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Structural Equation Models and Mixture Models With
Continuous Nonnormal Skewed Distributions
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In this article we describe a structural equation modeling (SEM) framework that allows
nonnormal skewed distributions for the continuous observed and latent variables. This frame-
work is based on the multivariate restricted skew ¢ distribution. We demonstrate the advantages
of skewed SEM over standard SEM modeling and challenge the notion that structural equation
models should be based only on sample means and covariances. The skewed continuous distri-
butions are also very useful in finite mixture modeling as they prevent the formation of spurious
classes formed purely to compensate for deviations in the distributions from the standard bell
curve distribution. This framework is implemented in Mplus Version 7.2.

Keywords: skew-T distributions, mixture models, non-normal distributions, skewed latent

variables

Standard structural equation models reduce data modeling
down to fitting means and covariances. All other information
contained in the data is ignored. In this article, we expand the
standard structural equation model framework to take into
account the skewness and kurtosis of the data in addition to
the means and the covariances. This new framework looks
deeper into the data to yield a more informative structural
equation model.

There is a preconceived notion that standard structural
equation models are sufficient as long as the standard errors
of the parameter estimates are adjusted for failure to meet
the normality assumption, but this is not correct. Even with
robust estimation, the data are reduced to means and covari-
ances. Only the standard errors of the parameter estimates
extract additional information from the data. The parameter
estimates themselves remain the same; that is, the structural
equation model is still concerned with fitting only the means
and the covariances and ignoring higher order information.

In this article, we explore structural equation modeling
(SEM) based on the more flexible parametric family of
distributions called the skew ¢ distribution. We call these
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models skewed structural equation models as compared to
the standard structural equation models. Fitting the skew
t distribution to the data allows us to extract more infor-
mation from the data, namely, not just the means and the
covariance, but also to some extent the skewness and the kur-
tosis. Modeling these higher level moments is more intricate
than modeling the means and the covariances. For example,
modeling the skewness of the data is necessarily entangled
with modeling the covariance. In addition, fitting the skew ¢
distribution is not the same as fitting the skewness and kurto-
sis. The skewness and kurtosis are also limited characteristics
of the data. By fitting the data to a flexible parametric fam-
ily of distributions, we fit the means, the covariances, the
skewness, the kurtosis, and the entire distribution.

All of the models described in this article are linear
models. Unique properties of the skew ¢ distribution allow
us to write structural equation models the same way they are
written when the variables have Gaussian distributions. All
observed variables, latent variable, and residual variables in
the structural equation models are allowed to have skew ¢
distributions.

Despite the fact that all models are linear, in certain skew-
SEM settings some conditional expectations might not be
linear. Thus skew-SEM can also be viewed as nonlinear mod-
els despite the fact that we only specify linear models. The
advantage of this approach to nonlinear models is that we
do not need to specify a particular nonlinear model such as
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quadratic, logarithmic, or exponential. The nonlinearity of
the skew-SEM model is determined by the skewness and the
kurtosis of the data.

In standard structural equation models, the relationships
between the variables are perfectly linear. In real data
this assumption might be unrealistic and violations of the
assumption might not be beingn. The sekew ¢ distribution
can instead accommodate approximate linearity and thus
skew-SEM will be more accommodating to imperfections
of the data that can be found in the real world. It is natural
to assume that the relationship between the variables might
not be exactly the same for observations in the center of
the distribution and for observations in the tails of the
distributions. Often skewness of the data is a sign of some
kind of nonlinearity.

The skew ¢ distribution contains three different distribu-
tions as special cases: the skew normal distribution, the ¢
distribution, and the normal distribution. The fact that the
normal distribution is a special case of the skew ¢ distribution
allows us to easily compare skew-SEM with standard SEM
using the likelihood ratio test (LRT) because the models are
nested. In addition, if a skew-SEM is not needed and is not
appropriate for a particular data set, the extra parameters in
the skew ¢ distribution will not become statistically signifi-
cant and therefore a regular SEM would not be rejected in
favor of a skew-SEM. If the data do not support the need for
skew and kurtosis modeling, then the SEM model will arise
naturally as the more parsimonious model.

Modeling with skew ¢ distribution is intended for those
situations where the observed distribution is truly contin-
uous and nonnormal. Using the skew ¢ distribution is not
suitable for modeling categorical data. Structural equation
models based on the probit or logit link functions will still
be preferable for categorical data.

Mixture modeling with continuous nonnormal distribu-
tions is also very valuable. It is well known (see, e.g., Bauer
& Curran, 2003; Schork & Schork, 1988) that mixture mod-
els of normal distributions rely heavily on the within-class
normality assumption. If the normality assumption is not cor-
rect, spurious classes can be found; that is, latent subgroups
can appear to exist only to accommodate the heavy tails of
nonnormal distributions rather than substantively meaningful
latent subpopulations. However, if we use the more flexi-
ble skew ¢ distributions, we can resolve this problem. Latent
classes found through mixtures of skew 7 distributions would
represent more meaningful subpopulations. By allowing the
within-class distributions to be skewed and to have heavy
tails, we can focus on the true structural differences that are
found in the latent classes. Spurious class formation due to
nonnormality and skewness will be eliminated.

Modeling with the skew ¢ distribution in general requires
larger sample sizes than modeling with the normal distribu-
tion. The estimation of the skew ¢ distribution is based on
being able to estimate well how heavy and how skewed the
tails are and how the observed distribution curve deviates

from the normal bell curve. To be able to extract this level
of information from the data, a sufficient sample size is
required. If the sample size is not sufficient, the additional
skewness parameters in the skew ¢ distribution will not be
statistically significant and in that case they should be elimi-
nated from the model to preserve model parsimony and mini-
mize the standard errors for the remaining model parameters.

A number of articles have recently appeared that use the
skew ¢ distribution for factor analysis models and mixture
models; see, for example, Lin, Wu, McLachlan, and Lee
(2013) and Lee and McLachlan (2014). In this article we
describe a general framework that includes general struc-
tural equation models based on the skew ¢ distribution as
well as finite mixtures of such structural equation models.
All models described in this article can be estimated with
Mplus Version 7.2.

MULTIVARIATE CONTINUOUS SKEWED
DISTRIBUTIONS

First we define the skew ¢ distribution as the most general
distribution considered in this article. As a special case we
derive the skew normal and the ¢ distributions. The normal
distribution is also a special case of the skew ¢ distribution.
In this article we adopt the parameterization for the skew ¢
distribution given in Lee and McLachlan (2014). Two dif-
ferent skew ¢ distributions are described in that article, the
restricted and the unrestricted. These two distributions are
not nested within each other and are equivalent only in the
univariate case. We use only the restricted skew ¢ distribu-
tion because it allows explicit maximum likelihood (ML)
estimation for structural equation models. Suppose that a
multivariate variable Y has a restricted skew ¢ distribution

Y ~ tMST (n, %,68,v), )]

where u is a vector of intercepts, X is a variance—covariance
matrix, 6 is a vector of skew parameters, and v is a positive
parameter referred to as the degrees of freedom parameter.
If Y is P dimensional variable, the size of the vectors p and
§ are also P and the variance—covariance matrix X is of size
P x P. The density function of Y is given by

21py (s 112 Q) Ty (1 /4,0,1) 2

where
Q=13 +88, (3)
dy)=@-w' Q' v—w, (4)

g—8"Q ' ov—mw, Q)
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V+p
= _—, 6
Y1 q‘/v+d(y) (6)

=1-5TQ s, (7

and t,, (y, u, 2) is the multivariate ¢ distribution density
function given by

re) e
(nv)”ﬂ F(%) [1 + d(y)/v](v+p)/2

oy 0 1, ) = 8)

and Ty, (z,0,1) is the standard univariate ¢ distribution
function with n degrees of freedom.

With the preceding formulation the skew ¢ distribution
reduces to the multivariate ¢ distribution if § = 0. The skew
t distribution reduces to the skew normal distribution if v —
oo. The skew ¢ distribution reduces to the normal distribution
if§ =0and v — oo.

The multivariate skew ¢ distribution has the following
stochastic representation:

Y=pu+8Uol+ Ui, &)

where U is a vector of size P with a zero mean multivariate ¢
distribution and variance parameter ¥ and degree of freedom
parameter v. The variable Uy is a one-dimensional variable
with standard 7 distribution with mean 0, variance parameter
1, and degrees of freedom parameter v. The variable Uy is
not independent of U, although the correlation between U,
and U; is 0. This dependence between U, and U; is more
of a technical issue rather than something that affects our
development. For accuracy we provide the joint distribution
for Uy and U;. The joint distribution is

(UO’ Ul) ~ lp+1 (Os 2*,\1) 5 (10)

where

. (1 0
b _(0 2). (11)

Another useful stochastic representation that can illumi-
nate the dependence of Uy and Uj is as follows

Y=M+5@+i (12)
W VW

where

(Uo,Uy) ~N(0, %), (13)

STRUCTURAL EQUATION MODELS AND MIXTURE MODELS 3

W ~ Gamma(v/2,v/2), (14)
Uy

Up = —, 15

= (15)

U= L (16)

T

The variables Uy and U, are independent normal but Uy and
U, are connected through the gamma distributed variable W.
Because of the absolute value around U the distribution
of the |Uy| is skewed and it is essentially a half ¢ distribution.
On the other hand, the distribution of U, is symmetric around
0 and thus the skewness of the distribution of Y is primarily
due to the contribution of |Uy| and if § = O the skewness of Y
is 0. The variance parameter X is not exactly the variance of
U, It is well known that the variance of the ¢ distribution is

Var(U)) = S —— (17)
v—2

when v > 2 and infinity otherwise. The parameter v can be
any positive number, however the mean of Y is a finite num-
ber only if v > 1, the variance of Y is finite only if v > 2,
and the skewness of Y is finite only when v > 3. Thus mod-
els with v < 3 should be used only for modeling data with
substantial heavy tails and outliers. It is well known that the ¢
distribution with v > 30 closely approximates a normal dis-
tribution although a formal test for normality (i.e., v = 00)
should be conducted using the LRT. Such a test should be
used cautiously as we are testing boundary values. Testing
the hypothesis v = oo with the T test is formally not possible
although testing the equivalent hypothesis 1 / v = 0 with the
T test is possible and would provide a good approximation
m most cases. In many situations formal testing for normal-
ity should be conducted even when the estimated degrees of
freedom parameter v > 30. The Bayesian information crite-
rion (BIC) can also be used for model selection when formal
testing is questionable.

Note that the skew ¢ distribution has exactly P 4+ 1 more
parameters than the multivariate normal distribution. These
are the P skew parameters § and the degrees of freedom
parameter v. Note that v is not variable specific. One param-
eter is used for the entire multivariate distribution. This will
remain so even in structural equation models. Whereas, each
variable in the structural equation model, observed or latent,
will have its own skew parameter §, the degrees of freedom
parameter will be the same for all variables in the structural
equation model. In mixture models or multiple-group mod-
els the v can be different across groups. The interpretation
of the v parameter is very simple. It is a general character-
istic of how much deviation from normality there is in the
population of variables, as measured by how much thicker
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the tails of the distributions can be as compared to the nor-
mal bell curve. The interpretation of the § parameters is also
very simple. The § parameter is an indicator of how skewed
the distribution is to the left or the right. The § parameter
can be any real number, positive or negative, and a positive §
parameter yields a distribution skewed to the right whereas a
negative § parameter yields a distribution skewed to the left.
Testing an individual variable for skewness is very simple,
as it is equivalent to § = 0 and can be performed with the
standard T test.! This allows us to also easily model skewed
and nonskewed variables for example in the same model.
Modeling with the skew ¢ distribution can also be used
for modeling with the skew normal distribution, the ¢ distri-
bution, and the normal distribution. Fixing the v parameter
to a very large value such as 10,000 yields the skew nor-
mal distribution. This essentially yields the same stochastic
representation as Equation 9, but now U; has a multivariate
normal distribution, Uy has a standard normal distribution,
U; and U, are independent, and |Uy| has a standard half-
normal distribution. Fixing all § parameter to 0 we obtain
the ¢ distribution. Fixing all § parameters to 0 and the v
parameter to 10,000 will yield the normal distribution.

Means, Variance, and Skewness

The mean of Y for the skew ¢ distribution can be computed

as follows:
F(ﬂ) \%
EY)=pn+8—2= |- (18)
rG) V=

The variance of Y can be computed as follows:

F(ﬂ) ? Y
Var(Y) = 2(2+55 ) — ( r(i) ) ;55? (19)
2

The univariate skewness for a single Y variable can be
computed as follows:

s
F(V72

)

~—

Skew(Y) = v=3/28

\S}

&'

((252 +30)

1%
T vV —

3
v ( g >> NG
r() r()
where v = Var(Y) is given in the previous formula and the
o parameter is the diagonal element of ¥ corresponding to

the univariate variable. These formulas show that the v and §
parameters affect all three quantities: the mean, the variance,

S~

(20)

|'—‘

V],

= N
SIS S}

'In Mplus language the § parameter for a variable Y is referred to as {Y}
and the degrees of freedom parameter is referred to as {DF}.

and the skew. The parameter p affects only the mean and the
o parameters affect the variance covariance and the skew.
With the skew ¢ distribution we do not have the simplicity of
the normal distribution where w is simply the mean and X
is the variance covariance and they can be modeled indepen-
dently. Here all three quantities are entangled and modeling
one of them is not independent of the other.

For the skew-normal distribution the preceding formulas

simplify to
/2
EY)=un+34 g (21)

2 T
Var(Y) =  + (1 - ;) 887, (22)

Skew(Y) = v_3/283\/g (; - 1) ) (23)

From the last formula it is easy to see that the maximal
skewness value for the skew-normal distribution is obtained
for 0 = 0, which also implies that the Y variable is pro-
portional to the half-normal distribution. Thus within the
family of skew-normal distributions the maximum skewness
that can be attained is the skewness for the half-normal
distribution, which is

2 4—-m7
/ ~ 1. 24)
T—2m—2

More strictly speaking the skewness of a skew-normal vari-
able is within the interval [—1,1]. This limit has very
important modeling implications. The skew-normal distri-
bution can be used for modeling skewness, but only if the
skewness is moderately large. If the skewness observed in
the data by absolute value exceeds 1 then the skew-normal
distribution would probably not be a good fit and the skew ¢
distribution should be used instead. The skew ¢ distribution
can attain any level of skewness.
For the ¢ distribution, the preceding formulas simplify to

E(Y) = u, (25)
1%
Var(Y) = —%, (26)
v—2
Skew(Y) = 0. 27

We do not provide an explicit formula for the kurtosis for
Y, but the kurtosis for the T distribution alone is 6/ (v — 4)
and therefore the skew ¢ distribution alone can be used to
model any level of kurtosis.
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Marginal and Conditional and Distributions

Obtaining the marginal distribution for the skew ¢ distribu-
tion is very simple. Suppose that Y has a skew ¢ distribution

Y ~ rMST (u, 2,8,v) . (28)

Suppose that the vector Y is decomposed in two parts ¥ =
(Y1,Y,) where Y, is a vector of dimension P; and Y, is a
vector of dimension P,, where P = P 4+ P,. Suppose also
that the corresponding decomposition of the parameters is

w = (1, u2), 8 = (61,62) and

i 22
Y = . 29
(221 2322) (29)

Then the marginal distribution of Y is
Yy ~ rMST (1, 11,61,v) . (30

Thus the marginal properties of the skew ¢ distributions are
very similar to those of the normal distribution. The same
logic applies also for the skew-normal and the # distributions.

The conditional distribution of [Y;|Y;], however, is some-
what more complicated. In fact it is shown in Arellano-Valle
and Genton (2010) that this conditional distribution is no
longer a skew ¢ distribution but is the so-called extended
skew ¢ distribution. Let’s first focus on the conditional ¢ dis-
tribution; that is, assuming that § = 0. It is shown in Liu and
Rubin (1995) that if

Y ~1(u,%,v) (31
then
[Y11Y2] ~ 1 (u}, =5, v + P2), (32)
where
W= - Sy (2w, (33)

v+ (Y — )" 23" (Y2 — wa)

T = (S0 — T3, ) oy
2

(34)

The implication of the preceding formulas is that the condi-
tional expectation

E(Y(|Y2) = w1 — 22Xy, (Y — p12) (35)

behaves and is computed exactly the same way as the normal
conditional expectation. However, the conditional variance
of Var (Y1]Y>) is not computed the same way as for the nor-
mal distribution. In addition, note that the joint distribution

STRUCTURAL EQUATION MODELS AND MIXTURE MODELS 5

of two independent ¢ distributions is not a ¢ distribution. That
is, if Y1 ~¢(0,1,v) and Y, ~ ¢ (0,1,v), where I represents
the identity matrix, and Y; and Y, are independent, then Y is
not [ (0,1,v). Note also that even if the covariance between
Y| and Y is O, the variables Y| and Y, are not independent
because the conditional variance of Var (Y|Y>) depends on
the value of Y, even though the conditional mean E (Y;|Y>)
does not depend on Y5. The further away Y5 is from its mean
as measured by the Mahalanobis distance, the bigger the
conditional variance of Y will be.

Next we focus on the conditional expectation for the skew
t distribution. For simplicity we illustrate that only for the
bivariate case. Assuming Y = (Y, Y») and ¥ ~ rMST(u, X,
8, v), we want to compute E(Y|Y>). Let

_ T _ [ W11 @12
Q=48 _(wm w22>, (36)
and
< 1 To-1
§= ———8§"Q7 7, (37)
V1 —8Q-18T

_ vt (= )’ Jom

s 38
v+ 1 (38)
' = w11 — w21w;21w12. (39)
* < = 1
" = (81w21/wx + 82) (Yz—Mz)—_z- (40)
Vo +ad w*
Then
E(V1|Y2) = pi + wpoy, (Y2 — 1o)
N S Ja (v+1+72) (z5v+1)
v\/1+g?a)* nGEsv+D

41)

where f;(%,v+ 1) and T (*,v + 1) are the density and the
distribution function of the standard ¢ distribution with v + 1
degrees of freedom. Note that the first two terms in the pre-
ceding expression resemble the normal based conditional
expectation treating €2 as the variance—covariance matrix.
The third term represents the nonlinear dependence of this
conditional expectation with respect to Y,. Despite the com-
plex expression there is a simple way to test statistical
significance for a Y, effect on E (Y1|Y2). If wy; =0 and
o1 =0 then E (Y;]|Y2) is independent of Y, and thus a
statistically significant effect exists if either w;; or oy is
significant.’

2This joint test can be done in Mplus with the Model Test command.
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In the case of the skew-normal distribution the preceding
expression simplifies to

Siw* oY)

V1 +§?a)* (%)

(42)

E11Y2) = i1 + 0pwy,' (Y2 — 12) +

where ¢ and @ represent the standard normal density and
distribution functions.

Factor Model Interpretation

Equation 9 has a special factor model interpretation.
Consider first the case of a skew-normal distribution. In that
case both U; and U are normally distributed variables. The
model represented in Equation 9 is simply a factor analysis
model where the factor |Uy| has a half-normal distribution.
We refer to this as the underlying skew factor of the distri-
bution. The skew parameters § are nothing more than the
factor loadings for this factor. Note that if that factor had
a normal distribution then the model would not be identified
because U; has an unrestricted variance—covariance matrix.
The fact that |Uy| has a skewed half-normal distribution is
key to identifying the skew parameters é. This model is iden-
tified entirely from the skewness in the data. When the model
is fitted to the data, the skew parameters will be set so that the
skewness of the data is represented by the component § |Up|,
and the remaining part of the observed variable Y

Y —45|Uol =+ U, (43)

is normal. If the variable Y has a skew ¢ distribution, the
same interpretation is given but now the variables Uy and
U, have a t distribution instead of normal. Thus the goal
of adding a skew factor to the modeling distribution is to
take into account the skewness of the data. Note, however,
that the skew factor also contributes to the mean and the
variance—covariance matrix of Y as it can be clearly seen
from the earlier formulas. The means and variance covari-
ances, however, can be fitted further through the 1 and ¥
parameters.

THE SKEWED STRUCTURAL EQUATION
MODEL

Suppose that we have a vector of observed dependent vari-
ables Y of dimension P, a vector of observed dependent
variables X of dimension Q, and a vector of latent vari-
ables n of dimension M. We are interested in constructing
a structural equation model where all variables have a skew
t distribution. The structural equation model is given by the
usual equations

Y=v+An+e, 44)
n=oa+Bn+TX+E, (45)
where
(g, &) ~ rMST (0, Xy, 8, DF), (46)
and
Yo = (g) 1(1)/> . 47)

The vector of parameters § is of size P+M and can be
decomposed as § = (dy, 8,). The vector dy is a vector of
skew parameters of dimension P, which we refer to as the
skew parameters for the Y vector. The vector &, is the vec-
tor of skew parameters for the latent variables 1.> From the
preceding equations we obtain the conditional distributions

nIX ~ rMST((I — By (a + TX), (I — By~ 'w(( — B,

(I—B)™'s,, DF), (48)

Y|X ~ rMST(u, X, 85, DF), (49)

where as usual

w=v+ Al —B) o +TX), (50)

T=0+ Al —-B) "W —B)HAT, (51)

8 =8+ AU —B)'s, (52)

In the preceding setup all variables, dependent observed vari-
ables Y, latent factors n, and residual variables ¢ and &, all
have skewed distributions. As usual the distribution of the
covariates X is not modeled. This actually is very important
in the skew-SEM framework. In the standard SEM frame-
work the model for the covariates can be optionally included.
For example, adding an unrestricted model for the covariates
X, where the means are estimated at the sample means and
the variance—covariance matrix for X is estimated at the sam-
ple variance covariance matrix, does not affect the estimation
of the structural equation model. This, however, is not the
case for the skew-SEM. The reason is that if we assume an
unrestricted skew ¢ distribution for X, then we will allow

3In the Mplus language, these parameters are referred to as { Y} and {n}.
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the DF parameter to be influenced by the distribution of X.
The DF parameter is common for all variables and thus it
will be affected by the covariates if they are included in
the modeling. Thus we want to consider a true conditional
distribution [Y|X], where the X covariates are not modeled.
To illustrate this further, a simple path analysis regressing Y
on Y, will be a different model if Y is a dependent variable
that has an estimated skew 7 distribution from a model where
Y, is treated as a true covariate where no model is assumed
for the distribution of Y, and only the conditional distribu-
tion of [Y]Y>] is modeled. Because of this treatment of the
covariates X in the preceding model the linear dependence of
E(Y|X) and E(n|X) is preserved but only if it is direct and not
channeled through a nonlinear dependence. For example, if
n is regressed on a covariate X directly, then E(n|X) is linear
in X. If, however, Y is regressed on 7 and the model implies a
nonlinear expression of E(Y|n) in terms of 1 then E(Y|X) will
also be nonlinear in terms of X. If E(Y|n) is linear in terms of
7 then so will be E(Y|X) in terms of X. When E(Y|X) is linear
in terms of X the slope in front of X is obtained exactly the
same way it is obtained for the standard SEM.

In the preceding structural equation model the skew
parameters 8y and 4, are subject to identifiability just
as the rest of the structural parameters. No more than P
skew parameters can be identified in the preceding model.
To understand this it is helpful to use the interpretation where
the skew parameters are simply the loadings for the skew
factor Uy. We can identify a maximum of P covariances
between Y and Uy and thus we can identify no more than
P skew parameters. The skew parameters also behave the
same way intercept parameters do. We can not identify more
than P parameters among v and «. Two special cases can
be mentioned. The first case is where §y = 0; that is, §y are
fixed to 0. In that case the residual for Y is not skewed; it
is either the symmetric ¢ distribution or the normal distribu-
tion if we are modeling with the skew normal distribution.
Here we can also maintain the linearity in the conditional
expectation E(Y|n) with respect to n. The second special
case is the case where 8, = 0. In that case the factor distribu-
tion is assumed to be symmetric and all the skewness in the
data is assumed to come from the residuals of Y. In this case
we also preserve the linearity in the conditional expectation
E (Y|n). In most common situations where a factor analysis
model is concerned and a measurement instrument is mod-
eled, the factor is intended to extract the maximum amount
of correlation among the measurement variables. If we use
8, = 0 and estimate Jy, the correlation among the Y vari-
ables that is due to the skew factor will be taken away from
the measured factor variable and thus this model is undesir-
able. In a common practical application we would want as
much of the skewness in Y to be explained through the factor
n. Thus as an optimal strategy for which skew parameters
to estimate we would recommend estimating §, and esti-
mating only those Jy that are statistically significant; that is,
assume that most of the skewness in the observed data can be
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explained through skewness of the factor and if some resid-
ual Y skewness is still left and significant it should only then
be estimated. Naturally, models with a minimal amount of éy
would be preferable. When for a particular measurement the
8y is estimated and is significant, the linearity property of
E (Y|n) will no longer hold for that measurement variable.
The interpretation in that case is clear, for that particular
measurement variable the linearity is insufficient. The kind
of skewness observed in the data is due to the more complex
relationship between the latent factor and the measurement
variable.

Estimation

The models are estimated by ML. Using Equations 2 and 49
the log-likelihood can be written explicitly and maximized
with a general maximization algorithm such as the quasi-
Newton optimization method as long as the derivatives of
the log-likelihood can be computed. All of these derivatives,
although intricate, are computable. The only derivative that
is a matter of more advanced methods is the derivative of
T (x,v) with respect to v, where T is the standard ¢ distri-
bution function. For this derivative we have used the method
developed in Boik and Robison-Cox (1998). Most other pub-
lished articles on similar models have used the expectation
maximization (EM) algorithm where the skew factor Uy and
the Gamma distributed variable W are treated as unobserved
variables; see, for example, Lin et al. (2013) as well as Liu
and Rubin (1995) for the ¢ distribution. We have found that
somewhat unnecessary. Direct maximization appears to work
well and is relatively fast. The standard error estimates are
based on the inverse of the information matrix as usual with
the ML estimator and robust standard errors can also be
computed using the sandwich estimator.*

The Dilemma of A =0

One of the underlying restrictions in the parameters in the
skew ¢ distributions arises from Equations 2 and 7. The
parameter A is defined only when

1-8"(z +88") "5 >0. (53)

In fact, because in Equation 2 we divide by A, the preceding
inequality has to be strict. It turns out that when X is positive
definite then the preceding inequality is always satisfied but
when X is not positive A can converge toward zero and the
parameter estimates can land on this boundary condition

1-8"(z+87)"'5=0 (54)

4Complex survey features of stratification, weights, and clustering are
also handled in Mplus.
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at which point estimation can become very difficult as
numerically we operate in a small band near the boundary
condition. In addition, the term 77,4, (y1/A,0, 1) becomes
either O or 1. In some cases the term will be 1 for almost all
observations and near O only for one or two observations.
This implies that the log-likelihood value will be driven
primarily by those one or two observations. With differ-
ent starting values the small number of observations that
drive the log-likelihood value could change and thus it might
appear that when we choose different starting values we
obtain different optimal estimates. It also appears that when
A converges to zero the log-likelihood that we are optimiz-
ing becomes quite rugged and indeed a number of different
solutions can be found. Estimating a model where X is no
longer positive definite in many ways is similar to what is
known in factor analysis models as a Heywood case. The ML
estimation converges toward a singular ¥ and possibly to a
solution with negative variance. Due to the boundary con-
dition, however, these solutions ate ill defined. Consider the
interpretation of the skew ¢ distribution as a factor analysis on
a skewed factor with half ¢ distribution. A formal Heywood
case is exactly that; namely, that the residual variance ¥ can
become not positive definite.

Another interpretation of the A = 0 case is revealed when
you consider the univariate skew ¢ distribution. In that case
A = 0 implies that the stochastic decomposition (Equation 9)
collapses down to

Y =+ 8|Uy (55)

or equivalently Var(U;) = 0 and the residual distribution of
Y no longer consists of a linear combination of a ¢ distribu-
tion and half ¢ distribution but only of the half ¢ distribution.
On the other hand, if § = 0 and Var (U;) is not zero we get
the case where the residual is not a combination of both dis-
tributions but only of the 7 distribution. This case, of course,
is well behaved. In particular, if the DF is large this is essen-
tially the normal distribution. Thus having A = 0 is nothing
more than another special situation of the skew ¢ distribution
where the residual has a skew ¢ distribution. Unfortunately,
however, numerically this special case is not easy to handle.
In the multivariate case the failure of X to stay positive def-
inite can occur in more complicated ways than just having
a residual variance converge to 0. The nonpositive definite-
ness can be due to a particular combination of the normal
residuals having zero variance, which will be hard to inter-
pret and deal with. In such situations model modifications
that convert a covariance relationship into regression can be
useful; see, for example, the relationship between the vari-
ance covariance saturated model and the sequential saturated
model described in the next two sections.

Another more critical interpretation of the A = 0 case is
that the skew ¢ distribution model has failed to extract the
skewness of the data and the skew factor analysis is essen-
tially not identified by the skewness of the data but is simply

extracting the covariance and as such the ¥ matrix is no
longer identified separately. The original idea of the skew
factor is that the variance—covariance matrix will be fully
identified after the skewness of the data is taken into account
by the skew factor. When X is no longer a valid variance—
covariance matrix, it appears that conceptually the skew 7
distribution has failed and possibly it is not an appropriate
distribution. It is interesting, however, that the skew ¢ distri-
bution model can usually be estimated for any smaller subset
of variables; that is, the skewness in the data can well iden-
tify the skewness parameters and factor. For models with a
larger number of variables, however, it is increasingly likely
that A = 0 occurs.

The problem with A = 0 appears to happen often enough
that it becomes a critical issue for skew-SEM. The occur-
rence of A = 0 needs to be monitored.’

The Unrestricted Model

Just like the standard SEM models, the skew-SEM are nested
within a saturated model. Comparison between a structural
equation model and the saturated model provides a test of fit
for the structural equation model. The skew saturated model,
which we also refer to as the Hl model, is given by

Y=v+TX+e¢ (56)

where

e ~ rMST(0, ®, 8, DF). (57)

The number of parameters in this model are as follows. The
vector v has P parameters, the matrix I has P x Q param-
eters, the matrix ® has P(P + 1)/2 parameters, the vector
8 has P parameters, and the DF parameter is just a single
parameter. Thus the total number of parameters in the skew
saturated model is

2P+ P(P+ 1)/2 + PO + 1 (58)

SIn Mplus the final estimated A is reported at the end of the technical
8 output section and it should be monitored. In most cases a value above
0.001 is evidence that the parameter estimates are away from the boundary
condition. If, however, the value becomes less than 0.001, Mplus will sug-
gest that multiple random starting values are used to verify that the most
optimal solution is reached. Even if the most optimal value is not reached,
however, the model can still be interpreted and used. It might be difficult to
run a huge number of starting values to search for the best solution when
A = 0 and the log-likelihood has many local maxima.

The optimal estimation, understanding and handling of the case A =
0, might still be out of reach with the current algorithm implemented in
Mplus Version 7.2. What makes things even more complicated is that this
case appears only for real data sets and not for simulated data; that is, it is
difficult to demonstrate the A = 0 case with a simulation study.
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which is P + 1 more parameters than the saturated normal
model. Any skewed structural equation model is a restriction
of the preceding model. If we refer to the structural equation
model as the HO model, the test of fit that can be constructed
comparing the skewed structural equation model HO and the
skew saturated model HI is the LRT test based on

T = 2(LLgy — LLpy). (59)

Under the null HO hypothesis the distribution of 7T is a
chi-square distribution with D degrees of freedom where D
is the difference between the number of parameters in the
H1 and HO models. An, other test of fit that can be of interest
is comparing a structural normal model against a saturated
skew model. Such a test will show a test of fit for the standard
SEM that goes beyond a test of fit for the mean and variance.
It would test if the standard SEM fits the data well, including
the potential skewness of the data. Other tests that can be of
interest are the test of the skew normal structural equation
model against the saturated skew normal or the structural ¢
distribution model against the saturated ¢ distribution model.®

For a large number of variables the Hl model often will
lead to a & = 0 solution and possible convergence problems.
Thus in the next section we suggest an alternative saturated
model parameterization that yields better convergence rates.

The Alternative Sequential Unrestricted Model

The sequential unrestricted model is given by the following
equations:

Y=v+BY+TX+e¢ (60)
where
g ~ rMST(0,®, 6, DF). (60)

and O® is a diagonal matrix whereas the matrix B has all
entries on and below the diagonal fixed to O; that is, instead
of estimating a full variance—covariance matrix ® we esti-
mate a diagonal ® and all Y variables are regressed on the
following Y variables. That is, variable Y, is regressed on
Y,, ..., Yp. Variable Y, is regressed on Y3, ..., Yp, and
so on. This model has the same number of parameters as
the variance—covariance unrestricted model described in the
previous section and is equivalent to that model. Under nor-
mal circumstances the two models should yield the same

SThe test of model fit within the .same family of distributions can
be obtained automatically in Mplus with the HIMODEL option of the
OUTPUT command. The test of fit is not computed by default, as with stan-
dard SEM because the estimation of the HI model might be more difficult
than the estimation of the HO model and might take longer to estimate, espe-
cially if multiple random starting values are used. Thus the HI model will
be estimated only if it is requested.
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log-likelihood value and a test of fit. This parameterization
has the advantage that the model does not have a parametric
variance—covariance matrix that has to stay positive defi-
nite. In the optimization algorithm it is much easier to keep
individual residual variance parameters to be positive than
to keep a multivariate matrix to be positive definite. Thus
the sequential unrestricted model yields better convergence
rates; however, it is slower to estimate and so it should be
used only when the variance—covariance unrestricted model
described in the previous section does not converge.’

Restricted Verus Unrestricted Skew t Distribution

The restricted skew ¢ distribution has one major assumption
about the skewness in the data. The assumption is that the
skewness is due to one single skew factor, Uy. An alternative
model that allows each residual to have a univariate inde-
pendent skew distribution is in principle a possibility; for
example, the unrestricted skew ¢ distribution has this capabil-
ity. Currently, however, such distributions do not generalize
easily to structural equation models in the following sense.
In the unrestricted skew ¢ distribution each residual has its
own skew factor and the number of skew factors has to be
exactly the same as the number of variables. If the latent
variable and the residuals have their own skew factors, the
number of skew factors in the model will be larger than the
number of observed variables; that is, the model-implied dis-
tribution for the observed variables is not an unrestricted
skew ¢ distribution. Thus the observed likelihood does not
have a closed form expression. In such a situation a direct
ML estimation is not possible but alternative estimation
methods using numerical integration or Bayesian estima-
tion is possible. The unrestricted and the restricted skew ¢
distributions are not nested within each other. In the unre-
stricted version the correlation between the skew factors is 0,
whereas in the restricted version the correlation is 1, leading
to a unique skew factor.

In the restricted skew ¢ distribution, the assumption that
the skewness of the data has a common source is not unreal-
istic for the kind of data that are typically used with structural
equation models. For example, when multiple characteris-
tics of an individual are observed and skewness is present
in these characteristics, it is not an unreasonable assumption
to hypothesize that one underlying individual characteristic
exists that makes the individual more or less extreme and out
of the norm on all of the manifest variables. The restricted
skew ¢ distribution is also a parsimonious model. It allows us
to model skewness of the data without sacrificing simplicity
and interpretation.

7In the Mplus language to obtain the sequential unrestricted model esti-
mation one has to use the HIMODEL(sequential) option of the OUTPUT
command.
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Estimation of the Factor Scores

We estimate the factor score using the conditional expecta-
tion E(n|Y, X). The joint distribution of n and Y is given by

n,Y|X ~ rMST(u, =, 85, DF). (62)
where
w= (=B Ya+TX),v+ Al —B) (a+TX)), (63)

8= (I —B)'8,,8y + AU — B)'3,), (64)

d-B'w@-Hr I -B~'w@ —B)HIAT
(A(I—B)*'((I—B)*')T @+A(1—B)*'\IJ((1—B)*‘)TAT>
(65)

Given that the joint distribution is a multivariate skew ¢ distri-
bution, we can use the method of Arellano-Valle and Genton
(2010), which was also illustrated for the bivariate case in
Equation 41, to estimate E(n]Y, X).

Estimation of Direct and Indirect Effects in Mediation
Models

Consider the following mediation path analysis model:
YVi=ar+ B2+ X +en, (66)
Y =ay + B3X +&. (67)

The usual definitions of a direct and indirect effect are 8,
and B; x B3 (see, e.g., MacKinnon, 2008). Using the skew
t distribution for £, and &,, these effects remain valid even
though E(Yi|Y>) is not linear in terms of Y. Let the variance
and the skew parameters for ¢ be o; and §;. Let the degrees
of freedom parameter be v. Consider the definitions based
on counterfactuals (see, e.g., Muthén & Asparouhov, 2015;
VanderWeele & Vansteelandt, 2009, also referred to as causal
effects. Letting M = Y, and Y = Y, the key component of
the causal effect definitions, E[Y(x, M(x*)], can be expressed
as follows integrating over the mediator M:

+00
E[Y(x, M(x*))] =/ ElY|X =x,M =m]
B (68)

xf(m|X = x*) om.

The preceding integral is the marginal mean of the skew ¢
distribution rMST (i, 0,8, Vv) where

p = a1+ Bi (02 + Bsx™) + fox, (69)

o =01+ Bion, (70)
8 =461+ Bids. (71)
Using Equation 18 we obtain

E[Y(x,M(x*))] =a; + B (Olz + B3x™) + Box

r(s) \f 7
+ (81 + Bi1d2) ) p

The causal direct and indirect effects are computed from

E[Y (x1.M (x7))] = E[Y (x2.M (x3))] = B15 (] — x3)
+ B (x1 — x2) . (73)

In line with VanderWeele and Vansteelandt (2009), special
cases of this formula give the direct effect as

E[Y (.M ()]~ E[Y (¢ ()] = o (v - ') (74

and the indirect effect as

E[Y ;M (x)] — E[Y (x, M (x*))] = BiB3 (x —x*) . (75)

The preceding formulas are identical to the normal distri-
bution case and thus the direct and indirect effects are not
affected by the skewness of the residuals.

Missing Data

Given that the marginal distribution is easy to derive for the
skew ¢ distribution, we can still compute and optimize the
observed data log-likelihood directly. The ML estimator can
guarantee unbiased parameter estimates under the general
missing at random assumption.

Mixture Modeling

The general mixture of skew structural equation models is
similar to the mixture of normal structural equation mod-
els given in Muthén and Shedden (1999) and Muthén and
Asparouhov (2009). Within each class, however, we now
have a skew structural equation model as in Equations 44
through 47 where all the coefficients are now class spe-
cific including the skew parameters and the degree of free-
dom parameters. The estimation also follows the estimation
method used in Muthén and Shedden (1999) and Muthén
and Asparouhov (2009). To use that EM-based algorithm
all we need is the ability to compute the log-likelihood for
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FIGURE 1 Observed and estimated distribution for BMI17.

Y conditional on C. This is simply accomplished by using
Equation 2 with the class-specific parameters.

EXAMPLES

In this section we discuss some of the basic concepts of
modeling with the skew ¢ distribution using several real data
examples and simulated examples. Both path analysis and
factor analysis examples are considered.

National Longitudinal Survey of Youth BMI Example

Data from the 1997 National Longitudinal Survey of Youth
(NLSY97) are used to illustrate the new methods. NLSY97 is
a nationally representative, longitudinal survey of people
born between 1980 and 1984 who were living in the United
States in 1997. A more detailed description of the data
can be found in Nonnemaker, Morgan-Lopcz, Pais, and
Finkelstein (2009).% For our illustration we use the sub-
sample of females and we use the body mass index (BMI)
variable at age 12 and age 17. These two variables are
strongly nonnormal with sample skewness and kurtosis val-
ues of 1.34 and 2.77 and 1.86 and 5.29, respectively. The
sample consists of 3,839 individuals. We estimate the path
analysis regression

BMIN7 = a + BBMI12 + ¢ (76)

assuming a skew ¢ distribution for both BMI12 and BMI17.
Figure 1 shows the observed distribution in the sample for
BMI17 as well as the skew ¢ estimated distribution.

8We thank James Nonnemaker for providng the data to us.

TABLE 1
Body Mass Index Example Parameters

Parameter Estimate (SE)
o 15.565 (1.436)
B 0.179 (0.085)
“BMmI2 16.770 (0.217)
OBmi12 3.824 (0.562)
O 1.431 (0.179)
dpmi2 2.990 (0.253)
e 4.409 (0.281)
df 3.870 (0.268)

The parameter estimates for this analysis and their stan-
dard errors are given in Table 1. There are a total of
eight parameters, « and B from the preceding regression
model, the intercept parameter (g2 for BMI12, the vari-
ance parameter 6gyy712 for BMI12, the skew parameter Sgp12
for BMI12, the residual variance parameter 6, for the vari-
ance of ¢, the skew parameter §, for ¢, and the degrees
of freedom parameter DF. All the parameters are signifi-
cant. The log-likelihood for this model is —11769.657 and
the log-likelihood for the same model assuming normal-
ity is —12664.533. The chisquare test for the skew r model
against the normally distributed regression model has a
value of 1,790 with 3 df, which clearly rejects the normally
distributed model in favor of the more flexible skew ¢ distri-
bution. Next we use Equation 41 to compute the conditional
expectation of E (BMI17|BMI12). Because both BMI12 and
¢ have nonzero skew parameters this conditional expectation
will be nonlinear in terms of BMI12. For comparison pur-
poses we also compute the conditional expectation for the
normally distributed model. The two expectation functions
are plotted in Figure 2. The nonlinearity of the conditional
expectation function for the skew ¢ distribution is clearly
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FIGURE 2 E(BMI17|BMI12) as function of BMI12.

visible. In addition, the difference between the function esti-
mated by the skew ¢ distribution and the function estimated
by the normally distribution becomes substantial in the tail
of the distribution of the BMI variables; that is, the normally
distributed model fails to provide sufficiently accurate results
for the tails of the distributions.

Note also that the 8 coefficient is 0.179. The correspond-
ing coefficient for the normal regression is 0.931. These
two coefficients arc not comparable. In the skew ¢t model,
much of the effect of BMI12 on BMI17 is channeled through
the skewness factor. Note also that in the preceding path
analysis model, the residual variable ¢ and BMI12 are not
independent of each other. This independence is a standard
assumption of the linear regression model with normally
distributed variables. Robustness of normal-theory ML esti-
mation against nonnormality relies on this independence
assumption (see, e.g., Satorra, 2002). In the skew ¢ model the
independence will hold if either of the two skew parameters
is not present and the degrees of freedom parameter is large.
If the degrees of freedom parameter is not large and only one
of the two skewness parameters is present then BMI12 and
¢ would be uncorrelated but not independent. When only
one of the skewness parameters is present in the model the
nonlinearity depicted in Figure 2 will also disappear. In this
example, the skewness of BMI12 does not fully account for
the skewness of BMI17 and therefore a skewness parameter
is needed for both variables.

The ATLAS Mediation Example

The ATLAS mediation model was considered in
MacKinnon, Lockwood, and Williams (2004). The interven-
tion program Adolescent Training and Learning to Avoid
Steroids (ATLAS) was administered to high school football
players to prevent the use of anabolic steroids. The data con-
sist of results from 404 individuals in the treatment group and

457 individuals in the control group. The two variables that
will be analyzed are the SEVERITY and the NUTRITION
variables. The SEVERITY variable represents the perceived
severity of using steroids. The NUTRITION variable rep-
resents good nutrition behavior. It is hypothesized that the
treatment variable TX increases the NUTRITION variable
indirectly by increasing the SEVERITY variable, which in
turn positively affects the NUTRITION variable. Typically
this hypothesis is tested with the following mediation
model:

SEVERITY = a; + B1TX + ¢, ()

NUTRITION = « + B,SEVERITY + B3TX + &5,  (78)

where &; and &, are assumed normal and the ML estima-
tion yields standard regression results. The main parameter
of interest is the indirect effect parameter 8 ;.

The problem with the standard mediation model is that
it does not provide a good representation for these data.
Whereas the variable NUTRITION is approximately nor-
mally distributed, the SEVERITY variable is highly skewed.
For nearly half of all individuals in the sample the value of
the SEVERITY variable is 7 and that is the maximum value
that can be obtained. Figures 3 and 4 contain the histogram
of the SEVERITY variable for the treatment and the con-
trol groups. The linear model (Equation 77) is not a good
representation of these data because it implies that all indi-
viduals benefit equally from the treatment effect, which is
clearly not true because individuals who are at the maximum
value will benefit 0. Despite that, Equation 77 can be used
to estimate the means of SEVERITY in the control and the
treatment groups correctly. It cannot, however, be used to
make inference for a particular individual and it cannot be
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FIGURE 3 Histogram of SEVERITY in the treatment group.
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FIGURE 4 Histogram of SEVERITY in the control group.

used to predict the treatment effect for a particular individ-
ual or even for a particular school. Only a model that truly
represents the data can be used for this kind of detailed infer-
ence. From the histograms of SEVERITY it is clear that the
effect of the treatment is to thin out the left skewed tail rather
than to shift the distribution as the linear regression model
implies. In normal distributions, if the variance changes the
mean of the distribution is not affected. In skewed distribu-
tions this is not the case. By changing the variance of the
skew component the mean or average of the distribution is
affected. This can be seen in Equation 18 and it can be seen
by comparing the histograms in Figures 3 and 4.

The skew-normal distribution can be used in this exam-
ple to provide a more realistic model for the ATLAS data.
To fully allow the TX variable to affect the distribution of
SEVERITY we replace Equation 77 with

SEVERITY|TX = j ~ rMSN (11,5}, ;) . (79)

where j = 0 or 1; that is, we model the distribution as a skew-
normal distribution with group-specific parameters. The
second equation (Equation 78) for NUTRITION remains
unchanged. If we use the skew ¢ distribution, the degrees of
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freedom parameter is estimated to a large value and thus it is
not needed. Modeling the NUTRITION variable as a skew-
normal instead of normal is also not needed. The parameter
estimates indicate that pg = w;, which shows as expected
that the treatment effect does not provide a shift in the distri-
bution. The variance parameters oy = o1 = 0, which means
that the best approximate distribution for the SEVERITY
variable in the skew-normal family is the half-normal dis-
tribution. The skew parameters §, and §; are significantly
different and Equation 18 can be used to obtain the effect
of the intervention on the average SEVERITY value. The
BIC value for SEVERITY|TX for the skew-normal model
is 6,199 and for the standard normal model is 6,836, which
indicates that the skew-normal model is a much better fit
for these data. The direct effect estimate and its standard
error are 0.016 (0.008) for the skew-normal model and
0.020 (0.011) for the normal model, both indicating marginal
statistical significance.

There are three advantages of the skew-normal model in
this example. First we obtain a model that is a better fit for
the data and provides a better representation for the processes
and variables. Second, the model can be used for better pre-
dictions. For example, the skew-normal model implies that
different schools can benefit differently from the interven-
tion, depending on what level of SEVERITY is observed
before the treatment. The normal model implies that all
schools benefit equally, which clearly is not the case because
a school with a high level of SEVERITY is expected to
benefit less than a school with a low level of SEVERITY.
The third advantage is that the mean standard error of the
parameter estimates will be smaller due to more accurate
model specification; that is, the parameter estimates are more
accurate with the skew-normal model.

Failure of Robust ML Estimation in Linear Regression
Models

In this section we illustrate with simulated data that the most
basic linear regression model can yield inaccurate results
simply from misspecifying the distribution of the residual.
Suppose that Y is a dependent variable and X is a covariate.
We are interested in comparing the estimates for the simple
linear regression model

Y=o+pBX+e, (80)

where ¢ is independent of X. This example is simpler than
the example considered in the previous section because X is
a true covariate; that is, we are not concerned with modeling
the distribution of X, but simply want to use X to pro-
vide the best prediction model for ¥. Under the assumption
of perfect linearity, the ML estimates yield asymptotically
unbiased results. The question is what happens when the
perfect linearity is not present, as this assumption is prob-
ably unrealistic in many situations. Approximate linearity is

a much better assumption than assuming perfect linearity and
is exactly what the skew ¢ modeling distribution uses. In this
model, however, both the skew ¢ distribution model and the
normal distribution model assume that E (Y|X) is linear in
terms of X. This again is because we do not model the distri-
bution of X, we only model the distribution of ¢ as a skew ¢
distribution and therefore linearity is assumed.

We generate two data sets. Both are of size 10,000. The
first data set is generated from a bivariate skew ¢ distribution
where the residual variances are 1, the covariance is 0.5, the
means are 0, the skew parameters are 3, and the df parame-
ter is 3 as well. The second data set is also generated from a
bivariate skew ¢ distribution but now the skew parameter is
set to O for the X variable and the DF parameter is set to a
large value, thus yielding a normal distribution for X and a
skew-normal distribution for Y. The linearity of E(Y|X) holds
in the second data set but it does not hold in the first. It only
holds approximately. Note again that neither of the preceding
models, the skew ¢ or the normal regression model, accom-
modate nonlinearity in E(Y|X); that is, they are both wrong
for the first data set but are correct for the second data set.

The results in the second data set are as follows. The
log-likelihood for the skew ¢ model is —20609.632, the
log-likelihood for the normal model —21104.013. Clearly
the LRT here would reject the normal model in favor of
the skew r model; however, this is due only to modeling
of the distribution of the residual. The coefficient 8 is
estimated to 0.506 for the skew 7. model and to 0.507 for
the normal model. A formal LRT to see if the skew # model
coefficient is different from the estimated value from the
normal model yields a p value of .92; that is, there is no
statistical evidence that the normal-based model has a biased
regression coefficient.

The results in the first data set are quite different. The
log-likelihood for the skew # model is —17557.873, the log-
likelihood for the normal model —20061.821. Clearly again
the LRT would reject the normal model in favor of the skew
t model. However, this is no longer due only to modeling of
the distribution of the residual. The coefficient § is estimated
as 0.893 for the skew r model and as 0.877 for the normal
model. A formal LRT to see if the skew # model coefficient
is different from the estimated value from the normal model
yields a p value of .0005; that is, there is statistical evidence
that the normal-based model has a biased regression coeffi-
cient. The bias is due to the violation of the perfect linearity
assumption. Neither of the two models is correct here. The
skew t model, however, is able to extract more information
from the data and obtain more accurate estimates.

It is important to understand the limitations of the robust-
ness of the ML estimation. It is also important to understand
why the skew ¢ distribution yields different structural esti-
mates from the normal distribution estimates. This example
illuminates both points. It is not unusual to see similar differ-
ences also in real data sets. In the next section we illustrate
this with one real data example.
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The BMI Mediation Example

In the example described previously when the BMI17 vari-
able is regressed on the mother’s education predictor the
normal model yields an estimate of —0.388 (0.063). When
we analyze the effect of mother’s education on BMI17, using
mother’s education as a multiple group variable, with the
skew t distribution the results show that there is no effect on
the intercept and the degrees of freedom parameter, whereas
the skew and the variance parameter have a significant neg-
ative effect. Using Equation 18 the overall effect on the
mean is thus estimated to be —0.444 (0.066). In this exam-
ple a linear effect based on the normal regression model is
unreasonable because it would imply that higher mother’s
education not only leads to reduced obesity problems, but
also that higher mother’s education leads to an abnormally
low-range BMI associated with eating disorders. Instead, the
model based on the skew ¢ distribution implies that higher
mother’s education leads to normal BMI range and reduced
BMI variability.

If we incorporate the mother’s education predictor in the
model in Equation 76 and consider the total, the direct,
and the indirect effect from the mother’s education predic-
tor to BMI17, we reach substantively different conclusions
using normal versus skew ¢ distributions. With the stan-
dard normality-based model, the results indicate that all of
the effect is an indirect effect. The direct effect is insignifi-
cant and virtually zero. With the skew #-based model, which
allows the predictor to affect the skew and the variance of the
variables, we obtain completely different results. Following
the earlier discussion, we estimate the following model and
the implied effects

BMIN2 = «a; + ¢y, (81)
BMIT = ap + B1, BMI12 + &5, (82)
where
g1 ~ rMST (0,a; + b1 X, a, + b-X, v), (83)
&y ~ rMST (0, a3 + b3X, as + bsX, v), (84)

where X represents the mother’s education predictor. To
compute E[Y(x, M(x*))] from Equation 68 for BMI17 we
note that this is the marginal mean of rMST(u, o, §, v) where

1= o+ P, (85)
o = B (a1 + bix*) + a3 + bax, (86)
8 = Bi (a2 + bax*) + as + bux. (87)

Using Equation 18 we obtain
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E[Y(x, M(*)] =0 + Bre (ﬁ, (a2 + box*)
(88)

+ a4 + b4x)

We can now compute the direct effect as

E[Y(x, M(xX*)]—E[Y(x*, M(x*))] = ba(x—x")

(39)
and the indirect effect as
v—1
B N LT [y
E[Y(x, M(x))]—E[Y(x, M(x*))] = Biby(x—x")—5 .
r(z) (7970)

In the BMI example, the preceding skew ¢ model results indi-
cate that the direct effect is 85% of the total effect and the
indirect effect is only 15% of total effect. This drastically
different structural result illustrates the modeling opportuni-
ties when we look beyond the mean and variance modeling
used with standard SEM.

Simulation Study of a Path Analysis Model With
Covariates

In this section we describe a simulation study using the
following path analysis model

Y=o+ BiYa+ B X + ¢, On

Y) =+ B3X + & 92)

We generate 100 samples of size 5,000 and analyze the pre-
ceding model using the skew ¢ distribution and the normal
distribution. We do not model the distribution of X; that is,
it is treated as a true covariate while the distribution of &
and &, are modeled as uncorrected residuals. The covariate
X is generated as a normally distributed variable with mean
0 and variance 1. The variables ¢ and ¢, are generated from
a skew ¢ distribution. In this simulation study the conditional
expectation E(Y,|X) is linear in terms of X and E(Y|Y,, X)
is linear in terms of X, but not linear in terms of Y. This last
non-linearity violates the assumption of the standard regres-
sion model and thus we might expect to see biased estimates.
On the other hand, the skew ¢ distribution model is the same
as the generating model and thus we should see unbiased
estimates.

The true parameters of the skew ¢ distribution used for the
generation are given in Table 2. Table 2 also contains the bias
and the coverage for the parameter estimates when we ana-
lyze the model assuming the skew ¢ distribution. Clearly the
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TABLE 2
Absolute Bias and Coverage for the Skew t model

Parameter True Value Bias (Coverage)
o] 5 .01 (.96)
[+%3 0 .00 (.95)
Bi 1 .01 (.96)
B 0 .00 (.97)
B3 1 .00 (.96)
81 2 .03 (.96)
8 4 .00 (.99)
df 4 .01 (.94)

estimates are unbiased and the coverage is near the nominal
level of 95%. Because E(Y,|X) and E(Y|Y,, X) are linear in
terms of X, it is relevant to compare the skew ¢ and normal
estimates for the B8, parameter and for the 83 parameter. The
B1 parameter estimates, however, are not comparable due to
the nonlinearity. When we analyze the data assuming nor-
mality we find that the parameter f, is severely biased. The
ML estimate has a bias of —0.44. The estimate of 83 is unbi-
ased, the bias is 0, however the mean standard error of the
ML estimate is almost twice as large as the estimate under
the skew 7 model. The mean standard error 83 is 0.060 using
the ML normality assumption, whereas it is only 0.032 under
the skew ¢ assumption; that is, even though the B3 estimate
is unbiased it is still much less accurate that under the more
flexible skew  model.

Note that in this example there were no violations of lin-
earity for X. Both E (Y2|X) and E (Y1] Y2, X) are linear in
terms of X. Despite that, the normality-based ML estimator,
which is assumed to be robust for 8, and 83 did not perform
well. The reason this happened is because of the nonlinear
relationship between Y1 and Y2. This impurity creeps into
the effects of the X variable. Thus we conclude here that
misspecification in one part of the model could affect seem-
ingly unrelated parameters and variables. Again, the perfect
linearity assumptions of the ML-based normality estimator
resulted in this poor performance.

In a model such as the one given by Equations 91 and 92
to test for a significant effect we can still use the standard ¢
test for coefficients 8, and B3 because X is a covariate. For
coefficient B; the ¢ test will work also as long as §; or &,
is 0. If both skew parameters are nonzero, we have to use
either Equation 19, Equation 22, or Equation 26, depending
on which distribution has been used to test that the covari-
ance between the two dependent variables is 0. However,
even if the covariance is 0, E (Y;| Y>) and Var (Y;| Y,) could
still depend on Y.

Another perspective on the nonlinearity issue is as fol-
lows. We generate a bivariate sample of size 5,000 using a
multivariate skew ¢ distribution with the following parame-
ters u; =0, 0y, =35, o1 = 2, §; =4, DF = 4. We split the
sample into five groups by the order of Y;; that is, we
order the observations by the value of Y; and use the first

TABLE 3
Nonlinearity in Linear Regression
Group B
1 0.35 (.05)
2 0.82 (.15)
3 93 (.15)
4 71(.12)
5 .89 (.02)
All .84 (.02)

1,000 observations with the lowest Y; to form Group 1. The
second group is formed by the next 1,000 observations, and
so on. We estimate a linear regression model of ¥, on Y; in
each of the five groups and in all five groups together. The
results for the regression coefficient are given in Table 3.
Clearly some of the differences in the five groups are not
significant, but some of them are. The relationship between
Y| and Y, for the lowest values of Y is not as strong as for
the other groups and if we estimate the groups together, not
only will we miss this fact but for the rest of the observations
the B coefficient will be underestimated because that single
coefficient is averaging the relationship over all the observa-
tions and essentially will need to compensate the strength of
the relationship from one group to another. If one indeed has
a sample size of 5,000 and the level of variation shown in
Table 3, it is seems quite insufficient to attempt to describe
the relationship between Y, and Y, with one coefficient.

Simulation Study of a Factor Analysis Model

In this section we present a factor analysis model simulation.
The model has one factor 7, five indicator variables Y;,i =
I,...5, and one covariance. In this simulation we generate
data using the skew-normal distribution. The model is given
by these two equations:

Yi=o;+An+e; (93)

n=pgX+5§. (94)

To generate the data we use the following values for the
parameters, o; =5, A, =1, ; =1, 0, = Var(e;)) =5, ¢ =
Var (§) =5, the skew parameter for §, = 4. We also gen-
erate the data with a skew parameter for Y;; that is, in this
structural equation model the skewness of the data is not
completely explained by the skewness of the factor n. For
indicator variables Y, through Y5, the skewness is explained
by the skewness of the factor n but not for Y;. The skewness
parameter for Y is 8y, = 2. We generate 100 data sets of size
5,000. The data are analyzed with the same model that gen-
erates the data; that is, with the factor analysis model and
estimating the skew parameters for n and Y;. The results for
a subset of the parameter estimates are presented in Table 4.
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TABLE 4
Absolute Bias and Coverage for the Skew Factor Analysis Model

Parameter Bias (Coverage)
al .03 (.97)
Ao .00 (.92)
0 .03 (.95)
B .01 (.94)
v .08 (.96)
8y .01 (.96)
dy, .03 (.93)

The bias in the parameter estimates is almost nonexistent
and the coverage is near the nominal 95% level. In addition,
when the model is tested against the saturated skew-normal
model, the average chi-square statistic has an average value
of 12.389, which matches the 12 df for this test of fit. The
chi-square rejected the factor analysis model 7% of the time,
which is sufficiently near the nominal level of 5% rejections.
Thus the chi-square test concludes that this factor analysis
model fits the data well. On the other hand, when we analyze
the data assuming a normal distribution using the robust ML
estimator and the robust chi-square test of fit we obtain an
average statistic of 54.291 and 100% rejection rate. In addi-
tion the B coefficient estimate is biased. The average estimate
across the 100 replications is 1.17, where the true value is
1. Both of these problems are entirely due to the additional
and residual skewness of Y;. If we generate the data with-
out that residual skewness the robust ML estimate for the
coefficient is unbiased, bias is zero, and the coverage is 96%.
In that case also the robust ML chi-square test of fit rejects
the factor analysis model only 4% of the time.

In the preceding skew-SEM model the latent variable n
does not have a zero mean as in a standard SEM, even if
we eliminate the covariate from the model and the residual
skewness. The mean of 1 has to be computed using Equation
18. In the factor analysis model, this fact is not very impor-
tant. The shift in the mean is absorbed by the the intercepts
of the observed indicator variables and if you compare that
model to a standard SEM model you will find that the inter-
cept parameters are different. This is just a constant shift and
does not have any significance. In some SEM models where
the means of the indicators are also structured via a longitu-
dinal feature or a multiple group feature, the implications of
the nonzero factor mean should be considered carefully.

This again confirms our findings that the robust ML esti-
mation can deal well with nonnormality of an individual
factor or a residual but it will not work well when more
complicated relationships are found in the data. The concept
of residual skewness will be found in real data examples as
long as the skewness parameters for the indicator variables in
the saturated model are not proportional to the factor load-
ings of the factor model. Alternatively to check if residual
skewness exists for a particular factor model we can esti-
mate the model where all indicator variables have estimated
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skew parameters while the factor skew parameter is fixed to
0. If in that model the skewness parameters are proportional
to the loading parameter, we can safely assume that the fac-
tor model can explain all of the skewness in the data. If the
skewness parameters arc significantly not proportional to the
loading parameters, then residual skewness will exist and the
factor alone will not be able to explain all the skewness in the
data. Alternatively we can use the LRT to compare the these
two models. Let’s call the factor analysis model with all dy;
free the H1 model and the let’s call the factor analysis model
with all §, free the HO model. Testing for residual skewness
is equivalent to testing the H1 model against the HO model.
This can be done using the LRT statistic

T =2 (LLgy — LLpy) . (95)

We illustrate this with a real data example using the
Australian Institute of Sports Data described in Lin et al.
(2013). We estimate a one-factor model on the subset of
102 males in the sample. The factor model has 11 indicator
variables. The log-likelihood for the H1 model is —973.986.
The log-likelihood for the HO model is —1304.343. The chi-
square test has 10 df and the test statistic value is 660.714.
The test clearly rejects the hypothesis that the skewness in
the observed data is due entirely to the skewness of the fac-
tor. A more detailed analysis should follow at this point to
determine which indicator variables need to have residual
skewness estimated. This ad hoc evaluation should be done
to achieve these three goals: minimize the number of resid-
ual skewness needed, maximize the skewness explained by
the factor, and still get a model that fits the data as well as
the HI model. This detailed analysis goes beyond the scope
of this article.

Missing Data

It is well known that modeling with missing data via the
full information maximum likelihood (FIML) estimator is
not robust to the normality assumptions. In fact early inter-
est in the ¢ distribution was based on generalizing the EM
algorithm used to estimate sample means and variance in the
presence of missing and nonnormal data (see Liu & Rubin,
1995). In this section we illustrate the effect of normal-
ity assumption violation with a simple simulated example.
We generate a sample using the skew normal distribution
with five variables and the following parameters: wu; = 0,
oii =1, 0 = 0.4 for i #j, and §; = 3. We induce missing
data for the first variable using the following missing at
random missing data mechanism:

1

14+ Exp(—14+Y2+Y3+Y4+7Y5)
(96)

P(Y is missing) =



Downloaded by [University of California, Los Angeles (UCLA)] at 08:34 24 April 2015

18  ASPAROUHOV AND MUTHEN

This is a simple logistic regression for the missing data indi-
cator for Y| on the rest of the observed variables. We use
one sample of size 100,000 so that the estimates have no
or minimal variation across samples and we can easily see
the bias in the estimates. With this data generation, the true
mean for Yy is 34/2/m ~ 2.4. The standard FIML estimator
assuming normality estimates the mean of Y, as 2.1. Using
the correct distributional assumption and estimating the sat-
urated skew-normal model we get the sample mean estimate
to be 2.4. This example illustrates the heavy dependence on
the normality assumption of the FIML estimator when there
is missing data. Even as simple a value as the average for
a variable can be misestimated. More advanced parameters
such as structural parameters might be even more vulnerable.

Mixture Models

With mixture models the situation is somewhat different
when it comes to modeling with skew ¢ distributions. First,
we do not need to be concerned with linearity and nonlinear-
ity of the relationships in the variables. The relationships are
already nonlinear because it is a mixture of models. Second,
we can get the main benefit from the skew ¢ distribution
already by simply allowing latent variables to have a skew
distribution, and avoid complications arising from residual
skewness. The main benefit of the skew ¢ distribution in mix-
ture models is the ability to relax the within-class normality
assumption for the observed variables and to be able to
accommodate skewed or heavy tails in the distributions. This
is important because if the normality assumption is used,
then classes will have to be formed to thicken the tail of the
distribution if such tails are indeed observed. We use mixture
models to discover latent subpopulations that have struc-
turally different relationships between the variables. We are
generally not interested in discovering latent classes that are
formed simply to match the observed distribution curvature.

To illustrate this concept we reanalyze the BMI quadratic
latent growth mixture model described in Nonnemaker et al.
(2009), using the sample of Black females; see also Muthén
and Asparouhov (2015). The sample size is 1,160. BMI is
observed at 12 time points spanning ages 12 to 23. The
three latent variables, random intercept, random slope, and
a quadratic term, are modeled either as normal variables or
as skew ¢ variables. The residuals of the observed variables
are assumed normal. We use the BIC for model selection and
to determine the number of latent classes. The BIC values
are presented in Table 5 for the skew ¢ distribution model
and the normally distributed model. We choose the number
of classes for which BIC attains its minimum value. Using
the normal distribution leads to four classes. If we use the
skew t distribution for the latent growth factors, however,
we conclude that there are only two classes. Thus the skew
t distribution helps eliminate two of the classes that might
be spurious and lacking proper interpretation. In addition to
that, the two-class skew ¢ model yields a better BIC than the

TABLE 5
Bayesian Information Criterion for Body Mass Index Quadratic
Latent Growth Model

Classes Normal Skew t
1 34168 31411
2 31684 31225
3 31386 31270
4 31314
5 31338

four-class normal model; that is, not only did we eliminate
potentially spurious classes, but we actually found a better
fitting model.

CONCLUSION

Liu and Rubin (1995) stated that “Current computational
advances for the multivariate t-distribution will make it rou-
tinely available in practice in the near future” (p. 19). Twenty
years later it appears they were correct. Implementing the
skew ¢ distribution for general structural equation models in
Mplus will hopefully make this a reality. Applications are
possible where structural equation models are built on more
than just sample means and sample covariances. It is per-
haps time to break out of a factor analysis and path analysis
modeling framework invented about 100 years ago (see, e.g.,
Spearman, 1904; Wright, 1918, 1934) before the advent of
computers and even calculators. The skew ¢ distribution is
not the final word, by any means, but it is definitely a good
step in that direction.

Structural equation models should be built to illuminate
processes, structural pathways, and relationships in the data
and not simply to fit the means and the covariances of the
variables. Fitting means and covariances should be viewed as
an auxiliary goal. The main goal is to find a structural model
that represents and acknowledges the data. If the means and
the covariances are our only interest then simply using the
sample values should be enough and no structural model
would be needed. As the examples in this article illustrate,
standard SEM models based only on means and covari-
ances are limited when used for prediction and inference
on the individual level. A model based on aggregate char-
acteristics can be used only for prediction and inference on
the aggregate characteristics. Individual level inference and
implications are out of reach for the standard SEM models.
A standard SEM model can fit the means and covariances
well and still be completely detached from the data. The
concept of robust estimation for standard SEM models gives
a false comfort. It eliminates the normality assumption by
replacing it by equally unrealistic assumptions of pure lin-
earity, pure independence between predictors and residuals,
homoscedasticity of residual variables, and homogeneity in
the relationships of the variables in the entire scope of the
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distributions. The skew-SEM framework can be used to chal-
lenge the conclusions obtained with standard SEM models
and to enhance and illuminate our understanding of the data.

Whereas univariate skewness and kurtosis are easy
to visualize, comprehend, and include in a model, the
multivariate deviations from normality are more intricate to
test and model. The modeling framework presented here
based on the skew ¢ distribution is one possible option that
might or might not be appropriate for a particular applica-
tion. We can use BIC as a guide to the best fitting model,
but BIC will lead to correct results only if the true model
is in consideration. If all the models we consider, skew-
SEM and standard SEM are inadequate, then BIC can be
misleading. More real data applications are needed to truly
evaluate the implications of the skew-SEM framework and to
guide in future development and extensions. The examples
described in this article indicate that extending the frame-
work to allow covariates to have an effect not just on the
mean parameters but also on the skew parameters would be
very useful. Another useful extension would be to incorpo-
rate the unrestricted skew ¢ distributions into a general SEM
model.
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