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SUMMARY

Placebo-controlled randomized trials for antidepressants and other drugs often show a response for a
sizeable percentage of the subjects in the placebo group. Potential placebo responders can be assumed to
exist also in the drug treatment group, making it difficult to assess the drug effect. A key drug research
focus should be to estimate the percentage of individuals among those who responded to the drug who
would not have responded to the placebo (‘Drug Only Responders’). This paper investigates a finite mixture
model approach to uncover percentages of up to four potential mixture components: Never Responders,
Drug Only Responders, Placebo Only Responders, and Always Responders. Two examples are used to
illustrate the modeling, a 12-week antidepressant trial with a continuous outcome (Hamilton D score) and
a 7-week schizophrenia trial with a binary outcome (illness level). The approach is formulated in causal
modeling terms using potential outcomes and principal stratification. Growth mixture modeling (GMM)
with maximum-likelihood estimation is used to uncover the different mixture components. The results
point to the limitations of the conventional approach of comparing marginal response rates for drug and
placebo groups. It is useful to augment such reporting with the GMM-estimated prevalences for the four
classes of subjects and the Drug Only Responder drug effect estimate. Copyright q 2009 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

This paper discusses the assessment of drug effects as evaluated in placebo-controlled randomized
trials. To ground the discussion in specific substantive settings, two data sets will be first described.
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Figure 1. Antidepressant trial.

1.1. Antidepressant trial

Data for this example come from a clinical trial with 154 subjects diagnosed with major depression
and randomly assigned to receive fluoxetine, imipramine, or placebo for a 10-week clinical trial
[1]. Subjects met criteria for the atypical sub-type of depression. The depression score considered
here is the 28-item Hamilton Depression Rating Scale, which includes items suitable for atypical
depression not included in the 17-item scale. Depression ratings were also made at the beginning
and end of a 1-week, single-blind placebo washout period. Among the 154 subjects, 49 received
fluoxetine, 53 received imipramine, and 52 received placebo. The fluoxetine and imipramine were
found to be similar in the previous analyses [1] and are combined into a single drug group in the
current analyses. The depression outcome mean for the 12 time points is plotted in Figure 1 for the
placebo and drug groups. On average, the placebo group shows some improvement in depressive
symptoms while the drug group improvement is larger, especially after week 5. The outcome mean
at the endpoint is 13.5 (SD=8.6) for the placebo group and 8.1 (SD=7.1) for the drug group,
a significant overall reduction in depressive symptoms for those who are on active medication.
A common way to designate response is a drop of at least 50 per cent in the depression score
between the baseline and the end point [2], in this case at week 10. Using this rule 38 per cent
of the placebo group and 65 per cent of the drug group are responders (in case of missing data at
week 10, the last available observation is used).‡

‡[1] Did not use the 50 per cent approach but instead a Clinical Global Impression (CGI) rating of ‘very much
improved’ or ‘much improved’ to estimate a 23 per cent response rate for the placebo group and a 52 per cent
response rate for the drug group, but the additional CGI outcome will not be used here for simplicity.
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Figure 2. Schizophrenia trial.

1.2. Schizophrenia trial

Data for this example come from an NIMH schizophrenia collaborative study where severity
of illness was measured for 437 schizophrenics randomized to one of four treatments: placebo,
chlorpromazine, fluphenazine, or thioridazine. As in [3], the drug groups are combined into one
group resulting in 329 subjects in the drug group and 108 in the placebo group. Subjects were
measured once before treatment and three more times during five subsequent weeks. Following
[3], the analysis considers the item ‘Severity of Illness’ (IMPS #79), originally scored as Normal,
Borderline mentally ill, Mildly ill, Moderately ill, Markedly ill, Severely ill, and Among the most
extremely ill, but dichotomized between the categories Mildly ill and Moderately ill. The proportion
of subjects having more severe illness is shown in Figure 2 for the placebo and drug groups. The
proportion of subjects in the more ill category at the end point is 0.71 for the placebo group and
0.42 for the drug group. The decline for the placebo group suggests a natural decline in severity
or a placebo effect.

1.3. Alternative approaches

The conventional estimates of drug efficacy consist of the difference between the drug and placebo
response rates and, in case of the antidepressant example, the mean difference between the drug
and placebo groups of the depression score at the endpoint of the study. This approach has two
shortcomings. First, the drug effect attains a causal interpretation as a treatment assignment effect,
not an effect of the drug per se. Second, the assessment does not use all of the longitudinal data.

1.3.1. Causal modeling. As seen in the two examples, placebo-controlled randomized trials for
antidepressants and other drugs often show a response for a sizeable percentage of the subjects in
the placebo group. Due to randomization, potential placebo responders can be assumed to exist
also in the drug group. This makes it difficult to assess the true drug effect in the sense that a
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large percentage of the responders in the drug group may have responded also under placebo. In
statistical terms, the mean difference at the study endpoint is an ‘intent-to-treat’ estimate. This is
a causal effect of the treatment assignment, but not necessarily a causal effect of the drug. That
is, for some subjects their response to the drug is likely to be very similar to their response under
placebo, whereas others may be presumed to do much differently on the two conditions. Here, a
causal effect estimate is understood in the sense of the Rubin causal model [4–7]. A causal effect
approach leads to the estimation of mean differences between drug and placebo groups within
‘principal strata’ consisting of homogeneous groups of individuals [8]. For example, to evaluate
the causal effect of the drug, one important principal stratum consists of individuals, who would
respond to the drug but would not respond to the placebo. The group membership is not observed
but latent, which leads to finite mixture modeling with latent classes (see, e.g. [9]). This mixture
modeling approach will be pursued here.

1.3.2. End points versus trajectories. End-point analysis has the disadvantage of drawing on
information from a single time point. For the antidepressant trial, the outcome at week 10 may
contain irrelevant time-specific sources of depression variation such as day-to-day fluctuations. For
example, the average outcome at weeks 8, 9, and 10 may capture a longer-term level at the end of
the trial that better represents the true end-point depression level. Also, in the schizophrenia trial
the binary outcome allows a drop only from the category of 0 to the category of 1. As an alternative
to end-point analysis, the trajectory shape over time for the continuous outcome or the modeling
of the probability of illness for a dichotomous outcome can be studied and may be estimated by a
random effects repeated measures growth model that draws on the information from all time points
[3, 10]. The idea of considering trajectory shape in research on depression medication has also
been proposed in the psychiatric literature by [11], although not using a formal statistical growth
model. A generalized, finite mixture, version of such growth modeling [12, 13] will be applied in
a causal modeling context.

1.4. Paper outline

The outline of the paper is as follows. In Section 2, the causal model of [4] will be briefly reviewed
as a background for the modeling. Section 3 discusses several versions of causal models for drug
trials. Section 4 describes growth mixture modeling (GMM) and applies it to the longitudinal data
from the antidepressant and schizophrenia trials. Section 5 discusses a Monte Carlo simulation to
study the quality of estimation. Section 6 concludes.

2. THE AIR MODEL

To define causal effects in a drug trial setting, it is instructive to first consider the Angrist,
Imbens and Rubin ([4]; AIR from now on) discussion of causal inference in potential outcomes
terms applied to randomized trials with non-compliance. In AIR notation, Z is a binary 0/1
treatment/control variable, D is a binary 0/1 variable indicating that the subject does not versus
does take up the treatment, and Y is the outcome. AIR considered Yi (Zi ,Di (Zi )) for individual i and
defined the causal effect of Z on Y for individual i as the counterfactual expression Yi (1,Di (1))−
Yi (0,Di (0)). Although this quantity cannot be observed, the average causal effect can be identified
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and estimated under suitable conditions. AIR considered four classes of subjects:

• Never takers (Di (1)=0,Di (0)=0): subjects who would not take up treatment if randomized
to either treatment or control (causal effect =0 under the exclusion restriction)

• Compliers (Di (1)=1,Di (0)=0): subjects who would take up treatment if randomized to
treatment and otherwise not (causal effect =Yi (1,1)−Yi (0,0))

• Defiers (Di (1)=0,Di (0)=1): subjects who would do the opposite of their treatment assign-
ment (causal effect =−(Yi (1,1)−Yi (0,0)))

• Always takers (Di (1)=1,Di (0)=1): subjects who would take up treatment if randomized
to either treatment or control (causal effect=0 under exclusion restriction)

Of particular interest is the average causal effect in the Complier class, the complier-average
causal effect (‘CACE’). To extract this effect, AIR considered two key assumptions. Under the
monotonicity assumption the probability of Defier class membership is taken as zero (this was
an unlikely case in their application). Under the exclusion restriction the causal effect is taken
as zero for Never takers as well as for Always takers (i.e. no effect of randomization). In some
applications, the probability of the Always taker class membership is also zero due to the design
of the study, where subjects do not have access to treatment unless invited.

The outcome mean difference for the drug and placebo groups, �1−�0, is referred to as the
‘intention-to-treat’ (ITT) effect. The ITT effect is thereby a weighted mean difference over the
four classes, ignoring that subjects react differently to the treatment invitation.

3. A 4-CLASS DRUG TRIAL MODEL

This paper considers four latent classes analogous to those of the AIR model: Never Responders,
Drug Only Responders, Placebo Only Responders, and Always Responders. These may be seen as
principal strata in the sense of [8], providing homogeneous groups within which more meaningful
comparison between the drug and placebo groups can be made. Principal stratum membership is
not influenced by treatment and ‘can be used as any pre-treatment covariate, such as age category’
([8], p. 21). For applications of principal stratification see, for example [14–16].

The four latent classes, their probabilities, and their outcome means for placebo (0) and drug (1)
groups, are summarized in Table I. A number of different GMM expressed as in Table I will be
considered by placing no or some restrictions on the probabilities and equalities between some of
the means.

Table I. Four types of subjects, probabilities, and means for placebo (0) and drug (1) groups.

Placebo Drug group

Group Non-responder Responder

Non-responder Never responder Drug only responder Non-responder
�n , �n0, �n1 �d , �d0, �d1

Responder Placebo only responder Always responder Responder
�p , �p0, �p1 �a , �a0, �a1

Non-responder Responder
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The prevalences of the four types of subjects in Table I are of clinical interest. For Never
Responder subjects, neither placebo nor drug is effective and the subjects may be switched to
another drug. For Drug Only Responder subjects, only drug is effective. In the antidepressant trial
one would expect �d1<�d0, for example. This case is of particular interest from a pharmaceutical
point of view because this may be viewed as the subjects experiencing a real drug effect. For Placebo
Only Responder subjects, only placebo is effective. This is presumably a smaller group, who may
have adverse effects to drug. For Always Responder subjects, both placebo and drug are effective.
These subjects may not need the drug, although they may benefit more from the drug than placebo.

The marginals of Table I give the subjects who respond to placebo and drug, respectively, where
a higher marginal response rate for drug as compared with placebo is typically taken to indicate
a beneficial drug effect. The drug responders considered in the marginal distribution, however,
consist of a mixture of two different sub-populations: those who respond only to the drug and
those who would have responded to the placebo as well. Similarly, the placebo responders consist
of a mixture of those who respond only to placebo and those who respond to both placebo and
drug. The sizes of the sub-populations represented by the cells of Table I are not observed, but
have to be estimated using a mixture model.

It is assumed that the outcome at pre-randomization time points is drawn from the four different
sub-populations, representing different subject types already before the start of the treatment, where
the type-specific parameters for the outcome at the pre-randomization time points are unaffected
by subsequent treatment. For each of the four types of subjects, post-randomization development
is assumed to be different depending on whether the subject receives placebo or drug. In this way,
there are potentially eight different average post-randomization trajectories. For example, for Drug
Only Responder subjects, the response is not realized if the subject is randomized to placebo, only
if randomized to drug. Similarly, for Placebo Only Responder subjects, the response is not realized
if the subject is randomized to drug. For Always Responder subjects the degree of response may
not be the same for subjects randomized to placebo as for subjects randomized to drug.

Finally, the actual degree of response or non-response need not be the same for the four types
of subjects. For example, for subjects randomized to the drug group, the degree of response
may be different for Drug Only Responder subjects and Always Responder subjects. For subjects
randomized to placebo, the degree of response may be different for Placebo Only Responder
subjects and Always Responder subjects.

The model of Table I will be referred to as the 4-class, 8-mean model. The placebo and drug
group means are obtained as a finite mixture over the four latent classes,

�0 = �n�n0+�d�d0+�p�p0+�a�a0 (1)

�1 = �n�n1+�d�d1+�p�p1+�a�a1 (2)

The model of Table I can be seen as using a single latent class variable with four categories,
or two cross-classified latent class variables each having two categories (Responders and Non-
Responders). The latter approach is useful when considering covariates that may predict response,
in that such covariates may be different for placebo response and drug response.

The antidepressant trial data can be used to illustrate the estimation of this model. Here,
the endpoint at week 10 is used. A finite mixture model with four latent classes (four mixture
components) is used under the assumption of normality for the outcome within each latent class
(see, e.g. [17]). Only the means are varying across classes, with class-invariant variances. The
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Table II. Summary of antidepressant analyses.

Never Drug Placebo Always
Model LL #parameters BIC per cent per cent per cent per cent Tx

Week 10 analysis
1. ITT (1c), effect=5 −510 4 1041
2. 4c, 8m −481 13 1028 31 28 0 41 11
3. 50 per cent rule, 3c, 4m (AIR) 35 27 0 38 13
4. 3c, 4m (AIR) −487 8 1014 40 8 0 18 2
5. 3c, 2m −491 6 1012 27 28 0 45 15

GMM analysis
6. ITT (1c), effect=6 −4708 33 9583
7. 3c, 2m −4688 37 9562 26 35 0 39 14
8. 3c, 4m (AIR) −4676 43 9570 4 38 0 58 4
9. 4c, 8m −4652 58 9597 28 26 4 42 18

N, never responder; D, drug only responder, P, placebo only responder; A, always responder; Tx, treatment
effect for drug only responders.

maximum-likelihood loglikelihood (LL) value, # parameters, Bayesian information criterion (BIC)
value, and class percentages are summarized in Table II under model 2. The ITT model is shown
as a comparison as model 1, having two means, one for the placebo group and one for the drug
group. The BIC is better for the hypothesized 4-class model than the 1-class ITT model. The
entropy is 0.69. In these data, the 4-class analysis produces two latent classes corresponding to
Never Responder (high mean for both the drug and the placebo groups) at the expense of the
Placebo Only Responder class (low mean for placebo group and high mean for drug group) which
is not represented. It is interesting to note that the 28 per cent Drug Only Responder percentage
is considerably lower than the marginal 69 per cent drug response (the marginal placebo response
percentage is the same as the Always Responder percentage, 41 per cent). In other words, according
to the model most of the subjects responding to the drug would have also responded to placebo.
The Drug Only Responder effect corresponds to approximately 1 1/2 SD. The ITT effect of 5 is
less than half of that.

The above analysis illustrates that there is no guarantee that the four classes will have the
anticipated interpretation of Never Responder, Drug Only Responder, Placebo Responder, and
Always Responder. For example, a non-responder class may be replaced by an added responder
class, resulting in two classes with different degrees of response. Although parameter constraints
may be added to guarantee the anticipated interpretation, if the data do not support this, estimates
on the boundaries of the constraints will be produced and the solution will fit the data less well.
Alternatively, more classes may be added. As described in Section 4.1, however, the growth mixture
analysis, using all available time points, recovers the four hypothesized classes.

3.1. The 3-class, 4-mean AIR model

The monotonicity and exclusion restriction assumptions of the AIR model do not have direct
counterparts in a drug trial but the terms will be kept here for simplicity. The analogous assump-
tions suggest ways that the 4-class, 8-mean model can be simplified, producing models that are
parsimonious, and are possibly more easily replicable in samples of limited sizes. In particular,
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AIR used a 3-class, 4-mean model which can be identified in terms of first-order moments. This
model will now be discussed.

Under the monotonicity assumption there are no Placebo Only Responders (�p=0), resulting
in a 3-class model. In the drug trial context, the monotonicity assumption implies that subjects
who do not respond to the drug would also not respond to placebo. In this context a placebo
effect may be viewed as a result of the attention and empathy of the nursing staff. The assumption
may be reasonable from a substantive point of view if a subject is not a placebo responder and
an ineffective drug can be seen as a placebo. A violation of this assumption would occur if a
subject has an adverse effect to the drug and therefore does not benefit, whereas he/she would
have benefitted from placebo. It is possible that this class has a relatively low prevalence.

Under the exclusion restriction �n0=�n1, �a0=�a1 in the notation of Table I. These two assump-
tions state that subjects in the Never Responder class have the same outcome mean irrespective of
being randomized to placebo or drug, and subjects in the Always Responder class have the same
outcome mean irrespective of being randomized to placebo or drug. A violation of this assumption
would occur if, for example, among subjects in the Always Responder class the drug response is
stronger than the placebo response.

Applying both the monotonicity and the exclusion restrictions results in a 3-class, 4-mean
model. It follows from (1) and (2) that the difference between the drug and placebo means can be
expressed as

�1−�0=�d(�d1−�d0) (3)

identifying the average causal effect of the drug as

�d1−�d0=(�1−�0)/�d (4)

Due to the monotonicity assumption �d can be estimated because the proportion of subjects who
respond in the placebo group gives the proportion of Always Responders among those who respond
in the drug group. These proportions are observable quantities if one defines response, for example,
as a depression score drop of at least 50 per cent. This identifies the parameters of the 3-class,
4-mean model. Identification of the general 4-class, 8-mean model can be shown in line with [18,
chapter 3]. The parameter recovery of the corresponding 4-class GMM is demonstrated in the
Monte Carlo simulation study of Section 5.

A moment-estimator is suggested by (4) using sample proportions and means. As stated earlier,
for the antidepressant trial data the proportion of responders in the placebo and drug groups are
estimated as 38 per cent and 65 per cent, respectively, using the criterion of an end-point drop
of at least 50 per cent. It should be emphasized that this is not an endorsement of using the
50 per cent rule, but the approach is simply used here as a contrast to finite mixture modeling.
With the assumption of zero probability of Placebo Only Responders, this means that there are
38 per cent Always Responders. This gives a �d estimate for the prevalence of the Drug Only
Responder class of 27 per cent (65 per cent–38 per cent). This implies that for the drug group,
among the 65 per cent responders (n=66), only 42 per cent (n=28) are Drug Only Responders,
whereas the remaining 58 per cent (n=38) of the drug responders would have responded also
under placebo. It follows that the Never Responder prevalence is estimated as 35 per cent. With
the endpoint outcome sample means of 9.3 and 12.9, (4) gives the average causal effect estimate
of the Hamilton D28 improvement as 13((12.9−9.3)/0.27) for Drug Only Responders.

The above moment-based estimates of the prevalences and Drug Only Responder outcome mean
difference are summarized in Table II as model 3, having 3 classes and 4 means. Model 3 can
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be compared with the maximum-likelihood estimated finite mixture modeling reported earlier for
the 4-class, 8-mean model 2. The estimates from the two approaches are similar. In model 2,
the 50 per cent rule is replaced by the finite mixture model and its assumptions of within-class
normality and class-invariant variances. Table II also shows model 4 which is the counterpart to
the moment-estimated 3-class, 4-mean AIR model 3, but using a maximum-likelihood-estimated
finite mixture model. The entropy is 0.83. The Drug Only Responder percentage now obtains a
low value of only 8 per cent with a Drug Only Responder treatment effect of only 2. Compared
with the model 2 and model 3 results, the maximum-likelihood results for model 4 do not seem
to give a plausible representation of the data.

3.2. A 3-class, 2-mean model

A more parsimonious version of the 3-class, 4-mean AIR model under monotonicity and exclusion
restrictions can be formulated. It uses only one mean for responders and one mean for non
responders,

�n0 = �d0 (5)

�d1 = �a1 (6)

Given that the exclusion restriction assumes �n0=�n1 and �a0=�a1, this results in only 2 means
with the assumptions that:

1. A non-responder mean is the same if

(a) the person is in the placebo group and in the Never Responder class,
(b) the person is in the placebo group and in the Drug Only Responder class,
(c) the person is in the drug group and in the Never Responder class.

2. A responder mean is the same if

(a) the person is in the drug group and in the Drug Only Responder class,
(b) the person is in the drug group and in the Always Responder class,
(c) the person is in the placebo group and in the Always Responder class.

Because of variations in degree of non-response and degree of response in the above settings,
there is no substantive reason to believe that the above assumptions are exactly true. For example,
a non-responder mean may be higher in the placebo group for the Never Responder class than
for the Drug Only Responder class because the Never Responder class subjects may be harder to
cure. Or, a responder mean in the drug group may be lower in the Always Responder class than
in the Drug Only Responder class because of an additive effect of the drug and the placebo. The
assumptions may, however, approximate reality in a drug trial to a sufficient degree.

The 3-class, 2-mean model has the advantage of simplicity and can capture essential features
in the data. Two of the latent classes assume the same post-randomization means for placebo and
drug groups, whereas the third class allows these means to be different for placebo and drug.
Latent classes characterized in this way are likely to be found in many trials because some subjects
respond and do not respond in both placebo and drug groups, and some subjects respond only to
drug.

The maximum-likelihood estimation results for the 3-class, 2-mean model are summarized in
Table II as model 5. It can be seen that model 5 has the best BIC among the models for Week 10
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analysis. The entropy is 0.64. Compared with model 4, the more parsimonious model 5 is more
in line with the results of model 2 and model 3.

4. GMM OF DRUG TRIALS

GMM has the potential of uncovering important information about classes of responders and non-
responders in clinical trials extending the above models to longitudinal settings where not only
the end point outcome is considered but also the trajectory throughout the trial. GMM combines
random effects modeling in conventional repeated measures analysis with finite mixture modeling
using latent class variables to represent qualitatively different classes of trajectories [12, 13, 19].
GMM is currently used in a wide variety of settings, see, for example [20] for an application to the
joint study of PSA development and prostate cancer survival, [21] for an application to identifying
trajectories of positive affect and negative events following myocardial infarction, and [22] for an
application to growth modeling with non-ignorable dropout in a depression trial.

The 4-class model discussed above will now be presented in GMM terms. Let pi and di be
the binary latent class variables for individual i in the placebo and drug group, respectively. The
probability of latent class membership is modeled by the logistic regressions

log[P(pi =1|z p)/P(pi =2|z p)] = �p+�pzpi (7)

log[P(di =1|zd)/P(di =2|zd)] = �d +�d zdi (8)

where zpi is a covariate influencing class membership of the placebo latent class variable pi , and
zdi is a covariate influencing class membership of the drug latent class variable di . Let 1 refer to
the non-responder class, and 2 the responder class. The relationship between pi and di is expressed
via the log odds ratio

log

[
�11i/�12i
�21i/�22i

]
=�i (9)

where

�kli= P(pi =k,di = l|zpi, zdi) (10)

It may be noted that this model assumes that treatment status does not influence latent class
membership. Class membership is conceptualized as a quality characterizing a subject before
entering the trial. As an alternative, one may hypothesize that class membership arises as a
function of treatment, with a single class during the pre-treatment period. This approach will not be
explored here. If treatment influences only the class membership probabilities and not the random
effect means directly, then the distinction between the four hypothesized latent classes of subjects
cannot be made. Also, if the model allows treatment to influence class membership, the principal
stratification interpretation of [8] referred to in Section 3 is not valid.

Consider the depression outcome yti observed at time point t for individual i . Let � denote
random effects, let at denote time, and let �t denote residuals containing measurement error and
time-specific variation. In line with the real-data analysis in Section 4.1, it is assumed that the
outcome is observed at two pre-randomization time points. For the first, pre-randomization piece,
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the means of the random effects vary as a function of the combination of placebo latent class
k(k=1,2) and drug latent class l(l=1,2),

ypreti |pi=k,di=l =�pre0i +�pre1i at +�preti (11)

with a1=0 to center at baseline, and random effects

�pre0i |pi=k,di=l = �pre0kl +	pre0i (12)

�pre1i |pi=k,di=l = �pre1kl +	pre1i (13)

With only two pre-randomization time points, the model is simplified by specifying a non-random
slope, V (	pre1 )=0, for identification purposes. All pre-randomization parameters are assumed to
be equal across the placebo and drug groups.

Assume for simplicity a single drug and denote the treatment status for individual i by the
dummy variable wi (w=0 for the placebo group and w=1 for the drug group). For the second,
post-randomization piece, a quadratic growth model is specified (t=3,4, . . . ,T ),

yti|pi=k,di=l(wi )=�0i (wi )+�1i (wi )(at −c)+�2i (wi )(at −c)2+�ti(wi ) (14)

where the at values are set according to the distance in timing of measurements and c is a constant
such as the average of at . The random effects are allowed to be influenced by the group dummy
covariate w, their distributions varying as a function of the combination of trajectory classes k and l,

�0i |pi=k,di=l(wi ) = �0kl +�0klwi +	0i (wi ) (15)

�1i |pi=k,di=l(wi ) = �1kl +�1klwi +	1i (wi ) (16)

�2i |pi=k,di=l(wi ) = �2kl +�2klwi +	2i (wi ) (17)

The residuals 	i in the first and second piece have a 4×4 covariance matrix �k,l , here taken to be
constant across the k, l classes. The residuals �ti of the two pieces have a T ×T covariance matrix
�k,l , here taken to be constant across classes as well. All residuals are assumed i.i.d. and normally
distributed. For simplicity, �k,l and �k,l are assumed to not vary across treatment groups, although
this can be relaxed. In the actual analyses in Sections 4.1 and 4.2, the drug status covariate is
represented by yet another latent class variable, where the latent status is known (this adds one
extra class probability parameter, which could be ignored, but is included in the reporting of all
the models). This creates a total of eight classes where the variances can be allowed to vary over
subsets of those classes.

As seen in (15)–(17), the placebo group (wi =0) consists of subjects that vary in the means
of the growth factors, which are represented by �0kl , �1kl , and �2kl . This gives the average
development in the absence of medication for each of the four types of subjects of Table I. Because
of randomization, the placebo and drug groups are assumed to be statistically equivalent at the
first two time points. Drug effects are described in the second piece by �0kl , �1kl , and �2kl as a
change in the development that can be different for the four types of subjects.

This model allows the assessment of drug response in the presence of placebo response both in
terms of �0kl , �1kl , and �2kl and in terms of the probabilities of (7)–(9), giving the prevalence of
each of the four types of subjects of Table I.
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The analysis may use the above model in an exploratory way or by restricting the parameters of
the second growth piece to correspond to the hypothesized non-responder and responder classes.
Used in an exploratory way, the resulting four types of subjects may not have the interpretation
used for Table I. For example, instead of the Placebo Only Responder type two sets of Drug
Only Responder types may be found, differing in their non-response/response characteristics.
Restrictions on the parameters can be applied, for example, by forcing the estimated outcome
mean at the last time point to be less than a certain value indicating response, and greater than a
certain value indicating non-response.

An equivalent way to formulate the model is as in [12] using a single latent class variable that
has four categories corresponding to the four types of subjects in Table I. This approach does not
emphasize the hypothesis that the four types of Table I arise as a combination of an individual
being prone to placebo and/or drug response. It also does not enable separate covariates for the
latent class covariates as in (7), (8). Nevertheless, the single latent class variable approach is used
in the present analyses for simplicity given that no covariates are included. As mentioned, the
placebo-drug dummy variable is handled via an additional latent class variable with known class
status.

The models discussed may be estimated by maximum-likelihood using the Mplus program [23].
Mplus was used for both the real-data and Monte Carlo analyses. Mplus scripts for the analyses
are available from the first author. For a technical description, see [12, 13].

The choice of the number of latent classes in mixture modeling is often guided by the minimum
of the BIC, penalizing models with many parameters [24, 25],

BIC=−2log L+r logn (18)

where log L is the loglikelihood, r is the number of free parameters in the model, and n is the
sample size. The lower the BIC value, the better the model. BIC, however, is not always reliable for
small sample sizes but may underestimate the number of classes for samples of size 200 and below
[26]. Classification of subjects into the latent classes can be carried out based on the estimated
posterior probabilities of class membership [17]. A summary measure of the classification quality
is given by the entropy measure (see, e.g. [27]),

EK =1−
∑

i
∑

k(− p̂ikln p̂ik)

n lnK
(19)

where p̂ik denotes the estimated posterior probability for individual i in class k. Entropy values
range from 0 to 1, where entropy values close to 1 indicate clear classifications in that the entropy
decreases for probability values that are not close to 0 or 1. Values of at least 0.8 typically represent
good classification quality.

4.1. GMM applied to the antidepressant trial

The GMM will here be applied to the repeated measures data from the antidepressant trial, whereas
the next section treats the schizophrenia trial. For the antidepressant trial the GMM approach uses
a quadratic growth function for the second, post-randomization piece. As a first step, the drug and
placebo groups are analyzed separately to show the trajectory features.

4.1.1. Separate GMM analysis of drug and placebo groups. Table III summarizes the results of
GMM of the drug and placebo groups analyzed separately. For the drug group, BIC points to three
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Table III. Summary of separate analyses of drug and placebo groups.

# classes LL #parameters BIC

Drug group
(n=102)
1 −3000 27 6125
2 −2980 33 6114
3 −2965 39 6110
4 −2959 45 6126

Placebo group
(n=52)
1 −1597 27 3300
2 −1587 33 3305
3 −1579 39 3313
4 −1572 45 3322

Figure 3. Observed trajectories divided into three classes for the drug group (class 1 is top left, class 2
is top right, and class 3 is at the bottom).

classes. As mentioned earlier, however, the low sample size may make BIC less trustworthy and
suggest too few classes. The 3-class solution has an entropy of 0.87. The posterior probabilities are
used to classify observed trajectories for subjects most likely to belong to each of the three classes
as shown in Figure 3. The mean curves of the 3-class solution for the drug group are shown in the
top part of Figure 4. Class 1 is drug responder class containing 67 per cent of the subjects. Class 2
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Figure 4. Estimated mean curves for 3-class model for drug group (top) and placebo group (bottom).

is a drug non-responder class containing 28 per cent. Class 3 is a drug non-responder class with
volatile development, containing 5 per cent. The 4-class solution gives two classes very similar in
shape and prevalence to class 1 and class 3, whereas class 2 is split into two non-responder classes.

Judged by BIC, the placebo group analyses suggest that a conventional, single-class growth
model is sufficient. Again, the low sample size may cause BIC to underestimate the number of
classes. The mean curves for the 3-class solution for the placebo group are shown in the bottom
part of Figure 4. For the placebo group only one-thirds are in the responder class, which is in
contrast with the two-thirds in the responder class for the drug group. What is not clear from these
analyses, however, is what portion of the drug responders and drug non-responders would have
been responders and non-responders under placebo. For this the joint analysis of both groups is
needed.

4.1.2. Joint GMM analysis of drug and placebo groups. Four models are fitted as summarized
in the bottom part of Table II, labeled Growth mixture analysis. Judging by BIC, the parsimo-
nious model 7 with three classes and two sets of means is better than model 6, the ITT 1-class
random effect repeated measures model. For model 7, the Drug Only Responder prevalence is
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Figure 5. Estimated mean curves for model 7: 3-class model, two sets of means.

estimated as 35 per cent and with a week 10 treatment effect of 14 units on the Hamilton D28
scale. The entropy is 0.67. The results for model 7 are not far from those of models 2, 3,
and 5.

Figure 5 shows the estimated mean trajectories for model 7, the 3-class model with two sets of
means. The modeling uses the approach of letting the treatment dummy covariate be represented
by a latent class variable with known classes as described in Section 4. This results in a total of six
latent classes: classes 1–3 are for the placebo group and classes 4–6 are the corresponding classes
for the drug group. The top three curves are identical and the bottom three curves are identical,
but the curves have been jiggled here to show the class membership. It is seen that classes 1
and 4 represent Never Responders (non-response in both groups), classes 2 and 5 represent Drug
Only Responders (non-response in placebo group and response in drug group), and classes 3 and
6 represent Always Responders (response in both groups).

Figure 6 shows the estimated mean trajectories for model 8, the 3-class model with four sets
of means. The entropy is 0.91. As for the previous figure, classes 1–3 are for the placebo group
and classes 4–6 are the corresponding classes for the drug group. Classes 1 and 4 represent Never
Responders and classes 3 and 6 represent Always Responders. For classes 2 and 5, however, the
outcome is unclear. Although the class 5 trajectory for the drug group ends at a lower Week 10
value than the corresponding class 2 trajectory for the placebo group, the class 5 mean trajectory
ends with a high value at Week 10. It is therefore unclear if this can be characterized as a Drug
Only Responder class. The class percentages for this solution are also quite different than for the
other models, with the Never Responder class prevalence estimated as only 4 per cent, which
does not seem plausible. As for the week 10 analysis using model 4, the 3-class, 4-mean model
is therefore a questionable representation of the data.

Model 9, the 4-class model with eight sets of means, does not have a better BIC than the other
models, but as discussed in Section 4, BIC tends to underestimate the number of latent classes in
small samples. The entropy is 0.84. Table IV gives the estimated class prevalences and Figure 7
shows the estimated mean curves for the four types of subjects divided into the placebo and drug
groups, resulting in eight classes of curves.
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Figure 6. Estimated mean curves for model 8: 3-class model, four sets of means (AIR model).

Table IV. Antidepressant trial prevalence of four types of subjects under 4-class
model with eight sets of means.

Placebo Drug group

Group Non-responder Responder

Non-responder Never responder Drug only responder 54 per cent
28 per cent 26 per cent

Responder Placebo only responder Always responder 46 per cent
4 per cent 42 per cent

32 per cent 68 per cent

Figure 7 shows that the Never Responder subjects are found in class 2 for the placebo group
and in class 6 for the drug group. Their week 10 means are around 15. As seen in Table IV, the
prevalence of this type of subjects is estimated as 28 per cent.

The Drug Only Responder subjects are found in class 3 for the placebo group and class 7 for
the drug group. The prevalence of this type of subjects is estimated as 26 per cent. The estimated
week 10 treatment effect is 18 (corresponding to an estimated mean of 5 for the drug group and
an estimated mean of 23 for the placebo group), which corresponds to a little over two SDs. The
95 per cent confidence interval for the treatment effect is 15.2−21.5.

The Placebo Only Responder subjects are found in class 1 for the placebo group and class 5
for the drug group. It is seen that the placebo response is temporary, limited to weeks 4–7, with a
later upswing in depression. This type of subjects has the highest baseline score of about 28 and
a more volatile development with a sharp increase in depression around week 1. The prevalence
of this type of subjects is estimated as only 4 per cent.

The Always Responder subjects are found in class 4 for the placebo group and class 8 for the
drug group. Their estimated mean at week 10 is only around 4. The prevalence of this type of
subjects is estimated as 42 per cent.
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Figure 7. Estimated mean curves for model 9: 4-class model, eight sets of means.

Table IV also gives the estimated marginal response rates for placebo and drug. The placebo
response rate is 46 per cent, whereas the drug response rate is 68 per cent.

The antidepressant analysis results are summarized in Table II, listing the models in order of
appearance. All models are estimated using maximum likelihood except model 3, which uses the
moment estimator of Section 3.1. With the exception of the two maximum-likelihood estimated
3-class, 4-mean AIR models, model 4 and model 8, the estimates are on the whole rather close.
Only model 9, the 4-class GMM with eight sets of means, uncovers the hypothesized four classes
of Table I. For this model the drug effect of 18 at week 10 for the Drug Only Responder class
corresponds to a little over two SDs in terms of the total variation at week 10.

Previous attempts to isolate placebo response in antidepressants trials by statistical modeling
include [28], where five trajectory categories were hypothesized for an individual treated with an
active drug and where placebo subjects can fall into only one of the first three categories: (A)
non-responders, (B) non-responders with initial placebo effect, (C) placebo responders, (D) true
drug responders, and (E) mixture effects responders. This classification does not have the clarity of
the potential outcomes—principal stratification approach used in the current paper. For example,
the requirement that placebo subjects cannot occupy category (D), corresponding to Drug Only
Response, is in contrast with the view of the current paper that the categories exist as principal
strata before randomization. Also, it is not clear if, for example, treatment subjects in category (D)
would fall in category (A) if they had been given placebo. Nevertheless, the trajectory types of
the first four categories are found in the current paper, including the category (B) trajectory type
seen for the Placebo Only Responder class. The fifth category (E) (‘subjects who have an initial
improvement due to nonspecific effects and then experience a drug effect’) represents a more
fine-grained distinction than used here. More recently, [29] used infinite mixtures in an attempt at
isolating drug effects in the presence of placebo effects.

4.2. GMM applied to the schizophrenia trial

The schizophrenia trial example offers two new growth mixture features. First, the outcome is
binary instead of continuous. Second, the fact that the outcome is categorical makes it possible to
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test the model against data using conventional likelihood-ratio 
2 testing against the unrestricted
model represented by a multinomial distribution for the corresponding frequency table. Also, in
this trial the sample size is larger (n=437) so that the use of BIC to help decide on the number
of classes is more reliable.

For the schizophrenia trial data the ITT model, the 3-class, 2-mean model, and the 4-class,
8-mean model will be discussed. Here, a linear logistic growth model with random intercept and
random slope is applied (time was specified in weeks, not taking the square root as in previous
growth analyses of these data). The conventional, ITT single-class random effects model gives
LL=−858 with eight parameters, and BIC=1765. The week 10 estimated probabilities are 0.60
and 0.27 for the placebo and drug groups, respectively. The 3-class, 2-mean model gives LL=−840
with 11 parameters, and a better BIC of 1748. The entropy is 0.75. The 4-class, 8-mean model gives
LL=−836 with 19 parameters, and a worse BIC of 1788. The entropy is 0.72. Given the binary
outcomes, a likelihood-ratio 
2 test for the frequency table of all response patterns is also available
for evaluating the fit of the three models. The 1-class model gives 
2=77 with 23 degrees of
freedom, whereas the 3-class model improves the model fit to 
2=42 with 20 degrees of freedom.
The 4-class model obtains 
2=33 with 12 degrees of freedom.

The prevalences for the 3-class model are estimated as: Never Responder class 45 per cent, Drug
Only Responder class 27 per cent, and Always Responder Class 28 per cent. The 4-class does not
show a Placebo Only Responder class, but instead two non-responder classes. The prevalences are
Never Responder class 60 per cent, Drug Only Responder class 27 per cent, and Always Responder
Class 13 per cent.

The estimated mean probability curves for the 3-class model are shown in Figure 8. Curves are
shown for six classes, where the first three are for the placebo group and the next three the corre-
sponding classes for the drug group. Classes 1 and 4 have the same curves as do classes 3 and 6, but
these classes are jiggled to be slightly different in order for the curves to show up. The Drug Only
Responders appear as class 2, showing non-response in the placebo group and as class 5 showing
response in the drug group. The figure shows that Drug Only Responders have a quicker improve-
ment than Always Responders (class 3 and class 6 for placebo and drug groups, respectively).
Although the model has only responder and non-responder mean parameters, the linear logistic
growth model produces this differential improvement due to different starting points at week 0.

Class 1, 11.9%
Class 2, 6.9%
Class 3, 5.9%
Class 4, 33.1%
Class 5, 20.4%
Class 6, 21.8%
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Figure 8. Schizophrenia trial: 3-class, 2-mean model.
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GMM of these data was also carried out in [30] (the outcome was kept in ordinal form and
the square root of week was used). The model is similar in that it allows for responder and
non-responders in both the treatment and the placebo groups. The model is different in that only
two classes are used and that it does not allow for different drug effects in the classes. Investigating
their model, it was found that the drug effect was significantly different across the classes. This
model resulted in LL=−842 with 11 parameters, and BIC=1751, which is a slightly worse BIC
value than for the proposed 3-class, 2-mean model. More importantly, the modeling in [30] makes
no attempt at causal inference regarding potential outcomes and therefore does not make a distinc-
tion between the classes of Never Responders, Drug Only Responders, Placebo Only Responders,
and Always Responders. Because of this, it cannot make inference about the Drug Only
Responder rate.

5. MONTE CARLO SIMULATIONS

The 4-class model of Section 4 will now be used in a Monte Carlo simulation with characteristics
similar to that of the real-data analysis of the antidepressant trial. The aim is to study how well
the parameter values can be recovered under different conditions.

Two pre-randomization time points are considered together with 10 post-randomization time
points. The hypothetical prevalence for each of the four types of subjects is given in Table V. For
the post-randomization piece of the GMM in (14)–(17), a linear function is used for simplicity. The
choice of class-varying parameters results in the mean trajectories as shown in Figure 9. Note that
a lower score indicates a lower level of depression. The first four classes of the figure correspond
to the four types of subjects in the placebo group and the last four classes correspond to the four
types of subjects in the drug group. For each group, the four classes are numbered in the order
Never Responder, Drug Only Responder, Placebo Only Responder, and Always Responder. At
week 12 the SD for the outcome is approximately eight. The week 12 means for non-responders
and responders are about two SDs apart, except for Drug Only Responders in the placebo group
(‘class 2’) for whom the mean difference is a little over one SD. In terms of within-class SDs
the week 12 mean differences are about three to four SDs. Monte Carlo simulation results are
presented for n=500, n=200, and n=100 using 1000 replications. To limit the results shown,
the focus is on the estimated probabilities for the four cells of Table V and the week 12 treatment
effects expressed as drug mean–placebo mean for those four cells. A negative value indicates that
the drug is beneficial. The placebo and drug group marginal responder probabilities are labeled �.
Tables VI–VIII show the results for n=500, n=200, and n=100.

Table VI shows that all quantities are well estimated with little bias, good standard error
estimates, and good 95 per cent coverage for n=500. The estimated power to reject the favorable

Table V. Hypothesized prevalence of four types of subjects for Monte Carlo simulation study.

Placebo Drug group

Group Non-responder (per cent) Responder (per cent)

Non-responder 25 35 60
Responder 5 35 40

30 70
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Figure 9. Growth mixture model for placebo and drug responders.

Table VI. Monte Carlo results for n=500.

True Mean Mean 95 per cent
Quantity value estimate SD SE MSE coverage Power

�n 0.250 0.2485 0.0271 0.0295 0.0007 0.962 0.999
�d 0.350 0.3505 0.0399 0.0435 0.0016 0.958 1.000
�p 0.050 0.0521 0.0134 0.0145 0.0002 0.953 0.970
�a 0.350 0.3489 0.0350 0.0372 0.0012 0.951 1.000
Placebo � 0.400 0.4010 0.0345 0.0362 0.0012 0.959 1.000
Drug � 0.700 0.6994 0.0275 0.0288 0.0008 0.951 1.000
�n1−�n0 0.000 −0.0141 0.8313 0.8334 0.6906 0.954 0.046
�d1−�d0 −11.000 −10.9306 1.1641 1.1049 1.3586 0.877 0.997
�p1−�p0 16.000 15.9790 1.7084 1.6751 2.9161 0.919 0.998
�a1−�a0 0.000 −0.0494 1.1060 1.0094 1.2245 0.844 0.156

drug effect among Drug Only Responders (�d1−�d0) is high, 0.997. For the smaller sample of
n=200 in Table VII, the results are still good and only slightly worse than for n=500. Table VIII
for n=100 still shows acceptable results but the coverage for the Drug Only Responder effect is
now problematic due to a bias in the estimated standard error. The mean estimates are, however,
still quite good at this sample size, which is reassuring given that few trials involve more than this
many subjects. For n=50 (data not shown), also the point estimates show large biases.
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Table VII. Monte Carlo results for n=200.

True Mean Mean 95 per cent
Quantity value estimate SD SE MSE coverage Power

�n 0.250 0.2474 0.0483 0.0513 0.0023 0.919 0.984
�d 0.350 0.3513 0.0699 0.0771 0.0049 0.936 0.972
�p 0.050 0.0580 0.0264 0.0289 0.0008 0.921 0.771
�a 0.350 0.3434 0.0604 0.0694 0.0037 0.939 0.986
Placebo � 0.400 0.4014 0.0593 0.0636 0.0035 0.937 0.989
Drug � 0.700 0.6946 0.0464 0.0507 0.0022 0.935 0.999
�n1−�n0 0.000 0.0561 1.5384 1.4625 2.3673 0.922 0.078
�d1−�d0 −11.000 −10.9769 1.9278 1.7088 3.7132 0.847 0.976
�p1−�p0 16.000 15.8315 3.2447 2.4249 10.5460 0.831 0.983
�a1−�a0 0.000 0.0507 1.6597 1.5074 2.7543 0.832 0.168

Table VIII. Monte Carlo results for n=100.

True Mean Mean 95 per cent
Quantity value estimate SD SE MSE coverage Power

�n 0.250 0.2435 0.0671 0.0642 0.0045 0.872 0.947
�d 0.350 0.3514 0.0961 0.0939 0.0092 0.872 0.905
�p 0.050 0.0674 0.0391 0.0332 0.0018 0.893 0.544
�a 0.350 0.3377 0.0858 0.0799 0.0075 0.871 0.959
Placebo � 0.400 0.4051 0.0839 0.0802 0.0071 0.888 0.981
Drug � 0.700 0.6890 0.0662 0.0658 0.0045 0.901 0.997
�n1−�n0 0.000 0.1296 2.3661 1.8794 5.6098 0.838 0.162
�d1−�d0 −11.000 −11.0642 2.7479 1.9818 7.5475 0.772 0.960
�p1−�p0 16.000 15.5789 4.4785 2.1952 20.2146 0.650 0.968
�a1−�a0 0.000 0.0404 2.3167 1.6840 5.3632 0.799 0.201

6. DISCUSSION

The Monte Carlo simulation study suggests that the parameters of the proposed GMM can be well
recovered for sample sizes of at least 200 and settings similar to those used in the simulations.
Point estimates, but not SEs, are reasonably well estimated even at n=100, but not much below
this sample size. The antidepressant trial data analysis uses n=154, which therefore approaches
the lower limit of what is an acceptable sample size. Future studies could investigate whether the
more parsimonious 3-class model with two sets of means may do better at low sample sizes and/or
with binary outcomes.

The clinical trial data analyses using GMM provide an interesting view of the drug response.
For the antidepressant trial data the 4-class GMM-estimated marginal rate of drug response was 68
per cent versus 46 per cent for placebo. The Drug Only Responder rate was estimated as 26 per cent.
For the schizophrenia trial data the estimated marginal rate of drug response was 70 per cent versus
40 per cent for placebo, whereas the Drug Only Responder rate was estimated as 35 per cent. The
GMM approach emphasizes that the marginal drug response rate is obtained as a mixture of Drug
Only Responders and Always Responders. For both data sets, at least half of those who respond to
the drug are subjects who would also respond to placebo. This finding challenges the convention
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3384 B. MUTHÉN AND H. C. BROWN

of assessing a drug effect by using the marginal response rates. The ability to uncover this finding
illustrates the strength of the principal stratification, mixture modeling approach. As summarized
in Table II for the antidepressant trial data it is also noteworthy that the effect size estimated by
GMM for the Drug Only Responder class is much larger than that of the ITT approach.

It is also noteworthy that antidepressant trials typically truncate the study sample by eliminating
subjects who show a strong placebo response during the washout period, that is, before random-
ization. Owing to this, the placebo response rate is underestimated. Using the proposed approach
such sample truncation is not necessary.

In summary, the paper points to the usefulness of augmenting the conventional approach of
comparing marginal response rates and using ITT effect estimates with the approach of GMM-
estimated prevalences for the four classes of subjects. From a clinical research point of view, it
is of special interest to consider the prevalence of the Drug Only Responder class and the Drug
Only Responder drug effect estimate.

The mixture approach can be expanded in several ways. Further investigations can attempt to
include predictors of the latent class membership for placebo and drug response. Also, it would
be possible to examine the variation in the percentage of Drug Only Responders across multiple
trials involving different populations to understand which subgroups are more likely to benefit
from a particular medication. GMM can potentially also be used in a dynamic fashion as a basis
for switching subjects onto different treatment regimes.
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