the
value of s.

The random numbers r;; are obtained as follows. A sequence of random
numbers is generated with a special numerical routine that depends on an
integer value called the seed of the random sequence. Changing the seed
of the sequence, changes the random numbers in the sequence. Suppose
that we want to generate L sets of random staring values As a first step,
Mplus uses a random seed ¢ to generate L random integers c; between 1
and 1000000. The integer c; is then used as a seed number to generate the
J-th random sequence 7;;. This is done so that the random sequence r;; can
easily be reproduced and so that it is independent from the other random
sequences. The sequence may need to be reproduced for two reasons. First,
in a multistage optimization process, only a particular set of starting values
may need to be rerun, for example, if a set of starting values is selected for
a second stage optimization. Second, after an extensive optimization search,
we may choose to rerun the best solution as a stand alone run for additional
output features. This will save computational time as the optimization search
would be reduced to that particular set of starting values. We can accomplish
that using the option OPTSEED where the seed number ¢; is specified. The
seed numbers are available in the Mplus output and are usually reported next
to the maximum log-likelihood obtained with that seed. The global seed ¢
can be changed to produce a different set of seed values ¢; which in turn will
produce different random sequences r;; as well as different random starting
values. To change the global seed ¢, we specify the option STSEED.

The base scale values b; are computed as follows. For most parameters
b; = 2. The exceptions are as follows. For variance and covariance parameters
b; = 0, i.e., variance covariance parameter are actually not perturbed. For
all mean and intercept parameter

b; = 2max{1,\/var} (2)



where var is the starting value of the residual variance for that variable. If
the model has multiple latent class variables and the parametrization is the
default logit parametrization, for all parameter in the latent class regression

The above construction is used when the generating seed ¢; is an odd
integer. When the seed is an even integer, we take a different approach for
the thresholds parameters and intercepts of the latent class variables. This
alternative approach produces better results in certain situations and is de-
scribed as follows. For the thresholds of an observed categorical variable U
we use the following construction. If U has T+ 1 categories, i.e., it has T'
thresholds for each latent class, we generate r1,...,rr random numbers in the
interval [0,1]. Let rq), ..., r¢r) be the ordered statistics for these random
numbers, i.e., let r(1) be the smallest number etc. We use as a starting
value for the i-th threshold 7; = log(r@; /(1 — r(;))). Note that unlike the
previous construction, these starting values are independent of the unper-
turbed starting values. Similarly we provide starting values for the means
of the latent class variable C'. If C' takes K values, we generate K —1 ran-
dom numbers in the interval [0, 1] and the starting value are obtained as
ap = log((r@y — r@-1))/(1 —r(k—1))), where we set 1(0) = 0. These formulas
set the distribution of U and C' to be directly defined by the random num-
bers, i.e., P(U < i) = P(C < i) = ry). The fact that we use this alternate
random starting values when ¢; is even amounts to having this alternative
perturbation algorithm be used with a probability of 50%.

In the presence of multiple latent class variables, when the probability
parametrization is used for the latent class variables, we use a different algo-
rithm with probability 1/3, i.e., when the number ¢; is divisible by 3. This
alternate algorithm is specified as follows. For each conditional or uncondi-
tional probability distribution P with K values we generate random 7y, ...,7x
in the interval of [0,1] and use as a starting value for the k-th probability the
value r/(r1 + ..1g).

2 Multi-stage optimization process for latent
class model estimation

The general optimization process in Mplus is a multistage process. Mplus
version 8.3 and earlier used a two-stage process. Mplus 8.4 introduced a



third stage in the optimization. As discussed below, this introduces a third
setting for the STARTS option and a second setting for the STITER option.
Thus, the STARTS option can be specified as STARTS=L; L, L3, where L,
refers to the number of random starting values used in stage I, Lo refers to
the number of random starting values used in stage II, and Lj refers to the
number of random starting values used in stage III. STITER can be specified
as STITER=I,15, where I; refers to the cutoff iteration used in Stage I, and
I, refers to the cutoff iteration used in Stage II. These additional settings are
optional, i.e., the STARTS and STITER commands can be used the same
way they are used in Mplus 8.3 or earlier. If the commands are used without
the additional arguments, Mplus assumes the default values for these settings
L3 = 10 and I, = 75. This means that even if the options are used without
their additional arguments, three-stage optimization may be performed. It
is possible to reproduce Mplus 8.3 two-stage optimization in Mplus 8.4 by
using the specification STARTS=L1 Ly Ls.

In this section we describe the three stages of the optimization and the
ANALYSIS options that can be used to customize it.

2.1 Stagel

In the first stage of the computation for each set of starting values, we begin
the EM optimization process where the maximum number of EM iterations
is set to a low value. By default that value is 10 but can be changed with
the STITER option. The convergence criteria are made more lenient in this
stage of the optimization and are increased to 1. If those convergence criteria
are satisfied we terminate the estimation even before the 10-th iteration is
reached. The log-likelihood values obtained from each set of starting values
are recorded and used in stage two. If the number of starting values requested
with the starts command is L, at this stage of the estimation we perform
Ly limited optimizations to obtain L log-likelihood values.

2.2 Stage II

In Stage II, we continue the estimation only for a limited set of random
starting value sets. The number of such sets is controlled by the second
number in the STARTS option. Suppose that this number is L,. The log-
likelihood values obtained in stage I are ordered and only the top Lo starting
values set are allowed to continue in the optimization process. All stage two



optimizations are allowed to continue now beyond the 10-th EM iteration and
may be completed until convergence unless a selection process implemented
in Stage III removes or terminates the optimization.

2.3 Stage III

Stage III is controlled by the third entry in the STARTS option: Lj3. By
default Ly = 10. If Ly < L3 then all Stage Il optimizations are completed
until convergence. If Ly > L3 then some of the second stage optimizations
might not be completed. The optimization continues as follows. The first Ls
optimizations are completed until convergence. For the remaining Lo — L3
optimizations we continue the estimation until the 75-th iteration (this num-
ber is controlled by the second entry in the STITER option). At that point,
the optimization is allowed to continue only if at the 75-th iteration mark
it obtains a log-likelihood value that is better than any one of the top L3
optimizations at the 75-th mark that have already been completed. If the
log-likelihood is not higher than the top L3 optimizations at the 75-iteration
mark, we conclude that this set of random starting values is unlikely to pro-
duce the best solution, as L3 of the previous optimizations were better at that
point in the optimization. Therefore, we terminate the optimization process
for that starting values set and move on to the next starting value set ob-
tained in Stage II. This process is sequential and is intended to complete to
convergence the best L3 optimizations. However, the number of completed
optimizations is likely to be higher. That is because some of the early opti-
mizations that were completed may not be among the best L3 optimizations
at the end if better optimizations were found later on in the search process.
Mplus will report the log-likelihood values for all optimizations that were
completed. Stage III is intended to weed out Stage II optimizations that are
clearly underperforming and thus reduce the computational burden, while
preserving the efficiency of the random starting value search process.

2.4 Additional point

The STARTS option is designed to control the full optimization process using
the numbers Ly, Ly and L3. However, we do not recommend changing Ls.
The default value of L3 = 10 is designed to obtain the correct top two log-
likelihood values. We need the top two values, and not just the top one
log-likelihood value, because in general we want to see that the best log-



likelihood value is replicated at least one more time. If it is not replicated at
least once, that is an indication that more random starting values should be
used in the search process.

Note also that the third stage optimization is designed to help those
situations where a large number of L; and L, starting values are used. If the
option STARTS= L, L, is specified then the default value of L3 is unchanged,
i.e., Ly = 10. If Ly is smaller than 10, the third stage will have no effect
on the optimization at all. If Ly is less than 20, the effect of the third stage
will likely be very small. If the model has several latent class variables, or a
single class variable with a large number of classes, typically a large number
of random startling values is needed such as STARTS=300 100. In those
situations, the third stage will be very helpful in reducing the computational
burden. In summary, the size of the optimization search should be driven by
the first two numbers in the STARTS option, just as this was done prior to
Mplus 8.4.

If multiple processors are available for the computation, the PROCES-
SOR=T option should be specified. This will have the following effect on the
multistage optimization. Each of the T computational threads will divide the
number of stage I and II random starting value sets approximately equally.
Thus each of the T copies of Mplus will conduct a stage I optimization with
L;/T random starting value sets and a stage II optimization with L, /T ran-
dom starting value sets. Stage III however is not divided. The threads will
communicate, and will maintain a joint record of the top 10 optimizations
at the 75-iteration mark. Thus an optimization may be discarded if another
thread has produced optimizations that outperformed it at the 75-iteration
mark.

3 Timing comparison

In this section we present some timing comparisons to illustrate the advan-
tages of the three-stage estimation implemented in Mplus 8.4 over the two-
stage estimation implemented in Mplus 8.3 and earlier versions. Example
1 is a modification of Mplus User’s Guide example 10.8. Examples 2-5 are
discussed in detail in Muthén and Asparouhov (2019). Here we provide a
brief summary of the examples to illustrate the size of the computation.

e Example 1. This a two-level growth mixture model with 1 latent class
variable with 4 categories, 4 observed continuous variables, 2 covari-

6



ates, 2 dimensions of numerical integration, sample size=1500, and
STARTS=250 100

e Example 2. This is an LTA model with 3 latent class variables with
5 categories each, 12 observed categorical variables, 0 dimensions of
numerical integration, sample size=2933, and STARTS=100 20

e Example 3. This is a binary RI-LTA model with 4 latent class variables,
one has 2 categories and the other three have 5 categories, 12 observed
categorical variables, 0 dimensions of numerical integration, sample

size=2933, and STARTS=320 80

e Example 4. This is a continuous RI-LTA model with 3 latent class
variables with 5 categories each, 12 observed categorical variables, 1 di-
mension of numerical integration, sample size=2933, and STARTS=400
80

e Example 5. This is a continuous RI-LTA model with 3 latent class
variables with 5 categories each, 9 observed categorical variables, 1 di-
mension of numerical integration, sample size=2933, and STARTS=320
80

We use Mplus 8.3 and Mplus 8.4 to compare the computational time for
these examples on two different Intel CPUs: i7-7700k and i9-9900k, and vary-
ing number of processors used in the computation. The results are presented
in Table 1. Example 1 has only one latent class variable and the gains in
the computational speed in that example are entirely due to the three-stage
estimation. This is not the case for examples 2-5 which have multiple latent
class variables.

In addition to the three-stage estimation, Mplus 8.4 has computational
improvements for LTA analysis and more generally for models with multi-
ple latent class variables. These improvements are based on ideas from the
well known work of Baum and Welch on hidden Markov models, see Baum
(1970). We have adapted their work to apply for more general models, such
as non-Markov hidden processes, as well as models with continuous latent
variables requiring numerical integration. Thus, examples 2-5 benefit not
only from the three-stage estimation but also from the Baum-Welch algo-
rithm improvements. Nevertheless, we have included these examples here
because models with multiple latent class variables are the type of models



i7-7700k i9-9900k

8.3 Proc=8 8.4 Proc=8 8.3 Proc=8 8.3 Proc=10 8.3 Proc=12 8.4 Proc=8 8.4 Proc=10 8.4 Proc=12
Example 1

23:12 12:55 13:21 13:16 12:21 7:26 7:36 6:41
Example 2

6:08 00:28 3:37 5:09 05:43 00:18 00:17 00:17
Example 3

1:30:08 10:36 1:01:46 47:34 45:26 6:03 5:36 5:47
Example 4

12:30:04 14:36 8:47:42 7:36:54 7:15:02 8:11 7:44 7:40
Example 5

20:25:17 27:22 15:32:38 12:17:19 12:17:12 15:01 14:51 14:47

Table 1: Computational time comparison

that are typically estimated with a large number of random starting values.
These are the types of examples where we can expect that the three-stage
estimation will have a very large impact on the computational time. In all of
the above examples we have verified that the top two solutions found with
all estimation settings are the same.

The results are stunning. A 20 hours computation in Mplus 8.3 can be
done in Mplus 8.4 in less than 15 minutes, by utilizing the advantages of
the three-stage estimation, the Baum-Welch algorithm, as well as updated
hardware.

References

[1] Baum, L. E. (1970) A maximization technique occurring in the statistical
analysis of probabilistic functions of markov chains, Ann. Math. Statist.,
vol. 41, pp. 164-171.

[2] Muthén, B., & Asparouhov, T. (2019) What Multilevel
Modeling Can Teach Us About Single-Level Modeling: La-
tent Transition Analysis With Random Intercepts (RI-LTA).
http://www.statmodel.com/download /RI-LTA.pdf



