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Abstract

In observational studies it is common to use matching stra-
tegies to consistently estimate the average treatment effect
of the treated (ATET) under an unconfoundedness assump-
tion. Matching is often based on a set of time-invariant
covariates together with one or a few pre-treatment mea-
surements of the outcome. This paper proposes strategies
to consistently estimate the ATET using information deri-
ved from a large number of pre-treatment measurements of
the outcome. The key to this strategy is to use two-level
time-series model estimates to summarize the inter-unit he-
terogeneity in the sample. It is illustrated how this approach
is in line with the conventional identifying assumptions. The
theoretical results and estimation strategies are illustrated
by a study of electricity consumption.
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1 Introduction
The collection of high frequency repeated measurements data has been
substantially simplified by the technological progress of personal elec-
tronic devices like smart phones, smart watches, fitness trackers, and
the “Internet of things”. This has lead to that intensive longitudinal
data (ILD) obtained from, e.g., experience sampling methods, ecologi-
cal momentary assessment, and ambulatory assessment, are becoming
more prevalent (see Trull and Ebner-Priemer (2009) for an overview).
Typically, these types of data contain very few covariates which suggest
limited utility for causal analysis using traditional selection on obser-
vables estimators (e.g. matching and regression analysis). This paper
proposes a framework for the identification and estimation of the average
treatment effect of the treated (ATET) estimand with ILD on the pre-
treatment outcomes. By using novel multilevel time-series models, the
heterogeneity among a large number of long time-series can easily be
characterized by a small set of random effect estimates. This paper inves-
tigates how this information can be used to non-parametrically identify
the ATET. As a motivational example, data on electricity consumption
are used. These data, typical for electricity-consumption studies, con-
sist of repeated measurements of electricity consumption for all observed
units, before and after a policy intervention, together with one or a few
time-varying covariates.

The non-parametric identification of the ATET in the proposed fra-
mework is obtained from the traditional uncounfoundedness assumption
(Rubin, 1973, 1974), together with a sequential ignorability assumption
on the time varying covariates (see, e.g., Imai et al. 2010). By adjusting
the traditional notation to incorporate ILD, we show how the standard
identifying assumptions maps to information that can be derived from
time-series data. The novelty of this strategy is that unobserved con-
founders can be replaced by information extracted from time-series pre-
treatment outcome data in the form of unit-specific random coefficients,
which govern the treatment assignment and outcome trajectory if not
treated. The heterogeneity is estimated using two-level time-series mo-
dels, with time on level-1 and units on level-2. Based on these random
coefficient estimates and, possibly, a small set of covariates, the ATET
is non-parametrically estimated by calculating the counterfactual out-
come (potentially adjusting for sequentially ignorable time-varying co-
variates) for all post treatment time periods using non-treated with the
‘same’ unit-specific coefficient and covariates as the treated. The impor-
tance and utility of repeated measurements for drawing casual inference
in observational studies have been discussed extensively in the causal
literature; for recent papers on this topic see, e.g., Chabé-Ferret (2015)
and O’Neill et al. (2016). However, the main focus of the ‘matching
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literature’ has been on how to efficiently utilize, and/or select among
a large set of time-invariant covariates and/or time-varying covariates
observed right before treatment. As a consequence, the discussion about
if and how pre-treatment measurements should be included in matching
is usually based on the presumption that only one, or possibly a few,
pre-treatment measurements are available. The case when the available
set of covariates is small but the number of pre-treatment measurements
of the outcome is large is seldom discussed. This is likely due to the fact
that such data historically have been rare and difficult to obtain.

Just as we do in this paper, the synthetic control methods, first in-
troduced in Abadie and Gardeazabal (2003), are also to a large extent
utilizing pre-treatment measurements in the effect estimation. This li-
terature is focused on case studies with one treated unit and group-level
aggregated data. In Abadie et al. (2010), a weighted set of pre-treatment
measurements of outcomes from a pool of non-treated are used to con-
struct a synthetic control group which is used to construct the counter-
factual trajectory of the outcome for the treated unit under no treat-
ment. This is similar to the framework proposed in this paper in terms of
using pre-treatment data, but Abadie et al. (2010) do not aim to identify
an average treatment effect for a given population. While it is possible
to encompass multiple treated units by aggregating the outcome of all
treated (Abadie et al., 2010), substantial heterogeneity among treated
and control units would lead to efficiency losses associated with aggrega-
ting the treated units before constructing the counterfactual trajectory
using a synthetic control group. Based on the idea of synthetic controls,
other strategies have been developed by, e.g., Brodersen et al. (2015);
Robbins et al. (2017); Xu (2017). In Brodersen et al. (2015) the out-
come of the synthetic control is modeled using a Bayesian time-series
model. The counterfactual outcome of the treated is predicted based
on the chosen model. This approach is similar to the present paper in
the sense that parametric time-series models are fitted on pre-treatment
measurements of the outcome. Robbins et al. (2017) extend the synthe-
tic control framework to multiple treated units and to high dimensional
micro data. Xu (2017) suggest combining standard fixed effects panel
models with the synthetic control framework in a large N and T factor
model for interactive effects as proposed by Bai (2009).

The main difference between the synthetic control frameworks and the
framework proposed in this paper is that here the pre-treatment outco-
mes are used only as tools to non-parametrically identify the ATET,
whereas in the synthetic control frameworks the modelling of the pre-
treatment outcomes is also a part in estimating the counterfactual tra-
jectory of the outcome of the treated. Secondly, there are important
differences in how the frameworks utilize time-varying covariates. For
example, the proposed framework can utilize time-varying covariates
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that do not vary across units to identify the ATET. A third difference is
that none of the synthetic control methods can handle missing data in
the pre-treatment outcome time-series, whereas the proposed strategy
can incorporate missing data in both the pre-treatment outcomes and
the time-varying covariates.1

There is a rich pool of time-series clustering and matching strategies
available see; e.g., Fu (2011) and Aghabozorgi et al. (2015) for over-
views. The focus of this literature is mainly on data mining, and finding
similar sequences for predictive purposes. However, to the best of our
knowledge, this literature has not been utilizing time-series matching to
identify causal effects.

The theoretical results derived in this paper can be combined with ot-
her time-series models than the model used in this paper. The two-level
time-series model used is chosen for several reasons; it is an intuitive,
easy to use, and, for most purposes, a sufficiently sophisticated method
to achieve closeness in the outcome under no treatment between the
treatment and control group. In addition, the model-based time-series
strategy enables sensitivity analysis of key identifying assumptions such
as the unconfoundedness and overlap assumptions, discussed in detail in
the following sections.

In summary, this paper specifies the assumptions under which high
frequency pre-treatment measurements of the outcome can be utili-
zed, as a substitute for, or in addition to, observed covariates, to non-
parametrically identify the ATET. It is shown that when the pre-treatment
data are rich enough and these assumptions hold, the heterogeneity
across observational units in unobserved covariates affecting the out-
come under no treatment can be derived from the pre-treatment data.

The remainder of this paper is structured as follows. Section 2 pre-
sents the notation and gives the theoretical results. Section 3 presents
estimation strategies utilizing the theoretical results. Section 4 presents
a small Monte Carlo simulation study aimed to illustrate a situation
where the proposed framework can be a useful alternative to the synt-
hetic control framework. Section 5 presents an empirical example with
electricity consumption data. Section 6 presents a discussion and con-
cluding remarks.

2 Identification of the ATET
This section formalizes the assumptions under which the ATET can be
identified from the pre-treatment outcome data. Consider an observati-
onal study setting where observational units, i = 1, ..., N, are measured

1Brodersen et al. (2015) can handle missing data in the outcome of a single treated
group but not in the pool of non-treated units.
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repeatedly for T consecutive time periods. Time periods t = 1, 2, ..., t1−1
and t = t1, t1 + 1, ..., T refer to time periods pre and post assignment
of treatment, respectively. Let Dit be an indicator function, taking the
value 0 if not treated and 1 if treated, at time period t for unit i. Once
treated, Dit = 1 throughout the study. Furthermore, let Yit(d) be the
potential outcome (Splawa-Neyman et al., 1990 translating Neyman,
Rubin, 1973) at time period t where d is set to 1 if the observational
unit i is given treatment at time t and 0 if not given treatment at time
t. The ATET for time period t is given by

ATETt = E[Yit(1)− Yit(0)|Dit = 1], ∀ t = t1, ..., T.

There are three assumptions commonly used to identify the ATET
from observational data. Throughout this paper, if nothing else is sta-
ted, it is assumed that two of these, the Stable Unit Treatment Va-
lue Assumption (SUTVA) (Rubin, 1980) and the assumption of overlap
holds. The third assumption, known as the weak unconfoundedness as-
sumption (UA), is that the distributions of the potential outcomes under
non-treatment are the same for the treated and non-treated (controls)

given a set, Z
(∗)
i , of time-invariant covariates and time-varying covaria-

tes observed at specific time periods although never later than at time

period t, i.e., no future observations. For example, at time t, Z
(∗)
i may

contain some time-invariant covariate wi, one lagged time-varying cova-
riateX1

it−1 and another time-varying covariate at the current time period

X2
it. Throughout this paper, superscripts with and without parenthesis

are variable-subset and scalar-variable indices, respectively, and ‘(∗)’ is
used to indicate any subset of a set that contains information from that
set, sufficient for the UA to hold conditioned on this subset.

In line with Dawid (1979), the UA is defined formally as

Yit(0) ⊥⊥ Dit1 |Z
(∗)
i , ∀ t = t1, ..., T.

This UA assumption is similar to the assumption made by Angrist and
Kuersteiner (2011), but where they restrict the analysis to a single time-

series. If Z
(∗)
i is known and observed, the ATET can be consistently

estimated under the UA by controlling for Z
(∗)
i , however, in general Z

(∗)
i

is not known. The question of interest is what part of Z
(∗)
i can be derived

from pre-treatment outcome data for identification and estimation of the
ATET.

To make the identifying assumptions precise, some additional notation
is required. Let Wi be a 1 × P vector containing all possible time-
invariant covariates, and Xi be a T ×K matrix containing all possible
time-varying covariates at all time-periods of the study for unit i. Denote

by W
(p)
i a 1 × Pp vector, a subset of Wi where Pp ≤ P . Let X

(k)
i be
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a T × Kk matrix, a subset of X
(k)
i containing Kk ≤ K time-varying

covariates. Moreover, let Xit(L) denote a subset of Xi in terms of time
periods, including only the time period t and corresponding lags, where
L is a K× 1 vector containing the number of lags (including t itself) for
each of the K time-varying covariates. For example, for K=10, Kk =

3 and Lk = (1, 3, 0)′, it follows that X
(k)
it (Lk) extracts

[
X1
it X1

it−1
]′

,[
X3
it X3

it−1 X3
it−2 X3

it−3
]′

, and
[
X10
it

]
, assuming that covariates 1,3,

and 10 are the three covariates chosen from the 10 possible.
Let the data generating process of the outcome under no treatment

at time period t be given by

Yit(0) = f1

(
X

(1)
it (L1),W

(1)
i , νit

)
∀ t = t1, ..., T,

where f1 is some function, and νit is independently and identically distri-

buted (iid) for all t for each observational unit i, independent of X
(1)
it (L1)

and W
(1)
i . For this strategy to work, the length of the lags of the cova-

riates used for identification must be bounded by what is observed, i.e.,
max(L1) < t1, which implies that the memory of the process is shorter
than the length of the pre-treatment period. Correspondingly, let the
treatment assignment mechanism at time period t1 be given by

Dit1 = g
(
X

(2)
it1

(L2),W
(2)
i , ξit1

)
,

where g is some function, and ξit1 is iid for all t for each observational

unit i, and independent of X
(2)
it1

(L2), and W
(2)
i .

To facilitate the understanding of this paper, Assumption 1 gives a
re-expression of the UA (Equation 2) in terms of the data generating
process and the treatment assignment mechanism.

Assumption 1. The outcome at time period t under no treatment for
unit i is given by

Yit(0) = f1

(
X

(1)
it (L1),W

(1)
i , νit

)
, ∀ t = 1, ..., T,

such that νit is independent of {X(1)
it (L1),W

(1)
i }, and Dit1 for all i and

t = t1, ..., T .

Assumption 1 says that the outcome process under no treatment is the
same during the full study period. Furthermore, the error term is as-
sumed independent of Dit1 for all t ≥ t1. If all covariates affecting the
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outcome under no treatment are observed, the ATET is clearly identi-
fied by adjusting for all these covariates. The aim of the rest of this
section is to relax Assumption 1 such that the ATET can be identified
also when not all covariates affecting the outcome is observed. For cla-
rity of exposition, this is done in several steps, with the final assumption
presented in Section 2.2.

Define the sets of covariates affecting both the assignment and the

outcome under no treatment, W(s) = W(1) ∩W(2) and X
(s)
it (Ls) =

X
(1)
it (L1) ∩X

(2)
it1

(L2). Under the Assumption 1, i.e., that νit is indepen-
dent of ξit1 for all t = t1, ..., T , a sufficient set, Z∗i , for which the UA is

satisfied, is given directly by Z∗i =
{
W

(s)
i ,X

(s)
it (Ls)

}
. This means that

it is sufficient to condition on the variables, and measurements thereof,
that are common to the outcome during time periods t = t1, ..., T and
the treatment assignment at time t1.

Assumption 1 has strong implications for the time-varying covariates
affecting both the treatment assignment and the outcome. Since any

time-varying covariates in X
(s)
it (Ls) must be controlled for also after

treatment to identify the ATET, it must hold that

Yit(0) ⊥⊥ Dit1

∣∣∣ {W(1)
i ,X

(s)
it1

(Ls), ...,X
(s)
iT (Ls)

}
∀ t = t1, ..., T,

which implies that the ATET is only identified for all t = t1, ..., T if

X
(s)
it (Ls) is exogenous. In this context, that X

(s)
it (Ls) is exogenous means

that X
(s)
it (Ls) cannot be causally affected by the treatment. This is well

known and studied in several fields, e.g, in path analysis it is called the
sequential ignorability assumption (see, e.g, Imai et al. 2010). Variants of
this assumption, in the context of identifying causal effects from a single
time-series, are discussed in Angrist and Kuersteiner (2011); Angrist
et al. (2017); Bojinov and Shephard (2019).

Without loss of generality, the function f1 can be parameterized by

the vector θi = h(W
(1)
i ), where h is a vector of functions all allowed

to be non-injective. The non-injectiveness, i.e., h−1(θi) 6= W
(1)
i imply

that the functions in h are allowed to reduce the information in W
(1)
i

arbitrarily. The meaning of this reparametrization is illustated in the
next subsection. Under Assumption 1, it follows directly from θi =

h(W
(1)
i ) that

Yit1(0) ⊥⊥ Dit1

∣∣∣ {θi,X(1)
it1

(L1), ...,X
(1)
iT (L1)

}
.

Let θ(s) be the subset of θ defined as θ(s) = h(W(s)). It follows that

Yit1(0) ⊥⊥ Dit1

∣∣∣ {θi(s),X(s)
it1

(Ls), ...,X
(s)
iT (Ls)

}
.
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Finally, for the estimation it is helpful to define θ
(∗)
i and X

(∗)
it (L∗),

two sets fulfilling θi ⊇ θ(∗)i ⊇ θ
(s)
i and X

(1)
it (L1) ⊇ X

(∗)
it (L∗) ⊇ X

(s)
it (Ls),

respectively. Since any such θ
(∗)
i and X

(∗)
it (L∗) are sufficient for the UA,

the data generating process of the outcome under no treatment at time
period t under for unit i can, without loss of generality, be rewritten as

Yit(0) = f∗

(
X

(∗)
it (L∗),θ

(∗)
i , ν∗it

)
, ∀ t = 1, ..., T,

for any f∗ such that ν∗it is independent of {X(∗)
it (L∗),θ

(∗)
i }, and Dit1 for

all i and t = t1, ..., T .
In summary, to identify the ATET for time periods t = t1, ..., T ,

under Assumption 1, it is sufficient to condition on the parameters θ
(∗)
i

describing the outcome time-series under no treatment and its relation
to the time-varying covariates in X(∗), where the covariates in X(∗)∩X(s)

have to be exogenous.

2.1 Illustration of Assumption 1 and its implications

The purpose of this section is to give a better understanding of the
notation and the intuition of Assumption 1. In empirical applications,
the functional form of treatment assignment process and the outcome
process under no treatment and their parametrizations γ and θi are
generally not observed. Here, we give explicit functions and parametri-
zations to illustrate Assumption 1 in detail. In addition, to illustrate
that this strategy is robust against the functional forms of h, arbitrary
and purposely complex relations are chosen. Again, denote by Xq

it cova-
riate q of unit i at time t. Let the outcome process under no treatment
be given by

Yit(0) = θ1i + θ2iX
1
it−2 + θ3iX

3
it + θ4iX

3
it−1 + νit,

where νit is iid, with V ar(νit) = θ5i, for t = 1, ..., T , where the parame-
ters are given by

θ1i = β11 + β12W
1
i W

2
i

θ2i = β21 + β22(W
2
i )2

θ3i = c

θ4i = β42|W 3
i |

log (θ5i) = β51 + β52(W
3
i )2

where W j
i ’s are elements of Wi. Further assume that the treatment

assignment process is given by

Dt1 = g(γ1i + γ2iX
1
it1−2 + ξit1),
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where ξit is iid, independent of νit, with V ar(ξit) = γ3i, g is some suitable
link function, and the parameters are given by

γ1i = ζ1,1 + ζ12(W
2
i )2 + ζ13(W

4
i )2

γ2i = ζ21 + ζ22e
W 4

i

log (γ3i) = ζ32W
1
i .

Note that some functions of W’s, e.g. (W 2
i )2, are non-injective as

discussed above. That non-injectiveness is unproblematic follows di-

rectly from Equation 2, in which elements of W
(1)
i play no part. In

other words, θi can replace W
(1)
i regardless of the information in W

(1)
i

it contains. For this example, W
(1)
i = {W 1

i ,W
2
i ,W

3
i }, X

(1)
it1

(L1) =

{X1
it, X

1
it−1, X

1
it−2, X

3
it, X

3
it−1} with L1 = (2, 1)′, θi = {θ1i, θ2i, θ3i, θ4i, θ5i}.

Moreover, W
(2)
i = {W 1

i ,W
2
i ,W

4
i }, X

(2)
it1

(L2) = {X1
it1
, X1

it1−1, X
1
it1−2}

with L2 = 2, and γi = {γ1i, γ2i, γ3i}. Hence, W
(s)
i = {W 1

i ,W
2
i },

X
(s)
it1

(Ls) = {X1
it1−2}, and θ

(s)
i = {θ1i, θ2i, }, and the minimal sufficient

set2 for the UA to hold is given by Z∗i = {W 1
i ,W

2
i , X

1
it1−2}, or equiva-

lently, Z∗i = {θ1i, θ2i, X1
it1−2}.

By the results in the previous section, this implies that under As-
sumption 1, the following statements3 hold for the first time period
after treatment assignment, i.e., t1

Yit1(0) ⊥⊥Di,t1 |W
(1)
i ,X

(1)
it1

(L1)⇔ Yit1(0) ⊥⊥ Di,t1

∣∣∣ W 1
i ,W

2
i ,W

3
i , X

1
it,

X1
it−1, X

1
it−2, X

3
it, X

3
it−1

Yit1(0) ⊥⊥Di,t1 |W
(s)
i ,X

(s)
it1

(Ls)⇔ Yit1(0) ⊥⊥ Dit1 |W 1
i ,W

2
i , X

1
it1−2

Yit1(0) ⊥⊥Di,t1 |θ
(s)
i ,X

(s)
it1

(Ls)⇔ Yit1(0) ⊥⊥ Dit1 |θ1i, θ2i, X1
it1−2,

and, e.g.,

Yit1(0) ⊥⊥Di,t1 |θ
(∗)
i ,X

(∗)
it1

(L∗)⇔ Yit1(0) ⊥⊥ Dit1 |θ1i, θ2i, θ3i, X1
it1−2, X

3
it1 .

In the following section we address the challenge of identifying the

ATET when neither W(s) or θ
(s)
i are observed, by specifying the assump-

tions under which θ
(∗)
i and the ATET can be identified and estimated

from pre-treatment data simultaneously.

2The minimal sufficient set for the UA to hold is known here because the data
generating processes are known.

3The conditional independence will hold for any superset of the minimal sufficient
set.
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2.2 Deriving θ
(∗)
i from data for identification of the ATET

Let Yit(Ly, 0) = (Yit−1(0), Yit−2(0), ..., Yit−Ly
(0)) and X

(obs)
i be the set

of observed time-varying covariates.

Assumption 2. The distributions of the covariates in X(obs) are the
same under treatment and no treatment for each t = 1, ..., T . Further-
more, the outcome process under no treatment can be expressed as

Yit(0) = f∗

(
Yit(Ly, 0),X

(obs)
it (Lobs),θ

∗
i , εit

)
∀ t = 1, ..., T, i = 1, ..., N

such that
εit ⊥⊥ Dit1∀ t = 1, ..., T

and

Yit(0) ⊥⊥ Dit1

∣∣∣ {θ∗i ,X(obs)
it1

(Lobs),X
(obs)
it1+1(Lobs), ...,X

(obs)
iT (Lobs)

}
∀ t = 1, ..., T.

Assumption 2 states that the outcome can be modeled as a time
series process of lags and observed time-varying covariates with error
terms independent of the treatment assignment at all t. Assumption 2
further implies that the lags of the outcome are sufficiently good proxies

for unobserved time-varying covariates, X
(unobs)
it , to identify θ∗i , where

X
(unobs)
it ∪X

(obs)
it = X

(∗)
it and X

(unobs)
it ∩X

(obs)
it = ∅. This is a relaxation

of Assumption 1 since this implies that potentially all time-invariant
covariates in W(1) and some time-varying covariates in X(1) may be
unobserved. However, there are two restrictions on the relaxation for
the time-varying covariates. First, under Assumption 2, X(obs) ⊇ X(s)

must hold to enable necessary conditioning in the post period. Second,

there are requirements for Yit(Ly, 0) to be a relevant proxy for X
(unobs)
it .

The first requirement, that the lags, Yit(Ly, 0) must be irrelevant for the

treatment assignment conditioned on X
(obs)
it , is implied by Assumption

2. However, it must also hold that

X
(unobs)
it 6⊥⊥ Yit(Ly, 0)|X(obs)

it ,θ∗i ⇔ X
(unobs)
it 6⊥⊥ Yit(Ly, 0)|X(obs)

it .

That is, θ∗i cannot predict X
(unobs)
it conditional on X

(obs)
it and Yit(Ly, 0),

and, furthermore the lagged outcomes need to be relevant for X
(unobs)
it

conditional on X
(obs)
it (see, e.g., Wooldridge 2010; de Luna et al. 2017

for the definitions of proxy variables in the treatment effect literature),

which essentially means that X
(unobs)
it must be dependent over time.

Note that if there are no time-varying covariates affecting the outcome

and the treatment assignment then the sufficient set θ
(∗)
i can be identi-

fied from flexible time-series specification of f∗ only. The identification
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strategy is closely connected to the indirect inference framework (see,

e.g., Gourieroux et al. 1993; Smith 2016). The parameters, θ(∗) of a
possibly misspecified model are assumed to contain information about
the parameters θ(s). Like in the indirect inference setting, the dimension

of θ
(∗)
i may be larger than of the set θ

(s)
i .

The assumption εit ⊥⊥ Dit1∀ t = 1, ..., T is a strong assumption, pre-
sent in one form or another in all causal-effect identification from ob-
servational data. However, if the number of parameters estimated to
derive θ∗i is less than the number of pre-treatment observations, model
checks and sensitivity analysis for the plausibility of this assumption are
possible. This is discussed in more detail in Section 3.3 and Appendix
A.

The first sentence in Assumption 2 states that the distributions of
the covariates in X(obs) are the same under treatment and no treatment
for each t = 1, ..., T . This is important for the identification of θ∗i : If,
e.g, the variation in the covariates in the pre-treatment period is much
smaller than in the post-treatment period, or if the variation in the time-
varying covariates differs among the treated and controls, it may not be
possible to correctly identify the relation between unobserved parts of
W(1) and the post-treatment outcome under no treatment. This would
in turn mean that the derived θ∗i is not sufficient for the identification
of the ATET estimand. However, as the time-varying covariates are
observed, the ‘overlap’ in variation of the time-varying covariates in the
pre and post periods, as well as between the treated and non-treated,
can be empirically evaluated.

3 Estimation strategies
Moving from identification to estimation, we suggest the following stra-
tegy: Fit a two-level time-series model to the pre-treatment data and

match on θ̂
∗
i and any observed time-invariant covariates, using a suita-

ble matching strategy and a regression estimator to adjust for possible
time-varying covariates. For inference, the standard errors of Abadie
and Imbens (2006, 2011) can be applied.

As discussed above, to estimate ATET consistently, X(s) must be
conditioned on. If none of the covariates in X(1) vary across units (i.e.

X
(1)
it = X

(1)
t ∀ t), it directly follows that X(s) = ∅ and the time-varying

covariates can be excluded. However, in addition to the matching on θ∗i ,
all time-varying covariates in X(obs) believed to be in X(s) and varying
across units should be controlled for explicitly in estimation. This can
be done by assuming a functional form in the relationship between the
outcome and the covariates guided by the estimates from the two-level
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model. Importantly, this implies that two units with similar θ̂
∗
i may be

matched even if they do not have the same Xq
it’s for any time-periods,

as long as they have ‘overlap’ in the variation in Xq
it, as discussed in the

previous section. In Section 4, this important feature is studied using
Monte Carlo simulations.

The identification strategy based on θ∗i does not impose a particular
ATET estimator, and there are several ways of estimating the ATET
consistently based on θ∗i . There are many alternatives for matching,
not further discussed here, see Rosenbaum (2019) for a recent overview.
For general discussions on inference for matching estimators, see Bodory
et al. (2018); Iacus et al. (2019). Alternatively, one can use a completely
Bayesian inference approach, estimating a DSEM on the full data set,
i.e., pre and post-treatment, explicitly modelling all the counterfactu-
als4, or use a difference-in-differences estimator. Both these alternative
identification and estimation strategies make assumptions of functional
forms in different ways. For this reason we are inclined to instead use ma-
tching estimators, which makes it possible to non-parametrically identify
the ATET under assumption that can be evaluated from pre-treatment
data, without consulting post-treatment data.

3.1 Estimating θ∗

The key to the proposed strategy is to be able to estimate θ∗i from
pre-treatment data. Several considerations have to be made in the esti-
mation of θ∗i . The most obvious challenge is to condense the information
in the pre-treatment measurements. For example, the näıve estimator

θ̂
∗
i = {Yi1, ..., Yit1−1} could be used but would require a unreasonably

large pool of controls for close match for each time-period. Moreover, if
the outcome is a function of exogenous time-varying covariates, simila-
rity in the pre-treatment outcome is not guaranteed to imply similarity
in the post-period under no treatment. This would be the case if, e.g.,
the relation between the exogenous variables of the units is not constant
over time, a setting addressed in the Monte Carlo study in Section 4.

This paper instead suggests approximating the function f∗ (Assump-
tion 2) with a parametric time-series model for each observational unit.
Once a time-series is fitted to an observational unit’s pre-treatment data,
the usual time-series tools to evaluate fit can be used to guide model
adjustments. Even if the fit is poor for some observational units, the
parameter estimates might give a sufficiently detailed description of the
heterogeneity in the processes to achieve balance in the unobserved time-
invariant covariates. A parametric time-series model can directly handle

4This corresponds to estimating the Average Treatment Effect rather than the
ATET.
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the challenge of time-varying covariates. The time-series model can be
specified to include time-varying covariates observed at the observational
unit level. However, also variables that do not vary across observational
units but only over time can be included to improve the description of the
heterogeneity across units. That is, although the time-varying covari-
ate itself is common to all units, the unit-specific parameter moderating
the relation between this covariate and the units’ outcome may be an
important part of θ∗i . In the empirical electricity consumption example
(Section 5), an example of such a variable is temperature which is com-
mon to observational units located in the same city. There, even though
all units have the same temperature, the unit-specific temperature de-
pendency is a potentially important part of θ∗i . This means that any
time-varying covariates believed to affect the outcome process can, and
should, be included, to improve the estimate of θ∗i . Including important
time-varying covariates also makes Assumption 2 more realistic as less
information is approximated by lags of Y . Appendix B gives a simple
illustration of the potential gain of including parameters describing the
dynamic aspects of the outcome processes in θ∗i .

3.2 Multivariate two-level time-series approach

In this section a strategy for estimating θ∗i under Assumption 2 is pro-
posed, using the novel Dynamic Structural Equation Modelling (DSEM)
framework (Asparouhov et al., 2018) available in Mplus version 8 (Muthén
and Muthén, 2017). The DSEM framework is a general multivariate
two-level time-series modelling framework with time on level-1 and ob-
servational units on level-2. Bayesian MCMC estimation is employed to
accommodate many random effects. Non-informative priors are used.
For the purposes of this paper, some especially practical DSEM fea-
tures are the ability to include time-varying covariates with measure-
ment frequencies different from that of the outcome, being able to fit
random effects of time-varying covariates that do not vary across ob-
servational units, and being able to allow for observational unit-specific
auto-regressive coefficients and residual variances. Since zero estimates
in unit-specific parameters are allowed for any observational unit, fitting
one DSEM can encompass units with various different orders of VARMA
models in one estimation since all restricted models nested in the fitted
model are encompassed. Combined, this means that DSEM helps to re-
duce the amount of information in the pre-treatment period by allowing
for similarity and dissimilarity across units in a natural way. Appendix
C.1 presents a simple example illustrating how a slightly over fitted two-
level time-series model can distinguish between observational units with
different orders of auto-regressive outcome processes. DSEM can also
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handle missing data and unbalanced panels of time-series, which implies
that units can enter the study at different time periods. For details
about missing data handling and sample size requirements in terms of
N and T , see Appendix C.

One possible objection to the two-level time-series approach is that the
parametric assumptions of the distributions of the random coefficients
pre-supposes similarity that is imposed on the estimates. Although this
objection can be valid, at least for short time-series, this problem will
in such cases show up as lack of balance in the pre-treatment outcome.
That is, if the time-series are so short that the distributional assumption
of the random coefficients forces the estimates to be too similar, to a
degree where the heterogeneity is underestimated, it will be apparent.
The following section discuss how to do sensitivity analysis to detect
such problems.

3.3 Model specification and sensitivity analysis

Several of the identifying assumptions can be checked to validate the
plausibility of the identification strategy. SUTVA cannot be checked
and must follow from the context or design of the study. The overlap
assumption, i.e., that there exist units similar to the treated units in
the pool of controls can be evaluated. Traditionally, this assumption is
evaluated by checking overlap in Wobs. Since we have substituted time-
invariant covariates with θ∗i the corresponding evaluation is to check

overlap in θ̂
∗
i . This can be thought of as a loose analogue to using the

estimated propensity score (PS) to check overlap with a large number of
covariates. In the standard setting the treatment assignment process is
summarized by the estimated PS, here the time-invariant characteristics
governing the pre-treatment outcome process are summarized by the

estimated θ̂
∗
i . As mentioned in Section 2.2, the assumptions for the

identification of θ∗i can also be checked by comparing the distribution
of unit specific time-varying covariates. It is important to understand
that if the assumptions for identification of θ∗i do not hold, checking the

overlap in θ̂
∗
i is futile, as overlap in θ̂

∗
i does not imply overlap in θ∗i in

that case.
Finally, under Assumption 2, sensitivity analyses of the unconfoun-

dedness assumption can be performed. Given the final sample of tre-
ated and matched controls the distributions of the error terms, eit =
Yit− Ŷit, for the treated and controls can be studied for all time periods
t = 1, .., t1− 1, where Ŷ 0

it is the fitted value. If the pre-treatment period
is long enough, the period can be split into a train and a test period:
sensitivity analysis can be performed by calculating the residuals for the
second period from the model estimated on the first period. However,
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even if the full pre-treatment period is used in the design, as long as the
number of parameters is smaller than the number of observation, a less
rigorous sensitivity analysis is still possible. We propose using a simpli-
fied sensitivity analysis by restricting the evaluation to the differences
in means, i.e, study the balance of 1

N1

∑
i:Di=1 eit and 1

N0

∑
i:Di=0 eit,

where N = N1 + N0, for all time periods by comparing the point-wise
standardized mean difference to the rule of thumb of being smaller than
±0.25 (Imbens and Wooldridge, 2009), illustrated in the empirical ex-
ample in Section 5. If the estimates of θ∗i do not contain at least as much
information about the heterogeneity in the processes as θi, it is implau-
sible that balance would be obtained for all pre-treatment time periods.
There are many alternatives for model checking and sensitivity analysis;
for additional suggestions and a simulated illustration, see Appendix A.

4 Monte Carlo Simulation - Comparison with existing
strategies

In this section, the proposed identification strategy is compared to diffe-
rent versions of the synthetic control method. With time-series data on
pre-treatment outcomes, synthetic control methods are standard tools
for identifying causal effects, which makes it a reasonable comparison.
The purpose is to give an example of a setting in which the proposed
strategy is advantageous and illustrate and explain why. The focus of
the simulations is on the ability to incorporate and control for time-
varying covariates. As explained above, the proposed strategy allows
for explicit matching on the relation between observed time-varying co-
variates (unit-specific or common) and the outcome under no treatment,
which enables units with similar behaviour to be matched even if they
have different values on such covariates at any given time-period. The
identification strategy will therefore hold even if the relation between
the time-varying covariates of the units change over time, as long as the
relation between the time-varying covariate and the outcome remains
constant for each unit, and the time-varying covariate is controlled for
in the post-period.

The following data generating process is considered in the simulation.
The outcome of interest is given by

Yit = µi + ηYit−1 + φiX
1
it + εit,

for t = 1, ..., T , where µi ∼ N(0, σ2µ), φi ∼ N(0, σ2φ), εit ∼ N(0, σ2ε ), and

X1
it = φ2X

1
it−1 + 1(t ≥ t1)γi + ζit,
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where 1(t > t1) is a indicator function taking the value one if t is larger
than or equal to t1, γi ∼ N(0, σ2γ), and ζit ∼ N(0, σ2ζ ). Note that model
is a special case of DSEM. In the DSEM framework, Equation 4 is the
level-1 equation, also called within-unit level, and the distributions of
µi and φi are modeled in the level-2 system of equations, also called the
between-unit level (Asparouhov et al., 2018).

Here we consider the T/2 = t1 first time periods to be pre-treatment
periods, and the second half as post-treatment. Both the outcome and
the time-varying covariate are observed during the pre-treatment period.
The indicator function creates a change in the relation between the time-
varying covariates of the observational units. Since the shift in X1

it is
independent of everything else and has expected value zero, X remains
exogenous wherefore Assumption 2 holds. For simplicity, we let the
treatment effect be zero for all treated units, and measure the deviation
from zero of the point-wise ATET estimate in the post-treatment period
to evaluate how similar the treatment and control groups are.

It is an extreme case as all shifts in X1
it occur at the same time as

treatment. However, this is chosen to illustrate the challenge that exo-
genous time-varying covariates may pose for identifying the ATET. The
severity of the shift would be smaller if it happened at different times for
different units, but the issue would remain unless the relations between
the time-varying covariates are constant for the full study time.5

Two total sample sizes are considered: 120 and 400. In both cases
the control group is three times larger than the treated (30,90 and 100,
300, respectively). Time-series of two different lengths are considered,
100 and 728. The 728 (2*364) is used to mimic the setting of the em-
pirical example in Section 5. For each setting, 500 replications with
independent samples are used.

4.1 Strategies

Table 1 presents the factors and levels of the simulation. All strategies
were implemented in R using default settings if nothing else is stated.
For the DSEM estimation Mplus version 8.3 was called via the Mplu-
sAutomation R package (Hallquist and Wiley, 2018). The details of the
strategies are the following: Two-level time-series matching (TLTM) is
the strategy proposed in this paper where a DSEM model according
to Equation 4 is fitted on the full sample, and caliper matching using
the R-package MatchIt (King and Stuart, 2011) is used to find matching
controls. The X1

it dependency is removed from the post-period outcomes

5A simulation study with random time periods for the shifts of each units time-
varying covariate was conducted to confirm this, these results are not included in the
paper.
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using the unit-specific φ̂i parameters before the group difference is calcu-
lated. The original synthetic control (SCORG) is the strategy proposed
by Abadie et al. (2010) applied to multiple treated units as proposed in
Abadie et al. (2015), implemented using the R-package Synth (Abadie
et al., 2015). That is, the outcome and X1

it of the treated units are
aggregated and a synthetic control is then found for the whole treated
group at once. The covariates, i.e, the aggregated X1

it for the treated
and the unit-specific X1

it for the controls, are added as a time-varying co-
variate. Causal Impact (CI) it the strategy proposed by Brodersen et al.
(2015) implemented using the R-package CausalImpact described in the
same paper. This strategy was originally proposed for a single treated
unit, however, as it is an interesting extension of the standard synthe-
tic control it is added here using the same aggregated treatment-group
setting as for SCORG. This package allows for time-varying covariates
for the single treated unit, wherefore we used the temperature aggre-
gated over the treated units as a time-varying covariate for the treated
group. The package can not include time-varying covariates for the pool
of controls. Robbins et al. (2017) proposed a framework for synthetic
controls for microdata, implemented using the R-package MicroSynth
(Robbins and Steven, 2019). This package creates synthetic controls for
multiple treated units without aggregating. Due to convergence issues,
only every 5th time period are used with this package. This package
allows for including time-varying covariates in two ways, the full time-
series (SC), and the time-invariant unit aggregate of the time-varying
covariate (SCAG). The generalized synthetic control (GCS) is the stra-
tegy proposed by Xu (2017), implemented using the R-package gsynth
(Xu and Liu, 2018). The GSC combines a standard fixed effects panel
model with the synthetic control framework and a large N and T factor
model for interactive effects as proposed by Bai (2009). A two-way fixed
effect is fitted with X1

it as a regressor and the factor model is fitted with
0-5 factors using crossvalidation.

Table 1. Factors and levels of the Monte Carlo simulation study.

Factor Levels
Strategy TLTM, CI, SC, SCAG, SCORG, GSC
N1 +N0 30+90, 100+300

T 100, 728
σ2φ 0.5, 3

4.2 Results

The results are evaluated in terms of the MSE of the ATET estimate
over the post-treatment period. Table 2 displays the mean and standard
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deviation of the MSE over all factors and levels. In some settings, some
synthetic control strategies did not converge. The number of the 500
samples for which the strategies successfully found a design is reported in
square brackets of each cell. The small number of convergent replications
for some strategies it due to the setting not fitting the proposed strategy.
They are included here to illustrate the limitations of the methods with
large samples in terms of units and time-periods, and multiple treated
units.

With large variation in φi over units, i.e., σ2φ = 3 (bottom half of

Table 2), all strategies have substantial MSE’s as compared to TLTM.
As expected, for all strategies the mean MSE decreases with increasing
N , as when N is larger the group mean of the X1

it shift is closer to
zero by the law of large numbers. The strategies SC and SCAG have
very large MSE in all settings with σ2φ = 3. When the heterogeneity in

the dependency in X1
it is smaller (σ2φ = 0.5), the MSE decreases for all

strategies. For TLTM, CI, GSC, and SCORG, all have MSE close to zero
for all settings, except when both N and T are small, where only TLTM
achieves close to zero MSE. SC and SCAG are again outperformed by
all other strategies.
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Table 2. Mean, (standard deviation), and [number of succesful replications] of the average pointwise MSE for all strategies under
different N , T and time-invariant covariate dependency. Empty cells indicate that none of the 500 replicates found a solution
without errors.

σ2
φ = 0.5

N T TLTM CI GSC SCORG SC SCAG
120 100 .04 (.03)[500] 1.8 (2.4)[500] 8.1 (11.9)[52] 1.3 (1.6)[500] 36.4 (51.8)[268] 29.4 (39.2)[500]
120 728 .12 (.06)[500] .21 (.25)[500] .31 (.37)[180] .34 (.40)[500] -(-)[0] - (-)[0]
400 100 .04 (.02)[500] .07 (.08)[500] 1.1 (.36)[3] .1 (.12)[500] 1.6 (2.08)[255] 1.3 (1.67)[500]
400 728 .03 (.02)[500] 1.8 (2.5)[500] 2.6 (3.5)[189] 1.2 (1.5)[500] 52.9 (77.6)[100] 46.5 (64.77)[192]

σ2
φ = 3

120 100 .15 (.09)[500] 6.2 (8.3)[500] 15.6 (23.5)[176] 4.1 (5.0)[500] 174.2 (310)[252] 116.9 (180)[499]
120 728 .12 (.06)[500] 5.7 (8.1)[500] 7.7 (9.7)[263] 4.6 (5.6)[500] - (-)[0] - (-)[0]
400 100 .04 (.03)[500] 1.8 (2.4)[500] 8.1 (11.9)[52] 1.3 (1.6)[500] 36.4 (51.8)[268] 29.4 (39.16)[500]
400 728 .03 (.02)[500] 1.7 (2.5)[500] 2.6 (3.5)[189] 1.2 (1.5)[500] 52.9 (77.6)[100] 46.5 (64.77)[192]
Note: TLTM=Two Level Time-series Matching, CI=CausalImpact (Brodersen et al., 2015), GSC=Generalized Synt-
hetic Control (Xu and Liu, 2018), SCORG = Synthetic control (Abadie et al., 2015), SC=Synthetic control non-
aggregated time-varying covariates (Robbins and Steven, 2019), and SCAG=Syntentic Control aggregated time-varying
covariates (Robbins and Steven, 2019).
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In settings where there is large variation in the units’ relation between
the outcome and the exogenous time-varying covariate, it is important
to make the groups similar in the relation itself (φi) and then control for
such covariates (X1

it), rather than to make the groups similar in the raw
unconditional outcome (Yit(0)). That is, similarity in outcomes does
not strictly imply similarity in θi. Similarity in raw pre-treatment out-
come data can occur naturally in three ways here, (1) similarity in both
µi and φi with similar Xit for all t, (2) dissimilarity in µi and φi with
dissimilar Xit that balances the outcomes, and (3) similarity in Xit but
dissimilarity in µi and φi such that the outcomes are balanced. Only
treatment and control groups that are similar in the first way would
imply identification of the ATET, and even then, the time-varying co-
variates must be controlled for in the post-period, or be constant across
units. To illustrate, under the data generating process in Equation 4,
two units i and j with very similar Y under the same X1, may be qua-
litatively very different from each other. For example, Xit = Xjt = 2,
µi = 1, φi = 4, µj = 8, and φj = 0.5 would give the same outcome,
i.e., Yit = 1 + 4 × 2 = 8 + 0.5 × 2 = Yjt. The proposed strategy aims
to make the matched control group as similar to the treated group as
possible in terms of time-invariant characteristics (θ∗i ) which includes
relationships between time-varying covariates and outcome, which ul-
timately makes the groups similar in the outcome conditioned on the
time-varying covariates.

5 Empirical example with electricity consumption data
In the motivating example for this paper, taken from Öhrlund et al.
(2019), the focus is on the effects of a dynamic tariff in contrast to a flat-
fee price tariff on electricity grid fee for firms. The aim of a dynamic price
tariff instead of a flat fee is to lower the peaks in the grid. High peaks
are associated with high costs for the company supplying the grid. This
specific dynamic tariff has costs proportional to the customers’ highest
peak of consumption during each month, whereas the flat fee tariff is
based on the total kWh usage each month. By reducing each firm’s
highest peaks, the grid-supplying company aims to lower the cumulative
peaks in the grid.

This example uses data from a specific company supplying electricity
grid to firms in the cities of Sandviken and Sundsvall in Sweden. All the
firms had the flat fee tariff in 2014. The dynamic tariff was introduced
to all firms in Sandviken in 2015 but a flat fee remained in Sundsvall.
There are 212 firms in Sandviken and 1055 in Sundsvall, which means
that 16.7% of the sample is in the treated group. 157 firms in Sandviken
and Sundsvall were excluded from the sample due to lack of variation or
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too large amount of pre-treatment periods with zero consumption. In
total, 1110 firms from both cities are included in the matching. In the
final effect estimation, 184 of the firms in Sandviken were included and
the matched control group consisted of 140 firms from Sundsvall. The
daily electricity consumption is observed for all firms from 2014 up to
and including 2016, three years in total. All the details of this study can
be found in Öhrlund et al. (2019).

There are three important aspects to account for when comparing
electricity consumption of firms. The first, most obvious aspect is out-
door temperature. It is important since heating is one of the largest
sources of electricity consumption. The second aspect is the price of
electricity. The treatment in this case concerns the price of the grid, but
the price of the watt hours is unregulated by the treatment. Finally, the
third aspect that must be accounted for is changing market conditions,
including recessions and changes in demand etc. The city of Sundsvall
was chosen as a control group to Sandviken with these aspects in mind.
The temperature difference is small since the cities are closely located
(200km)6. Regarding the market, the population size of Sundvall is
around two times as large as Sandviken, however, the two cities have
similar industry structure, are part of the same region, and have access
to the same electricity market.

5.1 Identification and Estimation

The parameter of interest is the ATET. The SUTVA should hold, be-
cause there is only one form of the treatment, and, given that firms are
cost minimizing, it is not likely that the firms’ electricity consumption
is affected by other firms’ treatment status. With regards to overlap,
this evaluation is a special case as the assignment is at the city level
with no overlap in location. This means that it has to be assumed that
a firm located in Sandviken could have been located in Sundsvall, given
all possible values of all potential confounders.

The fact that the firms cannot choose to be treated makes Assump-
tion 2 more plausible. However, since the treatment is at the location
level, any time-varying covariates that vary between these two locati-
ons should be controlled for. The cities are chosen as they are close to
each other and share most of the environmental factors such as elec-
tricity price and recessions. One thing that might be slightly different
is the outdoor temperature in the two cities, as temperature is not in-
dependent of treatment-assignment (location) and temperature affects

the outcome, X
(1)
it ∩X

(2)
it = Tempjt where j =(Sandviken, Sundsvall).

Because temperature cannot be causally affected by the treatment assig-

6The small remaining difference is addressed in the estimation section below.
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nment it follows that Tempjt(0) = Tempjt(1) for all j and t. This means

that under Assumption 2, it is sufficient to condition on W(1) ∩W(2),
which likely contains information about heating systems, type of firm,
insulation, facilities, etc., and the temperature lags to identify the ATET
for all post-treatment time periods. In line with Equation 2, it is also
sufficient to condition on θ∗i , discussed in detail below, and the tempera-
ture lags. That is, Assumption 2 may hold in this setting even if W(s) is
unknown as long as sufficient information about the time-invariant cha-
racteristics that govern the outcome process under no treatment, θ∗i , can
be estimated from the pre-treatment outcome and temperature data.

To consistently estimate the ATET under Assumption 2 and assert
the overlap assumption, a propensity-based caliper matching estimator
is used. Firms in Sundsvall that are similar to firms in Sandviken are
selected to construct a matched control group, and the electricity con-
sumption of this matched control group and Sandviken are compared.
The observed firm characteristics are few: two variables measuring the
ampere dimension of the power subscription (Amp50 and Amp60) and
one variable for the estimated difference in cost if the firm does not
change their behaviour under the dynamic tariff given by

∆cost,i =

Yearly distribution tariff cost
during the pre-treatment period

∣∣∣Demand-based tariff(new)

Yearly distribution tariff cost
during the pre-treatment period

∣∣∣Energy-based tariff(old)

.

This is clearly a small set of characteristics: It lacks important factors for
electricity consumption such as machine park, size of facilities, number
of employees, heating system, etc.. However, since the daily electricity
consumption and temperature data for the full pre-treatment year of
the study are available for all firms in the study, it should be possible to
estimate θ∗i with high accuracy. The estimation of θ∗i is done in several
steps: First, a rich DSEM with a large set of substantively motivated
random coefficients is estimated. If, after matching on the unit-specific
parameter estimates from this model, Assumption 2 is indicated to be
fulfilled in the sensitivity analysis, then this indicates that the set of
random coefficients makes up a sufficient distillation of the characteris-
tics. If not, a different DSEM can be fitted where random coefficients
are added or removed according to expertise or model-fit measures.

The parameter vector θ∗i is estimated using the two-level time-series
approach discussed in Section 3.2. After fitting and refitting, balance
in outcome was achieved in all pre-treatment time periods. The final
within-firm time-series model used for the electricity consumption under
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no treatment was given by

Yit = µi+φkWh,iYit−1+φTemp,iTempj,t+φTemp−1Tempj,t−1+γ
′
i,monthM t+εit,

for t = 1, ...t1 − 1, where εit ∼ N(0, σ2i ), Y is the observed daily kWh
consumption of electricity under the flat free, Mt is a vector of time-
varying dummies for month, and Tempt is the outdoor temperature at
day t in city j = (Sandviken, Sundsvall). The vector(

µi, φkWh,i, φTemp,i, φTemp−1,γ
′
i,month, σ

2
i

)
contains all random, i.e., firm-specific coefficients which are modeled on
level-2. The final level-2 model is given by

µi ∼ N(µµ, σ
2
µ)

φkWh,i ∼ N(µφkWh
, σ2φkWh

)

φTemp,i ∼ N(µφTe
, σ2φTe

)

φTemp−1,i ∼ N(µφTe−1
, σ2φTe−1

)

log(σ2i ) ∼ N(µlog σ2 , σ2log σ2)

γik ∼ N(µγk , σ
2
γk), k = 1, ..., 11

Probit(Di) = β0 + β1µi + β2φkWh,i + β3φTemp,i+

β4 log(σ2i ) + γ ′iβ + β16∆cost,i + β17Amp50 i + β18Amp60i,

where γi is the 1 × 11 vector of the month-dummy estimates and β =
(β5, ..., β15)

T . Again, to be explicit, θ∗i = (µi, φkWh,i, φTemp,i, φTemp−1,i,
log(σ2i ), γi1, γi2, ..., γi11, Amp50i, Amp60i,∆cost,i)

7, and the corresponding
estimates are used as a substitute for the, in large part unobserved, suf-
ficient set of covariates W(1) ∩W(2). Here, since the propensity score
(PS) based caliper matching is used, the PS is estimated directly on
level-2 using the probit link for the treatment assignment, Probit(Di).
Electricity consumption at day t is modeled as a function of the con-
sumption the previous day, the temperature that day, and the month.
The large number of parameters capturing potential heterogeneity in
the temperature dependency is motivated by the often large effect out-
door temperature has on electricity consumption. For Mplus-estimation
output and interpretations of key parameters, see Appendix C.

5.2 Sensitivity analysis

As discussed in Section 3.3, we make sure that the assumptions for the
identification of θ∗i are fulfilled before checking overlap in the covariates

7Note that, e.g, Amp50i is allowed in θ∗i as the vector of functions h, discussed in
Section 2, is allowed to contain the identity function.
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or the PS. We do so by checking that the temperatures in the cities
have similar range and variability, which they do. Figure 1 displays the
overlap in the propensity of being located in Sandviken. Clearly there
are firms in Sundsvall with similar propensity to those in Sandviken.
However, the opposite is not true which is not a problem since the esti-
mand of interest is the ATET. By using caliper matching based on the

estimated propensity score and θ̂
∗
i , the overlap will be fulfilled as firms

in Sundsvall with non-overlapping propensities will be excluded.
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Figure 1. Overlap in firms’ propensity of being located in Sandviken (being in
the treated group).

The final model displayed in Equations 5.1 and 5.1 was obtained by
studying balance in the pre-treatment outcome using the balance me-
asure, Mean Difference standardized (MDS), suggested in Imbens and
Rubin (2015) for continuous outcomes, given by

MDSt =
ȳt,d=1 − ȳt,d=0√

s2t,d=0+s
2
t,d=1

2

.

Figure 2 displays the pre-treatment balance for the final model. MDSt is
clearly smaller than the rule of thumb of 0.25 (Imbens and Wooldridge,
2009) for all pre-treatment t, indicating balance. Clearly, balance is
obtained in all the outcomes of all pre-treatment periods. This indicates
that the model is a sufficiently good description of the outcome processes
to capture the important heterogeneities.

The left panel in Figure 3 displays the average electricity consumption
of the supplied firms in the two cities the year before treatment. It is
clear that the seasonality pattern of electricity consumption is similar for
the two cities but also indicates that the firms in Sundsvall consume more
electricity on average. Therefore a näıve comparison of the electricity
consumption during 2015 and 2016 would most likely provide a biased
estimate of the effects from the dynamic tariff. The right panel in Figure
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Figure 2. MDSt for all pre-treatment time periods.

3 displays the smoothed average after matching based on the final model,
i.e. the control group has changed from all of Sundsvall to the matched
control group, and the curve of the treated group is identical to that in

Figure 3. Grouped smoothed pre-treatment electricity consumption before (left
figure) and after matching (right figure). In the left figure all firms in Sundsvall
are included in the control-group, whereas in the right figure only the matched
control firms are included. The time-series starts May 1 year 2014 and ends
April 30 the following year.

matched firms have similar response to temperature shifts, and similar
level of consumption, although there are small differences in temperature
between the cities. θ∗

i is clearly sufficiently well estimated to capture
the non-constant temperature difference between the cities over the pre-
treatment year.

After the matching was deemed successful, the post-treatment data
were consulted to estimate the ATET. For all details of the estimated
effect, see Öhrlund et al. (2019). The point estimate of the ATET,
estimated with a panel regression model controlling for temperature,
was, using the standard errors of Abadie and Imbens (2011), significantly
different from zero and found to be -0.32 kWh averaged over the two
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post-treatment years, which is about 7.4% of the average pre-treatment
consumption.

6 Discussion
This paper has proposed a method for identifying causal effects from
non-experimental data by utilizing time-series measurements of the pre-
treatment outcome to substitute for, or add to, time-invariant covaria-
tes. The results in this paper show under which assumptions, and how,
pre-treatment measurements of the outcome can be utilized in the iden-
tification and the estimation of the Average Treatment Effect of the
Treated (ATET). The theoretical results and estimation methods can
be used in addition to non-complete sets of observed confounders, and
in some situations completely substitute for time-invariant covariates.

The strategies suggested in this paper build on being able to characte-
rize a high frequency pre-treatment outcome process of an observational
unit by a small set of informative statistics. In many situations, these
process characteristics are directly related to unobserved characteristics
of the subjects under observation. One might question why observati-
onal units are not simply matched on a simple summary statistic, e.g.,
within-unit pre-treatment means. However, the results in this study
show that the within-unit short time dynamics can hold important in-
formation about heterogeneity across units. In other words, units with
similar average levels may have different processes around their average
level implying that there might be time periods for which the groups
are not balanced even if they are balanced on average over time. By ex-
tracting these characteristics from the pre-treatment outcome data in a
more fine tuned manner, unobserved variables that are by construction
important as they are possible confounders, can be captured by para-
meter estimates. These estimates can then be used to identify causal
effects by e.g. adjustment or matching.

Given that there are many time-series characterization and cluste-
ring/matching strategies and strategies for modelling the counterfactu-
als using time-series models, some important pros and cons of the sug-
gested strategy are discussed in this paper. The matching estimation
strategy suggested in this paper uses a parametric two-level time-series
model to characterize each units outcome process. However, the ma-
tching strategy, evaluated on the pre-treatment outcome, can be used
in combination with any type of ATET estimator and inference, which
means that even though complex Bayesian time-series analysis is used
to achieved balance, any standard effect estimator can be utilized in the
final step of the effect evaluation. If there are no necessary time-varying
covariates, it is even possible to non-parametrically estimate the ATET.
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Comparing the proposed two-level time-series characterizing strategy
to non-model based strategies, the greatest difference is the ability in
the proposed strategy to include time-varying covariates that do not
vary across observational units. More specifically, the relation between
such covariates and the outcome of each unit can in a natural way be
utilized in the estimation. This is the main contribution of the pro-
posed strategy as the relation between time-varying covariates that do
not vary across observational units and the outcome of each unit might
reveal important differences in outcome processes, as was illustrated by
the inclusion of temperature and season in the empirical example. In
addition, the proposed strategy has, in our opinion, one great advantage
in a causal inference setting, namely that it provides the possibility to
check the overlap assumption. The two-level time-series model-based
approach quantifies the heterogeneity in terms of parameter estimates,
estimates that can in turn be used as independent variables in a pro-
pensity score estimation used to check and make sure that the essential
overlap assumption holds.

In conclusion, this paper has extended to a time-series setting the no-
tation and assumptions used in cross-sectional observational studies to
identify the ATET. The time-series setting opens up the possibility to al-
ter the assumptions utilizing the pre-treatment data more extensively in
the identification and estimation, replacing unobserved covariates with
information derived from the pre-treatment outcome data. This deve-
lopment should enable more studies to be able to identify the ATET,
even in fields where covariates are difficult or expensive to collect.

References
Abadie, A., Diamond, A., and Hainmueller, J. (2010). Synthetic Con-

trol Methods for Comparative Case Studies: Estimating the Effect
of California’s Tobacco Control Program. Journal of the American
Statistical Association, 105(490):493–505.

Abadie, A., Diamond, A., and Hainmueller, J. (2015). Synth : An R
Package for Synthetic Control Methods in Comparative Case Studies
. Journal of Statistical Software, 42(13).

Abadie, A. and Gardeazabal, J. (2003). The Economic Costs of Con-
flict: A Case Study of the Basque Country. The American Economic
Review, 93(1):113–132.

Abadie, A. and Imbens, G. W. (2006). Large sample properties of
matching estimators for average treatment effects. Econometrica,
74(1):235–267.

Abadie, A. and Imbens, G. W. (2011). Bias-corrected matching estima-
tors for average treatment effects. Journal of Business and Economic

27



Statistics, 29(1):1–11.
Aghabozorgi, S., Seyed Shirkhorshidi, A., and Ying Wah, T. (2015).

Time-series clustering - A decade review. Information Systems, 53:16–
38.
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Appendix

A Sensitivity Analysis
Substantial differences in the distributions at any pre-treatment time
period period falsifies Assumption 2. To illustrate how the distribution
of residuals may be used, consider the following simplified example. Let
T = 100 and N = 200 (50 + 150) One data sets are generated from each
of the following two data generating processes

Yit(0) = µi + φiXit + εit (DGP 1)

Yit(0) = 1(Di = 1)(µ2i + φ2iXit) + (1− 1(Di = 1))(µi + φiXit) + εit, (DGP 2)

where µi ∼ N(0, 1), φi ∼ N(0, 1), εit ∼ N(0, 1), µ2i ∼ N(2, 1), φ2i ∼
N(2, 1) ∀ i = 1, ..., N . That is, in DGP 1 the treatment groups overlap
completely in the parameters, in DGP 2 there is very little overlap. For
DGP 1, successful matching should be possible whereas in DGP 2 this
should be difficult. We fit a DSEM corresponding to DGP 1 to both
samples and plot the distribution of t=90,91,...,99,100 to save space.
Figure A1 displays the boxplots of the distributions of residuals. The
top and bottom panels displays the residuals for DGP 1 and DGP 2,
respectively. The failure of finding a comparable groups under DGP 2 is
clear in the lack of overlap in the residual distributions. Note that other
issues than overlap, e.g., severe model misspecifications are likely to be
visible. This tool will indicate that the matching is not successful. It will
not, however, indicate what the error is. A residual plot like the one in
Figure A1 should alert the researcher that something is off. Inspection
of the overlap in each specific parameter and modelfit in the DSEM can
then guide the design.

The similarity in distribution could be formally tested by, for example,
the distributions of residuals in the two groups that be tested using
Kolmogorov-Smirnov tests at each time point from 1 to t1 − 1 using
some significance correction to account for the large number of tests.

A simplified sensitivity analysis is to restrict the evaluation to the

differences in means, i.e, study the balance of Y
1
t and Y

0
t for all time pe-

riods as discussed in Section 3.3 and illustrated in the empirical example
in Section 5. This caould be performed pointwise in t, or applying the
frameworks proposed in Angrist and Kuersteiner (2011); Angrist et al.
(2017); Bojinov and Shephard (2019). That is, test for an effect un-
der a period, preferably the time periods leading up to the treatment
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assignment, where there should be no effect under Assumption 2. If
the estimates of θ∗i do not contain at least as much information about

the heterogeneity in the processes as θ
(s)
i , it is implausible that balance

would be obtained for all pre-treatment time periods. In this paper, the
sensitivity analysis is simply done by comparing the point-wise standar-
dized mean difference to the rule of thumb of being smaller than ±0.25
(Imbens and Wooldridge, 2009).

The above mentioned sensitivity analysis strategies can also be used
to help specify Lobs. That is, Lobs can first be specified with larger lags
than might be expected, lags with estimated zero effects can then be
removed by iteratively fitting the two-level time-series model, evaluating
the parameter estimates.

B Possible gains of including dynamic parameters in
matching

Here it is illustrated that balance evaluation based on pre-treatment
within-observational unit means does not imply balance in the group
means at each pre-treatment period, and, how this balance can be impro-
ved by evaluating the balance also in slopes of time-varying covariates.

DGP 2

DGP 1

Pre−treatment time period

R
es

id
ua

l Treated
0

1

Figure 2: Distribution of residuals over time under different data generating processes.Figure A1. Distributions of residuals for the last 10 pre-treatment time periods.
Two data generating processes are considered, with and without overlap in the
parameter estimates.
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Data are generated as

Yit = µi + φiXt + εit

where the error term is independently and identically distributed εit ∼
N(0, 1) for all i and t. φi ∼ n(0, 2). Here Xt = sin(0.05t) to mimic
a covariate with clear seasons. The outcome Y could for example be
electricity consumption within a household i, where the variation around
the mean varies with temperature X that varies with season over time.
One sample of 50 treatment and 150 controls is generated.

A simple matching algorithm is used: 50 of the controls are randomly
sampled without replacement from the pool of controls repeatedly. A
DSEM according to Equation B is fitted to the treated and and randomly
sampled controls. This is repeated until (1) the absolute difference in
the mean of the raw outcomes is smaller than 0.001, and (2) the absolute

difference in the mean of the mean of the raw data and the mean of φ̂ are
both smaller than 0.005. The distribution of coefficients, estimated one
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Figure B2. Distribution of random-coefficient estimates in the treatment group
and the pool of controls.

time-series at a time, in the sample before matching is given in Figure
B2. The two groups clearly overlap in the distributions of both µ and
φ.

To ensure that the groups are balanced at all post-treatment time
points of interest, the goal of the matching is to make the groups as
similar as possible in the pre-treatment period. If the groups are com-
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Figure B3. Pre-treament outcome treatment groups balance after matching
based on the pre-treatment within-observational unit mean and φ̂i (top figure),
and the pre-treatment within-observational unit mean only (bottom figure).

parable for all pre-treatment time points it should increase the likelihood
for the balance to continue after this period unless any treatment is ad-
ded. Figure B3 displays the pre-treatment smoothed group means after
matching based on only the within-unit mean and both the mean and φ̂i.
It is clear that the mean level over the full pre-treatment period is ap-
proximately balanced in both cases. However, at several time points the
groups differ substantially when only the within-unit mean is balanced.
It is clear that this increases the point-wise similarity in pre-treatment
processes drastically. These results illustrate the potential importance
of fully utilizing the pre-treatment data and its dynamic characteristics
in the identification.

C DSEM

C.1 Illustration of the dimension reduction using two-level
time-series analysis

In this section a small simulation study illustrates how a general multi-
level time-series models, e.g., a DSEM, can be used to conveniently
characterize a large number of long time-series. To illustrate the utility
of the models, 4 groups with outcome processes following different AR-

34



Figure C4. The time-series of the 60 observational units. In the right panel
the time-series are coloured according to group.

processes are constructed. The data are generated as

Yjit = µj + φ1ijYit−1 + φ2ijYit−2 + εijt

where j = 1, 2, 3, 4. refers to the groups. Furthermore,

µi1, µi2 ∼ N(1, 0.2)

µi3, µi4 ∼ N(3, 0.1)

φ1i1, φ1i2 ∼ N(0.5, 0.3)

φ1i3, φ1i4 ∼ N(−0.2, 0.3)

φ2i1, φ2i4 = 0

φ2i2, φ2i3 ∼ N(−0.4, 0.3)

εi1t ∼ N(0, 1)

εi2t ∼ N(0, 3)

εi3t ∼ N(0, 0.5)

εi4t ∼ N(0, 0.1),

with i = 1..., N and t = 1, ..., T , in this case N=60, T=300. Figure
C4 displays the time-series of all 60 observational units for 300 time
periods. From the left panel it is difficult to distinguish between the
different groups. The following model is fitted to this data

Yjit = µj + φ1ijYit−1 + φ2ijYit−2 + φ3ijYit−3 + εijt.

The parameter estimates divided by groups are displayed in Figure C5.
By looking at several parameters these four groups can easily be identi-
fied. For example, group 1 and 2 cannot be distinguished from based on
the mean only, however, using the mean and/or the variance the sepa-
ration is clear. Although not all parameters have perfect estimates, the
model successfully captures and distinguishes between the four different
groups, including two nested AR processes, in one estimation. Figure
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Figure C5. Grouped parameter estimates for all parameters of the model.

C6 displays an example from each of the four groups. It is clear that the
levels and variances are different, however, the difference in the order
and strength of the autocorrelation is less obvious from the plots.

Figure C6. One example process from each of the four groups. The solid line
is given as a level reference point.
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C.2 Empirical example - Details

Table C1 shows some key estimates. The parameters correspond to the
parameters in Equation 5.1. Starting from the bottom of the table, it is
clear that there is, e.g., a large variation in the residual variance term
and a number of other parameters including the mean level consump-
tion, all indicating heterogeneity across firms in consumption processes.
Some firms may have a low mean level but a large variance due to high
autocorrelation and residual variance, whereas other might be more de-
pendent on the temperature and the season. Indeed, several of these
unit-specific parameters also have significant effects on the treatment
assignment indicating the importance of including these in the balan-
cing procedure.

C.3 Sample size recommendations

The sample size requirements in terms of N and T for using the DSEM
strategy depends heavily on the complexity of the fitted model. With
high-order autocorrelation structures and or many time-varying covari-
ates, and thereby many random coefficients, the requirements increase.
However, simulations in ? suggests that models without complex level-2
models, i.e., where only the distribution of the random coefficients ex-
cluding their structural relations, are the least demanding. According to
results in that paper, T ≥ 75 and N ≥ 100 should enable quite complex
models. Due to the shared hyper parameters, a larger N , say 250 or
more, can reduce the T requirements further in many situations.

Note that DSEM does allow for unbalanced time-series which implies
that settings where pre-treatment observations and or post-treatment
periods are different can be handled in a straightforward fashion. Of
course, to find similar units, it is desirable to observe them under a
sufficiently long period to ensure that similarities are not artefacts of
seasonal effects.

C.4 Missing data in the pre-treatment period

As mentioned above, another important benefit of fitting a parametric
Bayesian two-level times-series model such as the DSEM and match on
the unit-specific parameters is that the model can easily handle missing
data in the outcome and time-varying covariates under the missing at
random assumption. None of the above mentioned strategies besides
TLTM have built in strategies for handling missing data. The CI can
handle missing data in the treated units outcome, but not the outcomes
of the control. Figure C7 displays the MSE with and without 25%
missing data in all units in the pre-treatment period for TLTM with
N=120 and T=100. As shown in ?, the accuracy of the TLTM model
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Table C1. Estimates and 95% credibility intervals for key parameters of the
Y and D regressions.

Parameter Estimate CI(low) CI(high)
β1 -0.008 -0.054 0.045
β2 0.266 -0.2 0.713
β3 1.878 -0.387 4.314
β4 -0.072 -0.183 0.036
β8 0.655 0.043 1.328
β9 -0.958 -1.674 -0.308
β10 -0.366 -1.18 0.381
β11 2.049 0.888 3.126
β12 -0.764 -1.561 0.025
β16 0.38 -0.168 0.942
β17 0.176 -0.1 0.432
β18 0.333 0.033 0.647

µµ 4.597 4.413 4.787
µφkWh

0.447 0.433 0.460
µφTe

-0.042 -0.046 -0.039
µγ8 0.405 0.383 0.426
µγ9 0.368 0.345 0.391
µγ10 0.363 0.343 0.383
µγ11 0.176 0.158 0.193
µγ12 0.054 0.037 0.070

µlog σ2 -0.807 -0.888 -0.728

σ2
µ 10.387 9.532 11.274

σ2
φkWh

0.057 0.052 0.062

σ2
φTe

0.003 0.003 0.004

σ2
γ8 0.085 0.075 0.096
σ2
γ9 0.087 0.076 0.1

σ2
γ10 0.059 0.051 0.068
σ2
γ11 0.043 0.038 0.05
σ2
γ12 0.046 0.04 0.053

σ2
log σ2 1.813 1.669 1.976

improves in both N and T , wherefore the results for the smallest N and
T applies for all larger values. Clearly, there is only a small increase in
MSE due to the missing data and the TLTM approach is still preferrable
to the other approches in this setting even when the other strategies have
the full sample.
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Figure 1: MSE of the DSEM strategy with N=120, T=100, with and without 25 percent missingness
in the outcome in the pre-treatment period for all units.
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Figure C7. MSE of the DSEM strategy with N=120, T=100, with and without
25 percent missing data in the outcome in the pre-treatment period for all units.
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